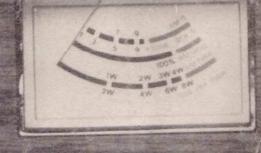

1. 3 om


Co

Pubblicazione mensile sped. in abb. post. g. II 1 Marzo 1973

SSB/AM CB TRANSCEIVER

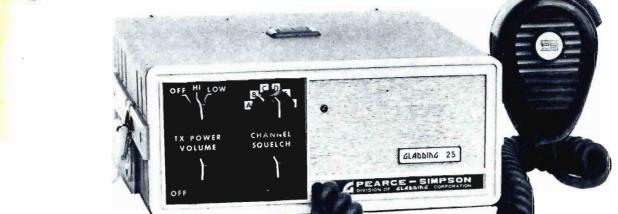
RF .

CAL __ON

TELECOMUNICAZIONI MARE - TERRA

VISITATECI A BOLOGNA ALLA MOSTRA MERCATO DEL 3-4 MARZO

ANNUNCIAMO:


GLADDING 25 PRIVATE

per frequenze da 156 a 170 MHz

ORA OMOLOGATO dal MINISTERO POSTE e TELECOMUNICAZIONI per i servizi in VHF privati

- ANTENNE PROFESSIONALI VHF
- PONTI RIPETITORI VHF

STAZIONI BASE VHF

25 W OUTPUT PER SERVIZIO PROFESSIONALE CONTINUO

PREVENTIVI A RICHIESTA CONSEGNE IMMEDIATE

CITIZENS RADIO COMPANY

41100 MODENA (ITALIA) Via Prampolini 113 - Tel. 059/219001 Telex Smarty 51305

sommario

indice degli Inserzionisti	357
Combinazioni-campagna 1973 e offerte speciali	381
Quiz (soluzione) (Giardina)	387
Alimentatore stabilizzato protetto con integrato SGS L123 (Tagliavini)	388
Radiocomando per modello navale (Busi)	404
Antifurto elettronico per abitazione (Artini)	417
La pagina dei pierini (Romeo)	422
Accensione elettronica fantasiosa 8BF4 a scatola chiusa · Nuclei toroidali introvabili Leggere attentamente cq · Sincrodina · Lineari in classe C	722
il circuitiere (Rogianti)	424
Uno dei tanti modi: ovvero come tentare di « buttar giù » un progetto (Provasoli)	
NOTIZIARIO NUOVI PRODOTTI (Miceli)	430
Sistema d'aliarme per avarie, a dieci punti - Mescolatore subminiatura - Relay selettivo - Moduli logici con alta immunità al disturbo - Nuovo filtro per ricevitori FM - Fonometro per rumore da 24 a 140 dB - Un economico modulo di ricezione allo stato solido - Oscillatore a cristallo in custodia TO5 - Tester digitale - Un integrato per filtri attivi - Calcolatrici elettroniche tascabili col nuovo microcircuito C500 - Allarme per eccesso fumi nel camino - Triacs - Transistore epitassiale per alta tensione e forte corrente - Allarme a ultrasuori - Interruttori subminiatura a leva e pulsante	
SENIGALLIA SHOW (Catto)	435
Pietro Platini: amplificatore lineare per i 10 m (e frequenze limitrofe), commutatore elettronico e ROSmetro - Antfiirto (Provasofi) - Una precisazione (Cavallaro) - Altra precisazione (Bonaldo) - Poteva mancarne una terza? (Tondo) - SENIGALLIA OUIZ con elenco vincitori ed elenco bis!	
sperimentare (Ugliano)	443
Tombola elettronica e botti di Vigilia - Applicazione - Litronic Data 33 - (Nardoni) Millivoltmetro (Salerno) - Perdite di tempo con i triacs (Chello) - Orologio digitale (Tanzarella) - Regolatore tempi di posa (Emaldi) - Una preghiera agli sperimentatori Ci sarà il terzo C.I.S.! - Papocchia Club (Tortorici)	
tecniche avanzate (Fanti)	449
Promemoria BARTG e WAEDC	****
· TV-DX (Dolci)	
il sanfilista (Buzio)	454
Un nouvo convertitore a MOSFET con uscita a 28 MHz copre anche le onde medie - 1º Campionato HRD SWL 1973 (annuncio regolamento) (Pazzaglia)	
Citizen's Band (Anzani)	461
OSL eccezionali [Mercurus 6] - Mod meter - Sideband Engineers Coronado - CB a Santiago 9 + [Can Barbone 1°] (settima fatica) Lista di combinazione dei cristalli per un sintetizzatore di frequenza e spiegazioni del concetto di supereterodina - Modifica dei baracchini AM in SSB. ma siete matti? - Miniconvertitore a due transistor per ricevere la CB con l'autoradio	
satellite chiama terra (Medri)	472
Effemeridi in ora locale ed effemeridi nodali per il periodo 15/3-15/4 - Errata corrige	,,,
offerte e richieste	477

AVVISO IMPORTANTE

A causa della recente svalutazione della lira rispetto allo yen giapponese, siamo costretti ad aumentare il valore della combinazione "B" (ricetrasmettitore Pony) che sale pertanto da L. 37.000 a L. 43.500

Tutti i Lettori che hanno effettuato il versamento DOPO IL 10 FEBBRAIO potranno chiedere la restituzione dell'importo versato o inviare la differenza. Ci spiace per l'accaduto, ma non siamo noi a determinare il valore di cambio delle monete

(disegni di Mauro Montagari)

EDITORE

DIRETTORE RESPONSABILE

REDAZIONE - AMMINISTRAZIONE
ABBONAMENTI - PUBBUICITA

40121 Bologna, via C. Boldrini, 22 - 2 55 27 06

Registrazione Tribunale di Bologna, n. 3330 del 4-3-68

Diritti di riproduzione e traduzione
riservati a termine di legge.

STAMPA
Tipo-Uito Lame - 40131 Bologna - via Zanardi, 506/B

Spedizione in abborgmento postale - gruppo III

Pubblicità inferiore al 70%

DISTRIBUZIONE PER L'ITALIA

SODIP - 20125 Milano - via Zurgtti, 25 - 2 68 84 251

00197 Roma - via Serpieri, 11/5 - 2 87.49.37

DISTRIBUZIONE PER L'ESTERO

Messaggerie Internazionali - via M. Gonzaga, 4
20123 Milano 🕾 872.971 - 872.973

AESICNIAMENTI: (12 fascicoli)
ITALIA L. 6.000 c/c post. 8/29054 edizioni CD Bologna
Arretrati L. 600
ESTERO L. 6.500
Arretrati L. 600
ESTERO L. 6.500
Mandat de Paste International
Posranweisung für das Ausland
payable à / zahlbar an

Cambio indirizzo L. 200 in francobolli

1 SUP et (Amplificatori stereo L

LAFAYETTE SP 22 CUFFIA STEREO netto L. 5.950

● Ideale per ascolto di amplificatori a bassa potenza ● Frequenza di risposta: 35-12.000 Hz. ● Un'ottima cuffia di alta qualità ad un basso prezzo ● Per stereo e mono ● Impedenza 8 ohm.

LAFAYETTE F. 500 CUFFIA STEREO 4 ALTOPARLANTI netto L. 49.950

 Ogni auricolare contiene 1
 Woofer da 9 cm e un Tweeter da 7,5 cm.
 Risposta di frequenza 16-22.000 Hz.

 Padiglioni regolabili con cuscinetti.
 Impedenza 8 Ohm.

LAFAYETTE F - 1000 CUFFIA STEREO CON REGOLAZIONE VOLUME netto L. 39.950

 Regolazione volume su ogni padiglione ● Frequenza di risposta 20-20.000 Hz. ● Impedenza 8 Ohm.

STEREO 50 Watt LAFAYETTE "LA - 375" netto L. 72.000

- Inserito adattatore suono a 4 dimensioni derivato
- Potenza: 50 watts ± 1 db, 40 watt IHF a 4 Ohms.
- Frequenza di risposta: 20-20.000 Hz \pm 1,5 db \bullet 20 transistor 2 diodi 2 termistori \bullet Interruttore altoparlante principale e secondario \bullet Presa su pannello frontale cuffia stereo \bullet Pannello frontale elegante e contenitore tipo noce.

CONVERTITORE STEREO 4 CANALI QD - 4 netto L. 29.950

Avrete 2 ulteriori canali per dischi, nastri e radiodiffusioni FM
 Non richiede altro amplificatore stereo
 Si collega direttamente agli altoparlanti 4, 8 o 16 ohm.
 Commutatore in 4 posizioni equilibrio 4 canali
 prese fono varie
 Viene fornito con 3 coppie di cavi per collegamenti.

Cotal Color of the Color of the

fayette a prezzi facili)

CRITERION 50 A netto L. 32,000

- Potenza: 30 Watt
- Woofer di potenza da 8" con bobina di induzione in alluminio da 1"
- Altoparlante per alte frequenze conico a radiatore di 31/2 • Frequenza di risposta: 55-19.000 Hz

CRITERION 2X netto L. 16.000

 Circuito di compensazione acustica a sospensione di 5" con un rocchetto conduzione di voce di 7/8" ed una struttura magnetica da 1 lb. Potenza: 20 Watt Altoparlante conico per alte frequenze da 31/2" ● Risposta di frequenza: 60-19,000 Hz

CRITERION 25 A - netto L. 21.000

• Potenza: 25 Watt • Circuito di compensazione a 8", altoparlante per alte frequenze a 2½ ● Frequenza di risposta: 55-18.000 Hz • Pregiato contenitore in noce

STEREO - 25 Watt. lafayette «LA 25»

 potenza di uscita: 25 watt ± 1 db (2,5 w per canale) a 4 o 8 ohm ● Frequenza di risposta: 20-2000 Hz±1 db Ampiezza di banda: 40-25.000 Hz
 ● Distorsione Armonica: 0,1% a 1 W ● Ronzio: —70 db ● Separazione canali: 60 db • Comando altoparlanti principali e sussidiari presa auricolare stereo sul pannello frontale.

Netto L. 54000

i superstereo lafayette nuove dimensioni in hi-fi

MARCUCCI

via Bronzetti 37 - 20129 Milano tel. 73.86.051

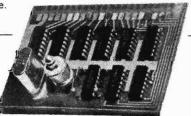
VIA DIAZ 101 - TEL. (031) 262427 22100 COMO

OROLOGIO DIGITALE mod. 2001 in KIT

Alimentazione 220 V Unico cip MOS - 6 digit Base tempi rete - circuito stampato già previsto per eventuale base tempi quarzo

L. 48.500 kit completo

Dimensioni: 130 x 68 x 45 mm



FREQUENZIMETRO DIGITALE in KIT

Frequenza di conteggio da 100 Hz a 40 MHz Sensibilità ingresso 40 mV efficaci Precisione ± 5 • 10 Hz Impedenza ingresso 1 M Ω con 22 pF 6 digit.

L. 79.500 kit completo, esclusi alimentatore e conte-

nitore.

CALIBRATORE A CIRCUITI INTEGRATI

Uscite a 10-5-1 MHz, 500-100-50-10 kHz Circuito stampato previsto per uscite sino a 0.1 Hz

L. 16.480

CALCOLATORE IN KIT: 8 digit - display allo stato solido - constant operation under flow 10.000.000 x 10-20 - over flow 99.999.999 x 10-79. -Alimentazione unica a 24 V CC L. 79.900+s.p. kit completo anche di alimentatore CA 220.

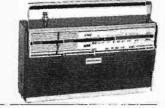
AMPLIFICATORE LINEARE 27 MHz · 100 W

Potenza di alimentazione: 200 W Commutazione elettronica dell'antenna Accordo d'antenna per il minimo di ROS tramite filtro a pi-greco Strumento potenza d'uscita Alimentazione: 220 V CA

1. 75.000 + s.p.


NUOVO RICEVITORE GAMMA AERONAUTICA

Ricezione: 108-140 MHz e onde medie


Uscita audio: 1 W

Alimentazione: CC e CA Contenitore tipo legno

L. 17.200 spese comprese

Pre-amplificatore per CB: L. 9.800 + s.p. Filtro per TVI per CB: L. 7.500 + s.p. (vedi cq 1/73 pag. 29).

MINI-TRASMETTITORE 104 MHz FM

Portata minima garantita: 150 metri Microfono incorporato ad alta sensibilità (10 metri) Basso consumo: 100 ore con pila normale Alimentazione: pila 9 V Senza custodia. Montato e collaudato.

L. 4.950 + s.p.

L. 850 custodia similpelle

Consegna: 15 gg. data ordine. - Pagamenti: contrassegno, vaglia, assegno circolare.

a Bologna...

3-4 mazzo 1973

nelle sale del palazzo Re Enzo:

Al pubblico partecipante verranno dati doni offerti da importanti Ditte espositrici.

RADIOAMATORI - DILETTANTI - HOBBYSTI

intervenite numerosi; troverete all'esposizione tanto da appagare anche il più recondito vostro desiderio.

in esposizione:	
Apparecchiature Rx - Tx	Radio Nautica
Applicazioni tecniche	Componenti elettronici
Apparecchiature Surplus	Amplificazione Hi Fi
Pubblicazioni tecniche	Strumentazione
Telescriventi	SSTV

indice degli inserzionisti

nominativo pagina

A.C.E.I.	508-509-510
ARI (Milano)	464
ARI (Pordenone)	504
BRITISH INST.	478
CASSINELLI	493
CHINAGLIA	483
CORTE A.	471
C.R.C.	1" e 2" copertina
C.R.C.	360-361
C.T.E.	486-489
DERICA ELETTRONICA	453
DOLEATTO	382
EDIZIONI CD	384
ELCO	356
ELECTROMEC	380
ELETTRA	458
ELETTRONICA GC	374
ELETTRONICA TELECOMU	
ELETTRO NORD ITALIANA	0.00.
ELETT. SHOP CENTER	496-497
E.M.C.	380
EUROASIATICA	491
EXHIBO ITALIANA	494
FANTINI G.B.C.	358-359-478
G.B.C.	474-475-476-507
GENERAL Röhren	4° copertina 484
GIANNONI	464 490
KFZ ELETTRONICA	490 429
LABES	485
	477-482-487-495-503
MAESTRI	511
MAIOR ELETTRONICA	480
MARCUCCI	354 - 355 -3 79 -50 8
MELCHIONI	367-371-375
MESA	378
MIRO	423
MONTAGNANI	499-500-501-502
MOSTRA BOLOGNA	357
N.A.T.O	372-373
NOVA	505
NOV.EL	3° copertina
NOV.EL	512
PATTERSON & PERSON	479
PMM	370-460
PREVIDI	362-498
QUECK	492
RADIOSURPLUS ELETTRO	
RC ELETTRONICA	364
SHF Elettronik	459
SIGMA ANTENNE	421
SIRTEL	368-369
TELESOUND	473
U.G.M. ELECTRONICS VARTA	510
VANIA	416

VECCHIETTI

ZETA

cq elettronica - marzo 1973 -

481

FANTINI

ELETTRONICA

SEDE: Via Fossolo, 38 c/d - 40138 BOLOGNA

C. C. P. N. 8/2289 - Telefono 34.14.94

FILIALE: Via R. Fauro, 63 - Tel. 80.60.17 - ROMA

MATERIALE NUOVO

TRANSISTOR G360 L. 80 AC125 L. 150 BC109C G398 L. 80 AC127 L. 180 BC118		
G398 L. 80 AC127 L. 180 BC118	L.	190
	L.	160
N316 L. 80 AC128 L. 180 BC140	L.	330
2N388 L. 80 AC138 L. 150 BC148 2N3819 L. 450 AC192 L. 150 BC178	L.	120 170
SFT226 L. 70 AF106 L. 200 BC238B	L.	150
SFT227 L. 80 AF165 L. 200 BF173	L.	280
N597 L. 80 AF139 L. 300 BF195C	L.	280
2N711 L. 140 AF202 L. 250 BSX26 2N1711 L. 250 ASZ11 L. 70 BSX45	L.	220 330
2N1711 L. 250 ASZ11 L. 70 BSX45 2N3055 L. 700 BC107B L. 150 OC76	L.	90
55TI L. 70 BC108 L. 150 OC169	L.	150
AC187K - AC188K in coppie sel. la coppia		500
TAA611B	_	.000
PONTI RADDRIZZATORI E DIODI		
B155C200 L. 180 B80C3200 L. 700 OA95	L.	45
AY102 L. 360 1N4007 (1000V/1A) OA202	L.	100
B4Y2 (220 V 2 A) L. 200 1G25 L. 800 EM503 L. 90 BB104	L.	40
L. 800 EM503 L. 90 BB104 B30C1000 L. 350 GEX541 L. 200 SFD122	L.	300 40
B60C800 L. 250 OA5 L. 80 (25 V/1	50 m/	
DIODI Si IN4818 (1N914))	L.	50
DIODI SI IR 40HF20 (40 A · 200 V)	L.	550
SPIE NEON miniatura 220 V	L.	370
		2.200
NIXIE HIVAC GR10M con zoccolo NIXIE HIVAC XN3 verticali		
		.600
QUARZI MINIATURA MISTRAL tipo HC6/U 27,120	MHZ L.	950
EU TOL DETE ANTIDICTURDO (attimi non appareti		
FILTRI RETE ANTIDISTURBO (ottimi per apparati SCR, integrati) dim. mm 30 x 50	con t	riac.
— tipo DUCATI da 1 A / 250 V c.a.	L.	600
tipo ICAR da 2,5 A / 250 V c.a.	L.	800
INTEGRATO MOTOROLA MC852P (doppio flip-flop)	L.	400
ALETTE per AC128 o simili	L.	25
DIODI CONTROLLATI AL SILICIO della S.G.S.		
200V 1A L. 360 300V 2,2A L. 550 300V 8 A	L.	950
300V 1.3A L. 420 400V 2,2A L. 600 400V 8A	L.	1000
	100 V	6 A
200V 2,2A L. 510 200V 8A L. 850	L.	
ZENER 400 mW 4,7 V - 5,6 V - 8,2 V - 9,1 V ZENER 10 W / 5,6 V	L.	150 500
PIASTRE alettate 70 x 120 mm per 4 autodiodi	L.	300
AMPLIFICATORI HI-FI da 1 W su 8 Ω - Alim. 9 V		1.100
APPARATO PER LUCI PSICHEDELICHE IMPULSIVE	a 3 c . L. 2	
da 1 kW cad APPARATI TELETTRA per ponti radio telefonici, tr		
		8.000
zati, con gulda d'onda a regolazione micrometrica	L.	100
zati, con gulda d onda a regolazione micrometrica		
zati, con gulda d onda a regolazione micrometrica CONDENSATORI per Timer 1000 µ / 70-80 Vcc	L.	100
zati, con guida d'onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO - ICEL EKT 100 pF / 160 V L. 12 : 15 nF / 160 V	L.	100
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO I CEL EKT 100 pF / 160 V L. 12 15 nF / 160 V 1000 pF / 160 V L. 14 33 nF / 630 V	L. L. L.	100 60 18 30
zati, con guida d'onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI POLIESTERI ARCO ICEL EKT 100 pF / 160 V L. 12 15 nF / 160 V L. 12 15 nF / 160 V L. 14 33 nF / 630 V L. 150 NF / 160 V L. 150 NF / 16	L. L. L. L.	100 60 18 30 20
zati, con guida d'onda a regolazione micrometrica CONDENSATORI per Timer $1000 \ \mu$ / $70-80 \ Vcc$ CONDENSATORI PIN-UP al Tantalio $0.4 \ \mu$ F/40 V CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100 \ pF$ / $160 \ V$ L. $12 \ 15 \ nF$ / $160 \ V$ L. $14 \ 33 \ nF$ / $630 \ V$ 1500 pF / $160 \ V$ L. $15 \ 62.5 \ nF$ / $200 \ V$ L. $160 \ V$ L. $170 \ V$ L. $180 \ V$ L.	L. L. L. L.	100 60 18 30 20 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. L	18 30 20 25 30
zati, con guida d'onda a regolazione micrometrica CONDENSATORI per Timer $1000~\mu$ / $70-80~V$ cc CONDENSATORI PIN-UP al Tantalio $0.4~\mu$ F/40 V CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100~pF$ / $160~V$ L. 12 $15~nF$ / $160~V$ L. 14 $33~nF$ / $630~V$ $1500~pF$ / $160~V$ L. 14 $33~nF$ / $630~V$ $1500~pF$ / $160~V$ L. 18 $0.1~\mu$ F / $250~V$ $2200~pF$ / $1000~V$ L. 22 $0.27~\mu$ F / $250~V$ $2300~pF$ / $1000~V$ L. 24 $0.47~\mu$ F / $250~V$	L. L. L. L. L. L. L. L.	18 30 20 25 30 34
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μ F/40 V CONDENSATORI PIN-UP al Tantalio 0.4 μ F/40 V CONDENSATORI POLIESTERI ARCO - ICEL - EKT 100 pF / 160 V L. 12 15 nF / 160 V 1000 pF / 160 V L. 14 33 nF / 630 V 1500 pF / 160 V L. 15 62,5 nF / 200 V 1500 pF / 1000 V L. 22 0.27 μ F / 250 V 2300 pF / 1000 V L. 24 0.47 μ F / 250 V 3600 pF / 630 V L. 20 0.56 μ F / 160 V 1000 V L. 20 0.56 μ F / 160 V 1000 V L. 18 1 μ F / 160 V 1000 V L. 1000 V L. 1000 V L. 1000 V 1000 V L. 1000 V L. 1000 V 1000 V L. 1000 V L. 1000 V L. 1000 V 1000 V L. 1000 V L. 1000 V L. 1000 V 1000 V L. 1000 V	L. L	18 30 20 25 30
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μ F/40 V CONDENSATORI POLIESTERI ARCO . ICEL - EKT 100 pF / 160 V L. 12 15 nF / 160 V 1000 pF / 160 V L. 14 33 nF / 630 V 1500 pF / 160 V L. 15 62.5 nF / 200 V 1500 pF / 400 V L. 18 0.1 μ F / 250 V 2200 pF / 1000 V L. 22 0.27 μ F / 250 V 3600 pF / 630 V L. 24 0.47 μ F / 250 V 3600 pF / 630 V L. 20 0.56 μ F / 160 V		100 60 18 30 20 25 30 34 36
zatl, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 $\mu\text{F}/40 \text{ V}$ CONDENSATORI POLIESTERI ARCO - ICEL - EKT 100 pF / 160 V	L. L. L. L. L. L. L.	100 60 18 30 20 25 30 34 36 90 120
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer $1000~\mu$ / $70\text{-}80~\text{Vec}$ CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100~\text{pF}$ / $160~\text{V}$ L. 12 $15~\text{nF}$ / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ $1500~\text{pF}$ / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ $1500~\text{pF}$ / $160~\text{V}$ L. 15 $62.5~\text{nF}$ / $200~\text{V}$ $1500~\text{pF}$ / $160~\text{V}$ L. 18 $0.1~\mu\text{F}$ / $250~\text{V}$ $2200~\text{pF}$ / $1000~\text{V}$ L. 22 $0.27~\mu\text{F}$ / $250~\text{V}$ $2300~\text{pF}$ / $1000~\text{V}$ L. 24 $0.47~\mu\text{F}$ / $250~\text{V}$ $2600~\text{pF}$ / $160~\text{V}$ L. 20 $0.56~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. $160~\text{V}$ $160~\text{V}$ L. $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ $160~\text{V}$ L. $160~\text{V}$ 16	L. L. L. L. L. L. L. L.	100 60 18 30 20 25 30 34 36 90 120
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μ F/40 V CONDENSATORI POLIESTERI ARCO . ICEL - EKT 100 pF / 160 V L. 12 15 nF / 160 V 1000 pF / 160 V L. 14 33 nF / 630 V 1500 pF / 160 V L. 15 62.5 nF / 200 V 1500 pF / 400 V L. 18 0.1 μ F / 250 V 2200 pF / 1000 V L. 22 0.27 μ F / 250 V 2300 pF / 1000 V L. 24 0.47 μ F / 250 V 3300 pF / 630 V L. 20 0.56 μ F / 160 V 4700 pF / 400 V L. 18 1 μ F / 160 V 5000 pF / 630 V L. 16 1 μ F / 160 V MICROSWITCH G.E. 1 sc 250 V / 5 A - mm	L. L. L. L. L. L. L. L.	180 30 20 25 30 34 36 90 120 11 × 6 450 120
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer $1000~\mu$ / $70\text{-}80~\text{Vec}$ CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100~\text{pF}$ / $160~\text{V}$ L. 12 $15~\text{nF}$ / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 15 $62.5~\text{nF}$ / $200~\text{V}$ 1500 pF / $400~\text{V}$ L. 18 $0.1~\mu\text{F}$ / $250~\text{V}$ 2200 pF / $1000~\text{V}$ L. 22 $0.27~\mu\text{F}$ / $250~\text{V}$ 3600 pF / $630~\text{V}$ L. 20 $0.56~\mu\text{F}$ / $160~\text{V}$ 4700 pF / $400~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $300~\text{V}$ MICROSWITCH G.E. $1~\text{sc.}$ - $250~\text{V}$ / $5~\text{A}$ - mm	L. L. L. L. L. L. L. L.	180 30 20 25 30 34 36 90 120 11 × 6 450 120 1.050
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer $1000~\mu$ / $70\text{-}80~\text{Vec}$ CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100~\text{pF}$ / $160~\text{V}$ L. 12 $15~\text{nF}$ / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 15 $62.5~\text{nF}$ / $200~\text{V}$ 1500 pF / $400~\text{V}$ L. 18 $0.1~\mu\text{F}$ / $250~\text{V}$ 2200 pF / $1000~\text{V}$ L. 22 $0.27~\mu\text{F}$ / $250~\text{V}$ 3600 pF / $630~\text{V}$ L. 20 $0.56~\mu\text{F}$ / $160~\text{V}$ 4700 pF / $400~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $300~\text{V}$ MICROSWITCH G.E. $1~\text{sc.}$ - $250~\text{V}$ / $5~\text{A}$ - mm	L. L. L. L. L. L. L. L.	100 60 18 30 20 25 30 34 36 91 120 11 × 6 450 120 1.050 580
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer $1000~\mu$ / $70\text{-}80~\text{Vec}$ CONDENSATORI PIN-UP al Tantalio $0.4~\mu\text{F}/40~\text{V}$ CONDENSATORI POLIESTERI ARCO · ICEL · EKT $100~\text{pF}$ / $160~\text{V}$ L. 12 $15~\text{nF}$ / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 14 $33~\text{nF}$ / $630~\text{V}$ 1500 pF / $160~\text{V}$ L. 15 $62.5~\text{nF}$ / $200~\text{V}$ 1500 pF / $400~\text{V}$ L. 18 $0.1~\mu\text{F}$ / $250~\text{V}$ 2200 pF / $1000~\text{V}$ L. 22 $0.27~\mu\text{F}$ / $250~\text{V}$ 3600 pF / $630~\text{V}$ L. 20 $0.56~\mu\text{F}$ / $160~\text{V}$ 4700 pF / $400~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 18 $1~\mu\text{F}$ / $150~\text{V}$ 5000 pF / $160~\text{V}$ L. 16 $1~\mu\text{F}$ / $300~\text{V}$ MICROSWITCH G.E. $1~\text{sc.}$ - $250~\text{V}$ / $5~\text{A}$ - mm	L. L. L. L. L. L. L. L.	180 30 20 25 30 34 36 90 120 11 x 6 450 120 1.050 580 500
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI POLIESTERI ARCO · ICEL · EKT 100 pF / 160 V L. 12	L. L. L. L. L. L. L. L.	100 60 18 30 20 25 30 34 36 90 120 11 x 6 450 120 1.050 580 735
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI POLIESTERI ARCO · ICEL · EKT 100 pF / 160 V L. 12	L. L. L. L. L. L. L. L.	180 30 20 25 30 34 36 90 120 11 x 6 450 1.050 580 500
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI PIN-UP al Tantalio 0.4 μF/40 V CONDENSATORI POLIESTERI ARCO · ICEL · EKT 100 pF / 160 V L. 12	L. L. L. L. L. L. L. L.	188 30 20 25 30 34 36 90 120 11 x 6 450 120 1.050 580 500 735 400
zati, con guida d onda a regolazione micrometrica CONDENSATORI per Timer 1000 μ / 70-80 Vcc CONDENSATORI PIN-UP all Tantalio 0.4 μF/40 V CONDENSATORI POLIESTERI ARCO - ICEL - EKT 100 pF / 160 V L. 12	L. L. L. L. L. L. L. L. L. L. L. L.	180 300 200 255 30 344 366 900 1200 111 × 6 450 1200 1.050 580 500 735 400 380

NUOVO		
COMMUTATORI ROTANTI		
2 vie - 5 pos. L. 250	6 vie - 5 pos.	L. 350
4 vie · 3 pos. L. 250	6 vie - 6 pos.	L. 350
4 vie - 6 pos. L. 300	4 vie - 11 pos.	L. 450
8 vie · 2 pos. L. 300 3 vie · 11 pos. L. 350	8 vie - 4 pos. 8 vie - 5 pos.	L. 450 L. 450
VOLTMETRO ELETTRONICO EC SIGNAL TRACER ECHO mod. S		L. 40.000 L. 26.000
CAMBIOTENSIONI 220/120 V	01-110-	L. 80
SALDATORI A STILO PHILIPS	ner circuiti etampati s	
Posizione di attesa a basso c		L. 3.700
	AME RIVESTITO IN	PVC
Sezione 0,22 stagnato, aranc		chetti da
m 1200		L. 6.000
Sezione 0.5 stagnato, giallo, a	rancio, su rocchetti	da m 700 L. 5.600
Sezione 1.6 stagnato rosso e	bleu su rocchetti m	
		L. 4.800
Sezione 1,6 stagnato verde, su		L. 8.000
Sezione 1,6 stagnato nero, su		L. 12.800
CAVO COASSIALE RG8/U CAVO COASSIALE RG11	al metro	L. 280 L. 250
CAVO COASSIALE RG58/U	al metro	
CONNETTORI COAX PL259 e		
ANTENNINE TELESCOPICHE CE		L. 300
TRASFORMATORI pilota per		L. 230
TRASFORMATORI IN FERRITE	OLLA, Ø 18 x 12	L. 180
TRASFORMATORI IN FERRITE		L. 150
TRASFORMATORI 125-220→25	V/6 A	L. 3.000
MOTORE MONOFASE 220 V	/ 50 W	L. 1.600
MOTORE MONOFASE GE 220	V / 1400 g/m - pes	o 2100 gr
		L. 3.000
IMPULSORI MAGNETICI sta	gni - contatti norr	
250 V - 1,2 A - 6 VA		L. 1,400
THYRATRON PL5632/C3J		
	10	L. 800
ELETTROLITICI A BASSA TENS		
ELETTROLITICI A BASSA TENS		L. 22
ELETTROLITICI A BASSA TENS		L. 22 L. 25
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 34 200 μF / 6 V L. 40	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V	L. 22 L. 25 L. 28 L. 36
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 34 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V	L. 22 L. 25 L. 28 L. 36 L. 40
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 34 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48
ELETTROLITIC1 A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 34 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90	$\begin{array}{c} 0.47~\mu\text{F}~/~25~\text{V} \\ 2~\mu\text{F}~/~25~\text{V} \\ 10~\mu\text{F}~/~25~\text{V} \\ 32~\mu\text{F}~/~25~\text{V} \\ 50~\mu\text{F}~/~25~\text{V} \\ 100~\mu\text{F}~/~25~\text{V} \\ 320~\mu\text{F}~/~25~\text{V} \\ 500~\mu\text{F}~/~25~\text{V} \\ \end{array}$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64
ELETTROLITIC1 A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 34 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90	$\begin{array}{c} 0.47~\mu\text{F} \ / \ 25~\text{V} \\ 2~\mu\text{F} \ / \ 25~\text{V} \\ 10~\mu\text{F} \ / \ 25~\text{V} \\ 32~\mu\text{F} \ / \ 25~\text{V} \\ 50~\mu\text{F} \ / \ 25~\text{V} \\ 100~\mu\text{F} \ / \ 25~\text{V} \\ 320~\mu\text{F} \ / \ 25~\text{V} \\ 500~\mu\text{F} \ / \ 25~\text{V} \\ 1000~\mu\text{F} \ / \ 25~\text{V} \\ \end{array}$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120
ELETTROLITIC1 A BASSA TENS 50 $\mu F / 6 V$ L. 30 100 $\mu F / 6 V$ L. 34 200 $\mu F / 6 V$ L. 40 500 $\mu F / 6 V$ L. 54 1000 $\mu F / 6 V$ L. 64 2000 $\mu F / 6 V$ L. 64 2000 $\mu F / 6 V$ L. 150 1 $\mu F / 12 V$ L. 20 2.5 $\mu F / 12 V$ L. 20 5 $\mu F / 12 V$ L. 22	$\begin{array}{c} 0.47~\mu\textrm{F}~/~25~\textrm{V} \\ 2~\mu\textrm{F}~/~25~\textrm{V} \\ 10~\mu\textrm{F}~/~25~\textrm{V} \\ 32~\mu\textrm{F}~/~25~\textrm{V} \\ 32~\mu\textrm{F}~/~25~\textrm{V} \\ 50~\mu\textrm{F}~/~25~\textrm{V} \\ 320~\mu\textrm{F}~/~25~\textrm{V} \\ 320~\mu\textrm{F}~/~25~\textrm{V} \\ 500~\mu\textrm{F}~/~25~\textrm{V} \\ 500~\mu\textrm{F}~/~25~\textrm{V} \\ 1000~\mu\textrm{F}~/~25~\textrm{V} \end{array}$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 150 4000 μF / 6 V L. 150 1 μF / 12 V L. 20 2.5 μF / 12 V L. 20 μF / 12 V L. 22 μF / 12 V L. 25	$\begin{array}{c} 0.47~\mu\textrm{F}~/~25~\textrm{V} \\ 2~\mu\textrm{F}~/~25~\textrm{V} \\ 10~\mu\textrm{F}~/~25~\textrm{V} \\ 32~\mu\textrm{F}~/~25~\textrm{V} \\ 32~\mu\textrm{F}~/~25~\textrm{V} \\ 50~\mu\textrm{F}~/~25~\textrm{V} \\ 320~\mu\textrm{F}~/~25~\textrm{V} \\ 320~\mu\textrm{F}~/~25~\textrm{V} \\ 500~\mu\textrm{F}~/~25~\textrm{V} \\ 500~\mu\textrm{F}~/~25~\textrm{V} \\ 1000~\mu\textrm{F}~/~25~\textrm{V} \end{array}$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 80
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 22 20 μF / 12 V L. 25 μF / 12 V L. 35 50 μF / 12 V L. 35 50 μF / 12 V L. 30	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 320 μF / 25 V 500 μF / 25 V 500 μF / 25 V 1000 μF / 25 V 1000 μF / 25 V 1 μF / 50 V 2 5 υF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 28 L. 30
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 150 4000 μF / 6 V L. 150 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 25 25 μF / 12 V L. 25 25 μF / 12 V L. 25 25 μF / 12 V L. 35 150 μF / 12 V L. 35 100 μF / 12 V L. 36	$\begin{array}{c} 0.47~\mu\text{F}~/~25~\text{V} \\ 2~\mu\text{F}~/~25~\text{V} \\ 10~\mu\text{F}~/~25~\text{V} \\ 32~\mu\text{F}~/~25~\text{V} \\ 32~\mu\text{F}~/~25~\text{V} \\ 50~\mu\text{F}~/~25~\text{V} \\ 320~\mu\text{F}~/~25~\text{V} \\ 320~\mu\text{F}~/~25~\text{V} \\ 320~\mu\text{F}~/~25~\text{V} \\ 500~\mu\text{F}~/~25~\text{V} \\ 1000~\mu\text{F}~/~25~\text{V} \\ 1000~\mu\text{F}~/~25~\text{V} \\ 1~\mu\text{F}~/~50~\text{V} \\ 2.5~\mu\text{F}~/~50~\text{V} \\ 5~\mu\text{F}~/~50~\text{V} \\ \end{array}$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 80 L. 32 L. 32 L. 32 L. 32
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 150 1 μF / 12 V L. 20 2.5 μF / 12 V L. 20 5 μF / 12 V L. 22 20 μF / 12 V L. 25 μF / 12 V L. 35 100 μF / 12 V L. 54	0.47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 320 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 25 V 1000 μF / 25 V 500 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 28 L. 30 L. 32 L. 35
ELETTROLITICI A BASSA TENS 50 μ F $/$ 6 V L. 30 100 μ F $/$ 6 V L. 40 200 μ F $/$ 6 V L. 40 500 μ F $/$ 6 V L. 54 1000 μ F $/$ 6 V L. 64 2000 μ F $/$ 6 V L. 64 2000 μ F $/$ 6 V L. 150 4000 μ F $/$ 6 V L. 150 1 μ F $/$ 12 V L. 20 2.5 μ F $/$ 12 V L. 20 2.5 μ F $/$ 12 V L. 22 20 μ F $/$ 12 V L. 25 25 μ F $/$ 12 V L. 35 100 μ F $/$ 12 V L. 35 100 μ F $/$ 12 V L. 36 100 μ F $/$ 12 V L. 54 400 μ F $/$ 12 V L. 56 60	0.47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 320 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 25 V 1000 μF / 25 V 500 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 30 L. 32 L. 35 L. 38 L. 35 L. 34
ELETTROLITICI A BASSA TENS 50 μ F $/$ 6 V L. 30 100 μ F $/$ 6 V L. 40 200 μ F $/$ 6 V L. 40 500 μ F $/$ 6 V L. 54 1000 μ F $/$ 6 V L. 54 2000 μ F $/$ 6 V L. 54 2000 μ F $/$ 6 V L. 54 2000 μ F $/$ 6 V L. 150 4000 μ F $/$ 12 V L. 20 2.5 μ F $/$ 12 V L. 22 5 μ F $/$ 12 V L. 25 25 μ F $/$ 12 V L. 25 25 μ F $/$ 12 V L. 35 150 μ F $/$ 12 V L. 35 250 μ F $/$ 12 V L. 35 250 μ F $/$ 12 V L. 35 50 μ F $/$ 12 V L. 35 50 μ F $/$ 12 V L. 40 250 μ F $/$ 12 V L. 54 400 μ F $/$ 12 V L. 60 500 μ F $/$ 12 V L. 60	0.47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 25 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 33 L. 32 L. 33 L. 33 L. 38 L. 45 L. 45
ELETTROLITICI A BASSA TENS 50 μ F / 6 V	$\begin{array}{c} 0.47~\mu\text{F} \ / \ 25~\text{V} \\ 2~\mu\text{F} \ / \ 25~\text{V} \\ 10~\mu\text{F} \ / \ 25~\text{V} \\ 32~\mu\text{F} \ / \ 25~\text{V} \\ 50~\mu\text{F} \ / \ 25~\text{V} \\ 100~\mu\text{F} \ / \ 25~\text{V} \\ 320~\mu\text{F} \ / \ 25~\text{V} \\ 320~\mu\text{F} \ / \ 25~\text{V} \\ 1000~\mu\text{F} \ / \ 50~\text{V} \\ 2.5~\mu\text{F} \ / \ 50~\text{V} \\ 2.5~\mu\text{F} \ / \ 50~\text{V} \\ 10~\mu\text{F} \ / \ 50~\text{V} \\ 10~\mu\text{F} \ / \ 50~\text{V} \\ 100~\mu\text{F} \ / \ 50~\text{V} \ / \ 50~\mu\text{F} \ / \ 50~\text{V} \\ 100~\mu\text{F} \ / \ 50~\text{V} \ / \ 50~\mu\text{F} \ / \ 50~\text{V} \ / \ 50~$	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 32 L. 32 L. 35 L. 35 L. 45 L. 55 L. 70
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 150 1 μF / 12 V L. 20 2.5 μF / 12 V L. 20 5 μF / 12 V L. 22 20 μF / 12 V L. 25 μF / 12 V L. 35 100 μF / 12 V L. 40 550 μF / 12 V L. 54 400 μF / 12 V L. 54 100 μF / 12 V L. 60 500 μF / 12 V L. 60 500 μF / 12 V L. 60 1000 μF / 12 V L. 90 1000 μF / 12 V L. 90	0.47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 25 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 28 L. 30 L. 32 L. 35 L. 35 L. 35 L. 35 L. 35 L. 35 L. 36
ELETTROLITICI A BASSA TENS 50 μ F / 6 V	$\begin{array}{c} 0.47~\mu\text{F} \ / \ 25~\text{V} \\ 2~\mu\text{F} \ / \ 25~\text{V} \\ 10~\mu\text{F} \ / \ 25~\text{V} \\ 32~\mu\text{F} \ / \ 25~\text{V} \\ 50~\mu\text{F} \ / \ 25~\text{V} \\ 100~\mu\text{F} \ / \ 25~\text{V} \\ 320~\mu\text{F} \ / \ 25~\text{V} \\ 320~\mu\text{F} \ / \ 25~\text{V} \\ 1000~\mu\text{F} \ / \ 25~\text{V} \\ 100~\mu\text{F} \ / \ 50~\text{V} \\ 2.5~\mu\text{F} \ / \ 50~\text{V} \\ 10~\mu\text{F} \ / \ 50~\text{V} \\ 10~\mu\text{F} \ / \ 50~\text{V} \\ 25~\mu\text{F} \ / \ 50~\text{V} \\ 100~\mu\text{F} \ / \ 50~\text{V} \\ 125~\mu\text{F} \ / \ 70~\text{V} \\ 126~\mu\text{F} \ / $	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 32 L. 32 L. 35 L. 35 L. 45 L. 55 L. 70
ELETTROLITICI A BASSA TENS 50 μ F / 6 V	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 50 μF / 25 V 500 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 50 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 64 L. 75 L. 120 L. 80 L. 32 L. 32 L. 35 L. 35 L. 35 L. 45 L. 55 L. 70 L. 90 L. 90
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 20 25 μF / 12 V L. 25 25 μF / 12 V L. 35 100 μF / 12 V L. 35 100 μF / 12 V L. 35 100 μF / 12 V L. 40 250 μF / 12 V L. 40 250 μF / 12 V L. 54 400 μF / 12 V L. 60 500 μF / 12 V L. 60 500 μF / 12 V L. 70 1000 μF / 12 V L. 70 1000 μF / 12 V L. 90 2000 μF / 12 V L. 140 5000 μF / 12 V L. 200 ELETTROLITICI a cartuccia Pt VARIABILI AD ARIA DUCAT 2 x 440 dem. L. 200	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 10 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 11.5 μF / 70 V 11.5 μF / 70 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 32 L. 32 L. 35 L. 45 L. 55 L. 70 L. 20 L. 20
ELETTROLITICI A BASSA TENS 50 μ F / 6 V	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 320 μF / 25 V 320 μF / 25 V 500 μF / 25 V 500 μF / 25 V 500 μF / 50 V 2,5 μF / 50 V 2,5 μF / 50 V 10 μF / 50 V 25 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 30 L. 32 L. 32 L. 35 L. 38 L. 45 L. 75 L. 28 L. 30 L. 28 L. 30 L. 32 L. 32 L. 35 L. 32 L. 35 L. 20 L. 36 L. 36
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 5 μF / 12 V L. 25 25 μF / 12 V L. 25 25 μF / 12 V L. 35 50 μF / 12 V L. 35 100 μF / 12 V L. 35 100 μF / 12 V L. 54 400 μF / 12 V L. 54 400 μF / 12 V L. 54 400 μF / 12 V L. 54 200 μF / 12 V L. 54 200 μF / 12 V L. 54 200 μF / 12 V L. 60 500 μF / 12 V L. 90 2000 μF / 12 V L. 90 2000 μF / 12 V L. 20 ELETTROLITICI a cartuccia PF VARIABILI AD ARIA DUCAT 2 x 440 dem. L. 200 VARIABILI GELOSO 8 pF	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 32 μF / 25 V 50 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 50 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 100 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 30 L. 32 L. 35 L. 35 L. 35 L. 45 L. 70 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 30 L. 32 L. 35 L. 36 L. 36
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 50 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 22 20 μF / 12 V L. 35 50 μF / 12 V L. 40 250 μF / 12 V L. 54 400 μF / 12 V L. 54 250 μF / 12 V L. 20 2000 μF / 12 V L. 20 2000 μF / 12 V L. 20 ELETTROLITICI a cartuccia Pr VARIABILI AD ARIA DUCAT 2 x 440 dem. L. 200 500+130 pF dem. L. 240 VARIABILI SU SUPPORT CEPAR	0,47 μ F / 25 V 2 μ F / 25 V 10 μ F / 25 V 32 μ F / 25 V 50 μ F / 25 V 100 μ F / 25 V 100 μ F / 25 V 100 μ F / 25 V 500 μ F / 50 V 2,5 μ F / 50 V 2,5 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 100 μ F / 50 V 250 μ F / 50 V 100 μ F / 50 V 250 μ F / 50 V 100 μ F / 50 V 11.5 μ F / 70 V 11.5 μ F / 70 V 12.5 μ F / 70 V 13.6 μ F / 350 V 14.5 μ F / 350 V 15.6 μ F / 350 V 16.7 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 11.8 μ F / 350 V 11.8 μ F / 350 V 12.8 μ F / 350 V 13.8 μ F / 350 V 14.5 μ F / 50 V 15.8 μ F / 350 V 16.8 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 11.8 μ F / 350 V 12.8 μ F / 350 V 13.8 μ F / 350 V 14.8 μ F / 350 V 15.8 μ F / 350 V 16.8 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 10.	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 30 L. 32 L. 32 L. 35 L. 38 L. 45 L. 75 L. 28 L. 30 L. 28 L. 30 L. 32 L. 32 L. 35 L. 32 L. 35 L. 20 L. 36 L. 36
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 50 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 22 20 μF / 12 V L. 35 50 μF / 12 V L. 40 250 μF / 12 V L. 54 400 μF / 12 V L. 54 250 μF / 12 V L. 20 2000 μF / 12 V L. 20 2000 μF / 12 V L. 20 ELETTROLITICI a cartuccia Pr VARIABILI AD ARIA DUCAT 2 x 440 dem. L. 200 500+130 pF dem. L. 240 VARIABILI SU SUPPORT CEPAR	0,47 μ F / 25 V 2 μ F / 25 V 10 μ F / 25 V 32 μ F / 25 V 50 μ F / 25 V 100 μ F / 25 V 100 μ F / 25 V 100 μ F / 25 V 500 μ F / 50 V 2,5 μ F / 50 V 2,5 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 100 μ F / 50 V 250 μ F / 50 V 100 μ F / 50 V 250 μ F / 50 V 100 μ F / 50 V 11.5 μ F / 70 V 11.5 μ F / 70 V 12.5 μ F / 70 V 13.6 μ F / 350 V 14.5 μ F / 350 V 15.6 μ F / 350 V 16.7 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 11.8 μ F / 350 V 11.8 μ F / 350 V 12.8 μ F / 350 V 13.8 μ F / 350 V 14.5 μ F / 50 V 15.8 μ F / 350 V 16.8 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 11.8 μ F / 350 V 12.8 μ F / 350 V 13.8 μ F / 350 V 14.8 μ F / 350 V 15.8 μ F / 350 V 16.8 μ F / 350 V 17.8 μ F / 350 V 18.8 μ F / 350 V 19.8 μ F / 350 V 19.8 μ F / 350 V 10.8 μ F / 350 V 10.	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 30 L. 32 L. 35 L. 35 L. 35 L. 35 L. 35 L. 35 L. 35 L. 36 L. 55 L. 20 L. 35 L. 36 L. 30 L. 30
ELETTROLITICI A BASSA TENS 50 μF / 6 V	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 320 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 25 μF / 50 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 32 L. 35 L. 38 L. 45 L. 55 L. 70 L. 90 L. 20 L. 200 L. 200 L. 180 L. 700 L. 1.200 L. 220
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 54 2000 μF / 6 V L. 54 2000 μF / 6 V L. 50 1 μF / 12 V L. 20 2.5 μF / 12 V L. 20 2.5 μF / 12 V L. 25 25 μF / 12 V L. 35 50 μF / 12 V L. 54 400 μF / 12 V L. 54 400 μF / 12 V L. 54 250 μF / 12 V L. 50 200 μF / 12 V L. 50 200 μF / 12 V L. 20 200 μF / 12 V L. 50 200 μF / 12 V L. 20 2000 μF / 12 V L. 200 2000 μF / 12 V L.	0,47 μ F / 25 V 2 μ F / 25 V 10 μ F / 25 V 32 μ F / 25 V 50 μ F / 25 V 100 μ F / 25 V 100 μ F / 25 V 500 μ F / 50 V 2.5 μ F / 50 V 2.5 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 10 μ F / 50 V 25 μ F / 50 V 100 μ F / 50 V 25 μ F / 50 V 250 μ F / 50 V 250 μ F / 50 V 100 μ F / 50 V 250 μ F / 50 V 250 μ F / 50 V 500 μ F / 50 V 10.25 μ F / 50 V 500 μ F / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 64 L. 75 L. 120 L. 80 L. 32 L. 33 L. 33 L. 35 L. 35 L. 35 L. 35 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 20 L. 200 L.
ELETTROLITICI A BASSA TENS 50 μF / 6 V	0.47 μF / 25 V 2 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 32 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 10μ γ / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 25 μF / 50 V 10 μF / 50 V 12.5 μF / 70 V 112.5 μF / 70 V 112.5 μF / 70 V 112.5 μF / 70 V 113.5 μF / 350 V 10 μF / 50 V 12.5 μF / 350 V 10 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 30 L. 32 L. 35 L. 35 L. 35 L. 35 L. 35 L. 55 L. 70 L. 20 L. 20 L. 120 L. 20 L. 120 L. 120 L. 120 L. 30 L. 30 L
ELETTROLITICI A BASSA TENS 50 μF / 6 V	0,47 μF / 25 V 2 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 50 μF / 25 V 100 μF / 25 V 50 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 500 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 100 μF / 50 V 100 μF / 50 V 250 μF / 50 V 12.5 μF / 70 V 11.5 μF / 70 V 11.5 μF / 70 V 11.5 μF / 70 V 10.5 μF / 50 V 12.5 μF / 350 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 75 L. 120 L. 80 L. 32 L. 35 L. 35 L. 38 L. 45 L. 55 L. 70 L. 20 L. 30 L. 30
ELETTROLITICI A BASSA TENS 50 μF / 6 V	0.47 $\mu F / 25 V$ 2 $\mu F / 25 V$ 2 $\mu F / 25 V$ 30 $\mu F / 25 V$ 32 $\mu F / 25 V$ 32 $\mu F / 25 V$ 30 $\mu F / 25 V$ 30 $\mu F / 25 V$ 300 $\mu F / 25 V$ 300 $\mu F / 25 V$ 300 $\mu F / 25 V$ 1000 $\mu F / 25 V$ 500 $\mu F / 25 V$ 500 $\mu F / 25 V$ 500 $\mu F / 50 V$ 2.5 $\mu F / 50 V$ 2.5 $\mu F / 50 V$ 10 $\mu F / 50 V$ 25 $\mu F / 50 V$ 100 $\mu F / 50 V$ 250 $\mu F / 50 V$ 100 $\mu F / 50 V$ 112.5 $\mu F / 70 V$ 112.5 $\mu F / 70 V$ 113.5 $\mu F / 70 V$ 116.5 $\mu F / 50 V$ 10 $\mu F / 50 V$ 27 $\mu F / 50 V$ 28 $\mu F / 50 V$ 19 $\mu F / 50 V$ 29 $\mu F / 50 V$ 20 $\mu F / 50 V$ 20 $\mu F / 50 V$ 21.5 $\mu F / 70 V$ 21.6 $\mu F / 50 V$ 22.7 $\mu F / 50 V$ 23.0 $\mu F / 50 V$ 24.5 $\mu F / 50 V$ 25.0 $\mu F / 50 V$ 27 $\mu F / 50 V$ 28 $\mu F / 50 V$ 29 $\mu F / 50 V$ 21.5 $\mu F / 50 V$ 22.5 $\mu F / 50 V$ 23.6 $\mu F / 50 V$ 25.7 $\mu F / 50 V$ 26.8 $\mu F / 50 V$ 27 $\mu F / 50 V$ 28 $\mu F / 50 V$ 29 $\mu F / 50 V$ 20 $\mu F / 50 V$ 20 $\mu F / 50 V$ 21.5 $\mu F / 50 V$ 21.5 $\mu F / 50 V$ 21.5 $\mu F / 50 V$ 22.5 $\mu F / 50 V$ 23.6 $\mu F / 50 V$ 24.6 $\mu F / 50 V$ 25.7 $\mu F / 50 V$ 26.8 $\mu F / 50 V$ 27 $\mu F / 50 V$ 28 $\mu F / 50 V$ 29 $\mu F / 50 V$ 20	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 35 L. 32 L. 35 L. 38 L. 45 L. 55 L. 70 L. 20 L. 200 L. 200 L. 1,200 L. 200 L. 1,200 L. 1,200 L. 1,200 L. 200 L. 1,200 L. 1,200 L. 1,200 L. 200 L. 200 L. 1,200 L. 200 L. 1,200 L. 200 L. 300 L. 280 L. 160
ELETTROLITICI A BASSA TENS 50 μF / 6 V L. 30 100 μF / 6 V L. 40 200 μF / 6 V L. 40 500 μF / 6 V L. 54 1000 μF / 6 V L. 54 1000 μF / 6 V L. 64 2000 μF / 6 V L. 64 2000 μF / 6 V L. 90 4000 μF / 6 V L. 20 2.5 μF / 12 V L. 20 5 μF / 12 V L. 25 25 μF / 12 V L. 35 50 μF / 12 V L. 35 50 μF / 12 V L. 35 100 μF / 12 V L. 35 100 μF / 12 V L. 54 400 μF / 12 V L. 54 400 μF / 12 V L. 50 500 μF / 12 V L. 20 2500 μF / 12 V L. 20 250 μF / 12 V L. 25 25 μF / 12 V L. 35 100 μF / 12 V L. 35 100 μF / 12 V L. 50 500 μF / 12 V L. 20 250 μF / 12 V L. 20 2500 μF / 12 V L. 20 25 μF / 12	0,47 μF / 25 V 2 μF / 25 V 10 μF / 25 V 32 μF / 25 V 32 μF / 25 V 30 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 100 μF / 50 V 2.5 μF / 50 V 100 μF / 50 V 10.5 μF / 50	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 30 L. 32 L. 35 L. 35 L. 35 L. 70 L. 20 L. 20 L. 200 L. 1,200 L. 200 L. 200 L. 200 L. 200 L. 200 L. 200 L. 1,200 L. 200 L. 200 L. 200 L. 200 L. 1,200 L. 200 L. 1,200 L. 200 L. 200 L. 200 L. 200 L. 200 L. 1,200 L. 200 L. 1,200 L. 1,200 L. 200
ELETTROLITICI A BASSA TENS 50 μF / 6 V	0,47 μF / 25 V 2 μF / 25 V 2 μF / 25 V 30 μF / 25 V 32 μF / 25 V 50 μF / 25 V 50 μF / 25 V 100 μF / 25 V 100 μF / 25 V 100 μF / 25 V 1000 μF / 25 V 1000 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 2.5 μF / 50 V 10 μF / 50 V 10.5 μF / 50 V	L. 22 L. 25 L. 28 L. 36 L. 40 L. 48 L. 64 L. 75 L. 120 L. 80 L. 32 L. 35 L. 32 L. 35 L. 38 L. 45 L. 55 L. 70 L. 20 L. 200 L. 200 L. 200 L. 200 L. 1, 200 L. 200 L. 1, 200 L. 200 L. 1, 200 L. 200 L. 200 L. 1, 200 L. 200 L. 1, 200 L. 1, 200 L. 200

Le spese postali sono a totale carico dell'acquirente e vengono da noi applicate sulla base delle vigenti tariffe postali. Null'altro ci è dovuto. **LE SPEDIZIONI VENGONO FATTE SOLO DALLA SEDE DI BOLOGNA**.

COMPENSATORI A MICA CERAMICA 5÷110 pF	L.	80	FUSIBILI della Littlefuse 0.25 A - Ø 6 mm cad.	-	7
COMPENSATORI rotanti in polistirolo 3÷20 pF	L.	80	STRUMENTI JAPAN dim. 44 x 44 mm - Valori: 2 A	1	3 A .
CONDENSATORI CARTA-OLIO 2,2 µF / 400 Vca	L.	260	15 V		3.300
CONFEZIONE DI 10 transistor nuovi tra cui 1 S			STRUMENTI 65 x 58 - 700 µA f.s. STRUMENTI INDEX A FERRO MOBILE	L.	3.000
2N711 · BSX26	L.	1.000	dimensioni 120 x 105 frontale bachelite - 5 A	On	scale
PACCO da 100 resistenze assortite da 100 condensatori assortiti	L.	700 700	da 60-250-500	L.	1.500
 da 100 ceramici assortiti 	L.	700	STRUMENTI INDEX a bobina mobile, dim. 80 x 90 -	40	V f.s.
PACCO da 40 elettrolitici assortiti	Ļ.	900	oppure 4 A f.s.	L.	3.300
FINECORSA 2 sc 5 A	L.	200	TRIMMER Ø mm 16 4,7 kΩ - 10 kΩ	L.	60
RELAY DUCATI - 24 Vcc - 2 sc, 1600 Ω	L.	400	CUSTODIE in plastica antiurto per tester	L.	200
RELAYS FINDER 12 V / 6 A · 1 scambio	L.	650	BATTERY TESTER BT967	L.	8.000
1 scambio/10 A 12 Vcc - 24 Vcc - 3 sc. 6 A	L.	500 850	MULTITESTER ITI-2 - $20.000~\Omega/V$ MULTITESTER EST mod. 67 $40.000~\Omega/V$	L.	9.500
POTENZIOMETRI			MANOPOLE BACHELITE marrone per radio		14.000
220 kΩ B con interr. ca	d. L.	130	MANOPOLE BACHELITE nera con indice, profess.	L.	50 250
	d. L.	200	TIMER per lavatrici 220 V / 1 g/min.	L.	1.200
CAPSULE MICROFONICHE DINAMICHE	L.	600	PIASTRE RAMATE PER CIRCUITI STAMPATI	_	
CARICABATTERIE 6 - 12 V / 4 A		9.800			
MOTORINO POLISTIL 4,5 V	L.	300	mm 85 x 130 L. 60 mm 70 x 130	L.	125
MOTORINO MATSUSHITA ELECTRIC 10÷16 Vcc sioni: Ø 45 x 55 - perno Ø 2,5.Pitente, silenzios		2 200	mm 80 x 150 L. 65 mm 100 x 210	L.	270
MOTORINO « AIRMAX » 28 V	L.	2.200	mm 55 x 250 L. 70 mm 240 x 300 mm 100 x 200 L. 100 mm 320 x 400	L.	900
PENNELLI A SETOLA DURA (ottimi per pulitu			The state of the s	L.	1.720
asportazione stagno fuso)	L.	200	bachelite vetronite doppio mm 70 x 140 L. 60 mm 220 x 260	L.	me 850
NASTRI MAGNETICI General Electric per calcolat	tori el	ettro-	mm 100 x 300 L. 180 mm 320 x 400	L.	1.900
nici. Altezza 1/2 pollice, bobina Ø 26.5 cm	L.	2.600	LAMPADA TUBOLARE BA15S SIPLE 8.5 V / 4 A	L.	400
MATERIALE	IN	SURP	LUS (come nuovo)		
SEMICONDUTTORI - OTTIMO SMONTAG		••••			
		050	VENTOLA MUFFIN in plastica, mono 220 V 14 W VENTOLA MUFFIN in plastica monofase 115/125	L.	
2G603 L. 50 2N1553 L. 200 ASZ16 2N247 L. 80 2N1555 L. 250 ASZ17	L		VENTOLA PAMOTOR O BOXER metallica, 220 V me	ono,	20 W
2N456A L. 220 2N1983 L. 70 ASZ18	L	. 250		L.	4.800
2N511B L. 250 2N2048 L. 50 IW8544 2N513B L. 250 2N2905 L. 80 IW8907			MOTORINO CON VENTOLA Ø 120 · 125/220 V	L.	1.300
2N513B L. 250 2N2905 L. 80 IW8907 2N527 L. 50 2N3108 L. 70 IW8916			TIMER 0÷13 secondi · 220 V	L.	1.000
2N1304 L. 35 ASY29 L. 50 IW9973	L	. 140	CONTACOLPI elettromeccanici 4 cifre - 12 V CONTACOLPI elettromeccanici 5 cifre - 30 V	L.	400 350
2N1305 L. 50 ASZ11 L. 40 ZA398B	L	. 130	CONTACOLPI 6 V - 5 cifre	L.	500
			CONTACOLFI OV - 3 CHIE		
ZENER 10 W - 27 V - 5 %	L.	250	CONTAORE Solzi 220 V cad.		1.500
ZENER 10 W - 27 V - 5 % CONFEZIONE 30 diodi terminali accorciati	L.	250 200	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad.	L.	
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204			CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule	L.	1.500 700 500
CONFEZIONE 30 diodi terminali accorciati	L.	200	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone	L. L. L.	1.500 700 500 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204	L.	200 150	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule	L. L. L.	1.500 700 500 200 150
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede	L. L.	200 150 80	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A	L. L. L. L.	1.500 700 500 200 150 350
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C	L. L. L.	200 150 80 350	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5)	L. L. L. L. L.	1.500 700 500 200 150 350 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A	L. L. L.	200 150 80 350 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc.	L. L. L. L. L.	1.500 700 500 200 150 350 200 650
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V	L. L. L. L.	200 150 80 350 150 450	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5)	L. L. L. L. L.	1.500 700 500 200 150 350 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A)	L. L. L. L. L.	200 150 80 350 150 450 250	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici	L. L. L. L. L.	1.500 700 500 200 150 350 200 650
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V	L. L. L. L. L. L.	200 150 80 350 150 450 250 180	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZI8 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici	L. L. L. L. L.	1.500 700 500 200 150 350 200 650 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 la copp	L. L. L. L. L. C mW	200 150 80 350 150 450 250 180 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA	L. L. L. L. L. L.	1.500 700 500 200 150 350 200 650 200 400 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 la copp PIASTRE ANODIZZATE raffreddamento per 3, tr	L. L. L. L. L. L. comWoia L. cransist	200 150 80 350 150 450 250 180 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI senza carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY UNI-GUARD 20 V · 3 sc. 10 A calotta pia	L. L. L. L. L. L. L.	1.500 700 500 200 150 350 200 650 200 400 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4M2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 301 la copp PIASTRE ANODIZZATE raffreddamento per 3 tr	L. L. L. L. L. L. comWoia L. ransist L.	200 150 80 350 150 450 250 180 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2,8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A	L. L. L. L. L. L. L. L.	1.500 700 500 200 150 350 200 650 200 400 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30 la copp PIASTRE ANODIZZATE raffreddamento per 3 tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V	L. L. L. L. L. L. L. comWoia L. ransist L.	200 150 80 350 150 450 250 180 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZI8 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio, dopplo deviatore - 24 V -	L. L. L. L. L. L. L. L.	1.500 700 500 200 150 350 200 650 200 400 200
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30 Ia copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici)	L. L. L. L. L. L. comWoia L. ransist L. L. L.	200 150 80 350 150 450 250 180 150 450 6 or di 550 120	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI FLEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY UNI-GUARD 20 V · 3 sc. 10 A calotta pla RELAY a giorno 50 V · 2 sc. 25 A RELAY al mercurio, dopplo deviatore · 24 V RELAY MAGNETICI RID posti su basette cad	L. L	1.500 700 500 150 350 200 650 200 400 200 650 650 650 metico 1.000
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 301 la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta	L. L	200 150 80 350 150 450 250 180 150 450 150 200 150	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY UNI-GUARD 20 V · 3 sc. 10 A calotta pla RELAY al mercurio. dopplo deviatore · 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc.	L. L	1.500 700 500 200 150 200 650 200 200 400 200 650 550 metico 1.000 800
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 301 la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta	L. L. L. L. L. ComWoia L. ransist L. L. L.	200 150 80 350 150 450 250 180 150 450 6 or di 550 120 200	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio, dopplo deviatore - 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca	L. L	1.500 700 500 200 150 200 650 200 200 400 200 650 550 metico 1.000 800 800
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1.6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 301 la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta	L. L	200 150 80 350 150 450 250 180 150 450 6 or di 550 120 200 150	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI senza capsule CAPSULE TELEFONICI senza carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio. dopplo deviatore - 24 V - RELAY MAGNETICI RID posti su basette Cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito	L. L	1.500 700 500 200 150 350 200 650 200 200 200 200 1.000 1.000 1.000 1.000
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 301 la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta	L. L	200 150 80 350 150 450 250 180 150 450 or di 550 120 200 250 250	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio. dopplo deviatore - 24 V - RELAY MAGNETICI RID posti su basette cad RELAY Sundecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite	L. L	1.500 700 500 200 150 350 200 650 200 200 200 200 1.000 1.000 1.000 1.000
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale	L. L. L. L. L. ComWoia L. ransist L.	200 150 80 350 150 450 250 180 150 450 or di 550 120 200 250 200 250 300	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio, dopplo deviatore - 24 V . RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI	L. L	1.500 700 500 200 150 350 200 650 200 490 200 650 550 metico 1.000 1.500
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30 la copp PIASTRE ANODIZZATE raffreddamento per 3 tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale convented and componential comp	L. L	200 150 80 350 150 450 250 180 150 450 150 200 150 200 250 200 250 200 250 200 250 200 250 200 20	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio, dopplo deviatore - 24 V . RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI	L. L	1.500 700 500 200 150 350 200 200 400 200 400 200 650 550 metico 1.000 1.500 800 3.000 1.500
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale	L. L	200 150 80 350 150 450 250 180 150 450 150 200 150 200 250 200 250 200 250 200 250 200 250 200 20	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY al mercurio. dopplo deviatore - 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 μF / 100 V L. 50 11.000 μF / 25 V 200 μF / 200 V L. 150 12000 μF / 25 V 1000 μF / 200 V L. 150 12000 μF / 25 V 1000 μF / 50 V L. 100 17.000 μF / 25 V 1000 μF / 50 V L. 100 17.000 μF / 25 V 1000 μF / 50 V L. 100 17.000 μF / 25 V 1000 μF / 50 V L. 100 17.000 μF / 25 V 100 μF / 50 V L. 100 17.000 μF / 25 V 100 μF / 50 V L. 100 17.000 μF / 25 V 100 μF / 50 V L. 100 17.000 μF / 25 V	L. L	1.500 700 500 200 150 350 200 200 400 200 650 200 650 550 metico 1.000 1.500 3.000 1.500
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30t la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale consideration combinabili spinotti da 25 A o 5 spinotti da 5 A numerati combinabili spinotti da 25 A o 5 spinotti da 5 A numerati combinabili spinotti da 25 A o 5 spinotti da 5 A numerati combinabili spinotti da 25 A o 5 spinotti da 5 A numerati combinabili spinotti da 25 A o 5 spinotti da 5 A numerati combinabili	L. L	200 150 80 350 150 450 250 180 150 450 300 150 200 200 250 200 250 300 300 300 300 300 300 300 3	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY al mercurio. dopplo deviatore - 24 V - RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI SO µF / 100 V L. 50 11.000 µF / 25 V 200 µF / 200 V L. 150 12.000 µF / 25 V 1000 µF / 50 V L. 150 17.000 µF / 25 V 1000 µF / 50 V L. 150 17.000 µF / 30 V 1000 µF / 50 V L. 150 17.000 µF / 25 V	L. L	1.500 700 500 200 150 350 200 650 200 400 200 400 200 650 550 metico 1.500 800 3.000 1.500
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale CONNETTORI SOURIAU a elementi combinabili spinotti da 25 A o 5 spinotti da 5 A numerati ca a saldare. Coppia maschio e femmina.	L. L	200 150 80 350 150 450 250 180 150 450 250 150 200 200 250 200 250 300 i di 2 2tacchi 150	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI senza capsule MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE IBM per calcolatori elettronici schede olivetti per calcolatori elettronici schede G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio. dopplo deviatore - 24 V - 2 sc. RELAY al mercurio. dopplo deviatore - 24 V - 2 sc. RELAY undecal 3 sc. / 6 A - 24 Voc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V L. 150 11.000 µF / 25 V 1000 µF / 25 V 1000 µF / 50 V L. 150 12000 µF / 30 V 1000 µF / 50 V L. 150 22.000 µF / 35 V 1000 µF / 50 V L. 150 22.000 µF / 25 V 1000 µF / 50 V L. 150 22.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 25	L. L	1.500 700 500 200 150 350 200 650 200 400 200 650 650 550 metico 1.000 1.500 3.000 1.500
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 300 Ia copp PIASTRE ANODIZZATE raffreddamento per 3 tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale de saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat	L. L	200 150 80 350 150 450 250 180 150 450 250 180 150 250 200 250 200 250 300 i di 2 tacchi 150 1.300	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY al mercurio. dopplo deviatore · 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A · 24 Vcc e 115 Vca PACCO 33 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 μF / 100 V	L. L	1.500 700 500 200 150 350 200 200 400 200 650 200 200 400 1.000 1.000 1.500 3.000 1.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 4.500 4.500 5.500 6.
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4M2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30	L. L	200 150 80 350 150 450 250 180 150 450 00 di 550 120 200 150 200 250 000 150 150 200 250 000 250 150 200 250 250	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICI senza capsule MICROSWITCH 5 A - 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE IBM per calcolatori elettronici schede olivetti per calcolatori elettronici schede G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio. dopplo deviatore - 24 V - 2 sc. RELAY al mercurio. dopplo deviatore - 24 V - 2 sc. RELAY undecal 3 sc. / 6 A - 24 Voc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V L. 150 11.000 µF / 25 V 1000 µF / 25 V 1000 µF / 50 V L. 150 12000 µF / 30 V 1000 µF / 50 V L. 150 22.000 µF / 35 V 1000 µF / 50 V L. 150 22.000 µF / 25 V 1000 µF / 50 V L. 150 22.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 1000 µF / 25	L. L	1.500 700 500 200 150 350 200 200 400 200 650 200 200 400 1.000 1.000 1.500 3.000 1.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 3.000 4.500 4.500 4.500 5.500 6.
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF. con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30 la copp PIASTRE ANODIZZATE raffreddamento per 3 tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale CONNETTORI SOURIAU a elementi combinabili spinotti da 25 A o 5 spinotti da 5 A numerati da saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat COMMUTATORE A PULSANTE (microswitch) LINEE DI RITARDO 5 μS / 600 Ω PORTAFUSIBILI per fusibili 30 x Ø 6	L. L	200 150 80 350 150 450 250 180 150 450 250 120 200 150 200 250 000 300 i di 2 tacchi 150 1,300 200 250 100	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE IBM per calcolatori elettronici SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY a giorno 50 V - 2 sc. 25 A RELAY al mercurio. dopplo deviatore - 24 V - RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Voc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V L. 150 11.000 µF / 25 V 1000 µF / 50 V L. 150 12000 µF / 25 V 1000 µF / 50 V L. 150 22.000 µF / 25 V 1000 µF / 50 V L. 250 50.000 µF / 25 V 10.000 µF / 50 V L. 250 63.000 µF / 15 V CONFEZIONE 250 resistenze con terminali accorci gati per c.s. N. 4 LAMPADINE AL NEON CON LENTE su ba	L. L	1.500 700 500 200 150 350 200 650 200 400 200 400 200 1.500 3.000 1.500 3.000 4.500 5.00 6.000 6.000 6.000 6.000 6.000
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4M2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30 PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale de CONNETTORI SOURIAU a elementi combinabili spinotti da 25 A o 5 spinotti da 5 A numerati da saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat COMMUTATORE A PULSANTE (microswitch) LINEE DI RITARDO 5 µS / 600 Ω PORTAFUSIBILI per fusibili 30 x Ø 6 PORTAFUSIBILI per fusibili 30 x Ø 6	L. L	200 150 80 350 150 450 250 180 150 450 00 di 550 120 200 150 200 250 000 150 150 200 250 000 250 150 200 250 250	CONTAORE Solzi 220 V cad. CONTAORE G.E. o Solzi 115 V cad. CONTAORE G.E. o Solzi 115 V cad. CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A · 10 A NUCLEI A OLLA piccoli (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY a giorno 50 V · 2 sc. 25 A RELAY al mercurio. doppio deviatore · 24 V · RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A · 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V	L. L	1.500 700 200 200 150 350 200 200 400 200 650 550 metico 1.000 1.500 3.000 4.500 3.000 4.500 800 800 800 800 800 800 800 800 800
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4M2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30(1a copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale de saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat COMMUTATORE A PULSANTE (microswitch) LINEE DI RITARDO 5 µS / 600 Ω PORTAFUSIBILI per fusibili 30 x Ø 6 PORTAFUSIBILI per fusibili 30 x Ø 5 POTENZIOMETRI A FILO 2 W	L. L	200 150 80 350 150 450 250 180 150 450 250 180 150 200 250 200 250 150 200 250 150 200 250 150 150 200 250 150 150 200 250 150 150 200 250 150 200 250 150 200 250 150 200 250 150 200 250 150 200 250 150 200 250 150 200	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY al mercurio. dopplo deviatore - 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V L. 50 11.000 µF / 25 V 200 µF / 200 V L. 150 12.000 µF / 25 V 200 µF / 50 V L. 150 22.000 µF / 25 V 10.000 µF / 50 V L. 250 50.000 µF / 25 V 10.000 µF / 15 V L. 200 63.000 µF / 15 V CONFEZIONE 250 resistenze con terminali accorci gati per c.s. N. 4 LAMPADINE AL NEON CON LENTE su ba transistor e resistenze CASSETTI AMPLIFICATORI telefonici (175 x 80 x 5)	L. L	1.500 700 200 200 200 150 350 200 400 200 400 1.500 800 3.000 1.500 800 660 800 800 800 800 800 800 800 8
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4N2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30(la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale de saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat COMMUTATORE A PULSANTE (microswitch) LINEE DI RITARDO 5 μS / 600 Ω PORTAFUSIBILI per fusibili 30 x Ø 6 PORTAFUSIBILI per fusibili 30 x Ø 5 POTENZIOMETRI A FILO 2 W 100 Ω - 300 Ω - 500 Ω - 1 kΩ - 10 kΩ ce	L. L	200 150 80 350 150 450 250 180 150 450 250 180 150 200 250 200 250 150 200 250 150 200 250 150 150 200 250 150 150 200 250 150 150 200 250 150 250 150 250 150 250 150 250 150 250 150 250 150	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICH a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZI8 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole · senza valvole RELAY UNI-GUARD 20 V · 3 sc. 10 A calotta pla RELAY a giorno 50 V · 2 sc. 25 A RELAY al mercurio. doppio deviatore · 24 V · RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V · 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A · 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 μF / 100 V L. 50	L. L	1.500 700 500 200 150 350 200 650 200 400 200 650 650 800 1.500 3.000 1.500 3.000 450 500 600 600 600 600 600 600 600 600 6
CONFEZIONE 30 diodi terminali accorciati INTEGRATI TEXAS - 2N4 - 3N3 - 204 4M2 su schede AMPLIFICATORE DIFF, con schema VA711/C AUTODIODI 75 V / 20 A SCR 10 A / 200 V SCR 2N1596 (100 V - 1,6 A) LAMPADE AL NEON con comando a transistor SPIE NEON 220 V TRASFORMATORI E e U per stadi finali da 30(la copp PIASTRE ANODIZZATE raffreddamento per 3, tr potenza dimensioni mm 130 x 120 MICROSWITCH CROUZET 15 A/110-220-380 V INTERRUTTORI BIMETALLICI (termici) INTERRUTTORI a levetta DEVIATORI A DUE VIE a levetta DEVIATORI A DUE VIE a levetta DEVIATORI ROTANTI 2 sc. con pos. centrale de saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER 220 V 10 A 3+2 contat COMMUTATORE A PULSANTE (microswitch) LINEE DI RITARDO 5 μS / 600 Ω PORTAFUSIBILI per fusibili 30 x Ø 6 PORTAFUSIBILI per fusibili 30 x Ø 5 POTENZIOMETRI A FILO 2 W	L. L	200 150 80 350 150 450 250 180 150 450 250 180 150 200 250 250 300 i di 2 2tacchi 150 1,300 200 250 100 120 150 200 250 150 200 250 200 250 250 200 250 250 200 250 25	CONTAORE Solzi 220 V CONTAORE G.E. o Solzi 115 V CORNETTI TELEFONICI senza capsule CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI MICROSWITCH 5 A - 10 A NUCLEI A OLLA PICCOII (cm 2.8 x 1.5) SCHEDE OLIVETTI con 2 x ASZ18 ecc. SCHEDE IBM per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE OLIVETTI per calcolatori elettronici SCHEDE G.E. silicio USA GRUPPI UHF a valvole - senza valvole RELAY UNI-GUARD 20 V - 3 sc. 10 A calotta pla RELAY al mercurio. dopplo deviatore - 24 V RELAY MAGNETICI RID posti su basette cad RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAY SIEMENS 24 V / 12 V - 4 sc. / 2 sc. RELAYS undecal 3 sc. / 6 A - 24 Vcc e 115 Vca PACCO 3 kg di materiale elettronico assortito PACCO 33 valvole assortite CONDENSATORI ELETTROLITICI 50 µF / 100 V L. 50 11.000 µF / 25 V 200 µF / 200 V L. 150 12.000 µF / 25 V 200 µF / 50 V L. 150 22.000 µF / 25 V 10.000 µF / 50 V L. 250 50.000 µF / 25 V 10.000 µF / 15 V L. 200 63.000 µF / 15 V CONFEZIONE 250 resistenze con terminali accorci gati per c.s. N. 4 LAMPADINE AL NEON CON LENTE su ba transistor e resistenze CASSETTI AMPLIFICATORI telefonici (175 x 80 x 5)	L. L	1.500 700 500 200 150 350 200 200 400 200 400 200 650 800 1.500 3.000 1.500 450 800 700 800 600 800 800 800 800 800 800 800 8

SEDE: FILIALE:

cq elettronica - marzo 1973 -

359

via rossolo 38/c/d - 40138 BOLOGNA C. C. P. N. 8/2289 - Telefono 34.14.94

Via R. Fauro 63 - Tel. 80.60.17 - ROMA

ARTEL s.rl.

BARI - CORSO ITALIA 79 - Tel. 21.18.55

BARI - ZONA IND. - S.S. 69 MODUGNO - Tel. 629140

BARI - LARGO XXI APRILE 41-43 - Tel. 24.17.53 BARLETTA - VIA G. BOGGIANO 27 - Tel. 33.331

E DISPONIBILE CON TUTTI GLI ACCESSORI, antenne, alimentatore stabilizzato per impiego fisso, cavi coassiali a bassa perdita, connettori RF.

IL PIU' POTENTE PROFESSIONALE PER RADIOAMATORI VHF

144 MHz, L'UNICO A NORME IARU.

GLADDING 25 VHF

Questo transceiver si è rivelato il più efficente come: modulazione, potenza, stabilità, resistenza, durata. Non a caso è stato omologato dal Ministero P.T. per servizio mobile e fisso su frequenze comprese fra 156 e 170 MHz

QUARZI PRONTI PER LA CONSEGNA da 145 a 145,850 MHz ogni 25 kHz. Accettiamo ordini per ponti ripetitori su 144 MHz a condizioni

veramente oneste.

CITIZENS RADIO COMPANY
41100 MODENA (ITALIA)
Via Prampolini 113 - Tel. 059/219001
Telex Smarty 51305

GIOVANNI

LANZONI

VIA COMELICO 10 MILANO TEL. (02) 58.90.75

NUOVA AGENZIA

Lombardia - Piemonte

che distribuiamo e assistiamo ... e ora annunciamo,

Transverter CRC Mod. 69 VHF AM SSB

Da impiegare in unione a:

Qualsiasi transceiver 23 Canali 27 MHz

Qualsiasi transceiver OM con VFO da 28 MHz.

Uscita da 144.150 a 145.040 kHz

Potenza utile RF: AM da 4 a 8 W

SSB da 12 a 18 W PEP

69 Canali utili spaziati di 10 kHz oppure continua.

Abbiamo disponibili:

antenne, rotori, cavi coassiali, connettori RF alimentatori stabilizzati fino a 10 A 13,5 V, misuratori di ROS, wattmetri RF ecc.

CITIZENS RADIO COMPANY 41100 MODENA (ITALIA) Via Prampolini 113 - Tel. 059/219001 Telex Smarty 51305

AMPLIFICATORE LINEARE PG 2000

AMPLIFICATORE LINEARE 50 W OUT
ALIMENTATORE STABILIZZATO 13 V 2,5 A
MISURATORE DI R.O.S.
INDICATORE DI MODULAZIONE

Totale — PG 2000

Totale = PG 2000

Caratteristiche tecniche: SEZIONE LINEARE:

Alimentazione: 220 V 50 Hz

Potenza R.F.: INPUT 160 W OUT. $25 \div 55$ W Potenza di pilotaggio: $2 \div 5$ W effettivi Impedenze: INPUT 52Ω OUTPUT $35 \div 100 \Omega$ Comandi: accordi di placca e di carico

Caratteristiche tecniche: SEZIONE ALIMENTATORE BT:

Uscita: 13 V 2,5 A stabilizzati con protezione Elettronica contro il cortocircuito

Stabilità: migliore dell'1 % Ripple: 4 mV a pieno carico.

Caratteristiche: MISURATORE DI R.O.S.:

Strumento a doppia funzione: in una posizione indica l'accordo dello stadio finale nelle due posizioni successive indica il rapporto di onde stazionarie.

INDICATORE DI MODULAZIONE:

L'indicatore di modulazione è costituito da un amplificatore di B.F. che preleva un segnale rivelato dall'uscita R.F. e pilota una lampada spia la cui intensità luminosa è proporzionale alla profondità di modulazione. Parallelamente alla lampada spia è collegata una presa d'uscita attraverso la quale è possibile prelevare un segnale di B.F.

Misure: 305 x 165 x 215.


P.G. ELECTRONICS - piazza Frassine, 11 - 46100 FRASSINE (Mantova) - Telefono 24747

basta premere il P.T.T.

con il MICRO 23
Push To Talk e proverai l'emozione
del primo contatto radio
riceverai il primo roger e se
usi Lafayette, non lo dimenticherai
facilmente.

C'E' PIU' EMOZIONE CON UN LAFAYETTE

23 canali - 5 W. L. 102.000 netto

LAFAYETTE MICRO 23

&LAFAYETTE

FERT COMO

Via Francesco Anzani 52 cap 22100 - Tel. 263032

ELETTRONICA 40138 BOLOGNA (Italia) Via Albertoni, 19 ² - Tel. (051) 398689

DATAMATH PER CALCOLARE DOVE, QUANDO E COME SI VUOLE

Texas Instruments un leader mondiale dell'elettronica

DATAMATH E' SICUREZZA

- Tascabile
- Facile da usare
- Accumulatori ricaricabili dalla rete
- Visualizzatore a « stato solido » per una facile lettura
- Calcolatore, caricatore custodia

dietro richiesta si inviano depliant illustrativi

- Quattro operazioni
- Calcoli in catena
- Potenze
- Memoria

1 anno di garanzia

FREQUENZIMETRO DIGITALE 50 MHz

Altamente professionale e alla portata di tutti

L. 169,000

SCALER 200 MHz

per raggiungere in coppia con il frequenzimetro i 200 MHz L. 60.000

in vendita presso i migliori negozi di componenti professionali di tutta Italia o da richiedere direttamente presso la nostra sede.

ELETTRONICA-TELECOMUNICAZIONI via Siracusa. 2 – 35100 Padova t.049-23910

PEARCE-SIMPSON DWISION OF GLADDING CORPORATION

UNA SPEDIZIONE SCIENTIFICA NEL LESOTHO CON RADIOTELEFONI PEARCE-SIMPSON - C.R.C.

• Un viaggio al limite dell'impossibile » è stata definita dal quotidiano francese « SUD-OUEST » la coraggiosa spedizione di quattro francesi ed un italiano alla volta della regione inesplorata del LESOTHO, all'estremo Sud del Continente Africano, nella Valle dell'Orange. Partiti da Parigi il 29 gennaio, a bordo di due autovetture particolarmente attrezzate, i cinque giovani percorreranno 18.000 chilometri in sette mesi, attraversando MAROCCO-ALGE-RIA-TCHAD-SUDAN-UGANDA-KENYA-TANZANIA-MALAWI-MOZAMBICO-SUD AFRICA e ritorno, Scopo principale della missione sarà di filmare per la prima volta una tribù Bantù insediata nella Vallata dell'Orange, a 3500 m sul livello del mare. I Reportages verranno eseguiti per conto di GAUMONT-ATTUALITE'.

COMPONGONO LA SPEDIZIONE:

MARYSE CAPDEVILLE: 21 anni, unica donna della spedizione. A 19 anni ha realizzato l'attraversata del Sahara con una 2 CV, e soggiornato per un anno in Costa d'Avorio.

JEAN PIERRÈ LANCIEN: 26 anni. Specialista meccanico: in un'ora smontaggio e rimontaggio di motore Citroen. Tecnico del Suono ed Economo.

MICHEL ODOUL: 28 anni. Avventuriero. Ha girato films con J.P. Mocky e Denis Berembaum. A 25 anni ha effettuato il giro del mondo. Pilota di Land Rover al National Mapping Department Commonwealth of Australia. Contatti con aborigeni nel deserto australiano e in terra d'Arhhem. Viaggi a Singapore, Bangkok, Hong-Kong. Giro degli Stati Uniti. Realizzatore e scenografo.

GUY CAPDEVILLE: 25 anni. Avventuriero, fotoreporter, cameraman. Reportages per Paris-Match, Express, Ouvel Obs, Stern, Newsweek, Life, Photo, Zoom, Agence Gamma. In tre anni di marcia ha attraversato il Continente Americano dal Nord al Sud, per il Canada, U.S.A., Messico, America Centrale, Caraibi, Perù, Bolivia, Cile, Argentina, Brasile. Traversata del Mato Grosso con i cercatori d'oro. Capo operatore.

SEVERINO TOGNONI: 25 anni. Due anni nel Burundi, Africa Centrale. Spedizioni nel Congo, Uganda, Tanzania. Kenya, Ruanda. Meccanico. Tecnico Radio ed esperto in telecomunicazioni.

ITINERARIO: 18.000 Km!

SEVERINO TOGNONI: l'unico italiano della spedizione.

La spedizione ha prescelto i radiotelefoni **PEAR CE-SIMPSON** per l'elevato grado di affidabilità, i soli in grado di soddisfare le rigorose norme richieste, per un perfetto funzionamento nelle più avverse condizioni ambientali, dal deserto del Sahara alle foreste equatoriali. Sugli automezzi sono state installate antenne della C.R.C. S.p.A. di Modena. La TTL Telecomunicazioni di Padova, ha contribuito alla spedizione equipaggiandola di radiotelefoni PEARCE-SIMPSON 27 MHz 23 canali, antenne C.R.C., ricambi, e fornendo materiali ed assistenza tecnica per l'uso e la installazione degli apparati anche in condizioni di emergenza.

PRESSO LA Ns. SEDE DI PADOVA E' DISPONIBILE TUTTA LA VASTA GAMMA DI RADIOTELEFONI PEARCE-SIMPSON SUI 27 e 144 MHz - PROVE E DIMOSTRAZIONI VISITATECI ALL'8° FIERA DEL RADIOAMATORE DI PORDENONE!

SABATO 17 MARZO: ore 17,30-19 - DOMENICA 18 MARZO: ore 9-19 - LUNEDI 19 MARZO: ore 9-19

(continuato) (S. Giuseppe: orario continuato)

72 a elettronica presenta:

QUASAR

una nuova stella nel mondo HI-FI

sturbo > 45 dB • relezione AM > 45 dB • rapporto di cattura 2 di zione stereo > 30 dB • banda passante 30 ÷ 15 000 Hz (a 1 kHz) perta 86 ÷ 106 MHz • segnale in uscite 0.9 V perta 86 ÷ 106 MHz ● segnale în uscita 0,8 V ● distorsione armonica < 0,7 %.

Sezione Ampli: potenza 30 W rms per canale \odot uscita 8 Ω con protezione elettronica 🔵 uscita cuffia 8 Ω 🔵 uscita registratore 🔵 ingresso tuner incorporato ● ingresso phono 2 mV ● ingresso aux 150 mV ● ingresso tape/monitor 250 mV ● bassi ± 20 dB ● alti ± 18 dB ● banda passante 15÷25.000 Hz (± 1,5 dB distorsione < 0,5 %

Dimensioni 405 x 300 x 130 ○ Alimentazione 220 Vca ○ Impiega n. 2 integrati e 66 semiconduttori.

kit (con unità modulari completo di manuale istruzioni)

80.000

Montato (funzionante e collaudato)

94.000

p.za Decorati, 1 - (staz. MM - linea 2) tel. (02) 9519476 20060 CASSINA DE' PECCHI (Milano)

ELMI A.C.M.

AGLIETTI & SIENI 50129 FIRENZE via S. Lavagnini, 54 DAL GATTO

0C177 ROMA via Casilina, 514-516 Elett. BENSO 12100 CUNEO via Negrelli, 30

SRITEL - Modena

Garanzia e Assistenza:

ODIAC

TANTI AMICI IN PIÙ NELL'ETERE

Esciusiva per l'Italia: MELCHIONI ELETTRONICA Divisione RADIOTELEFONI - Via Fontana, 16 - 20122 Milano

COMUNICATO

Abbiamo ristrutturato la nostra rete di vendita.

Per esaudire la crescente domanda di apparati ed accessori per CB del nostro marchio ZODIAC la vendita dei Radiotelefoni per 27 MHz è stata affidata in Distribuzione Esclusiva per l'Italia alla Ditta

MELCHIONI ELETTRONICA - DIVISIONE RADIOTELEFONI 20122 MILANO - via Fontana 16 - Tel. 780.768 - 790.847

Nel contempo presentiamo attraverso la Ditta Melchioni apparati in AM e AM SSB del prestigioso marchio BELCOM noto in tutto il mondo.

Noi, depositari dei marchi « ZODIAC » e « BELCOM » continuiamo ad offrire Garanzie ed Assistenza mentre preannunciamo un nuovo programma di vendita di apparecchi ricetrasmittenti ed accessori per VHF FM, Sistemi Cerca persone, Radio Comandi e molte altre interessanti Novità.

TEL S.F.I. CAMPIONE D'ITALIA - via Matteo, 3 · 86531 Direz. Generale · 41100 MODENA · p.za Manzoni, 4 · tel. (059) 304164/5

LINER 2

SSB 144MHz MOBILE TRANSCEIVER

Belcom.

NOVITA' MONDIALE LINER 2

SSB 144 MHz - 24 CANALI - VXO MOBILE TRANSCEIVER

Un modo nuovo per DX'ers 144 MHz.

Tutto a transistor - compatto - leggero - basso consumo.

Sintetizzatore a 11 Xtal per 24 canali in servizio.

VXO variabile ± 6 kHz. copertura continua da 144,100 a 144,330 MHz.

Dispositivo RIT (Receiver Incremental Tuning). Noise Blanker.

CARATTERISTICHE

Banda di frequenza: 144,100 - 144,330 MHz

Tipo di emissione: SSB

Input finale: 20 W (10 W PEP output)

Impedenza d'antenna: 50 Ohm Trasmissione-Ricezione: Iso-onda

Soppressione portante: maggiore di 45 dB

Soppressione banda laterale: maggiore di 45 dB

Attenuazione spurie: maggiore di 60 dB

Microfono: dinamico 600 Ohm

Banda passante AF trasmissione: 300 —2700 Hz (—6 dB) Sensibilità ricevitore: migliore di 0,5 μ V a 10 dB S N

Selettività: 2,4 kHz (-6 dB) $\pm 3 \text{ kHz}$ (-60 dB)

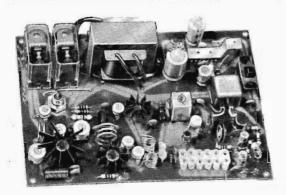
Rapporto immagine: maggiore di 60 dB Audio ricevitore: maggiore di 2 W

Impedenza audio ricevitore: maggiore di 4 Ohm

Corrente assorbita: 2,5 A al massimo della trasmissione

0,5 A al max volume di ricezione

Semiconduttori: 27 TRANSISTCRI, 5 MOSFET, 1 FET, 1 IC, 44 DIODI


Alimentazione: 12 - 16 V dc - 13,8 V dc standard Dimensioni: 220 x 70 x 250 mm - Peso: 3 kg.

COSTRUZIONI ELETTRONICHE - IMPERIA - C. P. 234 - TEL. 0183/45907

FM 1 Trasmettitore VHF - FM

freq. 144/146 Mc. - potenza 1 W RF OUT n. 6 posti quarzo (72 Mc.) modulatore FM incluso - antenna 52/75 OHM prese per eventuale modulazione AM alimentazione 12/15 V cc. - 0,5 A quarzi esclusi dimensione mm 145 x 55 x 20 h.

L. 25.000

TX 144 A/T Telaio trasmettitore VHF

freq. 144/146 Mc - potenza 2 W RF antenna 52/75 OHM - n. 2 posti quarzo (72 Mc.) prese per modulazione AM/FM alimentazione 12/15 V cc. - 0,5 A dimensione mm 55 x 105 x 20 h.

L. 19.000

____ 370 __

TX 144 A/TM Trasmettitore VHF

AM/FM montato su telaio freq. 144/146 Mc. - 2 W RF OUT modulatore AM/FM incorporato n. 6 posti quarzo (72 Mc.) - relé di commutazione RX/TX di antenna e di tensione incorporati deviazione in frequenza ± 5 Kc. stadi finali protetti alimentazione 12/15 V cc. - 1 A quarzi esclusi dimensione mm 150 x 150 x 30 h.

L. 33.500

STADIO FINALE VHF - FM

freq. 144/146 Mc. - pilotaggio 0,2 - 1 W RF uscita RF OUT 10 W tipo normale uscita RF OUT 20 W tipo super adatti ad essere pilotati dall'FM 1 o dal TX 144 A/T alimentazione 12/15 V cc. - 4 A max dimensioni mm 55 x 105 x 30 h.

TIPO NORMALE L. 25.000 TIPO SUPER L. 37.000

Merce reperibile anche presso i migliori Rivenditori del settore

NOVITÀ Belcom

Mod. S - 865 SM 27 MHz CB SSB AM Mobile Transceiver SSB 15 Watt PEP AM 5 Watt 23 Canali

CARATTERISTICHE GENERALI

Frequenze: da 26.965 MHz a 27.255 MHz, 23 canali AM 23 canali USB Upper Side Band 23 canali LSB Lower Side Band.

CARATTERISTICHE ELETTRICHE

Alimentazione: 13,8 V cc.

TRASMETTITORE

Assistenza:

Potenza RF output: AM 4 Watt - SSB 12 Watt PEP.
Nominale RF output: AM 3 Watt - SSB 8 Watt PEP.
Modulazione (AM): 100%, spettro di modulazione a norme standard.
Soppressione della portante: —45 dB.
Soppressione banda laterale: —45 dB.

RICEVITORE

Sensibilità:

AM migliore di 0,6 μ V per 10 dB S/N. SSB migliore di 0,4 μ V per 10 dB S/N.

Selettività:

AM 2,1 kHz a -6 dB \pm 10 kHz a -40 dB. SSB 2,1 kHz a -6 dB \pm 10 kHz a - 50 dB. AGC Controllo automatico di guadagno. Impedenza antenna: 50 Ω .

CONTROLLI - INDICATORI E CONNESSIONI

- Selettore canali.
- Selettore AM/SSB.
- Delta Tuning variabile Clarifier.
- Interruttore generale, controllo volume.
- Controllo Squelch.
- Commutatore Noise Blanker, Noise Limiter automatico.
- Indicatore "S" e RFO.
- Indicatore trasmissione a luce rossa.
- Jack microfono.
- Connettore antenna.
- Jack altoparlante PA.
- Jack altoparlante esterno.
- Controllo guadagno RF.

Dimensioni: 58 x 196 x 247 mm.

Peso: 2.1 Kg.

Contenitore: metallico.

questa la riconosci al... ...volo, è

N.A.T.O. di M. Garnier & C.-21033 CITTIGLIO (VA)-via C. Battisti, 10-tel. (0332) 61 788 61122

N. A. T.O. di M. Garnier & C. - 21033 CITTIGLIO (VA) - via C. Battisti, 10 - tel. (0332) 61122

Elettronica G.C.

OFFERTA DI ARTICOLI NUOVI CON GARANZIA

Radiotelefoni TOWER 50 mW portata media 2,5 km, alimentazione 9 V con omaggio alimentatore, alla coppia L. 9.700

Modificatevi da soli i suddetti radiotelefoni, con l'aggiunta di uno stadio AF, aumentando la potenza a 150 mW. Facile e pratico. Chiedeteci schema più i

Per un solo radiotelefono L. 1.000+s.p. Per due radiotelefoni L. 1.800+s.p.

Alimentatore stabilizzato ad integrati, protezione elettronica, ingresso universale, uscita tensione regolabile 6.5 - 36 V, corrente da 0.2 a 2 A regolabili con protezione elettronica a 4 transistor munito di reset per reintegrare il corto circuito. Completo di trasformatore viene fornito senza scatola e senza strumento. Pronto e funzionante L. 13.500

pezzi necessari.

Condensatori variabili ad aria miniatura nuovi con demoltiplica per OM-FM. cad. L. 400

Contenitori metallici nuovi con frontale e retro in alluminio, verniciati a fuoco colore grigio metallizzato con alzo anteriore, disponibili nelle seguenti misure: cm 20 x 16 x 7.5 L. 1.450

cm 15 x 12 x 7.5 L. 1.200 cm 20 x 20 x 10.5 L. 1.750

ORION 1 - Piccolo convertitore per i 27 MHz quarzato. E' sufficiente avvicinarlo a qualsiasi ricevitore a onde medie per ascoltare tutta la CB. Protetto in mobiletto plastico 85 x 55 x 35 cad. L. 6.500

Y1

Antenna telescopica per piccole trasmittenti e riceventi portatili a 10 elementi, lunghezza minima mm 110, massima mm 650 cad. L. 400

MICROTRASMETTITORE in FM 96-108 MHz 40 x 25 mm solo telaio montato pronto e funzionante con batteria 9 V. Potenza irradiata 500 mt, alta sensibilità. capta un segnale dal microfono a 3 mt di distanza. Prezzo eccezionale per l'anno nuovo L. 4.250

Per acquisti superiori alle L. 5.000 scegliete uno di questi regali:

- 1 Confezione di 20 transistor
- 1 Piccolo alimentatore, 50 mA 9 V
- 1 Variabile aria miniatura + Antenna stilo
- 1 Confezione materiale elettronico, misto
- 1 Confezione di 50 condensatori carta.

SEMICO	NDUTTO	RI I	CIRCUITI	INTEGR	ATI
AC180K	L.	200	µA723	L.	1.200
AC181K	L.	200	TAA661/C	L.	700
AC187K	L.	200	TAA300	L.	1.000
AC188K	L.	200	TAA611/A-B	L.	1.000
AC193	L.	180	TAA263	L.	500
AC194	L.	180	SN7400	L.	350
BC148	L.	150	SN7410	L.	350
2N1613	L.	250	SN7441	L.	1.000
2N1711	L.	300	SN7475	L.	850
2N3866	L.	700	SN7490	L.	850
2N3055	L.	750	SN7492	L.	1.000

QUARZI NUOVI SUBMINIATURA PER LA CB

RX	26,580	26,610	26.630	26,670	cad.	L.	1.600
			11				
TX	27,035	27,065	27,085	27,125			

Altoparlanti Foster 16 Ω nominali 0.2 W cad. L. 300 Altoparlanti Soshin 8 Ω 0.3 W cad. L. 300 Altoparlanti Telefunken elittici 2 W \cdot 8 Ω cad. L. 450 Spinotto jack con femmina da pannello \oslash mm 3. 3 contatti utilizzabili alla coppia L. 200

CASSE ACUSTICHE formato rettangolare cm 30x20x12, adatte per stereo, mobile in legno, colore tek

Idem come sopra, cm 23 x 16 x 14 cad. L. 2.900

KIT PER CIRCUITI STAMPATI. Inchiostro+cloruro ferrico + 5 piastre vetroresina miste al pacco L. 1.200 QUESTA OFFERTA NON LASCIATEVELA SFUGGIRE

ARTICOLI SURPLUS IN OFFERTA SPECIALE FINO AD ESAURIMENTO

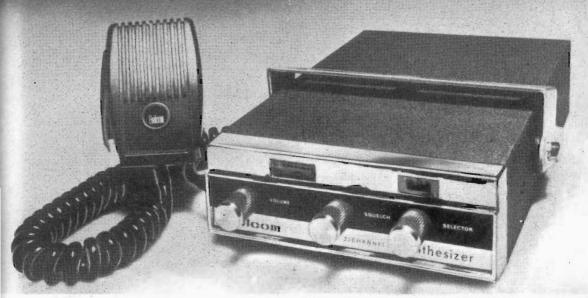
Serie completa medie frequenze Japan miniatura con oscillatore - 455 MHz L. 450 Confezione cond. carta, PF 2 K - 10 K - 47 K - 100 K - isol. 400 - 1000 V pezzi n. 50 cad. L. 500 Confezione di 100 resistenze valori assortiti da 1/4 a 1/2 W L. 350

Confezione di 20 trimmer assortiti normali e miniatura L. 600

Confezione di 20 transistor al silicio e germanio recuperati ma tutti efficienti nei tipi BC - BF - AF - AC alla busta L. 600

Telaio TV in circuito stampato cm 44 x 18 con sopra circa 45 condensatori misti elett. - poliest. - Carta - 75 resist. miste di tutti i wattaggi - 16 bobine e impedenze, ferriti radd. - diodi zoccoli Noval, n. 3 telai Ricordatevi: 3 telai TV L. 1.000

D3


10 schede OLIVETTI in una nuova offerta, con sopra 150 diodi OA95 e 60 resistenze 13.5 k Ω 1 W a filo 2% a sole L. 950

Si accettano contrassegni, vaglia postali o assegni circolari. Spedizione e imballo a carico del destinatario, L. 500 - per contrassegno aumento L. 150. Si prega di scrivere l'indirizzo in stampatello con relativo c.a.p.

ELETTRONICA G.C. - via Bartolini, 52 - tel. (02) 361.232 - 360.987 - 20155 MILANO

Belcom

Mod. E 555 Ricetrasmettitore 5 W 23 canali CB

CARATTERISTICHE TECNICHE

Trasmettitore: pilotato a quarzo 5 Watt input.

Modulazione: al 100% con circuito ALC.

Ricevitore:

Sensibilità: migliore di 1 µV con ± 10 dB S/N.

Selettività: migliore di 80 dB ± 10 kHz

separazione fra i canali.

Tolleranza di frequenza: + 0,004% a 20°C

con 12,6 V cc.

Sensibilità squelch: soglia di regolazione 2 µV.

Alimentazione:

fra 12 e 14 V cc con negativo a massa.

Assorbimento:

in trasmissione 0,7 A, con modulazione 1,5 A in ricezione 300 mA.

Connessione antenna:

con SO 239 per impedenze di 50 Ω .

Semiconduttori: 20 Transistor, 13 diodi.

Dimensioni: 15 x 23 x 6 cm, custodia metallica.

Peso: 2,2 Kg.

La ELETTRO NORD ITALIANA offre in questo mese:

11B - 11C - 12F -					etti e lampada spia . i morsetti e lampada spia e acuti, tutti e 5 canali mono in	L.	5.500 + 8.900+	800 800	5.S. 5.S.
285 - 31P - 31Q - 315 -	CALIBRATORE a FILTRO CROSS OF FILTRO C.S. ma SCATOLA MONTA	dimensioni 360 x 13 quarzo 100 kHz - VER per 30/50 W 3 solo a due vie . AGGIO filtro antidis	Aliment. 9 V 3 vie 12 dB pe turbo per rete	- Stabilissimor ottava	800 W con impedenze di altissima	L. L. L.	24.000 + 6.000 + 7.500 + 6.500 +	5.5. 5.5. 5.5.	
112C - 112D -							2.000 + 6.000 +		s.s.
112E -	TELAIO convertit	ore gamma onde	lunghe medi	corte più	a gamma inferessata gamma C.B. compresa sezione di	L.			
151F - 151FC - 151FD -	AMPLIFICATORE AMPLIFICATORE	ultralineare Olivetti 20 W - ALIMENT.	aliment. 9/12 40 V - uscita	V ingresso 27	70 kohm - uscita 2 W su 4 ohm	į.	8.500 + 2.000 + 12.000 +	5.5.	
151FK - 151FR - 151FT - 151FZ - 153G - 153H - 154G -	testina megnetica AMPLIFICATORE AMPLIFICATORE 30 + 30 W COME AMPLIFICATORE GIRADISCHI semi GIRADISCHI prof ALIMENTATORIN	sens. 3/5 mV . 6 W - come il pre stereo 6+6 W ing IL PRECEDENTE II 30 W - ALIMENT. professionale BSR mod. I per radio, man	cedente in ver r. piezo o cer N VERSIONE S 40 V - ingress mod. C116 car C117 cambiac gianastri, regis	sione mono amica uscita 8 bitereo o piezo o cera nbadischi automatic itratori ecc. e	cabili per frequenze (115/135) a gamma interessata gamma C.B. compresa sezione di 70 kohm - uscita 2 W su 4 ohm ta su 8 Ω più preamplificatore per ti ohm mica - uscita 8 ohm matico o nitrata 220 V uscite 6-7,5-9-12 V	L. L. L. L.	18.000 + 5.000 + 12.000 + 27.000 + 16.000 + 23.500 + 29.500 +	S.S. S.S. S.S.	
1541 -	0,4 A attacchi a r RIDUTTORE di te	richiesta secondo ma ensione per auto da	12 V a 6-7,5	9 V stabilizzata	0.5 A : : : : : : :	L.	2.700+ 2.800+	S.S.	
156G -	con relativi schem SERIE ALTOPARI	OPARLANTI per co i e filtri campo di fi LANTI per HF. Co	omplessivi 30 v requenza 40 18 mposta di un	W. Woofer dis .000 Hz , woofer diametr	ontrata 220 V uscite 6-7,5-9-12 V 0.0,5 A am. 270 middle 160 Tweeter 80 o mm 250 pneumatico medio dia a 22 000 Hz Special, gamma utile	L.	6.800+		5.5.
158A -							22.000 + 700+	5.5.	
158AC	TRASFORMATORI nucleo ferrite di	E per accensione ele mensioni 35 x 35 x	ettronica più s	hema del vibra	0,4 A atore tipico con due trans. 2N3055 6+6+6) uscita 17+17 V 3,5 A e vaschetta antiacido mis. 180 x 230	L.	1.500+		
158D - 158E -	TRASFORMATORI	entrata 220 V us entrata universale	cita 6-12-18-2 uscita 10+1	4 V 0,5 A (6-	+6+6+6)	L.	1.100+ 1.000+		
158I - 158M -	TRASFORMATORI TRASFORMATORI	E entrata 220 V uso E entrata 220 V uso	ite 6-9-15-18-2 ite 35-40-45-5	24-30 V 2 A 0 V · 1.5 A		L.	3.000+ 3.000+	5.5.	
158N - 158P -	TRASFORMATOR	E entrata 220 V uso	ita 12 V 5 A	-20 V 5 A +	uscita 17±17 V 3.5 A	L.	3.000+ 5.000+	5.5.	
158Q - 166A -	TRASFORMATORI	entrata 220 V us	cita 6-12-24 V	10 A .	veschette enticelde mis 180 v 220	L.	8.000+ 1.800+	5.5.	
166B -	KIT come copre o	DE COR 20 DIACTOR	mile una in un	tunnite a wasel	-H- 2EA . 200		2,500+	5.5.	
185A - 185B - 891 -	CASSETTA MANG CASSETTA MANG SINTONIZZATOR relativo indice, se	ILANASTRI alta qua SIANASTRI come so E AM-FM uscita se ensibilità circa 0,5 i	lità da 60 minu pra da 90 min gnale rivelato, nicrovolt esecu	ti L. 650, 5 pe L. 1.000, 5 senza bassa fr zione compatta,	erra 250 x 300 ezzi L. 3000, 10 pezzi L. 5.500+s.s pz. L. 4.500, 10 pz. L. 8.000+s.s equenza sintonia demoltiplicata co commutatore di gamma incorporate	L.	4.500+		
157a - 157b - 186	Plù antenna stile RELAIS tipo (SIE Come sopra ma (VARIATORE DI	MENS) PR 15 due	scamblo all'interruttor	e incasso già	A. Tensione a rischiesta da 1 a 90 V preesistente (350 W L. 3.500)	i.	6.000+ 1.400+ 1.700+	1.1.	
303a - 303g - 360 -	Raffreddatori a St RAFFREDDATORI	tella per TO5 TO18 nlettati larg. mm	.500). a scelts cad. 115 alt. 280	L. 150 lung. 5/10/15	cm L. 60 al cm lineare . 7 a 30 V. 2,5 A. max. Con rego				
3600	lazione di corren Come sopra già m	te, autoprotetto con	npreso trasform	natore e schem	7 a 30 V. 2,5 A. Max. Con rego	Ļ.	9.500+ 12.000+	5 4.	
366A	KIT per contatore	decadico, contenent	e: una Decade	5N7490, una d	ecodifica SN7441, una valvola Nixio	L.			
408eee-	AUTORADIO mod	d. LARK completo	di supporto e sontazione e ar	hemi. Il tutto the lo rende e ntenna. Massim	ecodifica SN7441, una valvola Nixio astraibile l'innesto di uno spinotto na praticità AM-FM allmentazione	l.	5.300 ± 23.000 ±		
				r diam. 160	mm; Tweeter diam, 100 mm a	Ĩ.	19.000+	8.8.	
800 -	Oppure a 8 () ZOCCOLI per in	tegrati 14/16 pied	lini			L.	4.500 + 250 +	5.5.	
800A -	VALVOLA Nixie	tegrati 14/16 piec GN4 con zoccolo tipo GN6				L.	2.500+ 2.500+	5.5.	
0000	THE COLD IN THE			ANTI PER HF			2.500+	3.3.	
156F -	Diem. 460	Frequenza 30/8000	Risb.	Wett 75	Tipo Woofer bicon.	1	37.500 ±	1500	5.5
156h -	320	40/8000	32 55 60	30 25	Woofer bicon	ĩ.	15.000+ 6.500+	1500	8.6.
1561 -	270	50/7500 55/9000	65 70	15 15	Woofer norm. Woofer blcon. Woofer norm.	L,	4.800+	1000	8.5.
156m ·	- 210	60/8000 65/10000	80	10	Wooter hicon. Wooter bicon. Woofer norm.	<u> </u>	2.500+ 2.000+	700	9.0.
156o -	240 x 180	60/9000 50/9000	75 70	10 10 12 10	Middle ellitt	L. L. L.	2.500±	700	8.8.
156q 156s	210 210 160	50/9000 100/12000 180/14000 180/13000	100 110	10	Middle horm. Middle bicon.	L.	2.000+ 2.500+	700	8.5.
156r -	160	180/13000	160 TWEFTER	6 BLINDATI	Middle norm.	L.	1.500+	500	9.9.
156t ·	130	2000/20000	. WELLER	15 12	Cono esponenz. Cono bioccato	L.	2.500+	500	9.6.
156u 156v	. 80	1500/19000 1000/17500		8	Cono blocceto	Ē.	1.300 ±	500	3.5.
156XB	50 x 10	2000/22000	CUCBENCIO	15 SE DMELIMATIO	Blindato M5	L.	4.500+	500	5.5.
156x*	125	40/18000	40	NE PNEUMATIO	Pneumatico	L	4,000+	700	1.0
156XB 156xc 156xd	130 200 250	40/14000 35/6000 20/6000	42 38 25	12 16 20	Pneum./Blindato Pneumatico Pneumatico	L.	4.000 + 4.500 + 6.000 + 7.000 +	700 700 1000	5.5. 8.8. 8.0.

CONDIZIONI GENERALI di VENDITA della ELETTRO NORD ITALIANA

AVVERTENZA - Per semplificare ed accelerare l'evasione degli ordini, si prega di citare il N. ed il titolo della rivista cui si riferiscono gli oggetti richiesti rilevati dalla rivista stessa. - SCRIVERE CHIARO (possibilmente in STAMPATELLO) nome e indirizzo del Committente, città e N. di codice postale anche nei corpo della lettera.

OGNI SPEDIZIONE viene effettuata distro invio ANTICIPATO, a mezzo assegno bancario o veglia postale, dell'importo totale del pezzi ordinati, più le spese postali da calcolarsi in base a L. 400 il minimo per C.S.V. e L. 500/600 per pecchi postali. Anche la caso di PAGAMENTO IN CONTRASSEGNO, occorre anticipare, non meno di L. 2.000 (sia pure in trancobolii) tenendo però presente che la spese di spedizione aumentano da L. 300 a L. 500 per diritti postali di assegno.

RICORDARSI che non si accattano ordinazioni per importi inferiori a L. 3.000 oltre alle spese di spedizione.

SEMICONDUTTOR

C107 C122	250 250	TIPO AF239 AF240	500 550	BC283 BC286	300 350	B F390 BFY46	500 500	P397 SFT358	350 350	DIODI RIVELAZIONE o commutazione L. 50 (OA5 - OA47 - OA85 - O	ad
C125 C126	200 200	AF251 AFZ12	400 350	BC287 BC288	350 500	BFY50	500	1W8544	400 250	OA95 - OA161 - AA113 -	
C127	200	AL100	1200	BC297	300	BFY51 BFY52	500 500	1W8907 1W8916	350	DIODI ZENER	
C128	200	AL102	1200	BC298	300	BFY55	500	2G396	250	tensione a richiesta	
C132	200	ASY26	300	BC300	650	BFY56	300	2N174	900	da 400 mW	
C134 C135	200 200	ASY27 ASY77	300 350	BC301 BC302	350 350	BFY57	500 500	2N398	400 250	da 1 W da 4 W	
C136	200	ASY80	400	BC303	350	BFY63 BFY64	400	2N404A 2N696	400	da 10 W	1
C137	200	ASZ15	800	BC304	400	BFY67	550	2N697	400		•
2138	200	ASZ16	800	BC317	200	BFX18	350	2N706	250	DIODI DI POTENZA Tipo Volt A.	ı
C139 C141	200 200	ASZ17 ASZ18	800 800	BC318	200	BFX30	550	2N707	250	20RC5 60 6	٠
2141K	300	AU106	1500	BC340 BC341	400 400	BFX31	400 400	2N708	250	1N3491 60 30	
142	200	AU107	1000	BC360	600	BFX35 BFX38	400	2N709 2N914	300 250	25RC5 70 6	
142K	300	AU108	1000	BC361	550	BFX39	400	2N914 2N915	300	25705 72 25	
154	200	AU110	1400	BCY58	350	BFX40	500	2N918	250	1N3492 80 20 1N2155 100 30	
2157 2165	200	AU111	1400	BCY59	350	BFX41	500	2N1305	400	1N2155 100 30 15RC5 150 6	
168	200 200	AU112 AUY37	1500 1400	BCY65 BD111	350 900	BFX48	350	2N1671A	1500	AY103K 200 3	
172	250	BC107A		BD112	900	BFX68A BFX69A	500 500	2N1711 2N2063A	250 950	6F20 200 6	
175K	300	BC107B		BD113	900	BFX73	300	2N2137	1000	6F30 300 6	
176	200	BC108	180	BD115	700	BFX74A	350	2N2141A		AY103K 320 10	
176K	350	BC109	180	BD116	900	BFX84	450	2N2192	600	BY127 800 0,8 1N1698 1000 1	
C178K C179K	300 300	BC113 BC114	180 180	BD117	900	BFX85	450	2N2285	1100	1N4007 1000 1	
2180	200	BC115	200	BD118 BD120	900 1000	BFX87 BFX88	600 550	2N2297	600	Autodiodo 300 6	
180K	300	BC116	200	BD130	850	BFX92A	300	2N2368	250	TRIAC	
2181	200	BC118	200	BD141	1500	BFX93A	300	2N2405 2N2423	450 1100	Tipo Volt A.	-
181K	300	BC119	500	BD142	900	BFX96	400	2N2501	300	406A 400 6 TIC226D 400 8	1
183 184	200 200	BC120 BC125	500 300	BD162 BD163	500 500	BFX97	400	2N2529	300	TIC226D 400 8 4015B 400 15	1
184K	300	BC125	300	BDY10	1200	BFW63 BSY30	350 400	2N2696	300	PONTI AL SILICIO	-
185	200	BC138	350	BDY11	1200	BSY38	350	2N2800	550	Volt mA.	ı
185K	300	BC139	350	BDY17	1300	BSY39	350	2N2863 2N2868	600	30 400	
187	200	BC140	350	BDY18	2200	BSY40	400	2N2904A	350 450	30 500	
187K 188	300 200	BC141 BC142	350 350	BDY19 BDY20	2700 1300	BSY81	350	2N2905A	500	30 1000 30 1500	
188K	300	BC143	400	BFI59	500	BSY82	350	2N2906A	350	30 1500 40 2200	
191	200	BC144	350	BF167	350	BSY83 BSY84	450 450	2N3053	600	40 3000	1
192	200	BC145	350	BF173	300	BSY86	450	2N3054	700	80 2500	1
193	200	BC147	200	BF177	400	BSY87	450	2N3055	750	250 1000	
C193K C194	300 200	BC148 BC149	200	BF178	450	BSY88	450	2N3081 2N3442	650 2000	400 800	
C194K	300	BC149	200 250	BF179 BF180	500 600	BSX22	450	2N3502	400	400 1500 400 3000	1
0130	700	BC154	300	BF181	600	BSX26 BSX27	300 300	2N3506	550	CIRCUITI INTEGRAT	. 1
2139	700	BC157	250	BF184	500	BSX29	400	2N3713	1500	Tipo	١,
0142	600	BC158	250	BF185	500	BSX30	500	2N4030 2N4347	550	CA3048	4
0143 0149	600 600	BC159 BC160	300 650	BF194 BF195	300 300	BSX35	350	2N5043	1800 600	CA3052	4
0161	350	BC161	600	BF196	350	BSX38	350	2.10010	000	CA3055	2
2162	350	BC167	200	BF197	350	BSX40 BSX41	550 600	FEE	T [SN7274 SN7400	1
166	1800	BC168	200	BF198	400	BU100	1600	2N3819	600	SN7402	
167	1800	BC169	200	BF199	400	BU103	1600	2N5248	700	SN7410	
262 102	500 400	BC177 BC178	250 250	BF200	400	BU104	1600	BF320	1200	SN7413	
106	300	BC179	250	BF207 BF222	400 400	BU120	1900	MOSE	ET	SN7420	
109	300	BC192	400	BF223	450	BUY18 BUY46	1800	TAA320	850	SN7430 SN7440	
114	300	BC204	200	BF233	300	BUY110	1200 1000	MEM564	1500	SN7441	1
115	300	BC205	200	BF234	300	OC71N	200	MEM571	1500	SN7443	1
116	300	BC207 BC208	200 200	BF235 BF239	300 600	OC72N	200	3N128 3N140	1500 1500	SN7444	1
118	400	BC209	200	BF254	400	OC74	200			SN7447	1
121	300	BC210	200	BF260	500	OC75N OC76N	200	UNIGI		SN7451 SN7473	1
124	300	BC211	350	BF261	500	OC77N	200	2N2646	700	SN7475	,
125 126	500 300	BC215	300	BF287	500			2N4870	700	SN7476	
127	300	BC250	350	BF288	400	OC170	300	2N4871	700	SN7490 Decade	
134	300	BC260 BC261	350 350	BF290 BF302	400 400	OC171	300	DIAC	600	SN7492	1
139	350	BC262	350	BF303	400					SN7493 SN7494	1
164	200	BC263	350	BF304	400		ODI CO	NTROLLAT	1	SN7494 SN74121	-1
165	200	BC267	200	BF305	400	Tipo	Vol		Lire	SN74154	3.
166	200	BC268 BC269	200 200	BF311	400	2N4443 2N4444	400		1500	SN76131	1
170 172	200	BC270	200	BF329 BF330	350 400	BTX57	600		2000	9020	
200	300	BC271	300	BF332	300	CS5L	800		2500	TAA263 TAA300	
201	300	BC272	300	BF333	300	CS2-12	1200		3300	TAA300	1
inc		147-1		STORI PE		PECIALI				TAA320	'
ipo FX17	MHz	Wpi	Conten.	Lire	Tipo	MHz		Conten.	Lire	TAA350	1
FX89	250 1200	1,1	TO5 TO72	1000	2N2848 2N3300	250 250		TO5	1000	TAA435	1
FW16	1200	4	TO39	1300	2N3300 2N3375	500		TO5 MD14	600	TAA450	1
FW30	1600	1.4	TO72	1350	2N3866	400		TO5	5500 1300	TAA611B	1
FY90	1000	1,1	TO72	2000	2N4427	175		TO39	1200	TAA700 TAA775	1
T3501	175	5	TO39	2000	2N4428	500	5	TO39	3900	µA702	1
T3535	470	3,5	TO39	5600	2N4429	1000	5	MT59	6900	µA703	1
W9974 N559P	250 250	5	TO5	1000	2N4430	1000			13000	μΑ709	
10091	250	15	MT72	10000	2N5642 2N5643	250 250			12500 25000	μΑ723 μΑ741	
										BO(71	

ATTENZIONE: richiedeteci qualsiasi tipo di semiconduttore, manderemo originale o equivalente con dati identici. Rispondiamo di qualsiasi insoddisfazione al riguardo.

PER QUANTITATIVI. INTERPELLATECI!

mesa elettronica - via Mazzini, 36 - 56100 PISA

COSTRUITO CON IL MIGLIORE TRANSISTOR DI POTENZA OGGI IN COMMERCIO!

10 dB a 27 MHz

Lineare a stato solido 30 W 27 MHz

L'altissima qualità del semiconduttore usato nello stadio finale, vi permette di sfruttare interamente le doti di questo apparecchio. Infatti con 2,8 W all'ingresso, che il vostro ricetrasmettitore può comodamente fornire, è in grado di dare la massima potenza di uscita che è di 30 W. Tensione di alimentazione 12,6 V. protezione e commutazione elettronica dell'antenna.

PREZZO NETTO L. 82.500

Alimentatore stabilizzato 12,6 V 2,5 A a CIRCUITO INTEGRATO

Caratteristiche tecniche:

Entrata: 220 V 50 Hz

Uscita: regolabile con trimmer interno da 9 a 14 V

Ripple: 3 mV a 2 A

Protezione: elettronica contro i cortocircuiti

Stabilità: migliore dell'1% per variazioni della tensione

di rete del 10 % oppure del carico da 0 al 100 %.

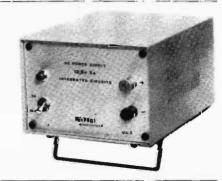
L. 13.500

Alimentatore stabilizzato 12,6 V 5 A a CIRCUITO INTEGRATO

Caratteristiche tecniche:

Entrata: 220 V 50 Hz

Uscita: regolabile con trimmer interno da 9 a 14 V


Ripple: 5 mV a 5 A

Protezione: elettronica contro i cortocircuiti

Stabilità: migliore del 2 % per variazioni della tensione di

rete del 10 % oppure del carico da 0 al 100 %.

L. 28.000

L/CB-200

Potenza d'ingresso: 1 W min. 20 W max P.E.P. SSB

Potenza d'uscita: 60 W AM 120 SSB

Alimentazione: 220 V 50 Hz Dimensioni: 110 x 260 x 300 mm

Raporesentante:

per PISA e VERSILIA:

Elettronica CALO' · via dei Mille 23 · 56100 PISA

tel. 050-44071

per LIVORNO e LAZIO

Racul DURANTI - via delle Cateratte 21 - 57100 LIVORNO

tel. 0586-31896

per la CALABRIA:

Giuseppe RICCA - via G. De Rada 34 - 87100 COSENZA

tel 0984-71828

Spedizioni in contro assegno oppure con sconto del 3 % a mezzo vaglia postale o assegno circolare.

mi vuoi comprare?

con l'HB 23A
Push To Talk e proverai l'emozione
del primo contatto radio
riceverai il primo roger e se
usi Lafayette, non lo dimenticherai
facilmente.

C'E' PIU' EMOZIONE CON UN LAFAYETTE

LAFAYETTE
HB 23 A
23 canali - 5 W.
L. 104.000 netto

MARCUCCI MILANO

Via F.Ili Bronzetti n. 37 Tel. 7386051 - CAP 2129

VFO A CONVERSIONE QUARZATA

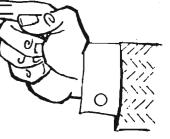
Stabilità: 1 parte su 10.000 - 1·10 ° 5 transistors - Componenti ad alta stabilità - Output 100 mW - Alimentazione 12 V 60 mA - Dimensioni 4.5 x 8.5 cm - Esecuzione in vetronite - Frequence a richiesta: 24-24,333 MHz - 26,9-27,3 MHz.

Completo di Xtal e variabile L. 18.000

E.M.C. di Casalegno A. e C.

Apparecchiature e telaini per alta, media e bassa frequenza · Alimentazione - Dissipatori per transistors e diodi - Antenne per radioamatori e C.B.

Vendita in contrassegno al recapito:


A. CASALEGNO

str. Valpiana 106 - 10132 TORINO - Telefono 897856

campagna abbonamenti 1973 <

Anche per il '73 siamo riusciti a offrire condizioni vantaggiose per i rinnovi (un integrato µA709C come premio di fedeltà), per le combinazioni e per le offerte speciali, tutte interessanti tecnicamente e profittevoli dal punto di vista economico, grazie alla determinante sensibilità e collaborazione delle Società Marcucci, RCA-Silverstar e SGS.

combinazioni

numero combinazione	lire tutto compreso	cose che si ricevono (prodotti tutti d'avanguardia e nuovi)
1	6.000	12 numeri di cq elettronica, dalla decorrenza voluta, compresi tutti gli eventuali numeri speciali.
2	8.000	12 numeri di cq elettronica , dalla decorrenza voluta, compresi tutti gli eventuali numeri speciali + integrato RCA CA3052 produzione 1973; quattro canali indipendenti, 53 dB per ogni amplificatore (comprende 24 transistor, 8 diodi, 52 resistenze), contenitore plastico a 16 piedini « dual-in-line ».
3	9.000	12 numeri di cq elettronica , dalla decorrenza voluta, compresi tutti gli eventuali numeri speciali + radio EMPEROR modello AIE-641, onde medie, 6 transistor. 3 diodi, alimentazione 1,5 V, dotata di altoparlante e auricolare, dimensioni cm 7,6 x 5,7 x 2,5: veramente tascabile!

offerte speciali

Α	10.000	12 numeri di cq elettronica, dalla decorrenza voluta, compresi tutti gli eventuali numeri speciali + ALIMENTATORI E STRUMENTAZIONE del dottor Luigi Rivola.
B solo per l'Italia	43.500	PONY: vedere AVVISO IMPORTANTE (pagina sommario)

premio di fedeltà

A tutti coloro che hanno un abbonamento in corso, all'atto del rinnovo, verrà inviato un premio di fedeltà consistente in un integrato SGS µA709C, nuova custodia « dual-in-line » 14 piedini, produzione 1972-'73 (qualunque sia la combinazione scelta).

pagamenti

Potete comodamente compilare un assegno del vostro libretto personale di conto corrente bancario; potete usare il bollettino di versamento in c.c. postale qui a fianco allegato, potete fare un vaglia, mandare francobolli o assegni circolari. Estero, 500 lire in più per ciascuna combinazione.

schemi applicativi e suggerimenti d'impiego

Sul numero di dicembre '72 e su quello di gennaio '73 abbiamo dato ampia documentazione su componenti e apparati compresi nelle combinazioni-campagna e offerte speciali.

raccoglitore

Elegante, pratico, a fili metallici, non rovina i fascicoli: lire 1.000 per ciascuna annata fino al 1972 compreso (importante: indicare annata).


Per il 1973, data la mole prevista per i fascicoli, i raccoglitori sono due, semestrali, a un prezzo complessivo di lire $1.500 \ (1/73+11/73)$.

indicare

il numero (1, 2, 3 ovvero A, B) della combinazione scelta; scrivere in stampatello il proprio indirizzo completo di c.a.p. onde evitare disguidi.

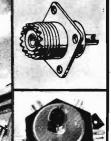
New GLC 1071 Radio/Direction

GOLD LINE

ALCUNI DEI FAMOSI PRODOTTI « GLC » CATALOGHI E INFORMAZIONI A RICHIESTA

LIGHTNING ARRESTOR INTERFERENCE FILTER **CONNECTORS AND ADAPTERS COAXIAL SWITCHES DUMMY LOAD** WATT METER **CB MATCHER MICROPHONES** ANTENNA SWR BRIDGE CB TV **FILTERS**

Pregasi inviare per ogni richiesta di catalogo L. 100 in francobolli



RAPPRESENTANTE PER L'ITALIA:

DOLEATTO

TORINO - via S. Quintino 40 MILANO - via M. Macchi 70 Rivenditori autorizzati:

Rivenditori autorizzati:

a Roma: Alta Fedeltà - corso Italia 34 A

a Roma: G.B. Elettronica - via Prenestina 248

a Treviso: Radiomeneghel - via IV Novembre 12

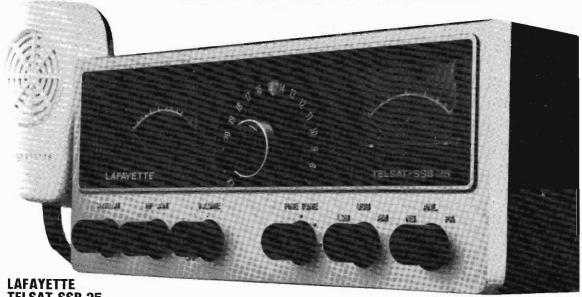
a Firenze: F. Paoletti - via II Prato 40 R

a Milano: G. Lanzoni - via Comelico 10

a Bologna: B. Bottoni - via Bovi Campeggi 3

a Torino: M. Cuzzoni - corso Francia 91

a Messina: F.III Panzera - via Maddalena 12


a Palermo: HI.EI. via March di Villabiago 12

a Palermo: HI-FI - via March, di Villabianca 176

parole in libertá!

Libertà è anche sentirsi più sicuri in ogni evenienza. Libertà è anche essere in contatto con il mondo

C'E' PIU' LIBERTA' CON UN LAFAYETTE

TELSAT S&B 25 23 canali AM - 46 canali SSB 5 w in AM - 15 Watt in SSB

L. 279.900 netto

DISCORAMA **BARI**

Corso Cavour 99 Tel. 21 60 24 CAP 70121

Ecco il secondo! Luigi Rivola: TRASMETTITORI E RICETRASMETTITORI

disponibile per consegna immediata

Forse una delle più grandi soddisfazioni che può provare un dilettante o un radioamatore alle prime armi è quella di sentire funzionare per la prima volta, nel modo desiderato, un piccolo ricevitore o un piccolo trasmettitore costruito con le proprie mani.

Anche se il cammino per il raggiungimento di questo piccolo successo personale è stato irto di difficoltà, di momenti di crisi e di esitazioni, il risultato finale può ripaga re ampiamente tutti gli sforzi compiuti.

Dopo la prima costruzione ne vengono altre e così via, di esperienza in esperienza, con sempre più sicurezza e con sempre maggior facilità nella effettuazione del cablaggio e nella costruzione dei vari componenti meccanici.

Seguendo questa via il dilettante può costruirsi, pietra dopo pietra, la propria stazione radio con apparecchiature autocostruite a costi generalmente bassi (in quanto possono essere utilizzati materiali di ricupero) e con prestazioni che possono essere anche ragguardevoli.

Questo volume tratta e sviluppa nei più piccoli dettagli apparecchiature autocostruite dallo stesso Autore che vengono qui raccolte al fine di dare un valido aiuto oppure anche solo qualche idea a chi si accinge a costruirsi in proprio e con i propri mezzi apparecchiature elettroniche nel campo delle telecomunicazioni.

Vengono così fornite informazioni sul funzionamento, sulle caratteristiche e sui dettagli costruttivi, cercando di dare una spiegazione logica alla funzione dei vari componenti e al principio ispiratore del circuito stesso.

Il lettore potrà così seguire da vicino i circuiti riportati e sarà in grado non solo di riprodurli, ma anche di progettarne ex-novo, sulla base delle proprie necessità, utilizzando le informazioni contenute nel volume.

Per ciascuna delle apparecchiature descritte vengono date inoltre tutte le informazioni necessarie per la riproduzione anche da parte di coloro che non abbiano una specifica preparazione nel campo della elettronica applicata.

Grande importanza è stata data ai circuiti allo stato solido senza dimenticare le applicazioni nelle quali i tubi termoionici sono ancora di conveniente impiego.

Questo volume viene perciò dedicato a tutti gli amatori nel campo della elettronica delle telecomunicazioni con particolare riferimento ai radioamatori e ai dilettanti che desiderano diventare tali in un prossimo futuro.

Un particolare sviluppo è stato dato alle apparecchiature (ricevitori, convertitori e trasmettitori) per le gamme VHF e UHF che rappresentano indubbiamente un campo di frequenza di grande interesse sia per i principianti che per i maggiormente esperti.

Viene inoltre descritto un sistema di telecomando discreto a 14 canali e un sistema di radiocomunicazione per chiamata selettiva utilizzanti la stessa frequenza portante.

Il volume, ordinabile per consegna immediata alle edizioni CD, via Boldrini 22, Bologna, con vaglia. assegno circolare, francobolli o con altro mezzo a Voi più comodo, costa L. 4.500, IVA compresa.

USATE QUESTO BOLLETTINO PER:

- campagna abbonamenti
 offerte speciali
 « I LIBRI DELL'ELETTRONICA »
 raccoglitori
 arretrati

SERVIZIO DI C/C POSTALI RICEVUTA di un versamento di L. * (in cifre)	Lire (in lettere)		40121 Addì ('	Bollo lineare dell'Ufficio accettante	Tassa di L.	numerato di accettazione	L'Ufficiale di Posta L'Ufficiale di Posta Bollo a data	(*) Sbarrare con un tratto di penna gli spazi rimasti disponibili prima e dopo l'indicazione dell'importo.
SERVIZIO DEI CONTI CORRENTI POSTALI 10 per un versamento di L.	(in lettere)		40121 Bologna - Via Boldrini, 22 Addi (')	Bolio lineare dell'Ufficio accettante	Tassa di L.	Cartellino del bollettario	L'Ufficiale di Poste	(') La data dev'essere quella del giorno in cui si effettua il versamento
SERVIZIO DEI CONTI	11111 0	residente in via	70 II 0/0 Ins	Firma del versante	Tassa di L.		Bollo a data	(') La data dev'essere
SERVIZIO DEI CONTI CORRENTI POSTALI 3-73 CERTIFICATO DI ALLIBRAMENTO	versamento di L. eseguito da	residente in	sul c/c n. 8/29054 intestato a: edizioni C D 40121 Bologna - Via Boldrini, 22	Addi (')		N, memory of the state of the s	del bollenario cil d	Bollo a data

Somma versata: a) per ABBONAMENTO	
con inizio dal	
***************************************	II versamento in
b) per ARRETRATI, come	più economico per abbla un c∕c postale
sottoIndicato, totale	Chlunque, anche
па Lа	menti a favore di u
cadauno, L	dal pubblico.
c) ber	Per
	le sue parti a macci sente bollettino (in
TOTALE L.	stazione del conto a stampa) e present
Distinta arretrati	COLOR
1960 n. 1967 n.	Sulle varie parti c a cura del versante
1961 n. 1968 n.	
n	Non sono ammes correzioni.
n. 1970	is is its interest in the inte
n. 1971	sposti, dai correntis
1965 n. 1972 n. 1972 n. 1966 n. 1973 n.	no anche essere
	Jare Versament min
Parte riservata all'Uff, dei conti correnti	tergo dei c brevi comu
	cul i certificati anz Correnti rispettivo,
Dopo la presente operazione il credito del conto è di . L	L'Ufficio postale e l'effettuato versamen mente completata e
IL VERIFICATORE	
	AncirarajachiA
	AUTOTICEARIONE

AVVERTENZE

۳,	등	
olice	=	
semi	a favore	
ρig	a fa	
l mezzo più semplice	denaro	
Ξ	ō	
ø	Ø	
corrente	e rimess	
conto	effettuar }.	
Ξ.	<u> </u>	
I versamento in conto corrente è il	economico per effettuare rimesse la un c/c postale.	
=	ά Ba	

se non è correntista, può effettuare versa-in correntista, Presso ogni Ufficio postale esi-ale dei correntisti, che può essere consultato

ersamenti il versante deve compilare in tutte initia o a mano, purché con inchiostro, il predicionado con chiarezza il numero e la interricevente qualora già non vi siano impressi tarlo all'Ufficio postale, insieme con l'importo

del bollettino dovrà essere chiaramente indicata i, l'effettiva data in cui avviene l'operazione.

si bollettini recanti cancellature, abrasioni o

ersamento sono di regola spediti, già predi-ti stessi ai propri corrispondenti; ma posso-niti dagli Uffici postali a chi il richiede per ediati.

fficati di allibramento i versanti possono scri-azioni all'indirizzo dei correntisti destinatari, ridetti sono spediti a cura dell'Ufficio Conti

deve restituire al versante, quale ricevuta del-tto, l'ultima parte del presente modulo, debita-firmata.

ifficio Bologna C/C n. 3362 del 21·11-66

b) per ARRETRATI, come a) per ABBONAMENTO sottoindicato, totale con inizio dal Somma versata: n.a L. cadauno. **c)** per

T TOTALE L. Distinta arretrati

Ë ċ Ċ ċ Ċ. 1970 1971 1972 896 1969 964 n. 1961 n. Ē ċ 1965 1963 1962

296

1960 n.

FATEVI CORRENTISTI POSTALI

Ċ.

Potrete così usare per i Vostri pagamenti e per le Vostre riscossioni II

POSTAGIRO

esente da qualsiasi tassa, evitando perdite di tempo agli sportelli degli uffici postali. (vedasi tema a pagina 227 del n. 2/73)

ing. Enzo Giardina

Siete stati tutti bravi? Si?

Allora, avendo assaporato i baci delle leggiadre pulzelle, sarete tutti rilassati e tranquilli per cui posso procedere alla spiegazione, che naturalmente è banale come tutte le spiegazioni di questo mondo.

Il circuito evidentemente si comporta da bistabile e la causa di questo fatto

va ricercata nell'alimentazione.

Già, normalmente quando si guarda un qualsiasi circuito si parte dal presupposto che l'alimentazione sia a tensione costante, cosa che in questo caso siamo ben lungi da avere.

Infatti se connettessimo il relay all'alimentazione (senza interposti inseguitori d'emettitore o altro) scopriremmo che l'alimentazione sarebbe inferiore ai 4 V

e del tutto insufficiente a provocare l'eccitazione.

Disconnettendo il relay, la tensione salirebbe a 18 V e diventerebbe più che sufficiente per l'innesco e il mantenimento. Quindi a questo punto il tutto diventa chiaro, infatti il BC178, avendo la base disconnessa, è come se non fosse presente nel circuito e quindi la connessione Darlington dei due BC109 con la base del primo portata all'alimentazione è sempre in conduzione e fa scorrere corrente nel relay.

Dato però che l'alimentazione è insufficiente per l'innesco, il relay si man-

tiene diseccitato.

Quando la base del BC178 viene portata a massa (toccandola), anche l'&mettitore del BC178 e quindi la base del primo del BC109 vanno a massa, per cui nel relay cessa ogni passaggio di corrente e la tensione di alimentazione sale a 18 V.

Al momento del rilascio il BC178 ritorna ad essere inesistente agli effetti del circuito e quindi la connessione Darlington dei due BC109 va in conduzione, facendo scorrere nel relay corrente sufficiente per eccitarlo. La tensione cala di nuovo sui 4 V ma mantiene il relay in stato di eccitazione in quanto questo ha già commutato.

Toccando ora brevemente la base del BC178 si interdice il passaggio di

corrente nel relay determinandone la diseccitazione.

E' doveroso specificare che questo circuito funziona se chi tocca è veramente a massa, ovvero non calza scarpe dalla suola di gomma o di para, in quanto in questo caso sopravviene un altro fenomeno.

Infatti in tal caso succede che la corrente richiesta dal BC178 per il funzionamento viene generata da un flusso di carica superficiale presa dal corpo

toccante, isolato rispetto a massa e originariamente a massa.

Si può ben ipotizzare che una persona, pur calzando scarpe isolanti, per i continui contatti che ha con i corpi che lo circondano (mobili, pareti, ecc.) sia a potenziale di massa. Per cui, appena tocca la base del BC178, tutto funziona regolarmente, ma successivamente non accade più nulla.

Il passaggio di carica determina un innalzamento del potenziale della persona toccante, la quale si porta allo stesso potenziale di base inficiando il funzionamento del marchingegno. Basta quindi scaricarsi (ad esempio toccando un qualsiasi oggetto a massa, anche la parete) per ripristinare le condizioni iniziali.

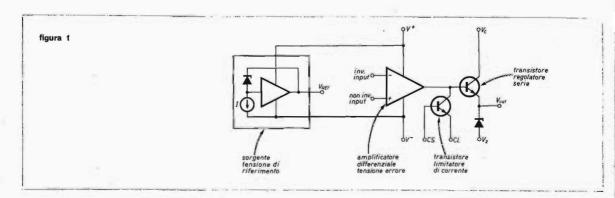
Non si pensi di aver scoperto l'America sostituendo il BC178 con un FET o peggio con un MOSFET a canale P. In questo caso infatti (a meno di complicazioni dovute al fatto che il FET conduce anche se il gate è allo stesso potenziale del source) succede che la carica superficiale del corpo toccante si riversa sul gate e non scorre a massa, per cui, anche lasciando il gate, permane a lungo l'effetto del contatto inficiando il funzionamento del marchingegno.

L'unica soluzione attendibile è quindi quella di mettere a disposizione del toccatore (mi si perdoni il vocabolo) una piastrina di massa oltre quella

della base del BC178.

Inutile dire che chi tocca è ampiamente protetto dalle scosse, anche se, al limite, fosse a piedi nudi e bagnati sul pavimento. La corrente da sopportare è limitata dalla resistenza da 10 M Ω e dal fattore di amplificazione del BC178, per cui è assolutamente inavvertibile.

Chiaramente tutto il marchingegno si comporta come un originale interruttore che dà ampie soddisfazioni, specialmente proponendolo agli amici come quiz.


Con il circuito integrato SGS L123

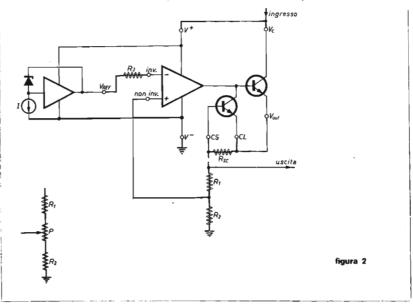
Alimentatore stabilizzato protetto

ing. Antonio Tagliavini

I Parte - Impiego dell'integrato L123

Il circuito integrato SGS L123 è un regolatore di tensione di precisione che consente di ottenere, in tutta semplicità, prestazioni che con l'Impiego di componenti discreti si potrebbero raggiungere solo a prezzo di una notevole complessità circuitale. Lo schema a blocchi dell'integrato L123 è il seguente:

Come si può notare. l'integrato contiene sostanzialmente quattro blocchi funzionali: una sorgente di tensione di riferimento estremamente stabile; un amplificatore differenziale della tensione errore; un transistore regolatore serie e un transistore limitatore di corrente (1).


Il generatore della tensione di riferimento è un po' il cuore dell'integrato, e in esso, oltre che nell'elevato guadagno dell'amplificatore della tensione errore, sta il segreto delle sue elevate prestazioni. Esso si basa su di un diodo zener compensato in temperatura che fornisce una tensione stabilissima anche al variare della temperatura: le variazioni complessive della tensione d'uscita dell'intero integrato (peggiori quindi di quelle relative al solo zener) sono tipicamente dello 0,003 % per grado centigrado. Questa tensione di riferimento è accessibile all'esterno tramite il piedino « V_{REF} », e il suo valore, che è tipicamente 7,15 V, può variare da integrato a integrato tra 6,8 e 7,5 V. Questo non deve meravigliare, poiché quello che è importante non è il valore della tensione di riferimento, ma la sua costanza e stabilità.

Funzionamento

Vediamo il funzionamento dell'integrato in una tipica configurazione circuitale di regolatore serie (figura 2).

La tensione di ingresso è applicata al collettore del transistore regolatore serie (* $V_{\rm C}$ *) ed è anche usata, tramite il piedino * V+ *, per alimentare l'amplificatore e la sorgente di tensione di riferimento. L'uscita è prelevata sull'emettitore dello stesso transistore, e passa in una resistenza $R_{\rm SC}$ che ha lo scopo di fornire una caduta di tensione proporzionale alla corrente assorbita dall'utilizzatore al sistema di limitazione di corrente, che è poi costituito da un solo transistore.

⁽¹⁾ Nella versione dual-in-line è accessibile dall'esterno anche il diodo zener che fa capo al piedino Vz. Esso fornisce una tensione (è la $V_{\rm out}$ con uno scarto di 6,2 V) utile, come si vedrà, in alcune configurazioni circuitali. Nella versione in TO100 (involucro metallico) tale connessione non c'è e pertanto, ove occorra, è necessario impiegare uno zener esterno da 6.2 V.

Ma preoccupiamoci ora di capire come funziona il sistema di regolazione di tensione, e lasciamo a più oltre l'esame di come funziona la protezione per limitazione di corrente.

Regolazione di tensione

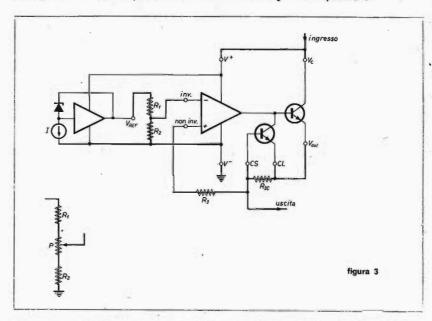
Dopo la resistenza R_{SC} abbiamo l'uscita della tensione regolata, che va contemporaneamente all'utilizzatore e ad un partitore resistivo formato da R, e R_2 , dal quale viene prelevata la tensione da confrontare con la tensione di riferimento. Questa tensione viene infatti applicata ad uno degli ingressi dell'amplificatore differenziale che pilota il transistore regolatore serie, mentre all'altro ingresso viene applicata la tensione di riferimento.

Una eventuale differenza fra queste due tensioni (tensione errore) viene amplificata e portata quindi a pilotare il transistore regolatore serie. Questo aumenta o diminuisce la propria resistenza interna (a seconda che la tensione prelevata dal centro del partitore sia maggiore o minore della tensione di riferimento) e modifica così il valore della tensione di uscita. In sostanza, raggiunta la condizione di regime, (ciò che avviene in un tempo brevissimo) la tensione nel centro del partitore diventa praticamente eguale, entro un errore molto piccolo, poiché il guadagno dell'amplificatore della tensione errore è molto elevato, a quello della tensione di riferimento. Siamo ora già in grado di cominciar a progettare una parte dell'alimentatore-regolatore, e cioè il partitore R₁, R₂ in modo da fissare la tensione di uscita che desideriamo. Supponiamo, ad esempio, di voler far si che la tensione di uscita sia di 22 V. Dovremo scegliere un partitore che, quando ai suoi capi sono applicati 22 V abbia al suo centro 7,15 V, che è la tensione di riferimento tipica dell'integrato.

$$\frac{R_1 + R_2}{22} = \frac{R_2}{7.15}$$

fissando poi per R_1+R_2 il valore di 10 k Ω , otteniamo:

$$R_2 = \frac{7.15 \cdot 10 \text{ k}\Omega}{22} = 3.25 \text{ k}\Omega$$


$$R_1 = 10 - 3.25 = 6.75 \text{ k}\Omega$$

e adotteremo quindi per R, e R $_2$ i valori standard rispettivamente di 3,3 k Ω e 6,8 k Ω .

Tensione di uscita inferiore alla tensione di riferimento

Può sorgere ora una legittima domanda: come si fa se si desidera una tensione di uscita inferiore alla tensione di riferimento?

La risposta è molto semplice, ed è illustrata dalla seguente disposizione:

Basta, come si vede, spostare il partitore di tensione sulla sorgente della tensione di riferimento. La tensione di uscita viene ora applicata direttamente all'ingresso non invertente dell'amplificatore della tensione errore.

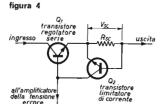
Il dimensionamento si fa in modo perfettamente analogo a quanto fatto in precedenza, imponendo ora che al centro del partitore, alimentato ora con i 7,15 V nominali della tensione di riferimento, si localizzi una tensione eguale a quella che si vuole avere in uscita.

Rifiniture

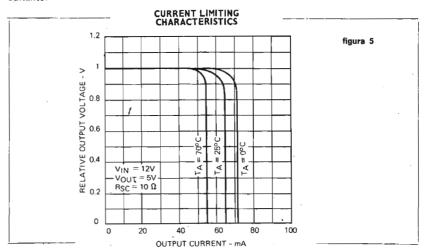
Poiché, come abbiamo visto, la tensione di riferimento non è nota con esattezza (può variare a seconda dell'integrato entro un intervallo circa del \pm 5 % attorno al valore tipico di 7,15 V) nelle applicazioni in cui sia importante avere un ben determinato valore della tensione di uscita, si potrà disporre, al centro del partitore, un potenziometro P semifisso il cui valore sarà scelto eguale al 10 % del valore del partitore. dato dalla somma di R, più R₂.

Per avere poi la massima stabilità al variare della temperatura è opportuno porre in serie all'ingresso dell'amplificatore di errore non alimentato dal partitore una resistenza R_3 , in modo da compensare la tensione di offset provocata dalla corrente di ingresso, e il cui valore è dato dalla formula:

$$R_3 = \frac{R_1 R_2}{R_1 + R_2}$$


Questo resistore può essere omesso quando sia importante ridurre al minimo il numero dei componenti, oppure quando il valore di R_1 e R_2 non sia a priori determinato, come nel caso in cui sia necessario variare la tensione di uscita entro ampi limiti, e R_1 e R_2 siano sostituite da un unico potenziometro.

Protezione

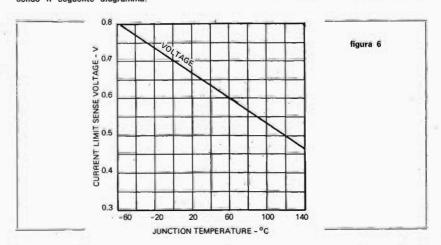

La protezione contro i cortocircuiti avviene per limitazione di corrente, secondo un sistema molto semplice. Il transistore regolatore serie Q, che, come abbiamo visto. è l'elemento che regola l'afflusso di corrente al carico, è pilotato, oltre che dall'amplificatore errore, anche da un altro transistore, Q, che ha la funzione di portario sempre più verso l'interdizione mano a mano che la corrente tende a salire oltre ac un determinato valore di soglia prefissabile.

La corrente assorbita dal carico scorre in R_{SC} che, come si vede, è posta fra base ec emettitore di Q_2 . Sinché la caduta in R_{SC} , V_{SC} (che è anche la V_{VR} di Q_2) è bassa, il transistore Q_2 .

Sinché la caduta in R_{SC} , V_{SC} (che è anche la V_{BE} di Q_2) è bassa, il transistore Q_2 è interdetto. Quando la V_{SC} supera un certo valore, che sostanzialmente coincide cor la soglia di conduzione del diodo base-emettitore di Q_2 , e che è quindi circa di $0.6\,V$ Q_2 comincia a condurre, e quanto più Q_2 si porta verso la conduzione, tanto più Q_2 è interdetto (Q_2 agisce come una resistenza di valore sempre più basso posta fra base ed emettitore di Q_1).

In questo modo, a partire da un certo valore di corrente in poi, la coppia $\mathbf{Q_1}$ - $\mathbf{Q_2}$ si comporta come un generatore di corrente costante e, mano a mano che la resistenza di carico diminuisce, la caduta di tensione, e quindi anche la dissipazione, si localizzano tutte ai capi di $\mathbf{Q_1}$. Ecco infatti come si presenta la caratteristica di limitazione risultante:

Come si può notare dalla figura, con l'uscita in corto (V = 0) e $R_{sc}=10\,\Omega$, la corrente a 25 °C è di 65 mA. V_{sc} è quindi 0,65 V, che assumeremo d'ora in poi come dato per progettare R_{sc} quando ci interessi ottenere la limitazione per valori diversi di corrente (²).


Fissato quindi, in base a considerazioni di dissipazione del circuito dell'alimentatore o di sicurezza del circuito da alimentare, un dato valore della corrente massima I_{SC} , avremo che R_{SC} è data dalla semplice formula:

$$R_{sc} = 0.65 / I_{sc}$$

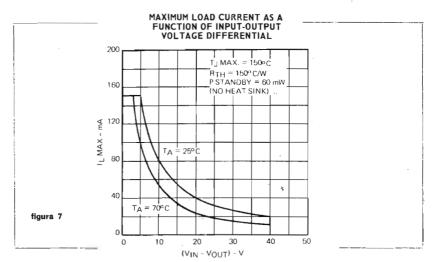
Prestazioni limite

La dissipazione massima nell'integrato, dovuta praticamente tutta al transistore regolatore serie, è di 800 mW. La tensione massima differenza fra entrata e uscita, coincidente, nelle applicazioni prese sinora in esame, con la tensione di ingresso massima applicabile (poiché la tensione di uscita può, per intervento della limitazione di corrente, scendere a zero) è di 40 V. Pure di 40 V è la tensione massima di alimentazione dell'integrato (fra V^+ e V^-).

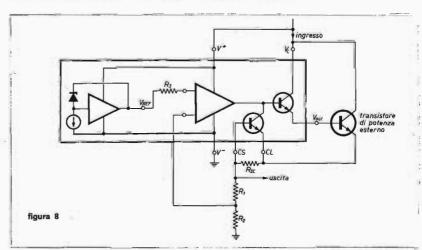
⁽²⁾ Vsc, che abbiamo assunto eguale a 0,65 V, varia con la temperatura della giunzione secondo il seguente diagramma:

Per il progetto è comunque corretto nella maggioranza dei casi riferirsi al valore che Vsc ha a 25 °C di temperatura della giunzione, ossia 0,65 V.

La corrente massima ammissibile, quando non deve essere limitata a valori inferiori per ragioni di dissipazione, è di 150 mA. Ad esempio, con 35 V all'ingresso, prevedendo che l'uscita possa andare in corto, la dissipazione nell'integrato sarebbe, con 150 mA. di:


$$P = 0.150 \cdot 35 = 5.25 W$$

ben oltre gli 800 mW massimi ammissibili.


La corrente, in questo caso, va limitata a un valore I_{SC} tale da rimanere in ogni caso con la dissipazione al disotto degli 800 mW:

$$I_{max} = \frac{800}{35} \simeq 23 \text{ mA}$$

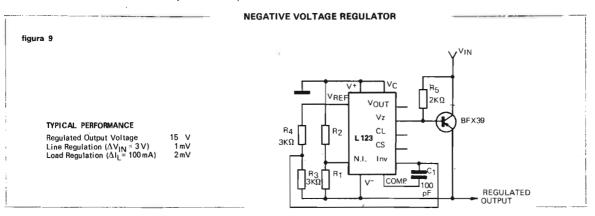
quindi: $l_{sc} \ll 23 \, \text{mA}$. Senza bisogno di dovere ogni volta fare i calcoli, la dipendenza della massima corrente di uscita dalla tensione di ingresso è espressa dal diagramma seguente:

Come si vede i valori di corrente di uscita ottenibili usando solo l'integrato sono piuttosto modesti, e insufficienti per molte applicazioni. Si possono ottenere valori di corrente maggiori modificando il circuito con l'aggiunta di un transistore esterno di potenza amplificatore di corrente. Il circuito è questo:

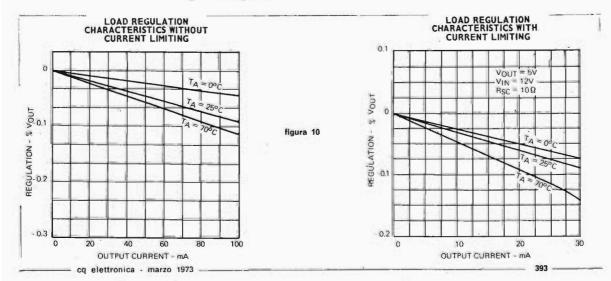
Il transistore esterno viene collegato a quello integrato in connessione Darlington: lo stadio ha guadagno in tensione unitario, e il guadagno in corrente è pari al prodotto dei guadagni in corrente dei transistori impiegati. Supponiamo di impiegare un transistore regolatore esterno con un guadagno in corrente di 50. La corrente

massima che l'alimentatore potrà ora erogare è la corrente che si ricava dal grafico della figura precedente moltiplicata per 50. Ad esempio, con 40 V si vede che la massima corrente erogabile dal solo integrato è, a 25 °C, di 20 mA. Con l'aggiunta del transistore esterno essa diventa di $20 \cdot 50 = 1 \text{ A}$.

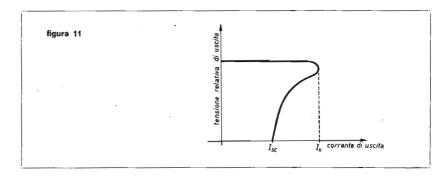
Con la semplice aggiunta di un transistore esterno è possibile dunque aumentare la corrente di oltre un ordine di grandezza. Con circuiti più elaborati si potrebbe ottenere, almeno in linea teorica, qualsiasi valore di corrente.

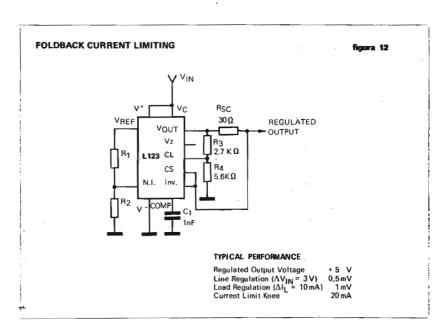

Il circuito di protezione rimane sostanzialmente invariato, con la differenza che ora il transistore di protezione agisce tra base ed emettitore del transistore Darlington composito.

Penso sia buona norma orientarsi sempre, quando le circostanze lo consentano, verso l'impiego del transistore esterno, anche quando la corrente richiesta rientri nelle possibilità dell'integrato. Questo innanzitutto per limitare al minimo la dissipazione nell'integrato, e per rendere il tutto più robusto ad eventuali maltrattamenti. L'integrato è infatti molto più costoso del transistore esterno da impiegare, e vale la pena quindi offrirgli, in questo modo, un maggiore margine di sicurezza.


Altre configurazioni

Per renderci conto del funzionamento del L123 abbiamo preso in esame solo le configurazioni circuitali base. Altre configurazioni sono state studiate per particolari applicazioni, e la loro comprensione è facile una volta capito il funzionamento del circuito base. Per completezza e vostra comodità ve le riporto, con i dati illustranti le prestazioni caratteristiche a lato.

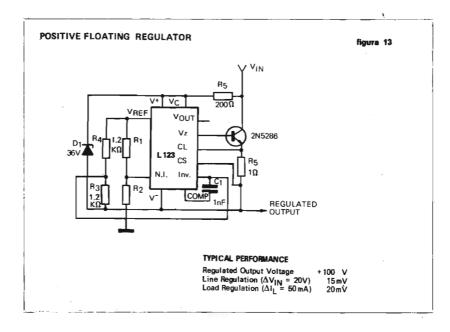

Si può realizzare un regolatore per tensioni negative, anziché positive; non è però più presente la protezione contro il cortocircuito (vedi nota 1 e formula 4):


E' da notare che, quando sia possibile fare a meno della protezione contro il cortocircuito, ciò che può essere ottenuto anche nei circuiti-base già visti ponendo $R_{SC}=0$ e lasciando non collegati i terminali CS e CL, si ottiene una migliore regolazione al variare del carico, come si può vedere dal confronto dei due diagrammi seguenti:

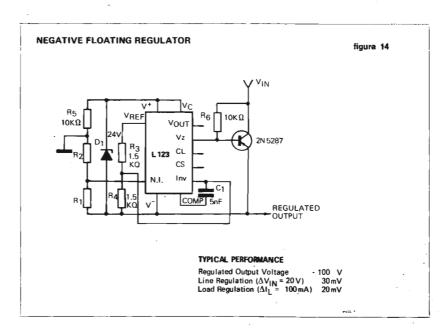
Interessante può essere pure il circuito che permette di ottenere una caratteristica di limitazione di corrente « foldback » cioè « ripiegata all'indietro ». La corrente di cortocircuito cade cioè a un valore inferiore a quella massima erogabile, cosicchè la caratteristica tensione-corrente assume questo aspetto:

Questo viene ottenuto polarizzando negativamente la base del transistore limitatore.

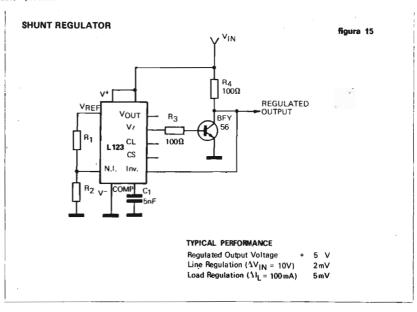
Le formule per il dimensionamento dei valori resistivi in funzione della tensione d'uscita e delle due correnti, di ginocchio I_K e di cortocircuito I_{SC} possono essere facilmente ricavate dalle seguenti relazioni:

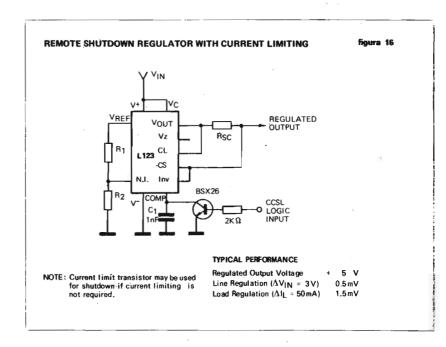

$$I_{K} = \left(\frac{V_{out} R_{3}}{R_{SC} R_{4}} + \frac{V_{SC} (R_{3} + R_{4})}{R_{SC} R_{4}}\right)$$

$$I_{SC} = \left(\frac{V_{SC}}{R_{SC}} \times \frac{R_{3} + R_{4}}{R_{4}}\right)$$

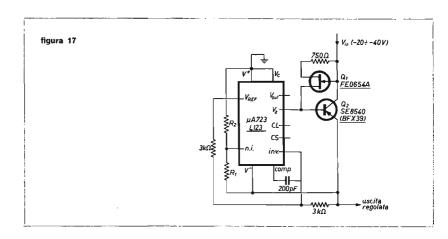

In cui V_{sc} vale, a 25 °C, 0,65 V, e varia con la temperatura come indicato dal diagramma della nota 2.

Altre applicazioni interessanti riguardano l'uso dell'integrato per stabilizzare tensioni maggiori dei 40 V massimi ammessi nella disposizione convenzionale. Questo è possibile con un montaggio « flottante » del regolatore, e la tensione regolata può giungere sino a 250 V.


Ecco la configurazione da adottare per la stabilizzazione di tensioni positive (vedi formula 3):


e negative (formula 4):

Per particolari applicazioni può essere utile disporre di un regolatore shunt anziché serie (in tal caso non serve la protezione contro i cortocircuiti). La corrente di pilotaggio per il transistore regolatore esterno viene prelevata attraverso lo zener accessibile solo nella versione dual in line. Per la versione TO100 metallico occorre aggiungere esternamente uno zener da 6,2 V. La formula da impiegare per il calcolo del partitore è la 1 (o la 2 nel caso in cui il partitore venga spostato dalla tensione di riferimento a quella di uscita).


In certi casi può essere utile avere la possibilità di bloccare o attivare l'alimentatore per mezzo di un segnale logico. La configurazione da adottare è la seguente:

La formula per il calcolo è la 1, nel caso di tensioni inferiori ai 7 V, come in figura, o la 2 nel caso di tensioni superiori. In quest'ultimo caso il partitore va spostato tra l'uscita e l'ingresso invertente.

Come transistore di pilotaggio, in luogo del BSX26 indicato nello schema, può essere impiegato quello integrato per la limitazione di corrente, quando quest'ultima non sia necessaria.

Infine uno schema che la Fairchild fornisce per il suo μ A723, identico allo SGSL123. Si tratta di un regolatore con alta reiezione del ripple presente nella tensione di alimentazione. Mentre nelle applicazioni già viste la reiezione del ripple di ingresso è tipicamente di 74 dB (e può essere aumentata a 86 dB aggiungendo un condensatore da 5 μ F tra ingresso non invertente e massa) con questa configurazione, in cui è impiegato un FET come generatore di corrente costante, la reiezione del ripple è di 100 dB. Lo schema prevede una tensione di uscita negativa, e la formula per il calcolo di R, e R₂ è la 2.

* * *

Formule

(1)
$$V_{out} = (V_{REF} \cdot \frac{R_2}{R_1 + R_2})$$

(2)
$$V_{out} = (V_{REF} \cdot \frac{R_1 + R_2}{R_2})$$

(3)
$$V_{out} = (\frac{V_{REF}}{2} \cdot \frac{R_2 - R_1}{R_1}); R_3 = R_4;$$

(4)
$$V_{out} = (\frac{V_{REF}}{2} \cdot \frac{R_2 + R_1}{R_1}); R_3 = R_4;$$

* * *

Prestazioni

Per concludere ecco le prestazioni tipiche dell'integrato L123.

Variazione della tensione di uscita in funzione della tensione di ingresso: per una variazione della tensione di ingresso da 12 a 15 V, la variazione dell'uscita è tipicamente dello 0,01 %, al massimo dello 0,1 %.

Per una variazione da 12 a 40 V di ingresso, variazione dell'uscita tipica 0,1 %, massima 0,5 %.

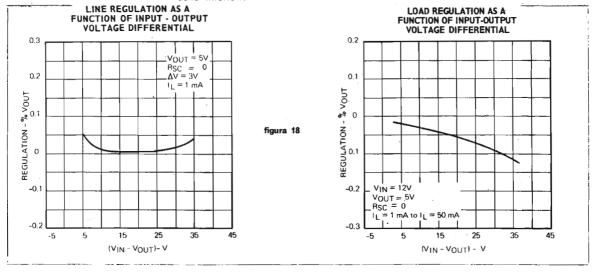
Variazione della tensione di uscita al variare della corrente di uscita: per una variazione della corrente di uscita da 1 mA a 50 mA, variazione della tensione di uscita tipica: 0,03 %, massima 0,2 %.

Reiezione del ripple presente all'ingresso: 74 dB (86 dB con un condensatore da $5\,\mu\text{F}$ connesso tra V_{REF} e massa).

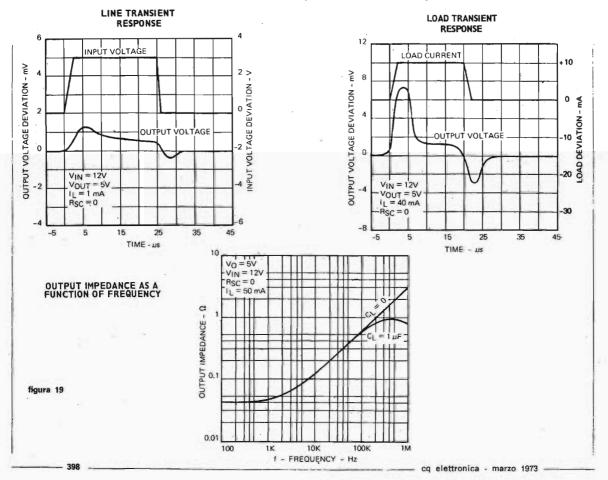
Coefficiente di temperatura medio della tensione di uscita (tra 0 °C e 70 °C di temperatura): tipico 0,003 %, massimo 0,015 % per grado centigrado.

Stabilità a lungo termine: tipicamente 0,1 % per 1000 ore di funzionamento.

Tensione di riferimento: minimo 6,80 V, tipico 7,15 V, massimo 7,50 V.


Tensione di rumore all'uscita (in una banda da 100 Hz a 10 kHz): 20 microvolt efficaci (con un condensatore da $5\,\mu\text{F}$ connesso tra V_{REF} e massa, $2.5\,\mu\text{V}$ efficaci).

Assorbimento di corrente a vuoto: 2,3 mA tipici (4 mA massimi) con 30 V all'ingresso. Tensione di ingresso: minima 9,5 V, massima 40 V.


Tensione di uscita: minima 2 V, massima 37 V.

Differenza tra tensione di ingresso e tensione di uscita: minima 3 V, massima 38 V.

Le caratteristiche di regolazione al variare della tensione di ingresso e al variare del carico sono illustrate nei sottoriportati diagrammi (che si riferiscono a configurazioni senza protezione contro il cortocircuito, poiché con protezione le prestazioni sono inferiori)

Ecco infine la risposta del regolatore ai transitorii nella tensione di ingresso, nella corrente di uscita, e l'impedenza di uscita del regolatore al variare della frequenza.

Analisi del circuito del L123

L'integrato L123 è molto interessante, oltre che per le sue applicazioni, anche per la sua struttura interna, che si avvale delle più moderne tecnologie costruttive: al suo interno troviamo infatti, oltre a transistori bipolari e a diodi zener, anche un FET a canale N (è la prima volta che un FET viene integrato in un circuito lineare), un condensatore MOS e dei resistori di tipo pinch.

Vale la pena di esaminare, per linee essenziali, il funzionamento dei vari blocchi già visti.

Sorgente della tensione di riferimento

La sorgente della tensione di riferimento è, come abbiamo accennato, costituita da uno zener compensato in temperatura. Il modo in cui questa compensazione è ottenuta è molto interessante, e si può comprendere facendo riferimento al circuito semplificato di figura 20.

L'elemento fondamentale di riferimento è il diodo zener D₁, che ha una tensione di zener di 6,2 V a 100 µA e un coefficiente di temperatura di + 2,4 mV/°K.

Il problema della compensazione di questo coefficiente di temperatura si risolve sfruttando la dipendenza dalla temperatura della tensione base emettitore di un transistore (nel nostro caso O₁).

Dallo studio della fisica del transistore, l'equazione che determina la tensione baseemettitore in un transistore è:

$$V_{BE} = \frac{k}{Q} \left(C_1 + \log_n I_C\right) T$$

in cui \mathbf{C}_1 è una costante che non dipende dalla temperatura nè dalla corrente di collettore, ma unicamente dalla struttura fisica del transistore, \mathbf{T} è la temperatura assoluta in gradi Kelvin, \mathbf{k} è la costante di Boltzmann (1,38 10⁻²⁶ Joule/°K) e \mathbf{q} è la carica dell'elettrone (1,6 10⁻¹⁹ coulomb). V_{BE} dipende quindi da \mathbf{T} secondo il coefficiente di temperatura

$$\frac{k}{q}$$
 (C, + log_n l_c)

Ora si vede che, una volta costruito il translatore, l'unico parametro su cui si può giocare per variare questo coefficiente di temperatura è $l_{\rm c}$, ossia la corrente di collettore del transistore stesso. In particolare si potrà scegliere per $l_{\rm c}$ un valore tale che il coefficiente di temperatura della tensione base emettitore di Q_1 diventi esattamente complementare di quello di diodo zener, ossia di $-2.4~{\rm mV/^oK}.$ Pertanto la tensione $V_{\rm REF},$ data dalla somma della tensione di zener di Q_1 e dalla tensione base-emettitore di Q_1

$$V_{REF} = V_{zener} + V_{BE \ Ol}$$

avrà un coefficiente di temperatura pressocchè nullo poiché, mentre al variare della temperatura $V_{\rm xener}$ varia di + 2,4 mV/°K, $V_{\rm BE}$ varia di -2,4 mV/°K. O_2 ha la funzione di fornire la corrente al diodo zener e al carico esterno applicato a $V_{\rm REF}$, in modo che nel diodo scorra sempre la corrente prevista di $100\,\mu\text{A}$.

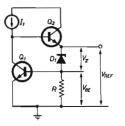
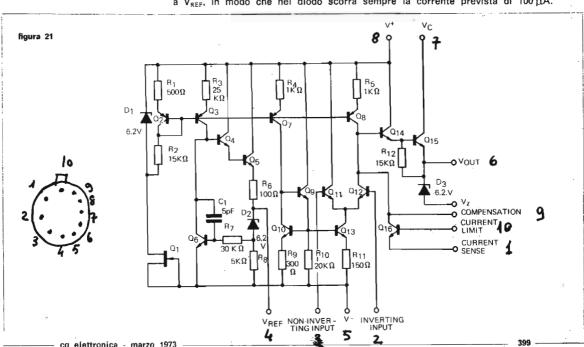
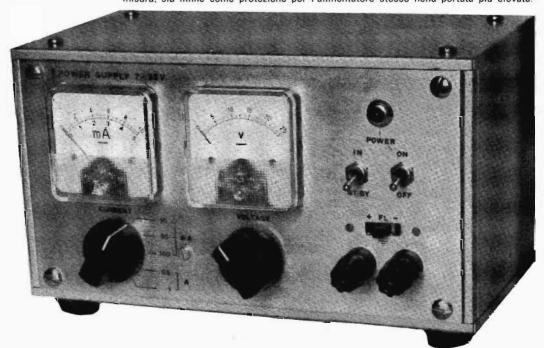



figura 20

Nello schema generale dell'integrato il transistore che compensa lo zener è Q_a , lo zener di riferimento è D_2 , l'alimentazione a corrente costante dello zener è ottenuta anziché da un unico transistore (Q_2 nello schema semplificato) da una coppia Darlington Q_4 e Q_5 . Il generatore di corrente costante è costituito da Q_3 , la cui corrente è determinata dalla polarizzazione di base (che è ottenuta in comune con gli altri generatori di corrente costante dell'integrato, relativi all'amplificatore differenziale, Q_7 e Q_8 e dal resistore R_8 .

ferenziale, O_7 e O_8 e dal resistore R_3 . La polarizzazione di base di tutti questi generatori di corrente costante è ottenuta per mezzo del FET O_1 , che è a sua volta connesso in modo da rappresentare un generatore di corrente costante, dal diodo zener D_1 dal partitore resistivo R_1 e R_2 e dal transistore O_2 connesso a diodo, che serve da compensazione in temperatura. L'amplificatore della tensione errore è costituito sostanzialmente dalla coppia differenziale O_{11} e O_{12} . Ouesta è alimentata, come di prammatica, da un generatore di corrente costante O_{13} , il quale, per la migliore stabilità, è polarizzata per mezzo del generatore di corrente costante O_7 , dei transistori O_9 e O_{10} e delle resistenze O_9 e O_9 e O_9 e O_9 e O_9 e delle resistenze O_9 e O_9


 O_{14} funziona praticamente da emitter follower e pilota il transistore di potenza O_{15} . regolatore serie, è che un transistore multiplo a resistenze d'emettitore individuali per ogni transistore componente. Infine O_{16} è il transistore che serve per la protezione contro i cortocircuiti per limitazione di corrente.

2/4 2/4 2/4

Il Parte - L'alimentatore stabilizzato protetto

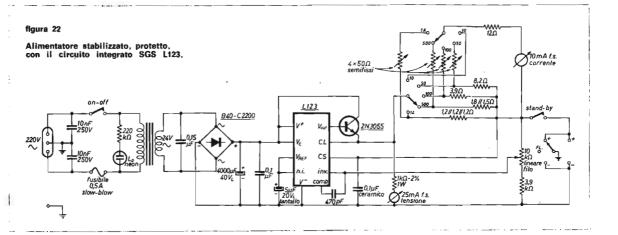
Impiegando l'integrato L123 ho realizzato un semplice alimentatore stabilizzato protetto per usi di laboratorio.

La tensione di uscita è variabile con continuità fra 7 e 25 V, e viene letta su di un voltmetro. Per quanto riguarda la corrente erogata, che può giungere a 1 A, ho ritenuto opportuno disporre cinque diverse limitazioni, corrispondenti a cinque diversi fondo scala dello strumento che indica la corrente assorbita. In questo modo ho ottenuto il duplice scopo di poter effettuare la lettura della corrente erogata in un ampio intervallo di valori, e in più di poter sfruttare la limitazione di corrente sia come protezione del circuito alimentato, sia come protezione dello strumento di misura, sia infine come protezione per l'alimentatore stesso nella portata più elevata.

Poiché in condizioni normali è conveniente far lavorare l'alimentatore sufficientemente lontano dal ginocchio ove la caratteristica tensione-corrente comincia a incurvarsi per effetto del circuito di limitazione, e la resistenza interna dell'alimentatore passa da un valore molto prossimo a zero ad un valore elevatissimo, i fondo scala dello strumento non coincidono con i valori di corrente limite, ma sono tenuti più bassi secondo un rapporto 1:1,5 (tranne che nella prima portata).

Assumendo come tensione V_{sc} che deve localizzarsi sulla R_{sc} in condizione di cortocircuito il valore di 0.65 V (come si può desumere dalle caratteristiche dell'integrato, supponendo una temperatura del chip di 25 °C) ho stabilito la tabella 1:

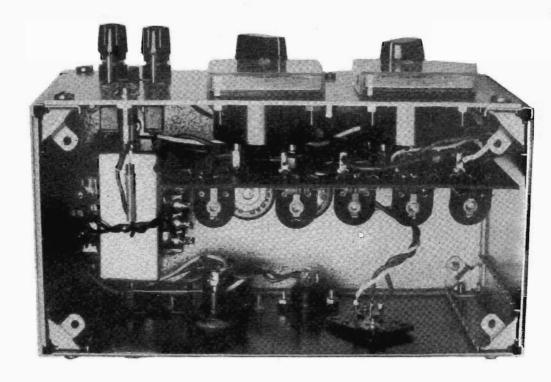
tabella 1


corrente di fondo scala dello strumento (mA)	Isc (corrente di corto circuito) (mA)	Rsc (Ω)
10	50	13
50	75	8,7
100	150	4,3
500	750	0,87
1 A	1,5 A	0,43

Come si vede i valori scelti assicurano anche una buona protezione dello strumento Impiegato come amperometro.

L'approssimazione dei valori resistivi della tabella con resistori standard al 5 % di facile reperibilità è la seguente (non è necessaria una elevata precisione sul valore di I_{SC} per cui è consentita una approssimazione piuttosto larga):

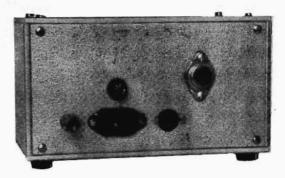
La regolazione della tensione di uscita è fatta mediante un potenziometro a filo lineare da 10 k Ω , « zavorrato » verso massa da una resistenza da 3,9 k Ω che limita il massimo valore della tensione al fondo scala del voltmetro, ossia 25 V. Poiché è opportuno che l'alimentatore sia sempre chiuso su un benchè minimo carico, ho impiegato come voltmetro uno strumento da 25 mA f.s., in modo da avere uno strumento più robusto e la scala già graduata da 0 a 25.


Naturalmente essendo il consumo dello strumento voltmetrico rilevante, è opportuno disporre lo strumento ampermetrico a valle di questo.

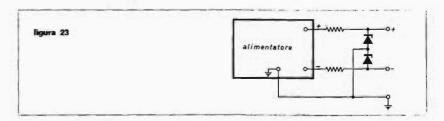
Per scavalcare il problema della realizzazione di shunt di basso e bassissimo valore, che si sarebbe presentato volendo effettuare la misura ampermetrica nel modo consueto, ho scelto la via di misurare la caduta sulla resistenza R_{SC} (tranne che nella prima portata, in cui lo strumento è disposto in serie direttamente).

^(*) Il simbolo // significa « In parallelo con... ».

Le resistenze che, per ciascuna portata, sono disposte in serie allo strumento, devono avere un valore tale da portare lo strumento a 10 mA f.s. quando ai capi di R_{sc} si localizzano $0.65:1.5=0.435\,\mathrm{V}$, ciò che corrisponde a circa $0.435:10=43\,\Omega$. O meglio, dovrebbero avere tale valore a patto che le R_{Sc} fossero del valore esatto che si è ricavato nella prima tabella. Poiché invece esse sono state largamente approssimate (tabella 2), le resistenze che, per ciascuna portata vengono inserite in serie allo strumento amperometrico sono realizzate con altrettanti trimmer potenziometrici da 50 \Omega. Questi trimmer vanno regolati, in sede di taratura, collegando l'alimentatore ad un carico variabile (che può essere un reostato o una serie di resistori) e confrontando l'indicazione con uno strumento (tester) esterno, disposto in serie. Gli errori di misura propri della disposizione voltampermetrica adottata nell'alimentatore sono valutabili immediatamente.

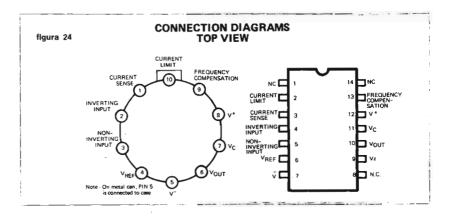

L'errore sull'indicazione voltmetrica è dovuto alla caduta su Rsc che vale al massimo 0.43 V circa (caduta su RS con strumento ampermetrico a fondo scala). Essendo nel mio caso lo strumento da 25 V f.s. di classe 2,5 tale errore è praticamente trascurabile (e lo sarebbe anche nel caso dell'impiego di uno strumento di classe migliore. & esempio 1,5).

L'errore sulla misura ampermetrica è dovuto al fatto che, a valle del circuito 🖘 misura, troviamo il partitore di controllo della tensione di uscita. Esso assorbe una corrente proporzionale alla tensione di uscita, che vale quindi al massimo 25 V : 14 kΩ= =1,8 mA. Questo errore è sensibile nella prima portata (10 mA f.s.), ma diviene praticamente inapprezzabile (o comunque inferiore all'errore di lettura sullo strumento) a partire dalla seconda (50 mA f.s.).


Il transistore regolatore serie impiegato è un classico 2N3055 che, per tranquillità 🙃 non superare la dissipazione massima ammessa nell'integrato anche a 1 A 🖒 erogazione, è bene sia scelto con un guadagno in corrente superiore o eguale a 50 Come dissipatore per il 2N3055 ho adottato la stessa parete posteriore della scato a metallica in cui è racchiuso l'alimentatore (minibox Ganzerli).

Il montaggio del transistore di potenza è fatto impiegando zoccolo e isolatori di mica spalmati con l'apposito grasso ai siliconi, in modo da ottenere un buon contatto termico. Il trasformatore di alimentazione è un 30 W, primario 220 e secondario 24 . il ponte raddrizzatore è un B40-C2200 Siemens, e può essere sostituito con quattre diodi da 50 V 2 A. I due condensatori ceramici da 0,1 uF hanno lo scopo di prevenire oscillazioni spurie in VHF, facili a insorgere data la struttura dei moderni integra: Essi vanno montati, con le connessioni più brevi possibili, direttamente tra i pied -V+ e V—, CS e V— dell'integrato. Il 5 µF al tantalio, come già visto, serve a dinuire ripple e rumore, ed è posto tra V₂ e massa. Anche il condensatore di compensazione da 470 pF va montato con collegamenti bre-

Per il resto non vi sono particolarità di rilievo. Va solo notata la presenza di un interruttore di stand-by e di un commutatore a slitta a tre posizioni, il quale connette la massa, costituita dalla scatola metallica, alternativamente al negativo, al positivo, oppure a nessuno dei due, consentendo così all'alimentatore un'elevata flessibilità di impiego.



La posizione « flottante » (massa non collegata nè a positivo nè a negativo) può essere utile, ad esempio, per l'alimentazione di circuiti integrati, quando necessiti disporre due identici alimentatori in serie fra loro, oppure quando la tensione di uscita venga suddivisa, mediante un partitore composto da due resistori e due diodi zener, e sia allora desiderabile avere la massa metallica collegata al centro dei diodi:

Il circuito è realizzato sulla solita basetta di bachelite perforata, a dischetti di rame. Come si vede dalle foto sul pannello frontale ho disposto, partendo da sinistra, lo strumento amperometrico con sotto il commutatore di portata-limitazione di corrente, lo strumento voltmetrico, sotto al quale è il comando del potenziometro per la regolazione della tensione. Infine, all'estrema destra, la spia al neon, gli interruttori di accensione e di stand-by, il commutatore a slitta che collega la massa, di cui si è parlato poc'anzi, i due morsetti di uscita.

Sul retro della scatola abbiamo: il transistore di potenza, la vaschetta di connessione del cavo di rete, un'uscita ausiliaria, il portafusibile e il morsetto di massa. Per finire non mi rimane che riportarvi le connessioni allo zoccolo del L123 e augurarvi buon lavoro.

403

Radiocomando per modello navale

ing. Gianni Busi

Prestazioni e caratteristiche

- numero dei canali nove, azionabili indipendentemente per un totale di 512 combinazioni
- ingressi al trasmettitore mediante interruttori o pulsanti;
- uscite dal ricevitore mediante nove relé;
 assenza di circuiti LC accordati a bassa frequenza.

Semiconduttori impiegati

- 30 transistori PNP tipo 2G605 o equivalenti:
 1 transistor PNP tipo AD149;
 11 transistori NPN tipo ST421N o equivalenti;
- 1 transistor NPN tipo 2N1711 13 diodi tipo OA91 o equivalenti;
 2 decadi di conteggio tipo SN7490N;
- 2 decodificatori binario-decimale tipo SN7441AN (SN74141AN);
- 1 amplificatore operazionale tipo µA709.
- e inoltre
- 1 ricevitore premontato Labes tipo RX28P.

Introduzione

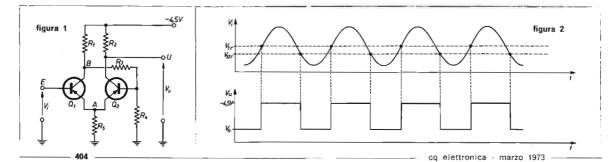
Nel presentare questo apparecchio vorrei sconsigliarne la realizzazione ai Pierini alle primissime armi per una certa difficoltà circuitale più che concettuale; nella taratura è indispensabile, inoltre, un oscilloscopio, strumento che un principiante di solito non possiede.

L'apparecchio è ottenuto riunendo assieme più blocchi elementari su circuito stampato che richiedono un numero limitato di componenti. Così si riduce la possibilità di errori e si diluisce nel tempo la spesa complessiva, invero piuttosto alta.

I transistori sono recuperati da schede, così pure i diodi.

Essendo le uscite costituite da relé, questo radiocomando non è un « proporzionale », non adatto, quindi, per modelli aerei, anche per via del peso e del consumo notevoli. E' specificatamente un radiocomando per modello navale. I canali potrebbero essere assegnati, ad esempio, alle seguenti funzioni:

avanti


1

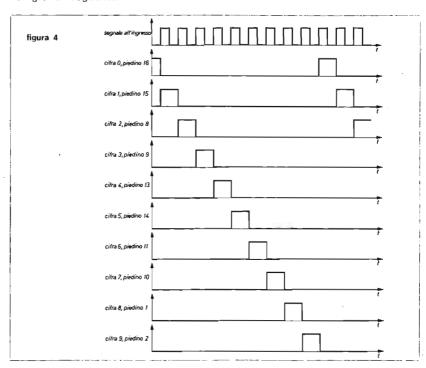
- indietro
- veloce
- destra
- sinistra
- sirena
- fari a lampi rosso e verde

e rimarrebbero ancora due canali liberi.

Il trigger di Schmitt

Dato che nel progetto si farà uso del trigger di Schmitt, vediamone brevissimamente il funzionamento. Rimandando i lettori ai numerosi articoli già apparsi sulla rivista, dirò soltanto che lo schema di massima è quello di figura 1. Un segnale di forma qualsiasi immesso nella base di Q, produce lo scatto del circuito in corrispondenza di due diverse tensioni: V_{tr} e V_{str}, per cui alla uscita si avrà un'onda fortemente squadrata come illustrato in figura 2.

Circuiti di conteggio


Si fa uso nell'apparecchio di unità di conteggio integrate; anche queste sono state più e più volte illustrate nella rivista a partire dal n. 5/1968: « Una applicazione dei circuiti integrati » del signor Lauretani. Come al solito i segnali di pilotaggio e di uscita possono assumere soltanto due valori: quello positivo che noi chiameremo basso e quello negativo che chiameremo alto. La convenzione è dovuta al fatto che l'intero apparecchio ha il positivo a massa.

SN7490N

E' il vero e proprio contatore. La sua uscita che fa capo a quattro piedini è da leggersi in codice binario. Perché conti fino a 10 bisogna collegare esternamente il piedino 1 al piedino 12. Sono previsti due circuiti di azzeramento: il primo, che fa capo ai piedini 2 e 3, fa tornare il contatore alla cifra 0; il secondo che fa capo ai piedini 6 e 7 effettua il ritorno alla cifra 9. L'azzeramento si effettua portando al positivo entrambi i piedini relativi, dato che l'ingresso ai circuiti di azzeramento è costituito da porte AND. In figura 3 si può vedere la disposizione dei piedini dell'integrato: guardando dal basso si contano in verso orario a partire dalla tacca.
Anche se sarebbe importante non riporto le funzioni dei vari piedini perché già illustrate ampiamente in articoli precedenti della rivista.

SN7441AN (SN74141AN)

Effettua la decodifica da binario a decimale. I suoi quattro ingressi vanno collegati alle quattro uscite dello SN7490N. Delle dieci uscite solo una avrà tensione alta (negativa) a seconda del numero di impulsi contati. I piedini (16 su due file) si contano dal basso in senso orario a partire dalla tacca. Non riporto le funzioni dei piedini perché molto facilmente individuabili dagli schemi e dai grafici seguenti.

La figura 4 mostra i segnali sulle uscite del contatore in corrispondenza di un segnale di ingresso costituito da impulsi rettangolari tutti uguali: gli impulsi alle uscite hanno tutti uguale durata. Non così avviene nel caso di figura 5 ove gli impulsi di ingresso di posto 4, 5, 7 sono stati, a bella posta, allungati.

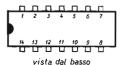
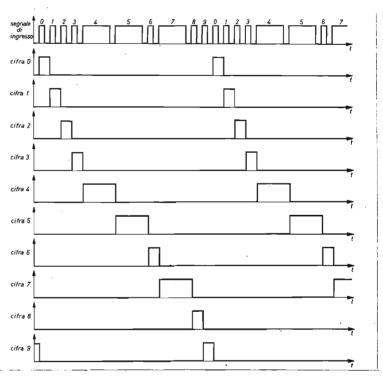



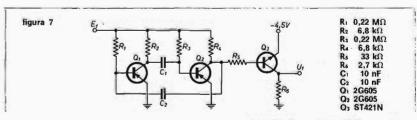
figura 3

Sulle uscite 4, 5, 7 avremo impulsi più lunghi che non sulle altre. Tra parentesi, risulta più lungo anche l'intero periodo di ripetizione dei segnali di ingresso.

Se ad ogni uscita è collegato un circuito RC capace di distinguere tra un impulso lungo e uno breve e di fare scattare, in corrispondenza, un relé, scatteranno i relé n. 4, 5, 7 e non gli altri. Se nella sequenza di ingresso avremo allungato anche l'impulso 2 scatterà anche il relé n. 2 e così via. Il passo successivo è immediato: basta procurarci un segnale come quello di figura 5, inviarlo via radio a un ricevitore collegato con un contatore-RC-relè e il gioco è fatto.

-4,5V0 -4,5V0 -4,5V

figura 6 C₁, C₂ 250 μF 12 V


Alimentazione del trasmettitore

Gli integrati funzionano a 5 V. Si preferisce farli funzionare a 4,5 V piuttosto che a 6 V per non farli scaldare troppo. Comunque funzionano fino a 3 V. Lo schema è in figura 6.

La tensione di 6 V serve per lo stadio finale del trasmettitore. Sono indispensabili i condensatori perché i circuiti che seguono hanno notevoli assorbimenti improvvisi.

Formatore di impulsi base

Lo schema è mostrato in figura 7.

E' un multivibratore seguito da un invertitore di fase. Quando l'ingresso E_1 è alto (negativo) il multivibratore oscilla e il segnale a onde quasi per fettamente quadre viene ulteriormente squadrato e potenziato da Q_3 . Se invece E_1 è basso l'oscillatore si ferma e la uscita U_1 permane alta. La frequenza del segnale si aggira sui 400 Hz. La forma d'onda è visibile in figura 8.

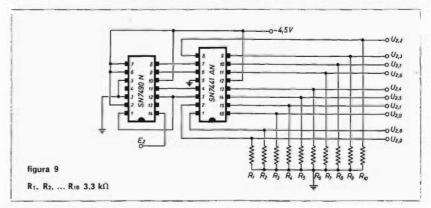
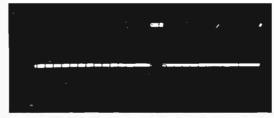


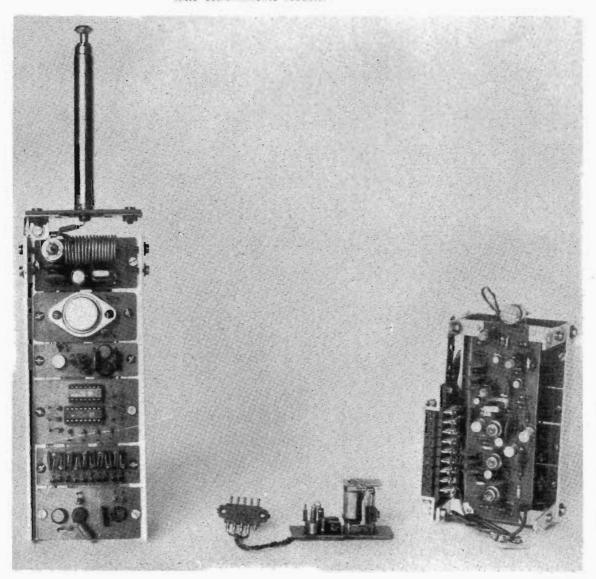
figura 8

Adesso occhio a quel che segue! Se nell'istante in cui U_1 sale noi portiamo a massa E_1 , l'impulso di uscita risulterà più lungo del solito. Riportando poi E_1 a $-4.5\,V$ ricomincerà la sequenza normale di impulsi.


Contatore

Lo schema è riportato in figura 9. Gli integrati sono visti dal basso.

Si collega E_2 a U_1 . Si fa oscillare il multivibratore e si avrà su ciascuna delle dieci uscite un impulso di 2,5 ms come da figura 10, la quale, purtroppo, non è in scala con la precedente figura 8. Le dieci uscite portano due pedici, di cui il secondo indica quale cifra decimale corrisponde a quel piedino.


Fissiamo la nostra attenzione su di un piedino, ad esempio quello corrispondente alla cifra 5. Se, ogni volta che esso diventa negativo, noi sfruttiamo la informazione per mettere a massa temporaneamente E₁, avremo alla uscita U₁ tante sequenze di 10 impulsi in ognuna delle quali l'impulso di posto 5 sarà più lungo degli altri, un segnale cioè come quello di figura 11.

E' proprio il segnale che ci serve. Occorre dunque un dispositivo che si accorga di quando un piedino è eccitato, e un altro dispositivo che su segnalazione del primo vada a mettere a massa temporaneamente E_1 . Sono il circuito OR e il monostabile.

Facciamo un attimo di sosta per digerire quanto sopra, e parliamo del costo degli integrati. Quando li ho comprati io qualche anno fa li ho pagati sulle 3000 e 4000 lire rispettivamente. Oggi il loro prezzo è sceso in maniera drastica per cui essi sono più che mai convenienti. Per fare delle esperienze compratevi almeno uno zoccoletto a 16 piedini, anche se costa quasi più degli integrati.

Già che ci siamo voglio dirvi qualcosa sulla realizzazione pratica del circuito, almeno come lo ho fatto io. Ogni blocco è costruito su di una piastrina per circuito stampato della larghezza costante di 60 mm e di altezza variabile a seconda del numero e della mole dei componenti. Di ogni piastrina solo la parte centrale larga 45 mm è sfruttata per il circuito. Le flange laterali servono per il fissaggio, mediante viti, delle piastrine a due pezzi di alluminio profilati a L, ottenendo così un compiesso dall'aspetto piacevole, ma sopratutto estremamente robusto.

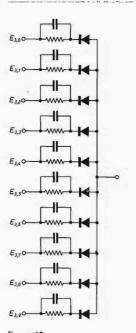
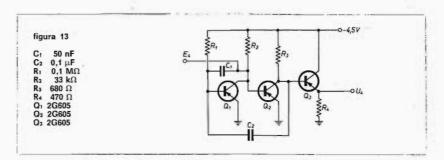


figura 12

resistenze 0,22 MΩ condensatori 50 nF diodi OA91

Circuito OR


Lo schema è in figura 12.

Ouando su una qualunque delle entrate si ha un gradino negativo, si riscontra un impulso negativo in uscita. Gli ingressi $E_{3,0}$... $E_{3,9}$ vanno collegati **mediante** interruttori alle $U_{2,0}$... $U_{2,9}$.

La uscita U₃ comanda il monostabile che segue.

Monostabile

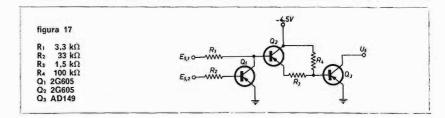
Lo schema è disegnato in figura 13.

Scatta quando un impulso negativo è applicato al suo ingresso E_4 , e corrispondentemente porta U_4 a massa. Dopo un certo tempo fissato da R_1 e C_2 torna spontaneamente nelle condizioni di partenza con U_4 a -4.5 V. Il condensatore C_1 serve a rendere « duro » il circuito che altrimenti sarebbe troppo sensibile, tanto da scattare al minimo disturbo. Come ormai avrete intuito, si collega U_4 all'ingresso E_1 del multivibratore. Chiudendo un interruttore, ad esempio il n. 5 si viene ad azionare il monosta-

Come ormai avrete intuito, si collega U2 all'ingresso E1 del multivibratore. Chiudendo un interruttore, ad esempio il n. 5 si viene ad azionare il monostabile, a ogni ciclo, in corrispondenza della cifra 5, con conseguente allungamento dell'impulso di posto 5 nella sequenza in uscita da U.

figura 14

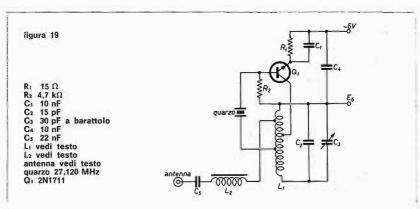
figura 15

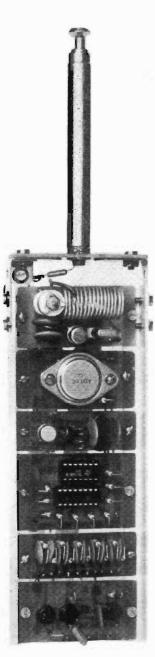

La figura 14 mostra la forma d'onda in U² nel caso siano eccitati due canali adiacenti. La figura 15 mostra il corrispondente segnale sulla uscita U₁. I due canali eccitati di figura 15 potrebbero essere il 2 e il 3, il 7 e 8, o qualunque altra coppia. Si possono determinare univocamente solo caratteriz zando in qualche modo l'impulso n. 0, creando cioè un segnale di sincronismo. Tra i vari modi di caratterizzare l'impulso 0 abbiamo scelto quello di allungarlo prima, e poi toglierlo di mezzo lasciando in corrispondenza un impulso lungo e * basso * che è unico nel suo genere (vedi figura 16).

Bisognerà quindi collegare permanentemente $U_{2,0}$ a $E_{3,0}$. Il circuito che segue (figura 17) provvederà poi a sopprimere l'impulso 0.

Inseritore del sincronismo e amplificatore di potenza

Lo schema è quello di figura 17.


Si collega $E_{5,1}$ a U_1 , $E_{5,2}$ a $U_{2,0}$. Sul collettore di Q_1 si ritrova normalmente il segnale in uscita dal formatore, tranne che in corrispondenza dell'impulso 0. In questo caso Q_1 satura e porta il suo collettore a massa. Q_2 è un emitter follower che non carica apprezzabilmente l'ingresso e pilota energicamente il finale Q_3 . La figura 18 riporta la forma d'onda sull'emitter di Q_2 .

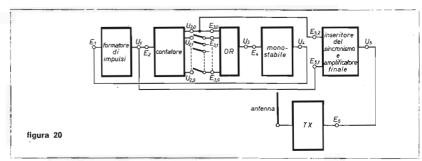


Tra la uscita U_4 e la presa a —6 V (nota: —6 V) va sistemato il trasmettitore vero e proprio che funge da carico al transistor Q_3 . La R_4 serve a mantenere sempre debolmente in conduzione Q_3 e in oscillazione il trasmettitore anche durante l'impulso di sincronismo dopo il quale il trasmettitore stenterebbe a ripartire. Il suo valore va determinato sperimentalmente in caso si scelga per Q_3 un transistor diverso. Sarebbe bastato per Q_3 anche un AC128, ma all'atto della costruzione del circuito di figura 17 non avevo ancora deciso che trasmettitore usare.

Trasmettitore

Deve essere un semplice generatore di RF pura, perché la modulazione è ottenuta variandone la alimentazione, e questo lo fa il circuito precedente. Data la semplicità delle connessioni lascio libero ognuno di scegliersi lo schema preferito. Da parte mia ho scelto un circuitino molto semplice pubblicato dalla rivista Sperimentare nel n. 9 del 1967 (vedi figura 19).

Si collega E_6 a U_5 . Il suo pregio maggiore è quello di richiedere poco spazio (vedi anche le fotografie). La potenza irradiata è modesta, permettendo collegamenti sicuri a non più di 400 metri, distanza, però, alla quale un modello anche grande non è quasi più visibile.

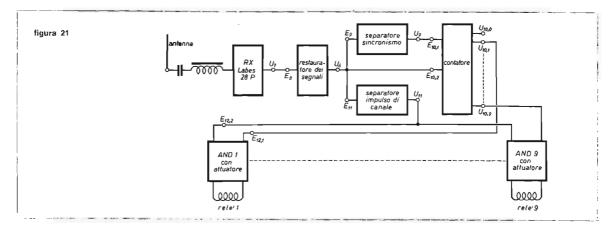

L₁: 16 spire di filo di rame argentato \varnothing 1 mm avvolte strettamente su un supporto \varnothing 14 mm. Si sfila il supporto e si tira la bobina fino a una lunghezza di 30 mm. La presa per la antenna è a 2,5 spire dal lato « freddo », dove è collegato C₄; quella per il collettore di Q_1 alla 5ª spira dal lato freddo; quella per il quarzo alla 7ª spira. Si può provare a spostare la presa di antenna, ed è probabile si trovi una posizione con una maggior potenza irradiata. Io non ho provato perché mi bastava.

 L_2 : 18 spire di filo di rame smaltato \varnothing 0,8 mm avvolte strettamente su un supporto \varnothing 10 mm provvisto di nucleo.

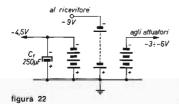
Antenna: ho usato uno stilo da 75 cm. L'ho scelto così corto perché poco ingombrante. Provare con una antenna più lunga che andrà senz'altro meglio; bisognerà, però, modificare L₂.

Dato che il quarzo del trasmettitore risuona a 27,120 MHz e dato che la media del ricevitore Labes usato è 455 kHz, il quarzo dell'oscillatore locale del RX sarà di 26,665 MHz.

Riassumiamo il trasmettitore dandone uno schmea a blocchi (figura 20). Lo facciamo solo ora perché in principio forse non sarebbe stato chiaro.


Apparecchiature di ricezione

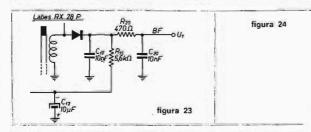
Naturalmente il primo blocco che si incontra è il ricevitore alla uscita del quale ritroviamo il segnale ancora riconoscibile anche se notevolmente distorto; esso va quindi restaurato con un circuito che ne ristabilisca la forma iniziale di figura 18. Il segnale così ottenuto è mandato al contatore di ricezione. Si noti che gli impulsi negativi che azionano il contatore sono nove soltanto per ciclo. Quindi per azzerare il contatore quando è arrivato alla cifra 9 bisogna fare intervenire il segnale di sincronismo che, separato da un opportuno circuito, andrà ad agire sul piedino 2 di azzeramento della decade. L'importanza del segnale di sincronismo (che azzera il ricevitore quando il trasmettitore è sulla cifra 0) è dovuta al fatto che esso mette in passo i due contatori « legandoli » strettamente con un controllo che viene effettuato a ogni ciclo.

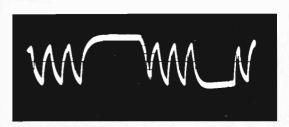


A questo punto bisognerà procurarci nove circuiti RC da collegare alle nove uscite rimaste del contatore. E' sufficiente però fare questo lavoro una volta solo costruendo un circuito (separatore impulso di canale) capace di distinguere un impulso lungo alto, e mandandovi dentro il segnale completo; a ogni sua segnalazione si andrà a controllare in che posizione si trova il contatore, e se il contatore si trova sulla cifra 4 vorrà dire che è stato azionato il canale 4. Un circuito AND collegato da una parte alla uscita 4 del contatore e dall'altra al separatore dell'impulso di canale farà scattare l'annesso relé solo quando siano veri entrambi gli ingressi, cioè solo nel caso che venga azionato il canale 4. Di questi circuiti AND si costruiranno 9 esemplari.

In figura 21 è riportato lo schema a blocchi della intera apparecchiatura di ricezione.

Alimentatore

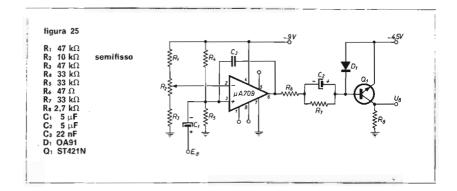

E' mostrato in figura 22. La tensione di —4,5 V va alle apparecchiature logiche, quella a —9 V va al ricevitore Labes, inoltre si prevede una alimentazione separata per i relé che assorbono parecchio.


Ricevitore

Partiamo dalla antenna: è un pezzo di filo di acciaio armonico di 1 metro di lunghezza; alla base si ha un condensatore da 22 nF e una bobina di 14 spire di filo di rame smaltato ⊘ 0,4 mm su supporto ⊘ 10 mm provvisto di nucleo. Il ricevitore vero e proprio è un Labes RX 28 P con quarzo da 26,665 MHz come detto in precedenza. Non ho tentato la sostituzione con un ricevitore in superreazione, ma non credo sia possibile per la enorme larghezza di quest'ultimo (siamo in piena CB) e per il soffio.

Del RX 28 P non riporto lo schema, che viene fornito assieme all'apparecchio, ma solo la parte relativa alla rivelazione (figura 23).

Unica aggiunta al ricevitore: un condensatore da $100\,\mu\text{F}$ in parallelo a C $(10\,\mu\text{F})$ che è un valore troppo basso.



Alla uscita U, avrò un segnale come da figura 24. Ricordando che i livelli alti rappresentano polarità negative, questo segnale è in opposizione di fase con quello di figura 18.

Circuito restauratore del segnale

Lo schema è quello di figura 25.

L'integrato è un amplificatore operazionale µA709. E' racchiuso in un contenitore metallico a otto piedini che si leggono dal basso in senso orario a partire dalla linguetta; il piedino sotto la linguetta è il n. 8.

Dato il suo elevato guadagno basta una piccolissima d.d.p. tra i suoi due ingressi per saturare la uscita. E' proprio in queste condizioni che lo facciamo lavorare. Segue un transistor che fornisce al segnale la potenza necessaria a pilotare i circuiti seguenti. La alimentazione dell'integrato è a 9 V come per il ricevitore (il µA709 lavora con tensioni sui 30 V ma funziona ancora a 6 V).

Il potenziometro semifisso R_2 serve a portare i due ingressi allo stesso valore continuo di tensione, così che siamo nelle condizioni ideali per la amplificazione.

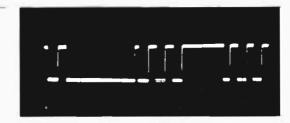

Una particolarità è costituita da C_3 che effettua una reazione positiva tra ingresso e uscita così da aumentare il guadagno del circuito. Inoltre assieme a R_4 - R_5 costituisce una cella RC di data costante di tempo che desensibilizza in circuito alle frequenze (rumore). La applicazione di C_3 modifica anche la forma del segnale in ingresso, come si vede dalla figura 26. La foto non è venuta bene perché ogni tanto l'immagine scorreva; si prenda in considerazione solo la traccia più forte.

figura 26

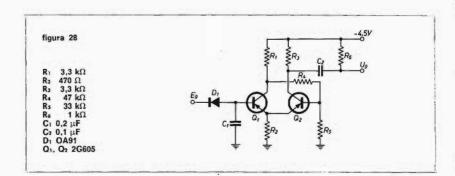
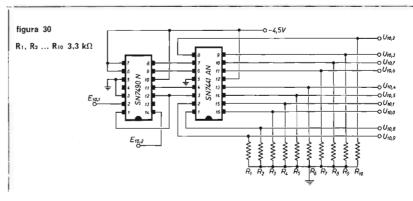

In figura 27 è mostrato il segnale sulla uscita U₈.

figura 27

Separatore segnale di sincronismo

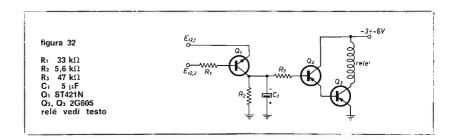
Lo schema è in figura 28. Dà una segnalazione quando si presenta un impulso lungo « basso ». E' presente un trigger di Schmitt che genera una uscita a fronti ripidi. Il gruppo C_7 - R_6 deriva questo segnale dando origine a un doppio impulso positivo-negativo come si vede in figura 29.



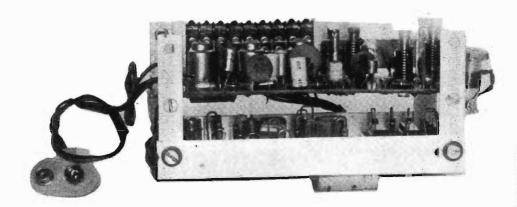
L'impulso positivo produce l'azzeramento, quello negativo non ha alcun effetto. Naturalmente si collega E_{o} a $\mathsf{U}_{\mathsf{s}}.$


Contatore di ricezione

E' identico a quello di trasmissione, salvo che ora al piedino 2 della decade entra il segnale di sincronismo. Lo schema è quello di figura 30. Si collegano $E_{10,1}$ con U_0 e $E_{10,2}$ con U_8 .


Separatore impulso di canale

Dovendo riconoscere un impulso che è l'opposto di quello di sincronismo, sarà formato dallo stesso circuito, salvo mandargli all'ingresso il segnale invertito di fase. Lo schema è riportato in figura 31. Si collega $E_{\rm n}$ con $U_{\rm s}$. All'arrivo di un impulso lungo alto la uscita diventa positiva.



Circuito AND e attuatore

Lo schema è quello disegnato in figura 32.

Si collega $E_{12,1}$ a una uscita del contatore, per esempio $U_{10,4}$, ed $E_{17,2}$ a U_{11} come già anticipato. Se ne costruiscono nove esemplari.

ll relé scatta quando $E_{12,1}=$ negativa, $E_{12,2}=$ positiva. La operazione effettuata è quindi un AND, anche se un po' insolito, vista la polarità dei segnali. C_1 introduce un certo ritardo nel rilascio del relé per evitare che esso vibri, dato che il segnale di ingresso è a impulsi.

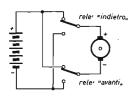


figura 33

Conclusione

Prima di chiudere, una precisazione. Non ho ancora montato il radiocomando su una imbarcazione, limitandomi ad azionare a distanza lampadine e motorini. Dico questo perché l'apparecchio, per il modo stesso come è stato concepito, ha in sè un grosso difetto: è sensibile ai disturbi di natura elettrica. Questi disturbi, captati dal ricevitore, vengono considerati dal contatore come segnali veri e propri e provocano l'avanzamento di un passo di detto contatore rispetto a quello di trasmissione e l'azionamento di canali non desiderati. Può allora succedere che vengano azionati i relé di due canali tra loro opposti, come « avanti » e « indietro ». Per evitare di mettere in cortocircuito anche se per un solo istante la pila che muove il motore si deve provvedere ad alimentare il motore con un circuito come quello di figura 33. Se i due relé scattano assieme il motore si ferma e non avvengono cortocircuiti. Questo provvedimento va preso per ogni coppia di canali escludentisi, cioè anche per la coppia « destra »-« sinistra ».

Possono fare sganciare il sincronismo anche i disturbi degli stessi motori presenti sulla imbarcazione. Si provvederà quindi a schermarli collegando due condensatori da qualche migliaio di pF tra ciascuno dei due fili di ingresso e la carcassa del motore, e magari collegando le carcasse a una presa che peschi nell'acqua. I condensatori dovranno avere i terminali lunghi al più qualche mm. Ho provato anche con condensatori coi fili lunghi un paio di cm e il risultato era tale e quale a prima di metterli.

Per tarare nel modo migliore il trasmettitore si comanderà a distanza la accensione di una lampadina: si regoleranno C3 e L2 del trasmettitore per un funzionamento corretto alla massima distanza possibile.

Concludo brevemente ricordando che resto a disposizione di quanti incontrassero difficoltà nella realizzazione.

A tutti buon lavoro e arrivederci presto.

ACCUMULATORI ERMETICI AL NI-Cd

produzione VARTA - HAGEN (Germania Occ.)

Tensione media di scarica 1,22 Volt

Tensione di carica

1.40 Volt

Intensità di scarica per elementi con elettrodi a massa 1/10 della capacità

> per elementi con elettrodi sinterizzati fino a 3 volte la capacità per scariche di breve durata

TIPI DI FORNITURA:

A BOTTONE con possibilità di fornitura in batterie fino a 24 Volt con terminali a paglietta; racchiuse in involucri di plastica con gli elementi saldati elettricamente uno all'altro Capacità da 10 a 3000 mAh

CILINDRICI con poli a bottone o a paglietta a elementi normali con elettrodi a massa.

Serie D Capacità da 150 mAh a 2 Ah Serie RS adelettrodisinterizzati Capacità da 450 mAh a 5 Ah

PRISMATICI con poli a vite e a paglietta con elettrodi a massa.

Serie D Capacità da 2,0 Ah a 23 Ah Serie SD con elettrodi sinterizzati Capacità da 1,6 Ah a 15 Ah

POSSIBILITÀ di impiego fino a 2000 ed oltre cicli di carica e scarica.

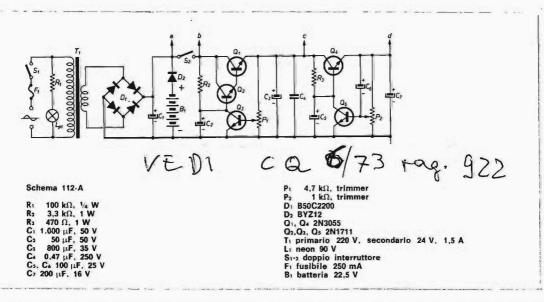
SPEDIZIONE in porto franco contro assegno per campionature e quantitativi di dettaglio.

PER INFORMAZIONI DETTAGLIATE PROSPETTI ILLUSTRATIVI E OFFERTE RIVOLGERSI A:

RAFIL ERIF

S.p.A. **20123 MILANO** Via De Togni, 2 Telefono 898.442/808.822

Antifurto elettronico per abitazione


Giovanni Artini

Vi è mai capitato la notte, quando vi sembra di aver udito nell'ingresso un rumore sospetto, di alzarvi col cuore in una mano e una pantofola nell'altra, percorrere il corridoio come se doveste andare alla camera a gas, accendere la luce e vedere solo il gatto che vi guarda con quei suoi occhi sornioni quasi per ridere dei vostri timori? Ma il gatto non lo sa che c'è gente che, rubando negli appartamenti degli altri, sbarca il lunario: pensa a mangiare e a dormire, non come voi che quando partite per il mare paventate di trovare l'appartamento vuoto. Questo discorso valeva anche per me: ci sono però voluti tre furti in due mesi nel condominio dove abito perché mi decidessi a realizzare questo antifurto che sto per presentarvi. Ce n'è voluto, ma alla fine è nato, anche se la gestazione e il parto sono stati un po' dolorosi. Bando alle ciance! E' ora che inizi a spiegare di cosa si tratta e come funziona. Sostanzialmente il progetto si divide in due parti:

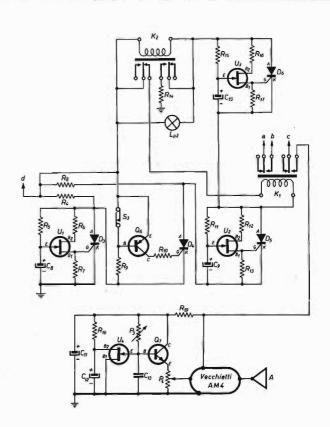
a) Sezione alimentatrice (schema 112-A) b) Sezione di controllo (schema 112-B)

SEZIONE ALIMENTATRICE

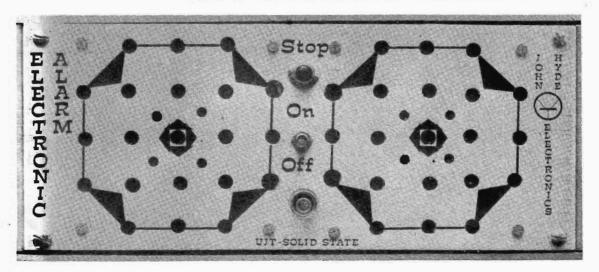
La parte alimentatrice non mi sembra nulla di trascendentale, se si eccettuano la mancanza dei diodi zener di stabilizzazione e la presenza di una batteria collegata in serie a un diodo. Per i primi si tratta di una questione personale: meno le nostre strade si incontrano e meglio è per ambedue; quindi ho preso come riferimento la tensione di massa, cioè potenziale zero. Per la batteria la faccenda è un po' diversa. Ho pensato sia necessaria, quando l'antifurto è ovviamente in funzione, nel caso la tensione di rete venga a mancare sia per causa dell'ENEL, sia per volontà dei soliti ignoti. Ad ogni modo la batteria sopperisce al secondario del trasformatore verificandosi una delle ipotesi suindicate: in funzionamento normale il diodo D₂ serve a impedire che la batteria funzioni da utilizzatore, essendo la sua tensione inferiore a quella del secondario del trasformatore.

La parte alimentatrice è inoltre composta da due distinti circuiti di stabilizzazione in serie: il primo per ottenere tra massa e il punto C una tensione continua di 18 V per alimentare la sirena; il secondo circuito per avere tra massa e il punto D una tensione continua di 13,5 V da inviare alla sezione di controllo. Inutile dire che i valori di queste tensioni si ottengono agendo sui trimmers P_1 e P_2 . Montate i transistor Q_1 , Q_4 su abbondanti dissipatori, mentre per Q_2 e Q_3 sono sufficienti due alette a raggiera. Il discorso sulla alimentazione mi sembra concluso ma lo riprenderò in

SEZIONE DI CONTROLLO

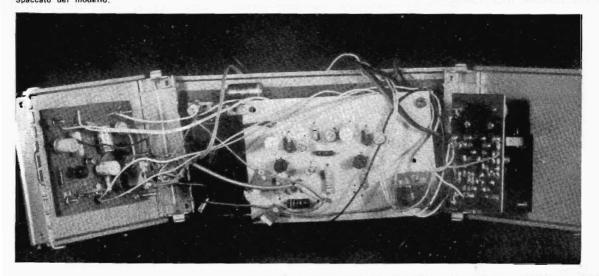

seguito riguardo l'interruttore S2.

Riguardo questa parte premetto che gli unici collegamenti esterni dell'antifurto sono quelli che vanno alla presa di rete e alle placche di controllo. Quest'ultime (S₃) sono la parte sensibile del sistema: bisogna sistemare una lamina di materiale conduttore sulla parte fissa della porta e un'altra sulla parte girevole della stessa in modo che, quando questa è chiusa, le due placche siano in stretto contatto tra loro; a una andrà collegato un capo di S₃, alla seconda l'altro.


Dando tensione all'antifurto tramite il doppio interruttore S_1 - S_2 l'oscillatore a rilassamento, composto da U_1 , R_2 , R_3 , R_4 , R_7 , C_6 , collegato al diodo SCR D_3 , entra in attività. Il condensatore C_6 , tramite le resistenze R_4 e R_5 , comincia a caricarsi fino a raggiungere il valore della tensione di emettitore necessario a portare in conduzione l'unigiunzione. In questa situazione il condensatore si scarica, attraverso il circuito emettitore-base, sulla resistenza R_7 , ai cui

Schema 112-B

R₄ 330 Ω, 1 W R₅ 560 kΩ, ½ W R₆,R₁₂, R₁₆ 470 Ω, ½ W R7, R13, R17 100 Ω. 1/2 W Re 560 Ω, ½ W Re 56 kΩ, ½ W R₁₀ 1 kΩ, ½ W R₁₁ 82 kΩ, ½ W Ria (vedi testo) R15 470 kΩ, 1/2 W R₁₈ 680 Ω , $\frac{1}{2}$ W R₁₉ 1,2 kΩ, $\frac{1}{2}$ W P₃ 22 kΩ, trimmer P₄ 10 kΩ, trimmer Cs, Co C11 80 µF. 16 V C₁₀ 320 μF, 15 V C₁₂ 100 μF, 12 V C₁₃ 0,2 μF, 250 V D3, D4, D5, D6 ATES 40655 (SCR) Q. AC128 Q7 BC107B U1, U2, U3, U4 GE 2N2160 (UJT) Lp2 12 V, 0,15 A K, 12 V 9 V S₃ (vedi testo) AM4 amplificatore Vecchietti 4 W · A altoparlante 5 Ω, 4 W


capi viene ad essere presente una tensione che, inviata al gate di D_3 , permette al SCR di alimentare il circuito di guardia e di cortocircuitare l'oscillatore impedendogli altri impulsi di tensione. Preciso che R_4 serve soprattutto ad assicurare la corrente di mantenimento al diodo SCR affinché rimanga nello stato di conduzione fino a quando viene tolta la tensione di alimentazione.

Vista frontale del prototipo.

Il circuito di guardia è composto da S., Q_a , R_0 , R_0 , R_0 , R_0 , R_0 . Con S chiuso il transistor non conduce e al gate del diodo SCR D_a non è presente alcuna tensione. Aprendo la porta, quindi S_n , il transistor entra in conduzione: al gate del diodo è presente la tensione di eccitazione e il secondo temporizzatore $\{U_a, R_{10}, R_{$

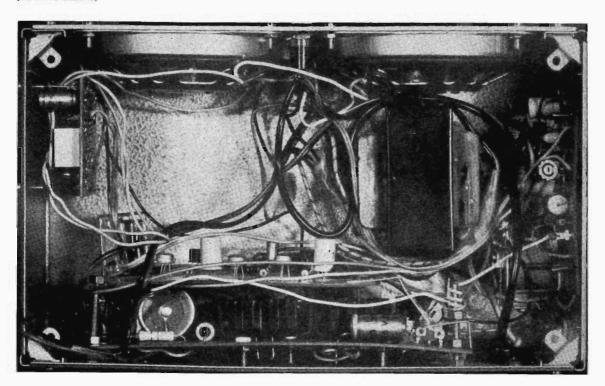
Spaccato del modello.

Contemporaneamente al primo relé è entrato in funzione il terzo temporizzatore (U_3 , R_{15} , R_{16} , R_{17} , C_{10}) uguale ai precedenti che fa scattare, attraverso il diodo SCR D_6 , il secondo relé che, tramite i suoi contatti, oltre ad autoalimentarsi, interrompe la alimentazione al primo relé e quindi alla sirena. Questo mette in condizione di riposo l'antifurto permettendo di spegnerlo. Il valore della resistenza limitatrice R_{14} dipende dal tipo di relé usato ed è dato da

$$R_{14} = \frac{(V_d - V_r) R_r}{V_r} (\Omega)$$

mentre la potenza dissipata dalla R., è data da

$$P = \frac{(V_d - V_r)^2}{R_{in}} (W)$$


in cui V_a = tensione nominale di alimentazione;

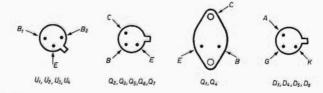
V, = tensione nominale del relè;

R. = resistenza nominale del relè.

In parallelo al secondo relé è collegata una lampadina spia che indica, quando è accesa, la condizione di riposo sopra esposta.

Vista complessiva dall'alto (manca la batteria)

Con questo mi sembra conclusa la spiegazione circuitale del progetto, ma mi dovrete sopportare ancora un po' perché devo dirvi qualcos'altro.


VARIE ED EVENTUALI

Nel prototipo ho usato come tempo di uscita, nel primo temporizzatore, due minuti; otto secondi per il tempo di scatto, nel secondo temporizzatore; circa tre minuti per il tempo di disinnesco, nel terzo.

Questi tempi si possono variare a piacimento sia agendo sui valori delle capacità dei condensatori, sia su quelle delle resistenze. Volendo, al posto delle resistenze fisse si possono mettere o dei trimmers o dei potenziometri, quest'ultimi fissati lateralmente al contenitore, con i quali variare i tempi quando se ne presenta la necessità. Aumentando i valori dei condensatori e delle resistenze aumentano anche i tempi, l'inverso si ottiene agendo in modo contrario.

Riguardo la batteria consiglio di controllare la sua efficienza ogni tanto per non avere un funzionamento incerto in caso di bisogno.

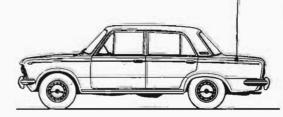
Terminali dei semiconduttori impiegati nel progetto visti da sotto.

Anche se appena aperta e poi richiusa la porta, l'antifurto entra ugualmente in allarme dopo otto secondi se non viene spento prima. Vi consiglio di non porre l'antifurto troppo in vista per evitare che il ladro si accorga che state tramando ai suoi danni e che faccia in tempo a spegnerlo prima che la sirena inizi a ululare.

Ora accendete l'antifurto, uscite, chiudete a chiave la porta: dopo due minuti ci sarà qualcosa che veglierà per voi giorno e notte fino al vostro ritorno E ora uno strepitoso CIAO a tutti!

Un attimo: non fate come me, che all'inizio quando tornavo dimenticavo di spegnerlo e in pochi secondi avevo tutto il vicinato davanti alla porta...

PIU' REMOQRIM MENO QSB UGUALE SIGMA ANTENNE


per automezzi con nuova bobina (Brevettata) a distribuzione omogenea,

La bobina di carico a distribuzione omogenea è immersa nella fibra di vetro dello stilo e distribuita uniformemente lungo tutta la sua lunghezza.

Ouesto sistema è stato particolarmente studiato onde ottenere un lobo di radiazione simile a quello di uno stilo di un quarto d'onda non caricato, pur essendo l'antenna alta cm 175 circa.

Questo particolare sistema consente la quasi totale eliminazione del OSB dovuto all'oscillazione dello stilo, una riduzione del ORM delle vetture ed un aumento della RF irradiata.

Le ANTENNE SIGMA per automezzi NON SONO VUOTE! Diffidate delle imitazioni, il cui rendimento è di gran lunga inferiore.

Le antenne SIGMA DX-C - SIGMA PLCC - SIGMA NUOVA-DX - LINEAR-DX e SIGMA DX-CG sono equipaggiate del nuovo stilo.

In vendita presso i migliori rivenditori.

E. FERRARI - c.so Garibaldi, 151 - Tel. 23.657 - 46100 MANTOVA

- cq elettronica - marzo 1973 -

pagina pierini

a cura di I4ZZM. Emilio Romeo via Roberti 42 41100 MODENA

© copyright cq elettronica 1973

Essere un pierino non e un disonore, perché tutti, chi più chi meno, siamo passati per quello stadio: l'importante è non rimanerol più a lungo del normale.

Pierinata 109 - Il signor Pat. dell'Ufficio Tecnico della Ditta in cui lavoro, si interessava da qualche tempo di accensioni elettroniche a titolo informativo, perché aveva intenzione di installarne una sulla sua macchina. leri mi ha avvicinato e mi ha detto, piuttosto impressionato, che il suo « meccanico » gli aveva elencato tutta una serie di cause per cui una accensione elettronica non può funzionare o funziona malissimo. Gliene era rimasta impressa una sola, ma mi ha promesso che se le farà elencare di nuovo e le trascriverà apposta per me: ebbene, quest'una era che un'auto con accensione elettronica non può fermarsi in montagna sotto un palo dell'alta tensione, altrimenti non riparte più.

Sapevo che tale dispositivo durante i temporali costituisce un serio pericolo perché si mette a fare tali pazzie da fare andare la macchina a marcia indietro con la quarta innestata, sapevo che è imprudente accendere un televisore sul cofano di una macchina con accensione elettronica perché la scintilla nelle candele non scocca più secondo l'aprirsi e il chiudersi del ruttore bensì secondo il ritmo della musica che in quel momento il televisore sta ricevendo, sapevo che sporca moltissimo le candele e consuma in maniera obbrobriosa le punte platinate, sapevo che nella stagione invernale chi ha l'accensione elettronica deve avviare il motore a mano, ma questa del palo dell'alta tensione è stata una sorpresa. Si vede che la mia accensione elettronica deve essere guasta perché la macchina ha funzionato sempre bene nonostante il mio garage sia proprio sotto un traliccio dell'alta tensione. Però io non abito in montagna. Alla prima giornata di bel tempo, vado all'Abetone per provare.

Alcune risposte rapide.

Pierinata 110 - Mi spiace per Alessandro Mignone, via Oberdan 72/2, 16167 Genova-Nervi: non sono riuscito a trovare i dati per il tubo 8BP4. Tutte le ricerche che ho fatto, anche presso alcuni amici, mi hanno fornito solo le connessioni allo zoccolo, cosa che lui ha già. Se qualcuno può essergli utile, è pregato di scrivere alla Rivista o a lui direttamente. Però. Alessandro, chi te lo ha fatto fare di andare a comprare a scatola chiusa un tubo a raggi catodici usato, di cui ignoravi tutto, specialmente il fatto se fosse guasto o no?

Pierinata 111 - An. Col. di Torino vorrebbe costruire un voltmetro digitale, usando un frequenzimetro digitale, e ciò secondo uno schema apparso su una Rivista del '65. Non riesce a trovare i nuclei toroidali da 25 mm, e vuol sapere come poter avvolgere mille spire su tali nuclei. A parte il fatto che non conosco lo schema di cui mi invia una parte, direi di lasciar perdere tutto, perché dal '65 ad oggi le cose si sono enormemente semplificate: con un circuito moderno spenderebbe la metà in tempo, denaro e fatica. Caro Antonio, se tu stesso ti definisci un pierino, perché non cominci con un apparecchio a reazione invece di buttarti in imprese molto difficili, anche per chi abbia una certa esperienza?

Pierinata 112 - Lino Fo, di Parma, legga attentamente cq degli ultimi mesi: troverà l'alimentatore da 5 A, come desidera lui.

Pierinata 113 - Ber. Gia. di Follonica vuol sapere qualche cosa sul circuito « Sincrodina » E' un circuito rivelatore RF che differisce dalla superetero dina unicamente per il fatto che l'oscillatore locale ha lo stesso valore, in frequenza, di quello del segnale entrante. Ouindi esso è a battimento zero rispetto al segnale d'ingresso. In tali condizioni, quel che si raccoglie all'uscita sono le bande foniche, sia AM che SSB. Basta far seguire un filtro di bassa freguenza (passa-banda) e un conveniente amplificatore di bassa per avere il ricevitore completo. Pregi: estrema semplicità circuitale, assenza di immagini, facilità nella ricezione in CW, AM e SSB senza commutare nulla, e la particolarità di essere sempre isoonda col corrispondente qualora l'oscillatore locale venga usato come VFO per il trasmettitore.

Difetti: difficoltà nel realizzare un oscillatore locale molto stabile. Coi necessari perfezionamenti, potrebbe essere il ricevitore di un prossimo futuro.

Ho uno di questi ricevitori, costruito dalla TEN TEC americana, per le gamme dei 3,5 dei 7 e dei 21 MHz (quest'ultima con un telaietto convertitore a 3,5 MHz): ebbene posso dire che non ha nulla da invidiare a ricevitori di classe (e soprattutto di costo) molto maggiore. Sento i vari OM con notevole facilità, la ricezione della SSB è particolarmente buona: il ricevitore è molto stabile se sintonizzato su una stazione onde medie, va su e giù di qualche decina di cicli se si ascolta una emittente di radiodiffusione, e il perché di questa differenza di comportamento non mi è ancora chiara. L'apparecchio è costituito da un oscillatore+separatore a transistor, un rivelatore a MOSFET a doppio « gate », un filtro passabanda da 2000 Hz, e un integrato amplificatore di bassa frequenza. Il fatto che costi solo poche migliaia di lire ne fa apprezzare di più i pregi!

Pierinata 114 - Un altro che sospetto fortemente di « tentativo di sfottimento » nei miei riguardi è un certo Salvatore Ran. abitante in via Vespri Siciliani, a Milano. Uno che abita in quella via, e che ha quel nome non può essere che dell'estremo Nord d'Italia: ebbene, sappia l'amico Salvatore che anche io (o almeno mio padre lo era) sono circa delle sue parti e che quindi mi arrabbio moltissimo se sento « odore » di presa in giro. State a sentire, voialtri Pierini, cosa scrive questo simpatico tipo. Innanzi tutto dice di essere studente del 2º anno di ingegneria elettronica, e fin qui tutto è a posto: poi dice

di essere rimasto cronicamente un Pierino, e anche qui nulla di male. Ma c'è differenza tra un Pierino e l'altro.

Quello che è lecito (pierinescamente parlando) a uno studente di scuola media, è un po' meno lecito a uno studente d'ingegneria elettronica. Per esempio, Salvatore dice di aver sempre creduto che i lineari lavorassero solo in classe C e solo in SSB e si è molto meravigliato quando ha letto su cq che i lineari possono lavorare in AM in classe A, AB1, ecc. Ma guarda, io avevo sempre creduto che i lineari lavorassero più vicini alla classe A che alla classe B, e ciò per poter amplificare « linearmente » il modulato. Chi è il Pierino, io o lui? Ai lettori la risposta: concorsino numero uno con premiazione del vincitore, che sarà colui che avrà meglio descritto succintamente un amplificatore lineare e le ragioni del suo impiego.

Salvatore aggiunge, a commento di quanto sopra, che l'ignorare da parte sua le classi di funzionamento di un

amplificatore deve costituire una grossa pierinata.

E ha ragione, perbacco. Ma nei suoi riguardi la pierinata è un po grave. Che se le studi queste cose, diàmine! Al 2º anno d'ingegneria si studiano, se ben ricordo, integrali, equazioni differenziali, serie di Taylor, serie di Fourier, teorema del Bernoulli, teorema di Bolzano-Cauchy, e quindi per lui dovrebbe essere facilissimo approfondirsi sugli amplificatori, consultando un qualunque testo. Sempre che non si tratti di sfottimento... E qui mettiamoci il concorsino numero due: premierò chi avrà risposto meglio alla domanda « quali sono le classi di un amplificatore e come funzionano ».

Beninteso, la risposta deve servire per tutti i pierini, e non solo per gli studenti d'ingegneria.

Per finire, ecco le ultime tre domande di Salvatore: cosa vuol dire condensatore NPO? vuol dire che ha coefficiente zero di variazione di capacità rispetto alla temperatura. Cosa è un probe in un voltmetro elettronico? E' semplicemente la sonda che nella maggior parte dei casi contiene il rivelatore in modo da poter leggere le tensioni a radiofrequenza.

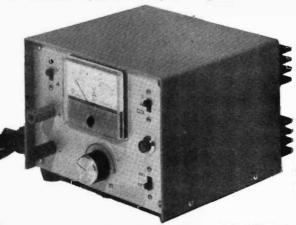
Cosa vuol dire accoppiamento lasco? Ma no. questo è troppo!! L'ho chiesto al mio gatto (siamese) e mi ha sa-

puto miagolare la risposta esatta.

Almeno Turiddu non avesse dichiarato di essere studente d'ingegneria! Beh, per questa volta lo perdoniamo, i numeri arretrati di cq può procurarseli presso l'Amministrazione, in via Boldrini 22 a Bologna.

A causa degli scioperi postali e dei conseguenti enormi ritardi di inoltro della Rivista e della corrispondenza, ho protratto di un mese l'attesa delle risposte al CONCORSO GIGANTE lanciato in dicembre. Al prossimo numero, dunque!

VIA DAGNINI, 16/2 Telef. 39.60.83 40137 BOLOGNA Casella Postale 2034 C/C Postale 8/17390


Nuovo catalogo e guida a colori 54 pag. per consultazione ed acquisto di oltre n. 2000 componenti elettronici condensatori variabili, potenziometri microfoni, altoparianti, medie frequenze trasformatori, bread-board, testine, puntine, manopole, demoltipliche, capsule microfoniche, connettori...

Spedizione: dietro rimborso di L. 250 in

Spedizione: dietro rimborso di L. 250 in francobolli.

ALIMENTATORI REALTIC

Questo è uno degli alimentatori « SERIE REALTIC » che troverete presso i migliori negozi.

CUFFIA STEREO « CAX 37 »

Produzione: AUDAX Impedenza: 2 x 8 Ω

Gamma di frequenza: 20-18000 Hz

Potenza: 2 x 0.5 W Connettore stereo Sensibilità: 92 dB Peso netto: gr. 320

Prezzo L. 13.600 spese postali L. 500

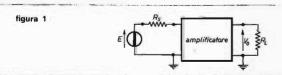
Richiedete il catalogo a « MIRO » - Casella pos, 2034 - 40100 BOLOGNA Inviando L. 100 per rimborso spese postali.

il circuitiere [©]

" to be spiego in un minute

circuitiere ing. Vito Rogianti cq elettronica - via Boldrini 22 40121 BOLOGNA

© copyright cq elettronica 1973


Uno dei tanti modi: ovvero come tentare di « buttar giù » un progetto

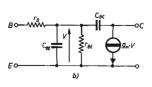
ing. Luigi Provasoli

Il progetto che stò per presentare non vuole assolutamente essere qualche cosa di eccezionale né tantomeno di nuovo; è un progetto di un banalissimo amplificatore a transistori che però mi darà adito di mettere in luce « uno dei tanti modi » che si possono seguire in sede di stesura. Nel contempo mi darà lo spunto per ricordare alcune formule utili alla sintesi

ma ancor più all'analisi di un qualsiasi circuito a transistori.

Il progetto si riferisce al tema dato all'esame di Stato al Politecnico di Milano alcuni mesi fa. Si tratta di progettare un amplificatore a transistori avente i seguenti parametri:

- impedenza di ingresso $Z_i > 10 \text{ k}\Omega$ impedenza di uscita $Z_u < 20 \Omega$ resistenza interna del generatore $R_S = 1 \text{ k}\Omega$
- − resistenza del carico R_L = 1 kΩ − guadagno di tensione G = V_0/E = 10 − dinamica richiesta sul carico ± 5 V.


I transistori a disposizione siano caratterizzati dai seguenti parametri:

$$\begin{array}{lll} r_{\textrm{B}} &=& 50~\Omega \\ f_{\textrm{1}} &=& 600~\textrm{MHz} \\ \beta &=& 50 & \textrm{(PNP oppure NPN)} \\ C_{\textrm{Bc}} &=& 3~\textrm{pF} \\ V_{\textrm{CE}} &=& 0.7~\textrm{V} \end{array}$$

Sono inoltre disponibili due batterie da +25 V e -25 V. Prima di passare alla descrizione del progetto penso sia opportuno rivedere gli schemi equivalenti dei transistori quando detti dispositivi siano sottoposti a « piccoli segnali ».

figura 2

Collegamento di un transistore a emettitore comune.

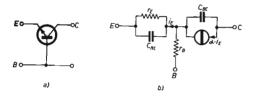
resistenza di base guadagno in corrente ß CBE capacità base-emettitore

capacità base-collettore CBC

resistenza interna del generatore di segnale applicato

resistenza di carico

Tra questi parametri valgono sempre le seguenti relazioni:


$$r_{BE} = \beta \cdot r_{E}; r_{F} = \frac{K \cdot T}{q \mid I_{E} \mid}; g_{m} = \frac{1}{r_{E}}; C_{BE} = \frac{1}{\omega_{I} - r_{E}} C_{BC};$$

$$g_m \cdot r_{BE} = \beta; \quad \beta = \frac{\alpha}{1 - \alpha}; \quad \omega_1 = 2 \pi f_1$$

IE = modulo della corrente di polarizzazione; K costante di Boltzmann

pari a 1.38 · 10·23 joule/°K; A_{1BF}
$$\cong \frac{g_m \cdot R_s \cdot r_{BE}}{r_{BE} + r_{B} + R_s} = \beta = g_m \cdot r_{BF}$$

$$A_{vBF} \, \cong \, \frac{-\beta \, \cdot \, R_L}{r_B \, \cdot \, R_S \, \cdot \, r_{BE}}; \quad \begin{array}{l} Z_{1BF} \, \cong \, R_S / / \left(r_B \, + r_{BF} \right); \\ Z_{uBF} \, \cong \, R_L. \end{array}$$

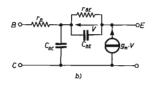
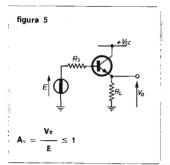


figura 3

Collegamento di un transistore a base comune.

$$\begin{array}{l} \text{Aibf} \cong -\alpha \\ \\ \text{A.bf} \cong \frac{-\alpha \cdot R_L}{R_s + r_E + r_B (1 - \alpha)} \end{array} \qquad \begin{array}{l} Z_{iBF} \cong r_C + r_B (1 - \alpha) \\ \\ Z_{uBF} \cong R_L \end{array}$$

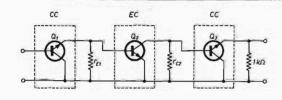

figura 4

Collegamento di un transistore a collettore comune.

$$A_{VBF} \cong \frac{1}{1 + \frac{R_s + r_B + r_{BE}}{1 + \frac{R_s + r_B}{1 + \frac{R_s + r_$$

Va appena notato che gli schemi delle figure 2b, 3b, 4b sono equivalenti tra loro e ricavabili l'uno dall'altro con semplici passaggi matematici. Ciò risulta ovvio qualora si pensi che rappresentano lo stesso transistore nei vari possibili collegamenti.

Come già detto in precedenza, le soluzioni possibili sono molteplici, io mi limiterò a esporre quella da me seguita che, seppur non brillante, ha il vantaggio di essere slegata dal progetto in esame e quindi riapplicabile in altri casi. Iniziamo ad esaminare i dati: si richiede una elevata impedenza di ingresso e una bassa impedenza d'uscita; una semplice soluzione consisterebbe nel fare un unico stadio reazionato serie in ingresso e parallelo in uscita.



uscita. Seguiamo invece un altro procedimento cioè facciamo uno stadio d'ingresso in modo che abbia elevata impedenza e un altro per l'uscita a bassa impedenza; un terzo stadio intermedio mi darà l'amplificazione desiderata.

Questo perché avremo a che fare con tre stadi distinti calcolabili separatamente. I meni esperti potranno così imparare come progettare dei circuiti monostadio, mentre per i più abili sarà un ripasso.

NOTA: delle possibili connessioni di un transisore quella con massima Z_{ingresso} è a collettore comune come pure quella a più bassa impedenza in uscita. Decidendo quindi di adottare in ingresso e in uscita due stadi a collettore comune occorre porre uno stadio intermedio che dia guadagno in tensione di 10 o più in quanto gli altri due stadi guadagnano sempre meno o al più uquale a 1.

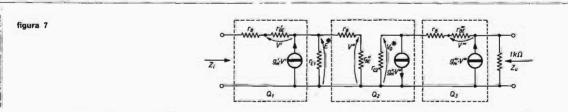

Lo schema da elaborare sarà quindi del tipo di figura 6.

figura 6

Circuito semplificato per il segnale.

Sostitulamo ora in questo circuito ai vari transistori i loro circuiti equivalenti per piccoli segnali e alle frequenze intermedie. Lo schema diventerà quello di figura 7.

A questo punto possiamo esprimere i valori delle Z_i e $Z_{\rm e}$ in funzione dei parametri che compaiono nel circuito. Risulta quindi che

$$Z_i \cong \beta [r_{Ei}//(50 + r_{BE}'')]$$
 (1)

$$Z_{u} = \frac{r_{BE}'' + 50 + r_{C2}}{\beta}$$
 (2)

Imponiamo che tali impedenze valgano rispettivamente Z, = 15 k Ω e Z $_{u}$ = 15 Ω . Risulta quindi dalla (2)

$$r_{BE}" + 50 + r_{C2} = 750$$

Attribuiamo ora a r_{BE} " un valore di $\cong 300\,\Omega$, valore usuale, e quindi si ha $r_{\text{CP}}\cong 400\,\Omega$.

Dalla (1), considerando che r_{E_1} è sempre molto maggiore di $(50+r_{BE}")$, si può trascurare nel parallelo e quindi risulta 15 k $\Omega=50~(50+r_{BE}")$ e cioè $r_{BE}"\cong 250~\Omega$.

A questo punto si può calcolare il guadagno in tensione in forma parametrica per determinare gli elementi ancora incogniti. Si noti che essendo i guadagni del 1° e 3° stadio prossimi all'unità, il guadagno globale risulta con buona approssimazione essere dato solo dallo stadio intermedio e cioè

$$G = \frac{V_0}{F} \cong \frac{{V_0}^*}{F^*}$$

Ora $V_0^* = g_m$ " V" 400 poiché il 3º stadio essendo a collettore comune presenta una elevata impedenza di ingresso.

Inoltre

$$V'' = \frac{E^*}{r_{BE}'' + r_B}$$

e cioè

$$G = \frac{(g_m" 400) r_{BE}"}{r_{BE}" + r_B} = \frac{(g_m" 400) r_{BE}"}{r_{BE}" + 50} = 10;$$

poiché gerse = β risulta anche:

$$\frac{50 \cdot 400}{r_{BE}'' + 50} = 10$$

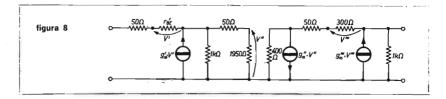
ovvero $2000 = r_{BE}" + 50$ cioè $r_{BE}" = 1950 \Omega$:

Dalla relazione

$$r_{BE} = \beta \frac{KT}{\alpha + I_{C}}$$

essendo

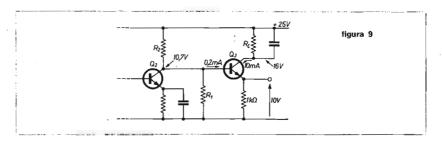
$$\frac{KT}{q} \cong 25 \cdot 10^{-3} \,V$$


si trova

$$I_{E}$$
" (mA) $\approx 0.65 \, \text{mA}$

Ouesta è quindi la corrente di polarizzazione del 2º stadio dell'amplificatore. Nel calcolo del guadagno abbiamo ottenuto un risultato per r_{BE} " di 1950 Ω nettamente contrastante con i 250 Ω trovati precedentemente.

Niente di grave, proviamo a porre il nuovo valore di r_{BE} " nella formula che dà Z_i ; si trova che tale impedenza è aumentata, quindi soddisfiamo maggiormente le condizioni imposte. Se poniamo come valore di $r_{\text{cl}}=1$ k Ω , si ottiene $Z_i=50$ (1 $\cdot\,10^3\,\Omega$ // $2\cdot\,10^3\,\Omega$) $\cong 33\cdot\,10^3\,\Omega$, valore che soddisfa ampiamente i requisiti.


A questo punto è bene rifare lo schema ponendo i valori fino ad ora determinati. Si ottiene lo schema di figura 8.

Tutti i parametri che devono ancora essere determinati si ricaveranno dal calcolo delle polarizzazioni che seguirà. Sarà nostra cura badare di non rovinare tutto ciò che è stato fatto fino ad ora con reti di polarizzazione mal calcolate.

Iniziamo dallo stadio finale; poiché si richiede una dinamica sul carico di \pm 5 V, imponiamo che in assenza di segnale, sul carico vi siano 10 V e la $\dot{V}_{\text{CE}}=6$ V così saremo sicuri di non mandare né in interdizione né in saturazione lo stadio finale.

La I_E sarà perciò di 10 mA e $V_B = 10.7 \text{ V}$.

Verifichiamo ora cosa vale r_{BE}" alla luce di questa nuova imposizione.

Risulta

$$r_{BE}^{""} = 50 \cdot \frac{25 \cdot 10^{-3}}{10 \cdot 10^{-3}} = 125 \Omega$$

perciò nettamente inferiore ai $300\,\Omega$ supposti precedentemente. Niente di male, vorrà dire che la Z_n sarà inferiore ai 15 Ω da noi prefissati e precisamente varrà

$$Z_u = \frac{125 + 50 + 400}{50} \cong 11 \Omega.$$

Calcoliamo ora Rc:

$$R_c = \frac{25 - 16}{10} 10^3 \cong 900 \Omega$$

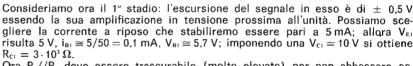
NOTA: tale calcolo risulta ovvio se si considera che Q_3 è attraversato da 10 mA e ha il collettore a 16 V.

Ora dobbiamo imporre che R₁ // R₂ = r_{c2} = 400 Ω e che la tensione della base di Q₃ valga 10.7 V, perciò:

$$\begin{cases} \frac{R_1 \cdot R_2}{R_1 + R_2} = 400 \\ (R_1 + R_2) : 25 = R_1 : 10.7 \end{cases}$$

Risolvendo si ottlene: $R_1 \cong 700~\Omega;~R_2 \cong 935~\Omega.$ L'ultimo stadio risulta così polarizzato.

Considerando il 2º stadio notiamo che anche quest'ultimo ha un'escursione disegnale di ± 5 V in uscita dato che è l'unico ad amplificare. Poniamo, per i motivi esposti precedentemente, la $V_{E2} = 5 \text{ V}$ e poiché la I_{E2} vale 0,65 mA avremo


$$R_{E_2} = \frac{5}{0.65} = 7.7 \cdot 10^3 \,\Omega$$

La base di Q2 dovrà essere perciò a 5,7 V in condizioni di riposo; allora si può imporre che

$$\begin{cases} R_3//R_4 = 10 \cdot 10^3 \,\Omega \\ \frac{R_3 + R_4}{25} = \frac{R_4}{5.7} \end{cases}$$

Da notare che si è imposto che il parallelo di R_3 e R_4 sia di $10\cdot 10^3\,\Omega$ poiché nel circuito equivalente di segnale tale parallelo risulta a sua volta in parallelo alla resistenza di 10º 0 posta tra l'emettitore di Q, e massa. Imponendo un valore di 10° Ω si cerca di non falsare con la rete di polarizzazione i calcoli svolti precedentemente.

Si ottiene così che $R_3 = 44 \cdot 10^3 \Omega$; $R_4 = 13 \cdot 10^3 \Omega$.

Ora R₅//R₆ deve essere trascurabile (molto elevato) per non abbassare eccessivamente l'impedenza d'ingresso; inoltre, in tale partitore, il punto intermedio (base di Q₁) deve trovarsi, a riposo, a 5,7 V.

Impostando, alla luce di tali requisiti, i calcoli, si trova che una coppia di valori soddisfacenti è $R_s = 65 \cdot 10^3 \,\Omega$ e $R_o = 55 \cdot 10^3 \,\Omega$.

A questo punto manca solo di collegare il 1º e il 2º stadio tra loro e connettere il generatore all'ingresso.

Circa il primo problema, si può risolvere ponendo un condensatore di sufficiente capacità tra E1 e B2, oppure un diodo zener (tale dispositivo si comporta come un cortocircuito per il segnale).

La differenza tra le due soluzioni sta nel fatto che con il diodo zener l'amplificatore risulta accoppiato anche in continua, mentre con il condensatore no. Scegliendo la seconda soluzione risulta allora il circuito di figura 12.

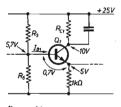


figura 11

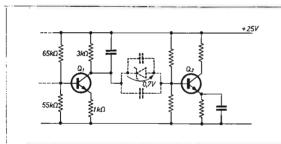
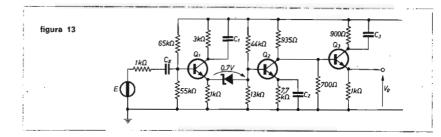



figura 12

NOTA: è buona norma porre in parallelo allo zener un condensatore per ridurre il rumore di origine termica introdotto dal semiconduttore.

Il collegamento del generatore di segnale con impedenza interna di $10^3\,\Omega$ può essere fatto attraverso un condensatore per impedire la circolazione di una componente continua in esso; nel caso invece che detta componente non fosse nociva al generatore esterno e si volesse anche qui un accoppiamento in continua il collegamento verrebbe realizzato con un circuito puramente resistivo.

Alla fine siamo giunti al circuito di figura 13.

Vediamo ora il motivo per cui si sono posti C_1 , C_2 , C_3 ; per segnali di frequenze non troppo basse tali condensatori possono essere considerati dei corto circuiti così il 1º transistore risulta connesso a collettore comune, il 2º a emettitore comune e il 3º a collettore comune. Le frequenze alle quali si iniziano a far sentire gli effetti di tali capacità si possono dedurre dalla formula $\omega_h = 2\,\pi\,/\,T$ dove $T = R\cdot C$, essendo C la capacità in esame e R la resistenza equivalente in parallelo ad essa. Da quì si vede che più alta è la capacità e più bassa risulta la frequenza di taglio. Al contrario, in assenza di segnale, tali capacità è come se non ci fossero, quindi la resistenza a loro in parallelo limita la corrente di polarizzazione al valore da noi calcolato. Analogo ragionamento vale per C_s , più elevata sarà la sua capacità e più bassa risulterà la frequenza di taglio dell'amplificatore.

2

A questo punto penso di aver concluso e di essere stato sufficientemente chiaro nell'esporre il procedimento di calcolo. Parecchie volte siamo giunti a determinare dei parametri che in seguito abbiamo cambiato: niente di strano, in sede di progetto è sempre necessario fare delle ipotesi che in seguito vanno verificate. Anzi, come consiglio, vi suggerirei ora di esaminare il circuito e di verificare se nulla è cambiato nelle nostre ipotesi iniziali e se sono ancora rispettati i requisiti imposti.

Al nostro prossimo incontro, se vi potrà interessare, vedremo come si calcola la banda passante di detto amplificatore, o meglio studieremo un metodo valido in generale, adattabile a qualsiasi schema. Saluti.

TEMPO

AMPLIFICATORI LINEARI 2 METRI/FM SOLID STATE

originali U.S.A., con certificato di garanzia -

ingresso	USÇITA	Assorb.to a 13,8 v		PKEZZU	Als I I III I I I I I I I I I I I I I I I
1-2.5 W	25-30 W	4 A	L.	86.000	Altri modelli intermedi a richiesta.
5-15 W	35-55 W	5 A	L.	105.000	* Fornibile anche il complessivo:
5-12 W	70-90 W	13 A	L.	195.000	Wattmetro, comando a distanza e indicatore di
1-2,5 W	120-130 W	18 A	L.	235.000	tensione alimentazione TCP 12A L. 35.000
	1-2,5 W 5-15 W 5-12 W	1-2,5 W 25-30 W 5-15 W 35-55 W 5-12 W 70-90 W	1-2.5 W 25-30 W 4 A 5-15 W 35-55 W 5 A 5-12 W 70-90 W 13 A	1-2.5 W 25-30 W 4 A L. 5-15 W 35-55 W 5 A L. 5-12 W 70-90 W 13 A L.	1-2.5 W 25-30 W 4 A L. 86.000 5-15 W 35-55 W 5 A L. 105.000 5-12 W 70-90 W 13 A L. 195.000

Caratteristiche dei

TEMPO

VHF/FM power amplifier:

- T/R automatica
- minime dimensioni e peso
- transistors « balanced emitter »: autoprotetti
- bobine stampate
- risposta a frequenze spurie: —60 dB

- presa comando a distanza, nei tipi con *
- installabili ovunque: in mobile o in stazione fissa con alimentatore fornibile a richiesta
 - cavi per alimentazione e collegamento al transceiver forniti

KFZ elettronica - 12020 SAN DEFENDENTE (Cuneo) - Telefono (0171) 75.229

NOTIZIARIO NUOVI PRODOTTI

notiziere I4SN, Marino Miceli 40030 BADI 192 (BO)

© copyright cq elettronica 1973

Sistema d'allarme per avarie, a dieci punti

Tale sistema di segnalazione e allarme si presta a numerosi impieghi come: sorveglianza di macchinario, impianti di riscaldamento, aereazione, condizionamento, ecc.

Quando uno stato anormale, come l'arresto di un albero, o la mancanza di pressione in un condotto, o la bassa temperatura, provocano la chiusura del contatto dell'elemento primario posto sull'organo da controllare, sul quadro di allarme del sistema compare una segnalazione luminosa lampeggiante; frequenza della pulsazione: da 0,5 a 1 al secondo.

Prodotto dalla: Elektron Gesellschaft, Buschstrasse 372, 4150 Krefeld - Germania Federale.

Mescolatore subminiatura

Il modello 1763 completamente sigillato in vetro e schermato in contenitore metallico è insensibile tanto all'umidità, come ai campi RF.

Il mescolatore ha due ingressi siglati A e C, ambedue ammettono frequenze da 1 a 500 MHz. Temperatura ambiente: da —40 °C a +100 °C; dimensioni: cubo di 14 mm.

Prodotto dalla: Hartfield Instr. Ltd Plymouth - Burrington way, Devon - PL5 3LZ - Gran Bretagna.

Relay selettivo

Per inspiegabili motivi, nel nostro Paese il relay a lamine risonanti non ha mai avuto fortuna: per il multiplexing, anche nel caso di semplici segnali, si preferiscono i filtri; negli altri Paesi, invece, i relais a lamine risonanti non sono mai passati di moda.

Quello che presentiamo è quanto mai sofisticato: nel volume di 72 x 43 x 19 mm troviamo filtri attivi, reed-relais e transistori - pertanto il multiplexing viene. con tali aggiunte, esteso a un gran numero di frequenze tra 400 Hz e 50 kHz. Dato il Q elevato ottenibile con la risonanza meccanica, la banda passante è del solo 2 %; ma la separazione minima tra due frequenze adiacenti è del 10 %, in modo che piccoli spostamenti nella frequenza del generatore sono accettati. Usi più comuni: trasmissione di dati, non troppo veloce; attuazione di lavori in processi programmati; sistemi di segnalazione selettivi, fissi e mobili

Prodotto dalla: Richard Jahre - Lutzowstrasse 90 - 1000 Berlin 30 Germania Federale.

Moduli logici con alta immunità al disturbo

La nuova serie 30 della Philips è caratterizzata da « high noise immunity ». Se sono rose fioriranno... diciamo noi; infatti la paura che le logiche impazziscano in seguito a disturbi elettrici di vario genere, ha finora fatto da freno alle applicazioni industriali su vasta scala, a meno di non ricorrere a grosse complicazioni (che in molti casi facevano restare fedeli al vecchio relay). A nessun progettista fa piacere, infatti, sapere che gli ascensori di un certo palazzo si mettono in moto da soli o si arrestano arbitrariamente quando un vicino radioamatore trasmette; né che una modernissima nave passeggeri rallenti o acceleri quando la cucina accende i forni a RF (sono fatti accaduti).

La serie 30 comprende elementi logici, timers, amplificatori di potenza, moduli di interfaccia vari e per pilotaggio di lampade e relais; accessori: dai portaschede ai racks.

Per informazioni indirizzarsi alla Philips - Milano.

Nuovo filtro per ricevitori FM

Interessa gli OM e i costruttori di apparati per amatori, il nuovo filtro a cristalli siglato XM107SO4 - ha la banda passante di $\pm 7\,\mathrm{kHz}$ a $-6\,\mathrm{dB}$ e $\pm 21\,\mathrm{kHz}$ a $-40\,\mathrm{dB}$ con ripple entro la banda passante di 1 dB e perdita di inserzione a 3 dB. La frequenza nominale è 10,7 MHz il filtro è progettato per modulazione di frequenza a banda ristretta, come prescritto per le stazioni di amatore.

Il filtro, che ha le dimensioni di una custodia per cristallo tipo HC6/U, può essere montato su uno zoccolo per detto.

Costa 60 marchi tedeschi.

inserzione a 3 dB. La frequenza nominale è 10,7 MHz, il filtro è progettato Indirizzare richieste a Walter Schilling, 7401 Nehren über Tubingen, Germania Federale.

Fonometro per rumore da 24 a 140 dB

Strumento molto compatto, portatile, con cinghia per tracolla. Simula l'adempienza dell'orecchio umano ed esegue misure oggettive che vanno dal limite di audibilità alla soglia del dolore. Alimentazione: due pile 4,5 V. E' disponibile un'uscita per analizzatore, oscilloscopio, o cuffia. Prodotto dal: Laboratoire Electro-Acoustique - 5 Rue J. Parent - 932 Rueil - Francia.

Un economico modulo di ricezione allo stato solido

Lo AR10 è un ricevitore « base » tipo supereterodina a doppia conversione, gamma fissa 28 ÷ 30 MHz, realizzato su una scheda di modeste dimensioni. Lo AR10 rappresenta un modulo per la costituzione dei più svariati ricevitori, naturalmente occorre dotarlo di cassetta, manopola a demoltiplica fine per la ricerca delle stazioni; occorre inoltre un convertitore multigamma HF e/o un convertitore VHF, occorre la BF di potenza e l'alimentazione. Ottime applicazioni si hanno nella banda due metri, non solo per le stazioni a modulazione di ampiezza, ma anche sui canali FM: occorre una semplice commutazione e l'aggiunta di una piastrina contenente un amplificatore limitatore di una piastrina contenente un amplificatore di una piastrina contenente di una piastrina co

commutazione e l'aggiunta di una piastrina contenente un amplificatore-limitatore, discriminatore. La piastrina, siglata AD4, si basa sull'impiego dell'integrato TAA661 — tra l'altro il discriminatore così realizzato ha una buona resa anche con deviazioni ±3 kHz, in accordo con le recenti norme IARU. Per una buona ricezione di segnali SSB, occorre, invece, l'aggiunta di un costoso filtro ai terminali previsti; in più è consigliato dotare di un condensatore nonio, con manopola separata, l'oscillatore a frequenza variabile dello AR10. Prezzi:

Modulo ricevitore AR10: L. 34.800
Adattatore FM AD4: L. 3.900
Amplificatore BF AA1: L. 3.700
Convertitore 2 m AC2A: L. 19.600

Prodotti dalla S.T.E. - via Maniago 15 - 20134 Milano.

Oscillatore a cristallo in custodia TO5

Nel cilindretto di 9 mm di diametro e 7 mm di altezza, sono incorporati: il circulto integrato con transistori, resistori e condensatori. Il modulo viene fornito per qualsiasi frequenza compresa tra 10 e 22 MHz. Prodotto dalla Marconi Comm. Systems Ltd. - Chelmsford - Essex - Gran

Bretagna.

Tester digitale

26 portate suddivise in: 5 tensioni c.c.; 5 tensioni c.a.; 5 correnti c.c. e 5 correnti c.a. Oltre a sei portate di resistenze con precisione 0,1 % ovvero un digit.

Prodotto dalla Simpson Co. Chicago (Illinois) 5200 W. Kinzie Str. 60544 - U.S.A.

Un integrato per filtri attivi

Il TAA960 contiene tre amplificatori identici, uno di essi pilota lo stadio di uscita, con resa di emettitore (emitter follower).

A parte gli usi generali, il TAA960 è progettato per l'impiego particolare come filtro attivo, con l'aggiunta di reti RC esterne. I valori limite nell'impiego come filtro sono: O = 45; frequenze: da 20 Hz a 150 kHz.

Prodotto dalla Mullard Torrington Place - London WC 1 E - 7HD - Gran Bretagna

Calcolatrici elettroniche tascabili col nuovo microcircuito C500

Il nuovo microcircuito MOS/LSI siglato C500 realizza su un solo chip tutte le logiche necessarie per eseguire le 4 operazioni aritmetiche fondamentali; esso, inoltre, pilota un visualizzatore dei risultati, a otto cifre (figura 1)

figura 1

Col nuovo microcircuito tipo C500 della General Instrument si può realizzare una calcolatrice tascabile delle dimensioni di un pacchetto di sigarette. e in grado di eseguire le 4 operazioni fondamentali, presentando i risultati su un visualizzatore a otto cifre.

Il C500 ha il vantaggio di consentire lo svolgimento delle operazioni nel modo algebrico più semplice, ossia agendo sui tasti nella consueta successione in cui tali operazioni si svolgono manualmente.

Il C500 realizzato in contenitore dual-in-line a 24 terminali, è prodotto dalla General Instrument Europe SpA, piazza Amendola 9 - 20149 Milano.

Allarme per eccesso fumi nel camino

Secondo le vigenti norme antinquinamento, la densità dei fumi deve essere mantenuta sotto livelli piuttosto bassi, pertanto un dispositivo fotoelettrico che dia (su uno strumento a bobina mobile) una indicazione relativa della buona combustione, deve essere molto sensibile ma anche di stabile funzionamento.

Quello di cui parliamo, oltre alla indicazione visiva, dispone di un allarme a circuiti integrati che aziona una lampada e una suoneria quando i fumi superano una certa densità.

Lo strumento, che reca sul pannello, oltre allo strumento e alle lampade, anche i bottoni di « set » e tacitazione allarme, è contenuto in una cassetta di alluminio fuso con staffe per montaggio a parete.

Prodotto dalla: Photoelectronics - Arcall House - Restmor way - Hackbridge - Surrey - Gran Bretagna.

Triacs

Ouesti interruttori in corrente alternata, prodotti con la tecnica dei semiconduttori al silicio, operano sulle due semionde: lo stato di ON e di OFF dipendono dalla polarità del segnale c.c. applicato al gate (porta).

Nuovi triacs RCA per forti correnti: sono siglati 40773 per tensione 115 V_{eff}; 40774 per 208 V_{eff}, sopportano carichi induttivi, oltreché resistivi, fino a 400 Hz. Per informazioni: Silverstar - Milano.

l recentissimi « Glass passivated triacs » prodotti in Svizzera: sono siglati col numero di serie TAG240/246, hanno custodie in plastica, la tensione di lavoro max è $600\,V_{\rm eff}$; le correnti, per i due modelli, sono rispettivamente $6.5\,$ e 8 A.

L'innovazione consiste nel processo di produzione, mediante il quale la parte attiva è protetta da un consistente deposito vetroso; inoltre un accurato processo di diffusione assicura un triggering preciso e simmetrico.

Il bottone di fissaggio è a massa, infatti i tre terminali hanno un isolamento di $2500\,\mathrm{V}_{\mathrm{prya}}$.

Con analoghi processi vengono prodotti i più costosi triacs in metallo, tensione 600 $V_{\rm eff}$, correnti da 2 a 10 A.

Prodotti dalla: Transistor AG - Hohlstrasse 610 - 8048 Zurigo - Svizzera.

Transistore epitassiale per alta tensione e forte corrente

Il modello 1843 viene prodotto per alimentatori, regolatori di tensione, survoltori c.c.; convertitori di frequenza c.a.; amplificatori di potenza per usi generali e per controlli industriali.

 $\tilde{V}_{ceo} = 375 \text{ V}; I_c \text{ di cresta} = 30 \text{ A}.$

Prodotti dalla Westinghouse El. Corp. Box 868 - Pittsburgh (PA) - 15230 U.S.A.

Allarme a ultrasuoni

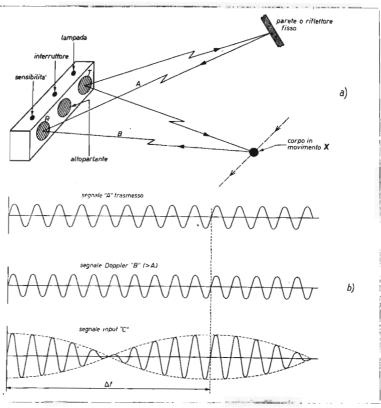

E' un allarme contro i ladri e gli intrusi, che potrebbero entrare nell'area proibita di un edificio. Il principio di funzionamento è basato sull'effetto Doppler: un trasduttore $\mathbf T$ fa vibrare l'aria a 62 kHz con onde persistenti; un altro trasduttore $\mathbf R$ accordato sulla stessa frequenza capta tutti gli echi riflessi dalle pareti e oggetti. Nel caso entro il campo si introduca un oggetto in movimento $\mathbf X$ i segnali riflessi da questo che giungono in $\mathbf R$ avranno una frequenza leggermente diversa da quella emessa (frequenza Doppler) (figura 2).

figura 2

a) I treni di ultrasuoni emessi dal trasduttore T vengono riflessi dagli ostacoli circostanti, e raggiungono il trasduttore ricevente R: raggio « A ».

Anche un ostacolo in movimento riflette gli ultrasuoni, ma a secondo se si avvicina o si allontana la frequenza del segnale ricevuto « B » sarà maggiore o minore di quella emessa da « T ».

b) Nella catena di amplificazione del ricevitore viene immesso il segnale «C» ottenuto per battimento tra i treni d'onda «A» e «B» della precedente figura 2 a).

Il complesso ricevente, insensibile per la fondamentale di 62 kHz, è invece attivo per le basse frequenze generate dal battimento tra la frequenza nominale A e quella riflessa dal corpo in movimento B. Pertanto l'inviluppo del segnale modulato C di figura 2b viene amplificato e va ad attivare una segnalazione d'allarme ottica e acustica.

L'adempienza dell'amplificatore è ottima tra 10 e 700 Hz, corrispondenti a velocità del corpo X comprese tra 0,03 m/sec e 2 m/sec.

La Philips produce i trasduttori in ceramica piezoelettrica con la sigla PXE5: si tratta di dischi di 10 mm, dello spessore di 1 mm. La Casa citata fornisce, inoltre, i dati per la costruzione del complesso ricetrasmittente: un transistore oscillatore che pilota T e un amplificatore a cinque transistori e quattro diodi per l'attuazione dell'allarme. La cassetta, che contiene anche le pile da 9 V, ha le dimensioni: lunghezza 225 x altezza 46 x profondità 32, tutte in mm. Consumó a riposo 2,5 mA, in allarme 60 mA.

Interruttori subminiatura a leva e pulsante

Non ostante le piccole dimensioni, questi interruttori/deviatori a una o due vie sono garantiti per 250 $V_{\rm eff}$ con 10 Å.

La alta qualità del prodotto si deve a un generoso impiego dell'argento e successiva doratura dei contatti.

Prodotti dalla Arrow El. Switches Ltd. - Southall - Brent Road - Middlesex - Gran Bretagna.

"Senigallia show,"

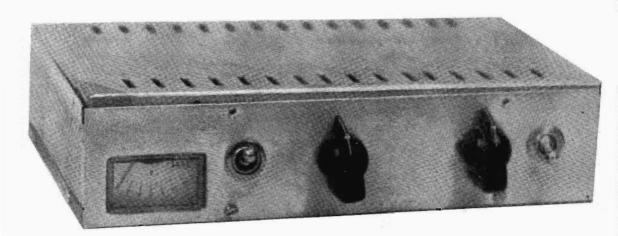
panoramica bimestrale sulle possibilità di impiego di componenti'e parti di recupero

a cura di Sergio Cattò via XX settembre, 16 21013 GALLARATE

Copyright cq elettronica 1973

Pietro Platini: amplificatore lineare per i 10 m (e frequenze limitrofe)

I circuiti che mi appresto a presentarvi possono tornare molto utili in diverse occasioni, magari per arrostire le castagne (si, sono proprio quel Pietro del risotto coi funghi e con i « baffetti »).

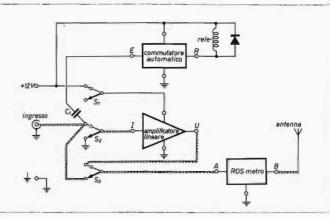

Se poi montate tutti e tre i circuiti otterrete un piccolo amplificatore lineare per i 10 m, con commutazione automatica ricezione-trasmissione, ROSmetro incorporato, il tutto alimentato a 12 V e quindi per mobile.

Dati tecnici

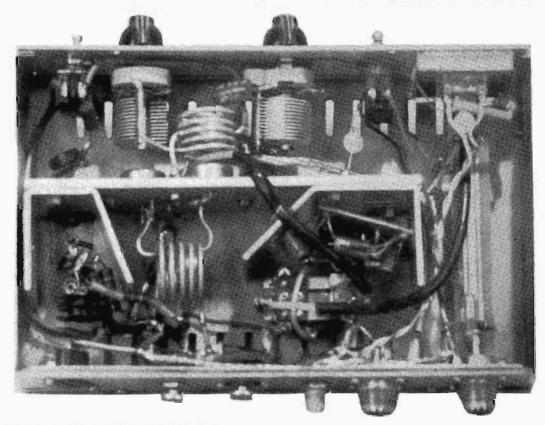
 gamma accordabile 26 ÷ 30 MHz ingresso 1 W uscita 3,5 W ingresso 3 W

La potenza massima è determinata dal tipo di transistore usato: con il BD117. economicissimo, gli 8 W sono da considerarsi quasi condizione limite. Infatti aumentando oltre la potenza d'ingresso, aumenta la modulazione negativa e diminuisce il guadagno fino a portarsi a 1 per un'uscita di poco superiore a una decina di watt.

uscita 8 W

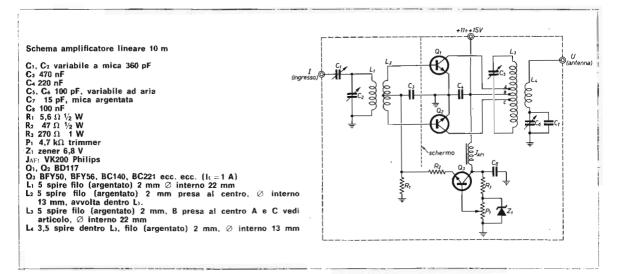

Comunque usando dei transistori migliori,che però sono anche più costosi. nati espressamente per uso di amplificazione in RF (il BD117 è un finale audio!), la potenza e l'amplificazione aumentano notevolmente. Per esempio il BLY64 (4 klire) potrebbe andare meglio ma non ci ho mai provato per mancanza di tempo. Per aumentare la « birra » si potrebbe aumentare la tensione di alimentazione, ma questo è possibile solo con un uso fisso, mentre il lineare è nato per uso mobile.

Il circuito è essenzialmente composto da un push-pull. C, e C, servono ad accordare l'impedenza d'ingresso dell'amplificatore a quella di uscita del trasmettitore e possono essere sostituiti con condensatori fissi (a mica) se si usa sempre lo stesso trasmettitore; C, e C, servono invece per l'accordo d'antenna.


Il transistore Q_3 serve a stabilizzare la polarizzazione di base dei due BD117, contro le variazioni di tensione di alimentazione, in modo che la corrente di riposo sia ragionevolmente stabile. Lo schema in se è abbastanza chiaro e quindi le mie note saranno soprattutto rivolte al montaggio pratico.

Schema completo a blocchi

C₁ vedi schema commutazione S₁, S₂ e S₃ sono gli scambi del relè Nella difficoltà di reperire un relè a tre scambi se ne può usare uno a due eliminando S₁, cioè con l'amplificatore sempre alimentato.



I collegamenti devono essere veramente corti e la sezione dei fili elevata date le alte correnti in gioco. Q_1 e Q_2 vanno montati su di una piastra o su di un dissipatore alettato e tenuti ben isolati con rondelle di mica; è consigliabile anche usare del grasso al silicone per migliorare il contatto termico.

Visibile al centro-destra in basso la commutazione elettronica. Alla estrema destra il ROSmetro.

Il dissipatore funge da schermo tra ingresso e uscita (almeno nel mio caso). Anche Q_3 , abbisogna di raffreddamento, va quindi fornito di un dissipatore a stella. Le prese A e C sulla bobina L vanno ricercate sperimentalmente, e variano per ogni tipo di transistor, per ogni assemblaggio, per un diametro del filo differente da quello usato da me. Con i componenti e la disposizione indicati (vedi fotografia) si ha la massima uscita con le prese ciascuna a 1/3 di spira a partire dal punto B e cioè dal centro. Sta a voi trovare la posizione di miglior rendimento.

Nota importante da tener presențe è quella di fare un montaggio simmetrico per i collegamenti che riguardano i due BD117, trattandosi di un push-pull per di più in radio frequenza.

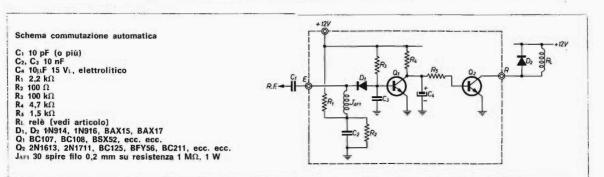
Il trimmer P; va tarato in modo da portare i due BD117 in lieve conduzione

con una corrente di collettore tra i 10 e i 20 mA.

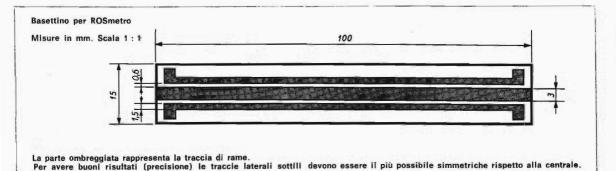
Questa taratura va effettuata o ritoccata con i transistori tiepidi, cioè dopo un po' che funzionano. E' risaputo infatti che il valore di soglia B-E di un transistore diminuisce con

l'aumentare della temperatura. I condensatori d'accordo C_{17275°}, vanno tarati per la massima uscita.

Il secondo circuito serve al rivoltamento automatico dei marroni (versione dialettale di « castagne ») che avevamo messo a cuocere sull'amplificatore. Scherzi a parte, il commutatore elettronico ora introdotto dovrebbe funzionare d'acchito e senza difficoltà di sorta. Proprio per non fare un articolo praticone spendo quattro parole sul suo funzionamento.


Osservando lo schema a blocchi possiamo notare che a riposo, cioè in ricezione, l'uscita del trasmettitore è collegata direttamente all'antenna. Quando si passa in trasmissione una piccolissima parte di RF viene prelevata da C, e raddrizzata per negativi da D. Di conseguenza, annullata la polarizzazione positiva che manteneva in saturazione Q, quest'ultimo si interdice e

satura Q2 che eccita il relè.


Il partitore R₁-R₂ serve a rendere quasi nulla la soglia di D₁ (circa 0,6 V) a vantaggio della sensibilità. Pregio infatti di questo circuito è quello di possedere una elevata sensibilità, di commutare cioè con potenze molto piccole (basta aumentare C₁) e di poter usare quindi anche relè « duri ».

Possibilmente il relé deve essere adatto per la RF con contatti isolati in ceramica o qualcosa di similare ma con con contatti robusti. Io ne ho usato uno della OMRON con i contatti da 5 A su supporto in fibra di vetro.

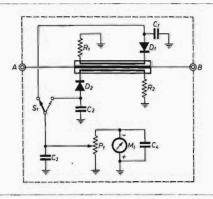
Naturalmente questo dispositivo non è strettamente indispensabile ed è stato introdotto per permettere l'uso anche in unione di ricetrasmettitori.

La terza e ultima parte serve per controllare la raggiunta cottura delle castagne e darne segnalazione tramite fumata grigia o nera a richiesta. Un aggeggio di questo genere si chiama ROSmetro o più precisamente « arrostometro » e si può anche usare per misurare la potenza d'uscita di un trasmettitore e il rapporto delle onde stazionarie presenti lungo il cavo d'alimentazione dell'antenna.

Premetto che questa non è farina del mio sacco ma è stato copiato da un ROSmetro commerciale giapponese... ma visto che funzionava bene... L'induttore è stato realizzato con tracce di rame su un circuito stampato (fibra di vetro, mi raccomando!) secondo le misure del disegno.

Si è un commutatore a slitta oppure un deviatore a pallina; lo strumento è nel mio caso da 500 µA ma se ne possono usare altri con valori compresi tra i 100 µA e 1 mA: l'unica conseguenza è la variazione di sensibilità peraltro più che sufficiente in ogni caso. Si possono anche mettere due strumenti, uno per l'onda diretta, l'altro per l'onda riflessa o stazionaria: si elimina S, e si ripete il circuito C3-P1-C4, necessariamente i due potenziometri dovranno essere coassiali per variare contemporaneamente la sensibilità dei due circuiti.

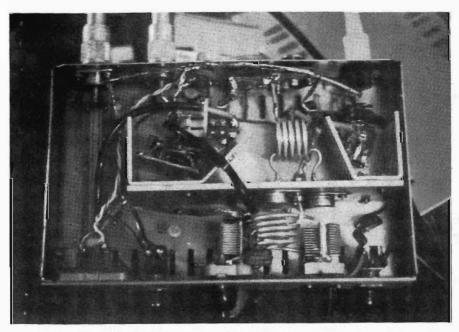
Schema ROSmetro


R1, R2 150 Ω

P₁ 50 kΩ potenziometro

M₁ milliamperometro 100 μA ÷ 1 mA

C₁, C₂, C₃, C₄ 1 nF ceramica D₁, D₂ BAX15, BAX17, 1N4448, 1N4148, 1N4150, BA129


Si deviatore

Infine aggiungo che se la padella è spenta... pardon... intendevo dire che se tutto il baracco è spento, l'antenna rimane collegata all'uscita e tutto funziona in modo normale, cioè senza amplificatore e il ROSmetro darà l'indicazione della potenza d'uscita del solo trasmettitore. I collegamenti RF vanno eseguiti con cavetto coassiale di impedenza uguale a quello dell'antenna già esistente (si spera!).

L'assorbimento non è proprio dei più parchi: 2÷3 A a 12 V e quindi va alimentato con una batteria d'automobile o un apposito alimentatore molto birroso (Peroni). Ho finito e quindi buona castagnata con la birra e un bacio in fronte a chi mi dirà come vanno i BLY64 o altri transistori « speciali ».

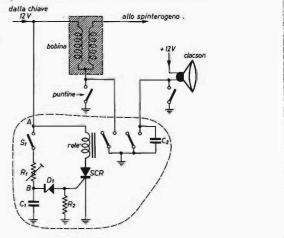
Lineare in azione

(Nota: l'articolo è stato scritto nel Tardo Autunno 1972 e da qui il continuo richiamo alle castagne).

Come già vi avevo preannunciato lo scorso numero vi presento ora un altro antifurto per autovetture progettato e realizzato dall'amico Gino o più roboantemente ing. Luigi Provasoli.

Forza Gino, che ti manca solo un mese... (eh si, amici, è proprio militare...).

L'antifurto che mi accingo a descrivere non implica nessuna difficoltà costruttiva nè tantomeno lunghe e laboriose tarature; per questi motivi qualsiasi « Pierino » può intraprendere a cuor leggero la sua realizzazione sicuro del risultato positivo.


Quando decisi di realizzare un antifurto per il mio insuperabile Maggiolone non sapevo da che parte iniziare e cioè se fin dall'inizio fulminare il maleintenzionato oppure arrostirlo a fuoco lento; scherzi a parte, non sapevo se progettare un congegno che agisse fin dall'inizio oppure il suo effetto fosse ritardato nel tempo. Alla fine è nato questo baracchino che, penso, soddisferà anche i più esigenti.

Il suo funzionamento è semplice e cioè: si lascia che il ladro in questione apra la portiera della macchina; dal momento in cui viene avviata l'auto il marchingegno si mette in moto e, dopo alcuni secondi, quando cioè ladro e refurtiva si trovano nel bel mezzo del traffico, ecco che il motore si spegne e il clacson inizia a suonare. A questo punto solo chi ha installato l'antifurto può intervenire per rimettere le cose al posto.

Passiamo ora a descrivere il circuito e il suo funzionamento: sulla sinistra si notano R_1 e C_1 , all'atto dell'accensione si applicano 12 V tra massa e il punto A. Passando il tempo, il potenziale del punto B cresce (con legge esponenziale la cui costante di tempo è R_1 C_1) fino a raggiungere un valore pari a V_2 .

SCR qualsiasi tipo da almeno 1 A R₁ trimmer da 50 k Ω (regola il tempo di intervento) 5 " $\Lambda \times$ C₂ 27 k Ω C₂ 250 μ F 12 V₁ C₂ 6800 pF (ceramico) Relè Geloso 12 V D₁ 7,5 V_{20Res}

FUNZIONA MA TEMPORIZZA TROPPO POCO

A questo punto lo zener D, inizia a condurre così il gate dello SCR viene polarizzato causando il passaggio di stato da interdizione a conduzione del semi-conduttore. Otteniamo così la chiusura dei contatti del relè e quindi gli effetti poc'anzi descritti.

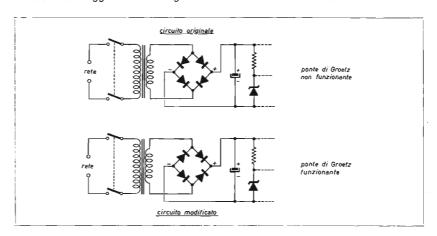
N.B. - L'interruttore S_i va posto all'interno dell'abitacolo in posizione nascosta e chiuso solo quando si vuole inserire il sistema in esame.

Auguri di una buona realizzazione e mi raccomando... non fatevi rubare anche l'antifurto!

* * *

Come al solito, almeno da qualche tempo, si debbono fare sempre delle precisazioni; è ora la volta di **Vincenzo Cavallaro**, piazza Malatesta 36, Roma al quale ho anche inviato un 2N1099 Solitron.

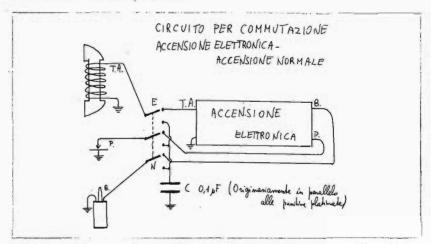
Mi riferisco allo schema del suo articolo riguardante le protezioni per apparecchiature alimentate a batteria (cq 9/72 pagina 1193) e alla successiva rettifica (cq 11/72 pagina 1504).


Effettivamente utilizzando, come da lei suggerito, un relè che « riporta la polarità della batteria al modo corretto » ne può derivare un circuito con l'inconveniente fattole notare dal signor Verri.

Bisogna comunque dire a sua discolpa che la disposizione da lei immaginata, quando parlava di un relè che « riporta la polarità della batteria al modo corretto », e forse soltanto resa non troppo chiaramente, poteva essere quella dello schema allegato.

Con un tale dispositivo si può ottenere all'uscita, in caso di errato montaggio della batteria, l'inversione della polarità applicata all'entrata, utilizzando un rele a due soli scambi.

Desidero comunque aggiungere che qualsiasi circuito del genere può avere un limitato interesse pratico, in quanto il relè, nell'eventualità di un'errata inserzione della batteria, assorbirebbe una corrente, nella maggior parte dei casi, dell'ordine dell'assorbimento dell'apparecchio utilizzatore, e ciò a scapito della durata della batteria stessa.


E ora tocca a **Enrico Bonaldo**, via Gramsci 106, Rovigo che scrivendomi a proposito del *QUIZ* mi ha fatto notare un errore nella rappresentazione grafica del circuito dell'alimentatore stabilizzato presentato da Stefano Frilli nell'articolo del numero 1-1973. Col circuito come da rappresentazione si sarebbe corso il rischio di veder bruciati i diodi. Comunque più sotto c'è lo schema corretto. Aggiudicato al signore un SN7039 della TEXAS.

Sempre scrivendomi per il QUIZ anche Elio Tondo, via Tiberio Scali 35, Livorno vuole fare la sua bella precisazione stavolta però sull'articolo « Accensione elettronica per moto con volano magnete » di Ruffo sempre pubblicato sul numero 1-1973. Anche a questo aspirante centauro un multipiede Texas SN7039.

...Non è indicato niente riguardo al trasformatore 6/220 V, 5 W e quindi si presume che sia di tipo normale da campanelli o per filamenti. Probabilmente l'accensione fa' già sentire i suoi vantaggi con questo normalissimo componente. A mio giudizio, però, il tutto dovrebbe funzionare meglio con un piccolo trasformatore avvolto su un nucleo di lamierini al silicio a granuli orientati o di ferrite. Tutto questo in via teorica considerando il fatto che i normali trasformatori hanno notevoli perdite quando si superano i 50 Hz, abbon-

dantemente sorpassati anche dal motore più scalcinato. Allego poi lo schema di una piccola modifica utile per fare prove di rendimento comparato ma soprattutto se il circuito si guasta.

Se il commutatore è dotato di zero centrale può anche servize da antifurto, forse un po' spartano...

SENIGALLIA QUIZ - SENIGALLIA QUIZ - SENIGALLIA QUIZ - SENIGALLIA QUIZ - SENIGALLIA QUIZ

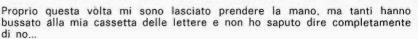
Gente! Mi deludete proprio. Il mese che ho deciso di essere veramente grande e di premiare veramente tanti lettori con dei bei 2N1099 della DELCO tipo militare in confezioni ultrastagne antitutto (tranne una pressa idraulica da un centinaio di tonnellate), proprio non trovo una sola lettera degna di essere pubblicata.

2N1099 PNP 30 W	BVch 80	hre (minimo) 35	le 5 A
	fall 10 kHz	leo 8 mA	VCB -80 V

« Grossomodo », la fotografia A è stata individuata da molti. Si tratta di un complesso di antenne adibite al « tracking » ovvero all'inseguimento dei segnali emessi dai satelliti artificiali. Il complesso della antenne, composto essenzialmente da una batteria di antenne tipo Yagi a dipoli incrociati è posto su di un mezzo mobile, nel caso in questione un autocarro militare. Naturalmente il gruppo delle antenne può ruotare secondo ogni asse. Da notare che l'antenna centrale ha i dipoli a 45° rispetto agli altri così da poter avere una polarizzazione omnidirezionale. Naturalmente il puntamento e il mantenimento della direzione avviene con mezzi automatici e sovente con piccoli elaboratori elettronici tipo quelle per le centrali di tiro in uso nei pezzi da artiglieria.

La foto B ha solleticato proprio la fantasia di tutti: dalla stazione interstel-

lare (suffragata poi dall'ombra di un uomo) al radiotelescopio.


Era una cosa semplicissima: un radar completo del suo « radomo » cioè della sua copertura trasparente alle onde radar che però protegge l'antenna paraboidale da pioggia, neve, vento. Non avete mai visto i grossi jet di linea, i « Jumbo »? Bene, la punta della fusoliera non è nera. Non è altro che l'antenna del radar meteorologico di bordo coperto dal relativo « radomo »: puntualizzando, non tutti i velivoli hanno il radar a bordo e anche tra quelli che lo hanno la punta della fusoliera non è l'unico punto di posizionamento dell'antenna, questo per i lettori più precisi.

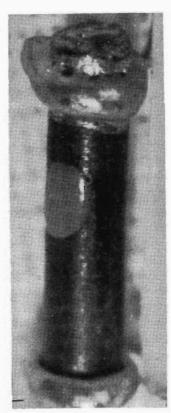
Nota generale: le due fotografie non hanno nulla a che fare con il progetto

San Marco, cosa che invece hanno menzionato quasi tutti i solutori.

Allora via all'elenco dei vincitori:

Vittorio Santagata · Pescara	transistor	2N1099	Delco	+	integrato	SN7027	Texas
Elio Tondo - Livorno	transistor						
Enrico Bonaldo - Rovigo	transistor	2N1099	Delco				
Pietro Lamorta - Milano	transistor	2N1099	Delco				
Giogio Canali · Trezzano sul Naviglio	transistor	2N1099	Delco				
Emilio Bolchi - Modena	transistor	2N1099	Delco				
Sergio Falzone · Pordenone	transistor						
Mario Andreatti - Vigevano	transistor	2N1099	Delco				
Bruno Pavese - Bra	transistor	2N1099	Delco				
Marco Ibridi - Finale Emilia	transistor	2N1099	Delco				
Bruno Baratti · Aosta	transistor	2N1099	Delco				
Vittorio Marchetto - Genova Sampierdarena	transistor	2N1099	Delco				
Renato Bettega - Rovigo	transistor	2N1099	Delco				
Carlo Bonora - Bologna	transistor	2N1099	Delco				
Lorenzo Punta · Serravalle Scrivia	transistor	2N1099	Delco				
Emilio Carnati - Busto Garolfo	transistor	2N1099	Delco				
Corrado Milanesi - Rho	transistor	2N1099	Delco				
Leopoldo Corremini - Roma	transistor	2N1099	Delco				
Roberto Borghi - Gazzada	transistor	2N1099	Delco				
Franco Milani - Correggio	transistor	2N1099	Delco				
Clarbruno Veldruccio - Taranto	transistor	2N1099	Delco				
Leandro Alvoni - Foligno	transistor	2N1099	Delco				
Alfredo De Rose - Novara	transistor	2N1099	Delco				
Ettore Scaramel - Treviso	transistor	2N1099	Delco	,			
Stefano Lamon - Buffalora	transistor	2N1099	Delco	•			

I premi per il prossimo mese saranno esclusivamente circuiti integrati e vincitori tanti, se l'editore non mi fermerà prima.

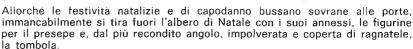

La cosa è maxi in apparenza, poiché è mini e serve per rivelare minidifferenze di tem... (ops, mi stavo tradendo) seguendo una legge che è il contrario di quella delle sue sorelle ... comuni.

Se indovinate siete proprio bravi perché la confusione delle mie parole è quasi totale, comunque ciao e... attenti alla T!

ELENCO BIS di altri vincitori (finirò in rovina!)

Felice Carbonara - Trani	transistor 2N1099 Delco + SN7039 Texas
Giovanni Franchi - Prato	transistor 2N1099 Delco
Carlo Cattanei - Forli	transistor 2N1099 Delco
Dario Speroti - Avellino	transistor 2N1099 Delco
Emilio Fernetti - Mestre	transistor 2N1099 Delco
Francesco Gandolfi · Milano	transistor 2N1099 Delco + SN7029 Texas
Giancarlo Rolando - Vercelli	transistor 2N1099 Delco
Giorgio Verzoletto - Prato	transistor 2N1099 Delco
Vittorio Maugnani - Firenze	transistor 2N1099 Delco
Davide Ghelli - Modena	transistor 2N1099 Delco
Franco Moretti · Roma	transistor 2N1099 Delco
Luigi Prampolini · Roma	transistor 2N1099 Delco
Maurizio Molina - Riva del Garda	transistor 2N1099 Delco
Giorgio Gherardi - Verona	transistor 2N1099 Delco

e finalmente, da ultimo, come un raggio di sole, il romano **Guglielmo Buongiorno** al quale, oltre al 2N, ho mandato due TEXAS SN7036 e SN7039.



sperimentare[©]

circuiti da provare, modificare, perfezionare presentati dai **Lettori** e coordinati da

Antonio Ugliano, I1-10947 corso Vittorio Emanuele 178 80053 CASTELLAMMARE DI STABIA

© copyright cq elettronica 1973

All'albero possono mancare le palline colorate o al presepe qualche figurina ma alla tombola non deve mancare niente per cui, e per tempo, si controllano le cartelle, il cartellone, nonché l'effettiva presenza dei novanta numeri.

Consta questo familiare gioco in un panierino a forma tronco-conica, con una stretta imboccatura in alto, in cui sono contenuti i numeri da uno a novanta (che possono fuoriuscire solo uno alla volta) da un certo numero di cartoncini in cui alla rinfusa sono disposti dei numeri e da un cartellone in cui in bell'ordine, su file di cinque unità, sono disposti i numeri da uno a novanta. Ripete il gioco del lotto: due numeri formano l'ambo, tre il terno e così via. Uno dei giocatori, munito dell'apposito cartellone, estrae i numeri e uno alla volta li cita. Il resto dei giocatori segna i numeri estratti sulle cartelle con bucce d'arancia, fagioli, bottoni, eccetera.

E' il classico gioco natalizio del meridione.

A casa di Catello Guarracino, meglio conosciuto come 'o figlio da chianchera (il figlio della beccaia), la nonna materna ai primi di dicembre, da uno dei soliti inimmaginabili ripostigli tirava fuori la tombola, ne lustrava i numeri, metteva in ordine le cartelle e preparava tanti dischetti ricavati dalle bucce di arancia tagliati con un ditale per coprire i numeri sulle cartelle nonche provvedeva al difficilissimo reperimento delle monetine da 5 e 10 lire per le poste da giocare. E allorché iniziava il ciclo della novena (novenario) all'Immacolata, ogni sera c'era la tradizionale tombolata.

Era uno spettacolo allora assistervi; nemmeno i migliori testi della pax familiaris potrebbero farlo: assisi attorno al lungo tavolo potevansi rimirare i familiari mai come in quell'occasione accomunati, attenti al gioco, in ansia se il numero prossimo estratto avesse fatto fare tombola a loro o al cuoino Gervasio.

Immancabilmente assiso a uno degli estremi del lungo tavolo vi era il nonno materno, vegliardo all'estremo, don Gennaro Quagliarulo che, data un po' l'età, e un po' la sordità incipiente, non capiva un numero e bisognava ripeterglielo tre volte per farglielo capire.

All'altro estremo della tavolata, vera cariatide, ottuagenaria e vedova, donna Serafina Pizzo, nonna materna, contestava ogni esborso di 5 lire con la frase che ai suoi tempi con 5 lire... eccetera. Interveniva imperterrito a ogni tombolata il ragioniere del piano di sopra che da fine dicitore e da brillante extenente di cavalleria, ammirato da tutte le comari, scandiva imperterrito i numeri estratti con il relativo significato cabalistico: 8 il fuoco, 55 la musica, eccetera. Era uno spettacolo, un commovente unico irripetibile spettacolo in cui il nonno don Gennaro ogni volta che usciva l'88 ripeteva « 88, classe di ferro, io ero dell'88 e mi ricordo di quella volta sull'Isonzo.... » e così via, mentre il nonno parlava, il ragioniere continuava a scandire i numeri e gli altri a non capire niente.

Più si cercava di zittirli e più aumentava il caos.

Insomma la vera unità familiare.

Dovete sapere che il nostro Catello (da San Catello, protettore di Castellammare) conosciuto pure con il diminutivo di Lilino, era un « lettronico». A lui erano dovuti alcuni ricevitori a transistori, un reazionario che disturbava i TV vicini e alcune serate al buio per mancanza di corrente elettrica allo stabile per i corti circuiti che lui procurava. Al passo con il progresso tecnico, cominciò ad affacciarsi nella sua mente il perché il vecchio tarlato gioco della tombola non potesse essere riveduto e corretto mediante circuiti integrati, e così, detto fatto, si mise all'opera. Per il « reperimento fondi », non aveva problemi, bastava che affondasse le mani nel cassetto della beccheria della madre. Per la capacità costruttiva, beh, lasciamo correre. Fatto stà che in tempo con i tempi, mise su un elaboratore elettronico che lui defini « Tombola 2000 ».

Consisteva questo in un circuito che generava nell'arco di 15 secondi i numeri da uno a novanta. Seguiva un codificatore che mediante un pulsante inseriva il generatore e su di un cartellone luminoso composto da 90 lampadine da 3,5 si accendeva quella corrispondente alla frazione di secondo in cui era stato premuto il pulsante. Le prove fatte diedero buoni risultati, il numero era visibile in tutti i punti della stanza e finiva l'immancabile « che numero è, non ho capito » « oppure « il 34 è uscito o no? » considerato che i numeri estratti restavano accesi.

E vennero le feste di Natale.

La nonna tirò fuori la vecchia tombola, preparandola, ma si vide d'innanzi il nipote che mettendole di fronte il frutto del suo genio, le fece capire che d'ora innanzi comandava l'elettronica. La buona vecchina, ammirata dall'ingegnosità del nipote, seppure con una lacrima di rimpianto, dovette cedere il campo.

24 dicembre 1972.

Dopo il classico « cenone », vera sbafata di broccoli di rape, capitone fritto e con la salsa, frutti di mare e cannoli alla siciliana, si passò alla tombolata. Venne posto in sito il cartellone luminoso che attirò un plauso sovrano al nostro eroe e dopo un discorso introduttivo e senza capo nè coda del ragioniere del piano di sopra sul progresso dell'elettronica e delle cameriere (?). passarono al gioco. Un miracolo, le luci della stanza vennero attenuate per far sì che tutti vedessero i numeri e di questa occasione profittò il fidanzato della sorella di Lilino ammiratore del cognato specialmente perché era capace di far rimanere al buio il palazzo, cosa che a lui faceva molto comodo.

Cominciarono a giocare. I numeri comparivano sul tabellone luminosi e chiari e così, tra gli « Oh » di meraviglia del parentato tutto, le partite si succedevano alle partite.

Il gioco era in fase di calda temperatura in cui già si delineava chi vinceva e chi perdeva e sperava di rifarsi e chi invece voleva ancora stravincere, allorché cominciò a succedere un fatto curioso: invece di accendersi un numero per volta, cominciarono ad accendersene due o addirittura tre; non si capiva

Chi faceva la quaterna, dopo si vedeva spegnere i numeri in modo che non aveva fatto neppure l'ambo, mentre al contrario facevano il terno e la tombola tutti gli altri. Senza più neppure attendere il pulsante di controllo, il program-

matore ribelle comincò a mettere fuori numeri su numeri di sua iniziativa. Un macello.

Figuratevi i giocatori. Chi sino ad allora perdeva, rivoleva indietro i soldi, chi invece aveva vinto non aveva nessuna intenzione di mollarli. Volarono le parole, le ingiurie e le invettive. A queste seguirono i fatti. Il nonno che perdeva « quasi » ducento lire cominciò a gridare « Savoia » e a scagliare manciate di fagioli e bucce di arancia sugli altri. Il ragioniere del piano di sopra che stava in vincita afferrò a due mani cartelle, spiccioli e bottoni e con questi stretti al petto cercava di guadagnare la porta inseguito dal marito della signora della porta affianco che invece perdeva.

in questo frangente, la nonna pensò bene di tirare fuori la vecchia tombola con il canestrino ma male gliene incolse perché un bicchiere lanciato da qualche parte gliela fece volare via.

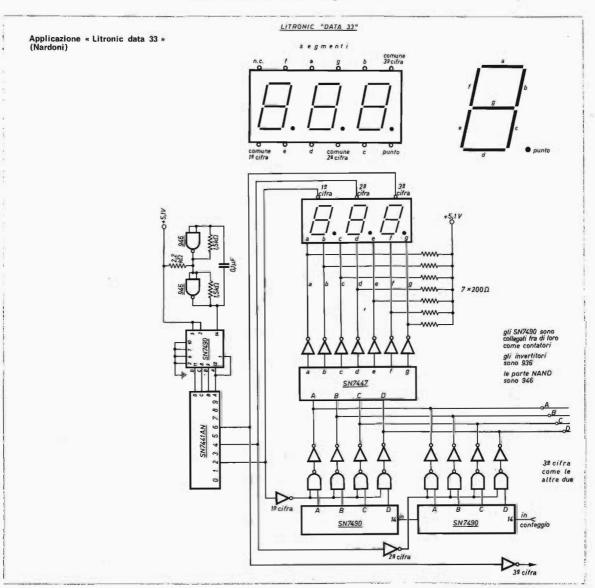
C'era chi gridava, chi rideva, chi strillava e chi pacificamente seduto sgranocchiava fichi secchi. In mezzo al pandemonio una volante cicca di sigaretta descrisse un arco e atterrò nel sacco con i botti disposto dietro la finestra pronti per mezzanotte. Fu il finimondo.

Mentre in compatta unica indisgiuntibile confusione tutti si precipitavano alla porta, nella stanza esplodevano bengala e mortaretti. Una mezza vetrata volò a pezzi e i fuochi cominciarono a precipitare dal balcone.

Fu il segnale per i vicini.

Per non essere da meno perché dalla casa « da chianchera » per fare vedere che avevano più botti avevano cominciato a sparare prima, cominciarono anche loro.

E fu il segnale.

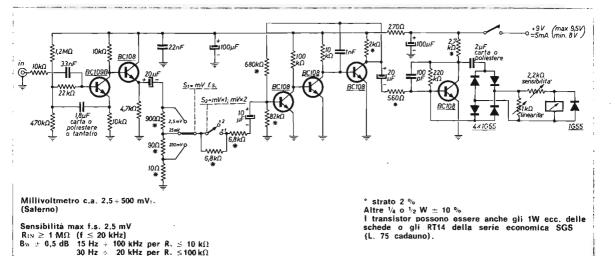

Da tutti i balconi del rione piovvero i fuochi. Chi, meravigliato, osservava che mancava ancora un'ora a mezzanotte alzava il capo all'orologio e pensendo che andasse indietro sparò anche lui. Il fatto dilagò rapidamente per tutto il paese, dopo dieci minuti non c'era un balcone da dove non piovessero scalette e tricchetracche; botte a muro e pistole lanciarazzi salutavano la nascita del Redentore con un'ora di anticipo. Si uni il coro delle campane, delle sirene delle fabbriche delle navi nel porto, la messa di mezzanotte fu celebrata alle undici e dieci.

Conclusione: alla mezzanotte era tutto finito. In tutta la città non c'era più un botto da sparare, la calma più sovrana regnava, vera pace per gli uomini di buona volontà.

Il comando militare, il giorno dopo, nella relazione giornaliera annotava che, alla mezzanotte, non era stato sparato neppure un botto il che dimostrava un alto segno di civismo.

E il povero figlio « da chianchera »? Bè, mentre i parenti in casa se le davano di santa ragione, lui se ne era sceso mogio mogio giù al portone a guardare i fuochi e a meditare sul dubbio amletico se era più esatto un programmatore o il vecchio panierino per giocare a tombola.

Giacché questo dubbio non è stato ancora chiarito, cercate di farlo voi guardando che cosa ci manda Luigi NARDONI, via Lucio Mummio 7, Roma.



Lui dice che è una applicazione del LITRONIC data 33 in vendita da Fantini. Allora se volete far succedere quello che capitò al « figlio da chianchera », montatelo pure voi, metteteci vicino il nonno dell'88 « classe di ferro » e vedrete.

Il bravo Gigino, a cui già ho spedito i dieci BC146, invita i lettori che volessero maggiori ragguagli a scrivergli. Come premio per la collaborazione, gli manderò pure un bell'integratone e paccottiglia varia.

* * *

Il ragionier **Bruno SALERNO**, via Castiglione 41, Bologna invece, ci manda un millivoltmetro per c.a. con portate da 2,5 a 500 mV fondo scala. In realtà confessa che per la sua realizzazione si è servito di spunti da riviste varie.

In realtà il tutto ha un aspetto pulito e simpatico. Se avete bisogno di uno strumento a poco prezzo, profittate di questo. Al ragioniere gli mandiamo un bel blocco di BC109 così si fa' un altro strumento.

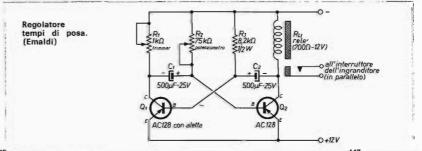
* * *

Adesso abbiamo uno scioperato. Eh, già. Profittando del fatto che ha fatto sciopero a scuola, si mette a perdere tempo appresso ai transistori, e fosse niente, oltre allo schema di un presunto « Apparecchio per luci psichedeliche », manda pure delle barzellette, sentite quà:

- Una gallina scende dal treno e grida: Tacchino... Tacchino.

— A una fermata del tram: Scusi, il 25 passa di quà? Il signore interpellato estrae un taccuino, lo guarda e poi dice: No, il 25 stò a Firenze per lavoro. E così via. Roba da prenderlo a randellate, Marina la scuola, fa sciopero e perde tempo con i triac. In più vuole i BC146 (che sono finiti da un pezzo) e altro « silicume ». Volete sapere chi è? Antonio CHELLO, rione Lauro 1, Napoli. Gli mando un assortimento vario che non gli dispiacerà.

Una volta mi regalarono una cassetta di liquori; dentro, in un'apposita busta, c'era un orologio. Misurava, oltre al tempo, i giorni, i mesi, e le fasi lunari Durò circa 15 giorni. Poi fece l'eclissi e non funzionò più.


Alberto TANZARELLA, viale Mazzini 13/5, Sestri Levante, invece, ci manda un orologio che non è tutta farina del suo sacco.

⊕160V Orologio (Tanzarella) R_5 ≥R₄ §R₂ ξR, V₁ ... V₅ valvole Nixie IC1 ... ICs decodifiche tipo SN7441N IC6-7-8-10-11-12-13 divisori per dieci tipo SN7490N IC_3 IC_2 IC, IC5 IC, divisore per sei (\$N7492N) IC14 integrato tipo SN7440 R1 ... Rs 18 kΩ R6, R2 1,5 kΩ Rs, R9 2,2 kΩ 5 μF 15 C2 100 nF C₃ 6 ÷ 60 pF compensatore quarzo da 100 kHz IC₁₀ IC_0 IC₇ IC_6

Con questo dice che riesce a cronometrare quanto tempo ci impiega una lettera impostata a Milano e diretta a Castellammare. Esagerato, una precisione tale non riesce ad averla neppure la Bulowa! Gli mandiamo un integrato per BF così gli leviamo la voglia di fare qualche altra stravaganza.

* * *

Proseguiamo con un regolatore di tempi di posa per fotografi. I4EML, al secolo

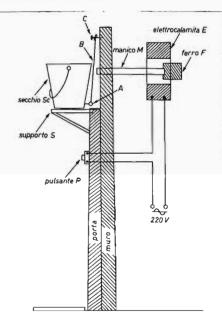
Sergio EMALDI, via Tranvia 11. Alfonsine (RA) ci manda un trito e ritrito flip-flop a cui, grazie a trimmer e potenziometri, ha dato la possibilità di « temporizzare ».

Guardate voi che roba? Dice che ha un tempo variabile da 0,5 a 90 secondi. Se non ci credete, montatelo e poi gli scrivete che vi è successo. Io, per levarmelo dai piedi, gli rifilo un piatto di cozze e maruzzielli non elettronici così se lo appende al salotto.

\$\$ \$\$ \$\frac{1}{2}\$

Una preghiera ai collaboratori di **sperimentare:** nell'inviare gli schemi, non limitatevi a gettare un abbozzo a matita su un foglio qualsiasi da cui non riesco a cavarne niente (riuscite a capirlo solo voi). Ho diversi schemi di un certo pregio che meriterebbero la pubblicazione ma sono talmente confusi da non raccapezzarcisi. Cosa ci perdete a metterli « in bello »? Inoltre in questi giorni sto spedendo la rimanenza dei BC146 a chi me ne fece richiesta a dicembre (li ho avuti solo ora).

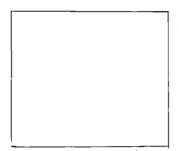
Chiudo con una anticipazione: ci sarà il 3º Grande Concorso Internazionale Sperimentatori e...


\$\$ \$\$ \$\$

PAPOCCHIA CLUB

Il lettore che segue: Anselmo TORTOVICI, piazza Navona 76, Roma, avrà il perdono di San Gennaro per il seguente progetto:

Spiegazione
Quando l'agente delle tasse preme il pulsante P, la corrente scorre nell'elettrocalamita E che attira il ferro F, questo spinge il manico M che a sua volta da' un colpo al secchio Sc pieno d'acqua, il secchio trattenuto dalla corda B legata al chiodo C e all'occhiello A si rovescia dal supporto S sulla testa dell'esattore.


Il tutto funziona a 220 V.

Tutti i componenti riferiti agli elenchi materiale che si trovano a fine di ogni articolo sono anche reperibili presso i punti di vendita dell'organizzazione G.B.C. Italiane

- 448

rubrica mensile di
RadioTeleTYpe
Amateur TV
Facsimile
Slow Scan TV
via Dallolio, 19

Rammento agli RTTYers che si dedicano ai Contests due scadenze importanti e cioè:

40139 BOLOGNA

B.A.R.T.G. SPRING RTTY CONTEST

patrocinato dalla British Radio Teletype Group dalle 02,00 GMT di sabato 24 Marzo 1973 alle 02,00 GMT di lunedì 26 Marzo 1973

5th RTTY WAEDC 1973

patrocinato dalla Deutsche Amateur Fernschreib Gruppe e dalla Deutscher Amateur Radio Club dalle 00,00 GMT di sabato 28 Aprile 1973 alle 24,00 GMT di domenica 29 Aprile 1973

Le regole di questi Contest sono rimaste invariate ad eccezione del WAEDC che, per fronteggiare un problema manifestatosi in questi ultimi tempi, ha introdotto, come abbiamo già fatto noi del GIANT, severe norme di squalifica.

25 25 25

La rubrica è dedicata questo mese alla TV-DX e per il prossimo preannuncio un interessante articolo tecnico.

73s SK

TV-DX

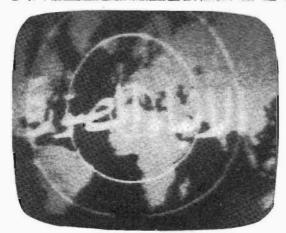
TV-DX

copyright cq elettronica . 1973

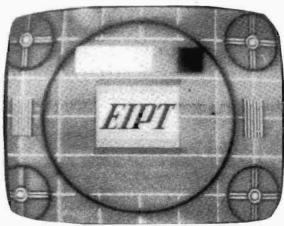
Il signor **Michele Dolci** mi ha inviato un resoconto dei risultati ottenuti nella sua attività di TV-DXer e di quella di altri amatori di TV che sono in collegameno con lui per lo scambio dei risultati e delle informazioni. Recentemente sulla rubrica è stato dato ampio spazio a questa attività perché essa sta riscuotendo un crescente interesse e ne sono una prova

le numerose lettere giunte e il materiale inviato.

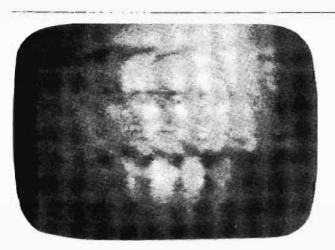
Nella teoria della propagazione delle radioonde di frequenza superiore ai 30 MHz esistono ancora molti punti incerti, per non dire oscuri. Ciò non significa che non siano stati fatti progressi in questo campo; la necessità da parte di molti servizi di disporre di canali radio liberi e sicuri e il conseguente sviluppo della tecnologia delle altissime frequenze ha dato il via a una campagna di studi sul comportamento delle onde in oggetto. Prova di questo attività di ricerca è il fatto che il numero di marzo 1972 di « Radio Science » — una rivista statunitense molto quotata nel campo della teoria della propagazione di fenomeni ondulatori — è tutto dedicato a resoconti degli studi effettuati su un meccanismo di propagazione che interessa le VHF: l'E sporadico. Gli articoli pubblicati provengono da varie parti del mondo: USA, Australia, Giappone e Belgio.


In Italia non so bene che cosa si stia facendo. La rai, nei primi anni di servizio televisivo, pubblicò su «Elettronica» alcuni articoli illustranti i criteri su cui si era basata la assegnazione delle frequenze ai vari impianti e i risultati delle misure effettuate sui segnali irradiati.

I radioamatori (con queste termine intendo tutti coloro che si interessano seriamente e da una posizione non professionale ai problemi relativi alle telecomunicazioni) anche in questo campo hanno dato e danno tuttora il loro contributo. Nel campo delle VHF qui nella Regione I abbiamo non poco svantaggio, dato che la più bassa frequenza assegnata (i 144 MHz) non risente di alcuni tipi di propagazione quali l'E. e quindi il suo uso non ne permette lo studio. Ricordo che nelle altre Regioni è concesso ai radioamatori forniti di licenza anche la gamma dei 50 MHz.


Questo svantaggio, però, è superato parzialmente dal fatto che è possibile effettuare studi sulla propagazione anche su stazioni di radiotelediffusione che operano su uno spettro di frequenze decisamente vario. In questo discorso si può inserire l'attività del TV-DXer. Queste non sono persone che perdono il loro tempo libero a ricevere immagini che svaniscono e traballano, ma degli appassionati che cercano di capire la propagazione con i semplici mezzi a loro disposizione. Anche in questo caso il lavoro di équipe mostra i suoi vantaggio, in quanto le osservazioni di un singolo hanno certo un valore, ma acquistano un significato più generale se confrontate e integrate con quelle di altri. E' proprio perché credo in questa collaborazione che di tanto in tanto scrivo articoli sulla TV-DX per questa Rivista; e non posso dimenticare che proprio tramite articoli pubblicati diversi anni fa ho conosciuto i TV-DXers con i quali avrei poi costituito un piccolo « Club ». Ora noi ci scambiamo rapporti e osservazioni e abbiamo stretti contatti anche con colleghi stranieri. Ciò premesso, vedrò di esporre quanto è stato osservato da questa « rete internazionale » dal dicembre 1971 al dicembre 1972 (circa). In dicembre 1971, esattamente il 16, c'è stata una spettacolare propagazione troposterica che ha reso possibile la ricezione della stazione algerina di M. Cid sul canale E5 qui nel mio QTH di Bergamo con segnali quasi stabili e audio molto buono dalle 20 alle 23,30 nonostante usassi un'antenna per il canale B a tre elementi alta un metro e mezzo dal tetto. In molti anni di osservazioni, questa è la mia prima ricezione tropo in banda III. Tale propagazione favorevole è stata osservata nello stesso periodo anche in Inghilterra, ma con manifestazioni meno rilevanti.

« Fine trasmissioni » TV algerina. QTH Bergamo, ore 21,45 del 16-12-71, canale E5, antenna tre elementi (canale B, M. Penice). Ricevuto anche l'audio. Foto M. Dolci, Bergamo.



Sigla telegiornale algerino. QTH Bergamo, ore 00,30 del 17-12-71, canale E5. Foto M. Dolci, Bergamo.

TV greca. dicembre '71. Foto M. Compagnino, Brindisi.

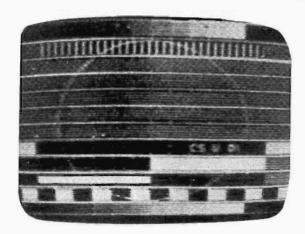
All'incirca in questo periodo l'Ente televisivo albanese, dopo anni di prove con un trasmettitore di debole potenza sul canale R7 passò sul canale R4 adottanto però lo standard CCIR-B, cioè il nostro, e il collega Compagnino di Brindisi (del quale è stata pubblicata una lettera con foto su cq elettronica) poté ricevere questo Paese con segnali veramente forti e costanti. Quasi contemporaneamente l'Ethnikon Idhryma Radiophonias TV, l'Ente TV greco mise in funzione, oltre alle prime due stazioni di Gerania e Parnis, i centri di Kefallinia e Kerkyra. Segnali deboli arrivarono anche a Brindisi e permisero - e lo fanno tuttora, perché non sono migliorati - di indagare sull'andamento della propagazione sopra il mare tra postazioni quasi in visibilità. Con l'arrivo della primavera si ripeté un fenomeno già osservato gli anni precedenti anche se con minore intensità: a Catania e Forte dei Marmi fu possibile ricevere sul canale E2 con provenienza sud dei segnali molto distorti ma costanti in intensità: dopo pazienti osservazioni i colleghi residenti nelle due località citate hanno compilato dei rapporti specificanti il tipo di programma osservato e il relativo orario. Il fatto, poi, che la stazione trasmettesse prima dei programmi un monoscopio a scacchiera fece pensare si trattasse dell'emittente rhodesiana di Gwelo. Perciò, tramite un'amica che lavora alla sede della TV di Salisbury ho ottenuto il « Look & Listen » (cioè il « Radiocorriere » rhodesiano) relativo al periodo coperto dal rapporto: il confronto fu positivo e si poté avere la certezza che la stazione ricevuta era Gwelo. In seguito giunse la notizia che anche a Malta era stato notato lo stesso segnale; a Cipro, oltre alla Rhodesia, un corrispondente riferì di aver ricevuto anche un'emittente nigeriana.

TV giordana da Amman. QTH Catania, canali 3 e 6, estate 1972. Foto F. Brancatelli, Catania.

Il meccanismo di propagazione che rende possibili ricezioni cosi sbalorditive è quello detto « TEP », cioè propagazione trans-equatoriale che utilizza alcune anomalie dello strato F2. Fenomeni del genere sono stati notati anche nella Repubblica del Sud-Africa: un corrispondente residente a Pietersburg che aveva acquistato un apparecchio televisivo diceva di non ricevere mai alcuna emissione televisiva (in Sud Africa non esistono ancora stazioni TV) e di sentirsi un poò disperato. Si può immaginare come sia stato felice quando finalmente, questa primavera gli è capitato di vedere la TV spagnola anche se con segnali molto brutti sul canale E2.

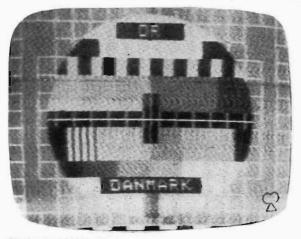
Con l'arrivo della stagione mi sono deciso a rifare il mio impianto di antenne televisive; in precedenza mi giungeva con segnale relativamente stabile ma estremamente debole la stazione francese del II programma di St. Raphael sul canale 28. Dopo aver rifatto l'impianto e aggiunto sotto la antenna a venti elementi UHF un amplificatore a un transistor il segnale è aumentato tanto da rendere più visibili i programmi, anche se l'audio non è presente. Mi piacerebbe sapere se qualcun altro riceve questo segnale.

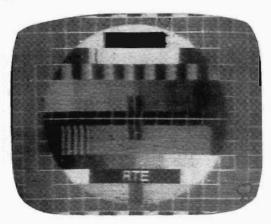
Verso la fine di aprile 1972 sono iniziate le ricezioni via E sporadico. Qui a Bergamo la propagazione ha permesso ottime ricezioni per brevi periodi, in quanto lo strato aveva ottima intensità di ionizzazione ma consistenza instabile accompagnata da turbolenze troposferiche.



TV francese, II programma. QTH Bergamo, giugno 1972. Foto M. Dolci, Bergamo.

TV libica, estate 1972. Foto F. Brancatelli, Catania.


Molto buona, invece, nell'Italia centro-meridionale dove, fra l'altro, è stata ricevuta la TV giordana sull'E3. In Inghilterra, sulla Manica, un amico ha ricevuto la televisione islandese che dispone di due emittenti in banda bassa: E3, 90 kW. e E4, 300 kW. Nell'arco estivo c'è stata nel sud dell'Italia anche una propagazione troposferica estremamente favorevole. In Catania, infatti, sono state captate le nuove stazioni greche sui canali E6 ed E7, quelle libiche su E5v, E7, E8, E9, tunisine su E8, egiziane del 1 programma su E6, E8, E9 del II programma su E10, E11 e del III su E9, Inoltre, per la prima volta, è stato ricevuto un programma della TV d'Israele sul canale E10.


Monoscopio elettronico CST, Cecoslovacchia. OTH Catania, canale R01, agosto 1972. Foto F. Brancatelli, Catania.

TV Cermania crientale. QTH Bergamo, agosto 1972. Foto M. Dolci, Bergamo.

TV danese. OTH Bergamo. Agosto 1972 - Foto Dolci.

TV irlandese. QTH Bergamo. Agosto 1972 · Foto Dolci.

I nuovi « records » ottenuti nel campo delle ricezioni TV non hanno alcunché di straordinario: tutto è dovuto a tre fattori combinati, e cioè il continuo aumento delle stazioni emittenti che ha reso attive molte zone favorevoli, il miglioramento dei sistemi riceventi e per ultimi, ma di importanza non certo trascurabile, il verificarsi di condizioni « anormali » nella atmosfera che hanno reso possibile la propagazione dei segnali.

Michele Dolci

PIASTRE VETRONITE A PESO!!!

RAMATE NEI DUE LATI

in lastre già approntate da cm 5 x 15 fino a cm 100 x 100

L. 3.000 al Kg.

oltre Kg. 5 L. 2.500 - oltre Kg. 10 L. 2.000

Chiedeteci la misura che vi occorre. Noi vi invieremo la misura richiesta o quella leggermente più grande addebitandovi però quella ordinata.

Disponiamo anche di lastre in vetronite ramate su un lato

da mm 225 x 275 L. 500 da mm 225 x 293 L. 550 cad.

DERICA FIFTTRONICA

00181 ROMA - via Tuscolana 285 B - tel. 06-727376

ii sanfilista (

informazioni, progetti, idee, di interesse specifico per radioamatori e dilettanti, notizie, argomenti, esperienze, colloqui per SWL

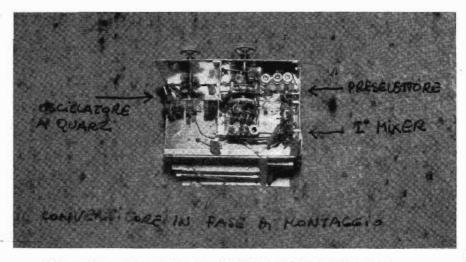
arch. Giancarlo Buzio via B./D'Alviano 53 20146 MILANO

© copyright cq elettronica 1973

UN nuovo convertitore a MOSFET con uscita a 28 MHz copre anche le onde medie

I lettori che hanno intrapreso la costruzione del mio ricevitore a doppia conversione sono numerosi e continuano a scrivermi collaborando al perfezionamento del complesso.

Per loro disperazione ho sostituito il convertitore a MOSFET (vedere cq n. 2/1972, per i restanti stadi del ricevitore, vedere cq n. 6, 7, 9/1972) con un modello più perfezionato e compatto, identico, nella parte elettrica, al modello precedente (derivato a sua volta dal Radio Amateur's Handbook).

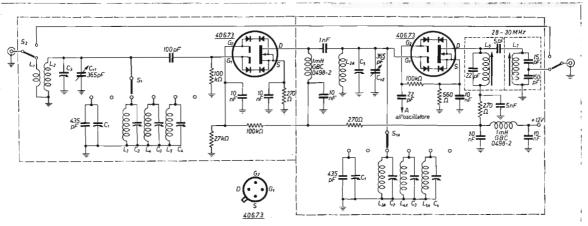

Ho modificato l'oscillatore, usando un FET al posto del 2N914 e completamente nuovo è il gruppo di accordo, che usa bobine toroidali.

Attenzione: questo è l'unico convertitore pubblicato a mia conoscenza, che copra anche le onde medie, con uscita a 28 MHz.

Il preselettore usa nel circuito d'ingresso una bobina L_2 « sempre in presa », calcolata per la semigamma inferiore delle onde medie: questa bobina resta sempre inserita.

La risonanza del circuito d'ingresso viene fatta « slittare » nelle varie gamme con due sistemi: per la semigamma superiore delle onde medie viene inserit ν un condensatore da 435 pF in parallelo al circuito, tramite il commutatore $S_{ir}S_{ix}$.

Per le gamme inferiori viene invece ridotta l'induttanza mettendo in paral·lelo a L_1 altre induttanze (L_2 , L_4 , L_5) di valore adatto.

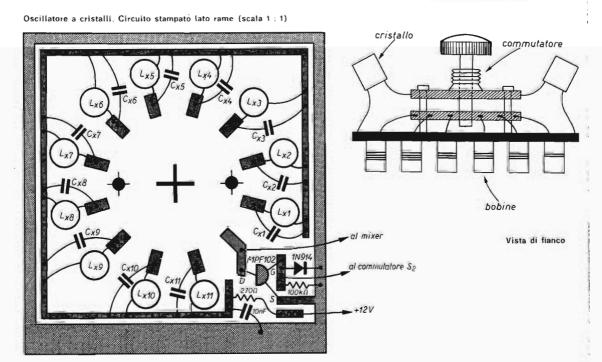


Che vantaggi ci sono rispetto al metodo tradizionale? Parecchi:

1 - La bobina d'antenna è una sola, L_1 , avvolta su L_2 , e non viene mai commutata. Così facendo si elimina un « wafer » del commutatore con relativi collegamenti lunghi, ecc. Inoltre si risparmia la noia di avvolgere quattro bobine d'antenna, con possibilità di errori, perdite nel Q e così via.

2 - Si copre tutto lo spettro delle onde medie e corte con quattro sole bobine, riducibili addirittura a tre con l'uso di un variabile ad alta capacità massima.

Sono state adottate bobine toroidali avvolte su nuclei della Amidon, che li spedisce per corrispondenza. L'indirizzo è Amidon, 12033, Otsego str., North Hollywood, California 91607, USA I nuclei costano poche centinaia di lire, e l'importo può essere inviato in dollari (banconote), infilati nella busta. La corrispondenza va fatta in inglese: questo per rispondere a quanti mi hanno chiesto chiarimenti in proposito.

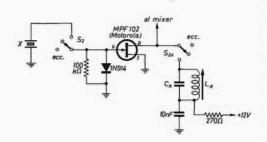


La, Lz 1,4 - 2,3 μH GBC OO/0499-04

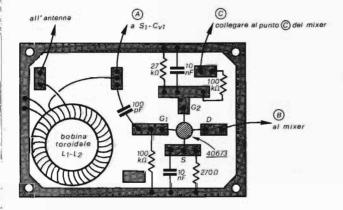
S1. S1A commutatori 1 via. 11 posizioni, sullo stesso asse $C_1 \cdot C_4$ trimmer 30 pF ceramici o ad aria

Chi volesse, può usare bobine cilindriche ma, per favore, non mi scriva per sapere il numero delle spire perché non lo so: se le calcoli, in base ai valore in µH riportato sulle tabelle, usando il metodo pubblicato sul n. 4-1970 di cq, a pagina 400.

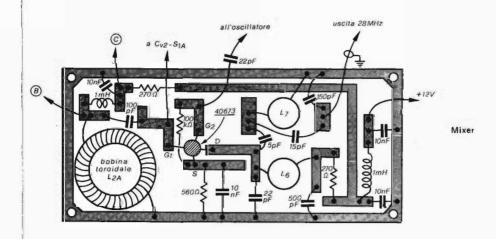
E' l'unico metodo sicuro che io conosca.



I tre stadi del convertitore vanno completamente schermati uno rispetto all'altro.


Schema elettrico

X cristalli overtone in contenitore HC/18/U. Sono saldati direttamente fra il commutatore e la massa. E' doveroso ringraziare la ditta Liburnia via Losanna 36, Milano che ha eseguito i cristalli a un prezzo conveniente e in poco tempo. S₂-S₂, commutatore 2 vie 11 (o più) posizioni, ceramico (GBC).


Preselettore-convertitore circuiti stampati lato rame - scala 1 : 1

40673 (RCA) (visto da sotto)

Amplificatore AF

Ma ora passiamo ai numeri:

TABELLA 1 BOBINE DEL PRESELETTORE

favorevole).

gamma	bobina	numero spire	Ø filo (mm)	nucleo toroidale (!)	induttanza (μΗ)	copertura (MHz)	o	Casa fornitrice
_	Lı	13	0,5	avvoita su L2	_		_	_
ОМ	La	105	0,2	T94-2	120	0,5 ÷ 22	250	Amidon
OÇ1	La	42	0,4	T50-6	7,4	3 ÷ 8	210	Amidon
OC2	L4 (2)	16	8,0	T50-6	1,7	6 ÷ 17	250	Amidon
OC3	Ls	11	1,0	T50-6	0,64	8 ÷ 27	250	Amidon
_	Lo	_	_	supporto cilindrico ∅ 6 mm con nucleo	1,4÷2,3	28	140	GBC 00/0499-04
_	L,	_	_	supporto cilindrico Ø 6 mm con nucleo	1,4 ÷ 2,3	28	140	GBC 00/0499-04

(1) Da ordinare alla Amidon, vedi indirizzo nel testo. Spaziare le spire su tutto il nucleo.
(2) Come si vede dalla tabella, La può essere omessa, perché copre frequenze già coperte da La e Ls. Tuttavia può essere utile avere la possibilità di accordare una stessa gamma su diversi rapporti L/C. L₄ permette di accordare alcune gamme a variabile quasi tutto aperto (rapporto L/C

Passiamo ora alla tabella delle gamme e dei cristalli. E' inteso che bisogna scegliere fra le gamme sottoelencate quelle che interessano, fino al numero massimo consentito dal commutatore S2, tenendo presente che i cristalli,

che occorre ordinare a una ditta specializzata (v. Pagine Gialle sotto la voce Quarzo) costano: in media, 2000 lire l'uno. E' opportuno ordinare cristalli overtone nel contenitore miniatura che ha due fili da saldare direttamente al commutatore e alla massa.

TABELLA 2 CRISTALLI E BOBINE DELL'OSCILLATORE

gamma (MHz)	uso	numero	frequenza quarzo (kHz)	induttanza L _x (μΗ)	C _x (pF)	numere spire (1)
0,55 ÷ 1,05	DX onde medie	1	28.550	1,4	20	8
1,05 ÷ 1,55	DX onde medie	П	29.050	1,3	20	8
3,1÷3,6	DX tropicali	Ш	31.100	1,17	20	7
3,5÷4,0	80 m amatori	IV	31.500	1,15	20	7
4,6÷5,1	DX tropicali	V	32.600	1,11	20	6
5,8÷6,3	49 m broadcasting	VI	33.800	1,06	20	6
6,9÷7,4	41 m broadcasting e amatori	VII	34.900	0,96	20	5
9,4÷9,9	31 m broadcasting	VIII	37.400	0,82	20	5
11,6÷12,1	25 m broadcasting	IX	39.600	0,72	20	5
14,0 ÷ 14,5	20 m amatori	х	42.000	0,62	20	4
15,0 ÷ 15,5	19 m broadcasting	XI	43.000	0,60	20	4
17,5 ÷ 18,0	16 m broadcasting	XII	45 500	0,55	20	4
21,0 ÷ 21,5	15 m amatori	XIII	49.000	0,46	20	4
21,5 ÷ 22,0	13 m broadcasting	XIV	49.500	0,46	20	4
26,8 ÷ 27,3	11 m CB	XV		vedi testo		_

⁽¹⁾ Supporti \varnothing 6 mm filo \varnothing 0.3 mm. Conviene derivarle dalla serie GBC OO/0499 o 98. L'induttanza delle bobine L_x (circuito volano dell'oscillatore) è stata calcolata con la formula L=25530/F2C. con L in μH , F in MHz e C in pF.

7 e 8 aprile 1973 presso l'Ente Fiera Internazionale - piazzale J.F. Kennedy

17ª ELETTRA

Esposizione Mercato Internazionale del Radioamatore Per informazioni rivolgersi alla:

Direzione, vico Spinola 2 rosso - 16123 GENOVA

I valori, alla prova pratica, si sono rivelati approssimati per eccesso ed è sempre stato necessario ridurre il numero delle spire delle bobinette GBC serie OO/0498 usate, di qualche unità, controllando con un grid-dip l'avvenuto innesco dell'oscillazione sulla frequenza del cristallo. Fate attenzione perché un cristallo da 39 MHz è capace di oscillarvi su un'armonica inferiore, magari su 22 MHz perciò, in mancanza di un ricevitore che copra la gamma da 28,5 a 50 MHz, occorrerà servirsi di un grid-dip per il controllo.

 $L_{\rm b}$ e $L_{\rm r}$ costituiscono un filtro accordato a 28 MHz circa. Le due bobine sono le solite GBC serie OO/0499 o 98, e vanno, a mio parere, schermate l'una rispetto all'altra. Io ne ho schermata una sola, con uno schermo di MF transistor e il tutto va benissimo. E' probabile che $L_{\rm r}$, influenzata dal cavo d'uscita, necessiti la riduzione di qualche spira. Verificare col grid-dip che il circuito risuoni attorno ai 30 MHz.

Fre le quindici gamme proposte, consiglio di eliminare quella dove un ricevito-

re qualsiasi può dare buoni risultati o quelle di minore interesse. Io ho eliminato gli 80 metri amatori; i 40 metri amatori, i 16 e 13 metri broadcasting e conto di inserire gli 11 metri CB solo se riuscirò a trovare un cristallo surplus di valore quasi esatto, a poco prezzo. Converrebbe usare un cristallo da 1200 kHz, convertendo per somma, oppure un cristallo da 54.800 kHz. Calcolate da soli la bobina d'accordo. Usando un sintetizzatore sarebbe possibile ovviare alla copertura continua MF e HF fino a 28 MHz. Basterebbe, partendo da un solo cristallo o da pochi cristalli, ottenere le 60 frequenze circa, staccate di 500 kHz una dall'altra, necessarie per la copertura continua.

1° Campionato HRD/SWL 1973

(lettera aperta di E. Pazzaglia)

Carissimi amici,

come vi avevo già accennato, anche quest'anno ho pensato di organizzare un campionato di ascolto per SWL. Siccome però parecchi di voi si sono lamentati perché le mini-gare sono piuttosto elementari, ho pensato di rendere la cosa più impegnativa. Pur mantenendo alcune gare (fuori concorso) per i meno scaltriti e per dare modo alle nuove leve di farsi un po' le ossa nell'ascolto, abbiamo incluso nel Campionato tre Contests internazionali. Nella formazione del calendario è stato di valido aiuto l'amico **Dan Rolla** dell'Italia Radio Club che è venuto gentilmente a Bologna per meglio definire i vari problemi.

E ora passiamo alle novità:

- l'organizzazione del Campionato viene fatta in collaborazione fra Radio Rivista, cq elettronica e Rivista Onde Corte (dell'Italia Radio Club) che provvederanno a pubblicare le gare e concorrerranno alla formazione del monte premi;
- i log per i tre Contest internazionali potranno essere richiesti a Dan Rolla; inoltre, a gara terminata, l'amico Dan si accolla l'onere di ricevere i log, di dar loro una scorsa onde evitare figuracce internazionali e di spedifie ai relativi Managers dei Contests. Nel pubblicare i regolamenti delle varie gare si provvederà a indicare la data entro la quale detti log dovranno pervenire al buon Dan, affinché egli possa spedirli in tempo utile agli organizzatori.

Vi invito a fare un piccolo sforzo e a partecipare tutti a tutte le gare e non soltanto qualcuno a quelle più importanti. In questo campo non si è mai imparato abbastanza e, perché no, può sempre saltar fuori il prefisso raro o il Paese che mancava!

Facciamo dunque vedere agli SWL stranieri quello che sanno fare gli italiani. Mettiamocela tutta, con serietà e buona volontà e cerchiamo di fare un figurone!

Buon lavoro a tutti in attesa della classifica finale.

14-20000, Ermanno

Regolamento del primo Campionato HRD/SWL 1973

PARTECIPAZIONE: aperta a tutti gli SWL italiani. Per alcune gare non sono ammessi i titolari di licenza di trasmissione (vedere singoli regolamenti).

CATEGORIE: stazioni singolo operatore e multi operatore. Si precisa che per lo RSGB e per lo HF/p non è ammessa la categoria multioperatore quindi tutti i partecipanti saranno compresi nella categoria singolo.

GARE VALIDE PER LA CLASSIFICA

giugno '73 - HRD/SWL Contest luglio '73 - Contest Stazioni Portatili HF ottobre '73 - Contest VK/ZL novembre '73 - Contest RSGB 7 MHz dicembre '73 - Contest Italiano SWL 40/80 febbraio '74 - Coupe du REF

PUNTEGGIO: per ogni gara e per ogni categoria sarà attribuito il seguente punteggio:

50 punti al primo classificato;

40 punti al secondo;

30 punti al terzo: 20 punti al quarto:

10 punti al quarto;

5 punti dal sesto al decimo;

2 punti dall'undicesimo in poi.

Per le gare estere vale la posizione attribuita in classifica generale, riferita ai concorrenti italiani.

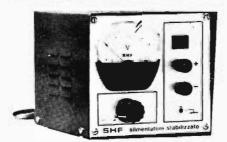
PUNTEGGIO TOTALE: somma dei punti attribuita per ogni gara. CLASSIFICHE: separate per stazione singolo e multioperatore. PREMI:

Categoria singolo operatore

11 classificato - Coppa e RX PMM 144÷146 (offerto da cq elettronica)

2º - Targa e abbonamento annuale a cq elettronica
 3º - Targa e volume Rivola - TX e RTX (edizioni CD)
 4º - Medaglia e abbonamento a Rivista Onde Corte
 5º - Medaglia e abbonamento a Rivista Onde Corte
 6º - Abbonamento semestrale a cq elettronica

Categoria multioperatore


1º classificato - Targa e abbonamento annuale a cq elettronica 2º - Medaglia e volume Rivola - TX e RTX (edizioni CD)

3º - Abbonamento semestrale a cq elettronica

L'A.R.I. offre, inoltre, l'associazione gratuita per un anno al socio miglior classificato

della categoria Seniores e al socio miglior classificato della categoria Juniores,

SHF Eltronik Via Martiri Liberazione 5 - a 42797 - 12037 SALUZZO

Tutti i modelli sono autoprotetti con apposito circuito a limitazione di corrente.

Spedizione contrassegno + contributo spese postali L. 500

Rivenditori:

TORINO: CRTV - c.so Re Umberto, 31 M. CUZZONI - c.so Francia, 91 SAVONA: D.S.C. elettronica - via Foscolo, 18

GENOVA: E.L.I. - via Cecchi, 15

PERUGIA: COMER · via della Pallotta. 20

ALIMENTATORI STABILIZZATI

VARPRO 2 A

Ingresso: 220 V 50 z Uscita: da 0 a 15 V cc

Stabilità: 2% dal minimo al max carico

Ripple: inferiore a 1 mV

L. 22,700

VARPRO 3 A

Caratteristiche simili al VARPRO 2 ma con max corrente erogabile di 3 A L. 27,000

VARPRO 5 A

Caratteristiche simili ai precedenti ma con max corrente erogabile di 5 A

L. 37.000

CERCASI CONCESSIONARI PER ZONE LIBERE

П

COSTRUZIONI ELETTRONICHE IMPERIA - C.P. 234 - Tel. 0183/45907

AF 27B/ME **Amplificatore** d'antenna a Mosfet quadagno 14 dB

Commutazione RT elettronica a radiofrequenza controllo del livello di sensibilità.

L 28/ME

L. 95,000

Lineare 27/30 Mc - Valvolare alimentazione incorporata Pilotaggio AM/SSB - min. 1 W - max 20 W uscita 160 W RF (20 W AM) uscita 400 W RF (20 W SSB)

Lineare 27/30 Mc · Valvolare Pilotaggio min. 1 W - max. 5 W

Alimentazione separata: alimentatore 220 V

alimentatore 12 V

L. 65.000

L. 18.800 L. 17.000

L. 88.000

TR 27/ME 25 W RE

Lineare 27/30 Mc Solid state

pilotaggio min. 0,4 V - max. 5 W preamplificatore d'antenna incorporato

INTERAMENTE A MOSFET E CIRCUITI INTEGRATI

Uscite: 24,000/24,333 12,000/12,166

6,600/ 7,200

26,900/27,400 26,500/26,945

26,900/27,400 \

a transceiver

Uscita diretta: 144/146 Mc - 0,1 W adatto a pilotare ns. Stadio finale 10 W RF. Tensione di uscita RF superiore ai 3 V eff. Modulatore FM applicabile.

Disponibile in versione sia telaio che inscatolato.

Prodotti reperibili presso i migliori rivenditori del settore

COSTRUZIONI ELETTRONICHE IMPERIA - C.P. 234 - Tel. 0183/45907

Punti vendita:

TORINO - TELSTAR MILANO - LANZONI, NOVEL ROMA - LYSTON, REFIT LA MADDALENA - ORECCHIONI MILAZZO - DI GAETANO

LACCO AMENO - IEMI

SASSARI - MESSAGGERIE ELETTRONICHE

ROMICHE

Citizen's Band ©

rubrica mensile su problemi, realizzazioni, obiettivi CB in Italia e all'estero

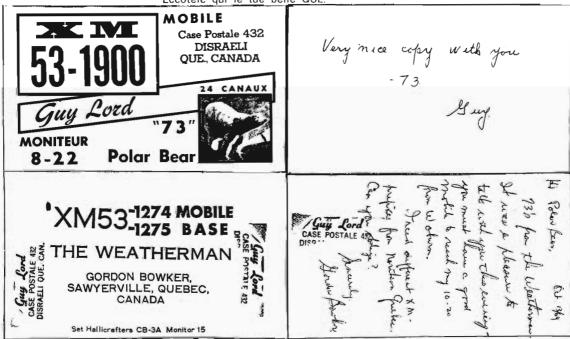
> a cura di **Adelchi Anzani** via A. da Schio 7 20146 MILANO

© copyright cq elettronica 1973

Caro Anzani,

mi presento. Sono « MERCURIO 6 » di Como, alias Mimmo L. Ti scrivo perché la tua rubrica è quella che corro sempre a leggere per prima quando compro cq elettronica ai primi del mese.

Come vedi ti allego delle OSL eccezionali: riguardano un mio collegamento avuto l'otto ottobre u.s. con un amico canadese di Disraeli, un isolotto a pochi chilometri dal Polo Nord.


Le mie condizioni sono:

Ricetrasmettitore Antenna OTH Ora di lavoro Freguenza Lafayette HB 23 Range Boost a mezz'onda Centro città di Como e quindi in una fossa 15 circa canale 17 pari a 27,165 MHz.

Dopo un po' di tempo, con mia gran sorpresa, mi son visto arrivare due QSL, in risposta alla mia, dall'amico GUY LORD di Disraeli. Te ne invio una originale e una in fotocopia per eventuale pubblicazione.

73+51 da Mimmo

Finalmente, caro Mimmo, la rivista mi concede un po' di spazio anche per te. Eccotele qui le tue belle QSL.

Certo che sono importanti.

Collegamenti così non si fanno tutti i giorni in gamma « 27 » e soprattutto non sempre sono confermati. Contento tu, ma son contento anch'io e tutti coloro che fanno dei DX la cosa più bella del nostro appassionante hobby.

Mod meter

CB: costruitevi un « misuratore di modulazione ».

La combinazione di un segnale trasmesso ben modulato e un basso livello di rumcre consente un ottimo ascolto. Ma lasciata cadere la modulazione (e sta alla capacità dell'attrezzatura usata imprimere il suono della vostra voce sul segnale di portante) al di sotto del 85 % e parte del vostro messaggio muore nel QRM.

Qualche CB ancora crede che se modula più del 100 % il segnale ricevuto giungerà più forte. Il segnale ricevuto, in realtà, appare robusto, ma la distorsione del segnale generato dal trasmettitore maschera immediatamente parte del messaggio. Il segnale sovramodulato impedisce quindi l'ascolto da parte del corrispondente.

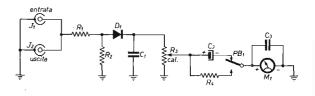
figura 1

Schema elettrico del misuratore di modulazione.

Il voltaggio RF sviluppato attraverso R2 è rivelato da D1 e filtrato da C1.

Il potenziometro R₃ trasforma una parte del segnale rettificato e lo convoglia su M₁ attraverso il condensatore C₂ o la resistenza R₄.

Il condensatore C₃ bypassa il segnale RF intorno al VU meter M₁.


 C_1 5 nF, 500 V, disco, ceramico C_2 10 μF , 15 V elettrolitico C_3 1 nF, 500 V, disco, ceramico D1 1N60 (al germanio) J_1,J_2 connettori coassiali da pannello SO239 Amphenol

J₁,J₂ connettori coassiali da pannello SO239 Amphenol M₁ VU Meter Lafayette 99R50247

PB₁ interruttore di carico a pulsante o a deviazione

R₁ 1,8 kΩ, ½ W, 10 % R₂, R₄ 4,7 kΩ, ½ W, 10 %

 R_2 10 k Ω , potenziometro lineare (vedi testo) 1 contenitore in alluminio da mm 571 x 571 x 1270

Per mantenere un appropriato segnale modulato molti CB confidano su un amplificatore di potenza del suono della voce o su un compressore; apparecchiature che devono funzionare in modo da non consentire livelli di modulazione superiori al $85 \div 100~\%$ per un corretto uso del trasmettitore.

Ascoltando le altrui emissioni, con il nostro autocalibratore, misuratore di modulazione in linea, potrete regolare la vostra apparecchiatura per l'optimum di modulazione.

Il nostro misuratore di modulazione « mod meter » è connesso permanentemente tra l'antenna e il ricetrasmettitore CB. Esso può monitorizzare l'uscita di tutte le apparecchiature CB in ampiezza modulata (AM). Con una semplice procedura di calibrazione, utilizzando la RF in uscita del ricetrasmettitore come livello di riferimento, vi permette di regolare il circuito del «mod meter» per operare con qualsiasi combinazione antenna/transceiver o rapporto di onde stazionarie (SWR).

Costruzione

Innanzittutto dovrete utilizzare per questo progetto i medesimi componenti che noi vi indichiamo. Per migliori risultati, comprate lo strumento VU Meter della Lafayette n. 99 R 50247. Mentre altri VU Meter possono provvedere con equivalente precisione, lo strumento specificato offre in questo montaggio le migliori prestazioni e letture precise sulla sua scala.

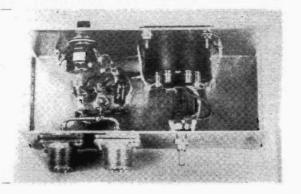
Il misuratore di modulazione è montato, nella fase finale, in un contenitore di

alluminio dalle misure di mm 571 x 571 x 1270.

I connettori coassiali, J_1 e J_2 , (SO239 da pannello) sono fissati da un lato, mentre lo strumento M_1 è in quello opposto. Quindi, per la minima interazione del circuito, non piazzare i connettori direttamente dietro il VU meter M_1 . Il potenziometro R_3 (calibratore) è un tipo miniaturizzato da 10 k Ω , con leva di comando piccola e dalle caratteristiche particolari, in quanto non deve dare adito a sfregamenti che potrebbero alterare l'andamento dell'operazione di calibrazione dello strumento e della apparecchiatura.

Il VU Meter M, è fornito con quattro o cinque terminali a saldare. Due di questi terminali (connessioni del movimento dello strumento) sono vicini al centro del corpo dello strumento. Un terminale ha indicato a fianco il segno +. I rimanenti due (o tre) terminali servono per collegare le lampadine dell'il-luminazione interna della strumento. Queste lampadine possono essere molto utili se funzionanti in una installazione in mobile; infatti è facilissimo collegarle, per tale uso: servirà allo scopo solamente un interruttore luce fissato a bordo dell'autovettura, o addirittura già preesistente, senza così creare nuovi « buchi ».

figura 2


Vista dello strumento collegato al ricetrasmettitore. I due terminali non usati del VU meter M_1 servono per la connessione dell'illuminazione dello strumento (vedi testo).

Collegate ora i terminali di J_1 e J_2 con un filo di rame (corto il più possibile, ma fatto a U) del diametro di $1\div 1.5$ mm, nudo. Collegate anche un terminale della resistenza R_1 nel centro di questo ponte a U che unisce i terminali centrali di J_1 e J_2 facendo in modo che il terminale saldato (con molto stagno per evitare saldature « fredde ») sia cortissimo.

figura 3

Veduta interna dello strumento. Usate i componenti suggeriti per ottenere i migliori risultati. I connettori coassiali Ji e J2 sono da montare in modo che la distanza centro a centro tra i loro terminali sia di 32 mm.

Per prevenire danneggiamenti al diodo D_1 , tagliare poi i terminali a una lunghezza di almeno 1.5 cm, e collegate D_1 correttamente, facendo attenzione alla polarità. Il terminale con la fascia nera dovrà essere collegato alla giunzione del condensatore C_1 con il potenziometro R_3 . Similmente, osservate la giusta polarità che contraddistingue il condensatore C_2 , prima di saldare il terminale positivo alla giunzione tra il potenziometro R_3 e il terminale della resistenza R_4 .

Controllo dell'uscita del mod meter

Ruotate prima a fondo in senso orario il potenziometro R₃. Collegate la vostra apparecchiatura a J₁ e J₂. Attaccate il cavo coassiale al rimanente jack. Girate il controllo di volume sul vostro ricetrasmettitore in modo che sia alla minima apertura e schiacciate il push-to-talk del microfono così che l'apparecchio sia in trasmissione. Pressate o spostate il deviatore PB₁ (a seconda che sia del tipo a pulsante o a deviazione tramite levetta) e regolate R₃ fino a quando l'ago dello strumento del misuratore di modulazione non giunga alla portata del 100 %. Rilasciate ora o commutate PB₁ nella posizione originaria e rimettete il comando del volume in posizione abituale di ascolto. Parlando nel microfono vedrete l'ago dello strumento darvi l'esatta indicazione

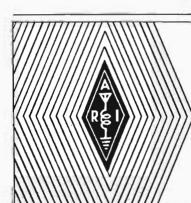
Come e quando usare il mod meter

della percentuale della vostra modulazione.

Lo userete soprattutto per misurare la modulazione in uscita dal vostro ricetrasmettitore o per regolare l'uscita da un compressore di modulazione o da un amplificatore di potenza del suono della voce. Come? Lo abbiamo appena visto sopra: è semplicemente un gioco di calibrazione da effettuarsi con il comando del volume del transceiver e con il potenziometro R₃ del nostro nuovo strumento. Dopo aver rilasciato lo switch (pulsante o deviatore, che dir si voglia) il « mod meter » segnalerà, durante la trasmissione, l'esatta indicazione della percentuale di modulazione.

Ricordate, ogni volta che l'ago dello strumento del vostro misuratore di modulazione oscillerà intorno al 100 %, il trasmettitore starà generando una forte distorsione. E' bene infatti che i valori segnalati stiano fra 85 e 95 % e non oltre.

Anche se il rapporto della stazione corrispondente che vi sarà dato sarà ottimo, la distorsione può superare e rendere inaccettabile parte del messaggio. Ripeto per i più duri, che le migliori prestazioni sono quelle ottenute con una ricezione più chiara e un piuttosto debole segnale e con un livello di modulazione chiuso intorno al 85 %.


Spesse volte i novelli CB sono tentati di inserire nella presa del microfono del transceiver un microfono per registratore convinti che questa « grande trovata » darà loro un segnale migliore e un suono di voce più cristallino. Tutto l'inverso.

Oltre al fatto che le impedenze dei microfoni sono disaccordate, il responso di frequenza del microfono per registratore è troppo ampio per i ricetrasmettitori CB. Il miglior microfono per le vostre apparecchiature è quello fornito dalla Casa insieme al ricetrasmettitore.

Il campo di frequenza di un microfono per comunicazioni radio è limitato appropriatamente al campo di frequenza del suono della voce. Tutte le altre frequenze al di fuori di questo campo hanno bisogno di uno spazio maggiore di quello della RF, sia in trasmissione che in ricezione.

Il risultato che si ottiene, modulando un ricetrasmettitore con un microfono dal responso di frequenza più ampio, sarà che il segnale generato causerà disturbi sui canali adiacenti: gli « splatters ». Il vostro segnale simulerà quello di una apparecchiatura sovramodulata, pur senza mai raggiungere il $50 \div 60$ % di modulazione.

A voi le prove e le considerazioni di quanto detto!

Un hobby intelligente?

diventa radioamatore

e per cominciare, il nominativo ufficiale d'ascolto

basta iscriversi all'ARI filiazione della "International Amateur Radio Union" in più riceverai tutti i mesi

etaivin oiben

organo ufficiale dell'associazione. Richiedi l'opuscolo informativo allegendo L 100 in francobolii per rimborso spece di spedizione a: ASSOCIAZIONE RADIOTECNICA ITALIANA - VIE D. Scariatti 31 - 20124 Milano

SIDEBAND ENGINEERS CORONADO

L'Electronics Shop Center è una nuova casa che si è affacciata solo da poco tempo al mercato italiano dell'elettronica applicata. Già vi abbiamo presentato qualche suo apparecchio come il Catalina, il Coronado I. Ma non ha fatto in tempo ad arrivare che già tutti ricercavano il loro « sogno » tra i « magnifici sette ». Tanti sono infatti i ricetrasmettitori della SBE sul nostro mercato: ma, attenzione, solo nel campo CB. In effetti la produzione della Sideband Engineers è molto più vasta e si estende in altre gamme di frequenza: quelle radiantistiche.

Il Sideband Engineers CORONADO, l'apparecchio messoci a disposizione dalla Electronics Shop Center, è un ricetrasmettitore progettato e costruito prevalentemente per l'uso in « barra mobile », e in chiaro, per l'installazione e l'uso a bordo della nostra autovettura. Forse non è tra i più piccoli, ma non è neppure grande. Non occupa molto spazio e facilmente si può applicare sul sottoplancia della nostra « carriola a quattro ruote » per soddisfare tutte le nostre esigenze di svago e di eventuali (non ve l'auguro mai!) necessità di soccorso.

Dati tecnici forniti dalla Casa

trasmettitore

da 26,965 a 27,255 MHz
0.005 % (da 0 °F a 120 °F
5 W
3 W nominali
A3, ampiezza modulata
—50 dB
50 Ω sbilanciati
100 %

ricevitore

- campo ui frequenza	ua 20,965 a 21,255 MHZ
- frequenza intermedia	455 kHz, 10 MHz
sensibilità	0,5 µV per 6 dB di rapporto segnale/disturbo a 1 kHz
- selettività	—40 dB a 1 kHz
- reiezione immagine	—50 dB
- uscita audio	superiore a 2 W
- sensibilità del controllo automatico	1 μV
di quadagno (AGC)	
- sensibilità di chiusura dello squelch	1 µV
- impedenza antenna	50 Ω nominali
- impedenza altoparlante	8 12

varie

_	alimentazione	13,8 Vec
	consumo ricevitore a squelch inserito	250 mA
_	consumo ricevitore con ascolto pieno	1,1 A
	consumo del trasmettitore con il	1,2 A

Uso in mobile

Come già detto, il SBE CORONADO trova il suo impiego specifico soprattutto in « barra mobile ». Intendiamoci subito: con questo non vuol dire che, possedendo un buon alimentatore stabilizzato di corrente continua e una buona antenna sul tetto del « OTH abituale », non lo si possa utilizzare in postazione fissa. Anzi, consiste proprio in questo la caratteristica versatilità del transceiver CORONADO: poterlo impiegare sia in « mobile », come in automobile, in imbarcazioni, in motoretta, a spalla con accumulatori extra, sia in casa con alimentazione in corrente continua stabilizzata. E sempre con ottimi risultati.

Chiaramente il giudizio di ottimo, buono o meno buono, desidero ricordare, viene formulato in relazione al rapporto costo/qualità × prestazioni.

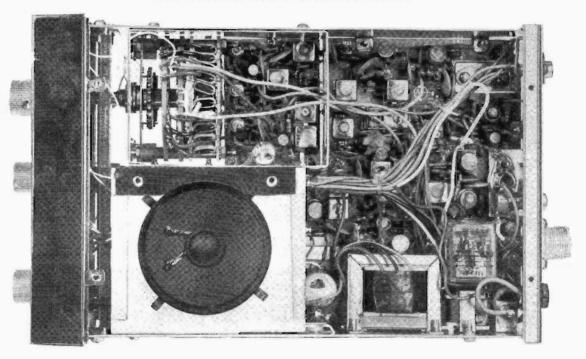
E il costo di questo apparecchio, come del resto tutta la serie degli SBE, è un costo accessibile a tutti, in quanto trattasi di una serie economica di baracchini per i patiti della Citizen's Band, che permette loro l'eventuale acquisto del secondo transceiver per « mobile » e di tutto uso.

L'apparecchio è fornito con un supporto metallico per il sostegno dello stesso ad applicazione avvenuta in auto e del microfono che è direttamente collegato con cavetto a spirale all'interno. Ritengo però che questa abitudine, ormai da molti normalizzata, di fornire il ricetrasmettitore con microfono direttamente collegato non sia la soluzione ottimale per l'operatore che generalmente è sempre alla ricerca di cose semplici, di svincoli che rendano più efficienti e funzionali le apparecchiature.

D'altronde il costo di una spina e di una presa microfonica è così esiguo, soprattutta in una produzione in serie di migliaia e migliaia di pezzi, che la mancata applicazione dei due componenti non giustifica certo il minimo risparmio che ne deriva. E' auspicabile dunque che per il futuro la produzione provveda a questa mancanza di funzionalità.

Ma senza divagare in spigolature di carattere diverso, riandiamo al nostro discorso sulla installazione in auto del CORONADO. L'apparecchio è studiato per funzionare con una alimentazione in corrente continua a 12 V, con negativo a massa. Sarà opportuno collegare direttamente al polo positivo e al polo negativo della batteria i rispettivi cavetti di alimentazione dell'apparecchio. Si avrà così l'assicurazione di una alimentazione continua e costante, senza perdite dovute a percorsi contorti di altri eventuali cavi e a dispersioni causate da altri servizi inseriti eventualmente nella linea di alimentazione. La batteria dell'auto, generalmente da 36 a 48 Ah, sarà in grado di sopportare ottimamente il lieve consumo del nostro ricetrasmettitore.

Passiamo ora all'antenna. Il miglior rendimento lo possiamo ottenere con un'antenna caricata alla base o con un quarto d'onda verticale intero. Queste antenne non sono direzionali, ma appunto per la loro omnidirezionalità assicurano sempre una resa stabile ai continui mutamenti di direzione dell'automobile in movimento. Il collegamento tra «baracchino» e antenna lo effettueremo a mezzo cavo coassiale tipo RG-8/U o semplicemente con RG-58A/U.


A questo punto il nostro impianto sarebbe pronto a funzionare: dico sarebbe perché manca ancora un dettaglio. Per ottenere l'optimum delle prestazioni, il CORONADO dovrà essere accordato con il sistema d'antenna. Porremo allora in linea, tra il transceiver e l'antenna, un wattmetro e un misuratore di onde stazionarie.

Selezionato il canale 11, e in trasmissione, regoleremo il trimmer potenziometrico L_{10} situato sul retro a fianco alla presa SO239 dell'antenna del ricetrasmettitore, fino a ottenere la lettura sugli strumenti in linea della massima potenza in uscita con l'indicazione del minor rapporto di onde stazionarie possibile

Adesso tutto è definitivamente a posto, e il CORONADO SBE al lavoro darà la massima resa con vostra giusta soddisfazione.

Le nostre rilevazioni

Il « baracchino » si presenta piuttosto bene. Linea piacevole, di un nero verniciato a fuoco, non molto piccolo, ma compatto. All'interno il circuito sintetizzatore è costruito su una basetta a se stante poi opportunamente collegata con la parte principale del ricetrasmettitore.

Un punto di svantaggio è da assegnare a quel microscopico strumento che vorrebbe essere uno S-meter con la scala da 1 a 5. Nonostante ciò però fa il suo dovere come tutti gli strumenti degli altri apparecchi reperibili sul nostro mercato.

Molti punti a favore invece gli sono dovuti per i dati rilevati e riportati più appresso. Le prove sono state effettuate su carico fittizio antiinduttivo da 50 Ω nominali in laboratorio.

modulazione	o di corrente nA)		potenza output	alimentazione output	
	in modulazione	(Vec) (W) con portante		(Vee)	
ottima	1100	820	2.5	12	
ottima	1180	950	3,2	13	
eccellente	1450	1020	3,7	13.8	
eccellente	1520	1080	3.8	14	
eccellente	1600	1100	4,2	14,5	
ottima	1750	1190	4.7	15	
ottima	1820	1220	5.1	15,5	
buona	1890	1260	5,5	16	

sensibilità 0,6 μV per 10 dB di rapporto (S+N)/N selettività 10 dB a ± 6 kHz

L'apparecchio, a buon mercato, è in vendita in tutta Italia presso i negozi della distribuzione della ELECTRONIC SHOP CENTER, via Marcona 49, Milano.

CB a Santiago 9 +

rubrica nella rubrica

© copyright 1973

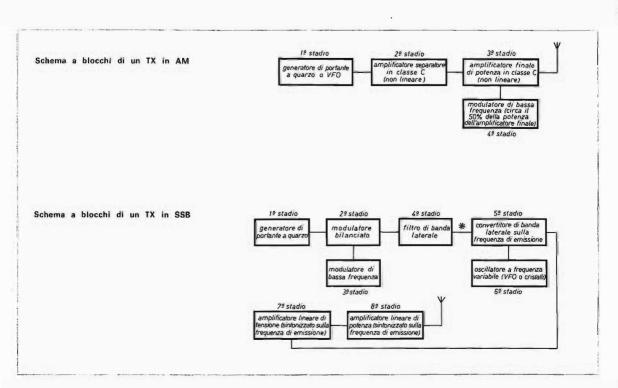
a cura di **C**an **B**arbone 1º dal suo laboratorio radiotecnico di via Don Minzoni 14 47038 SANTARCANGELO DI ROMAGNA

Settima fatica

Mamma mia quante lettere ho ricevuto, ma allora qualcuno legge veramente il verbo di Can Barbone. Perrrrbacco, ma qui la cosa si fa seria, quasi quasi mi vien voglia di scrivere una « Mezza pagina dei CBrini » per analogia con la pagina dei pierini redatta dal clarissimo Emilio Romeo, tuttavia mi sorge un dubbio, non sarà un po' troppo infilare una sotto rubrica a una rubrica nella rubrica? Effettivamente è troppo e quindi mi limiterò ad alcuni schiarimenti inerenti le richieste dei CBers che riterrò utili un po' a tutti. Moltissimi mi hanno chiesto che differenza passa tra il cavo RG59/U e il RG11/U in quanto tutti e due hanno una impedenza caratteristica di 75 Ω : figlicli miei, le differenze sono due, la prima e anche la principale, è che il RG59/U rispetto al RG11/U è più sottile e a pari lunghezza presenta maggiori perdite, quindi minor trasferimento di energia dal TX all'antenna e più attenuazione del segnale dall'antenna al RX, tuttavia la cosa si fa apprezzabile solo per lunghezze di cavo oltre i 15 m, la seconda differenza sta nel costo, che è direttamente proporzionale al diametro del cavo per cui mentre il RG11/U presenta meno perdite di radiofrequenza, per la nota legge di compensazione presenta maggiori perdite al portafoglio, quindi la scelta del cavo dipende da queste due differenze, chiaro? Altri mi chiedono come sia possibile ottenere 23 canali quarzati usando solo 14 quarzi, perché a ragion di logica ne occorrerebbero ben 46 (23 in trasmissione e 23 in ricezione). Ritengo doveroso chiarire la faccenda certo di interessare un buon numero di lettori e do' senz'altro inizio alla spiegazione di tutto aggrovigliandovi il cervello con la:

Lista di combinazione dei cristalli per un sintetizzatore di frequenza

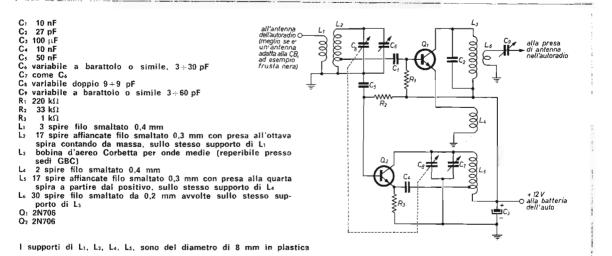
(A) gruppo di 6 pezzi	(B) gruppo di 4 pezzi	(C) gruppo di 4 pezzi
in comune	in trasmissione	in ricezione
a 33.000 MHz	a' 6,035 MHz	a" 6,490 MHz
b 33,050 MHz	b' 6,025 MHz	b " 6,480 MHz
c 33,100 MHz	c' 6,015 MHz	c" 6,470 MHz
d 33,150 MHz	d' 5,995 MHz	d" 6,450 MHz
e 33,200 MHz		and the second of the second
f 33.250 MHz		


canale	frequenza (MHz)	combinazione (trasmissione)	combinazione (ricezione)			
1	26965	a—a'	a—a''			
2	26975	a—b'	a—b''			
3	26985	a—c'	a—c''			
4	27005	a—d'	a—d"			
5	27015	b—a'	ba''			
6	27025	b—b'	bb'''			
7	27035	b—c'	b—с"			
2 3 4 5 6 7 8 9	27055	bd'	p—q.,			
9	27065	c—a'	c—a''			
10	27075	c—b.	c—b"			
11	27085	c—c'	c—c''			
12	27105	c—d'	c—d''			
13	27115	d—a'	d—a''			
14	27125	d—b'	d—b``			
15	27135	d—c'	d—c"			
16	27155	dd'	d—d''			
17	27165	e—a'	e—a''			
18	27175	e—b.	e—b''			
19	27185	e—c'	e—c"			
20	27205	e—d'	e—d''			
21	27215	f—a`	f—a¨			
22	27225	f—b'	f—b"			
23	27255	f—d'	f-d"			

Finita la sequenza dei geroglifici comprendo lo stato d'animo di chi ha avuto la pazienza di arrivare fin qua e non intendendo abusare ulteriormente della vostra benevolenza cercherò di spiegarvi nel modo più chiaro possibile questa insalata russa di cifre e lettere al fine di non farvi grippare il prezioso contenuto della scatola cranica. Faccio subito un esempio pratico prendendo in esame la combinazione di cristalli del canale 14 il quale ha una frequenza nominale di 27,125 MHz; in corrispondenza di detta frequenza troviamo « d—b'): le lettere si riferiscono a due cristalli e precisamente al cristallo da 33,150 e al cristallo da 6.025 i quali, posti in due circuiti oscillatori, vanno a pilotare un circuito convertitore il quale si incarica di estrarne la differenza: 33,150 meno 6,025 uguale 27,125, risolvendo il problema della trasmissione sul canale 14. Arrivati a questo punto per capire il seguito bisogna conoscere il funzionamento del ricevitore « supereterodina ».

In pratica tutti i ricevitori degni di questo nome e in particolare quelli in uso per la CB sono supereterodine quindi le prossime righe sono dedicate a chi ignora nel modo più buio il meccanismo della ricezione della supereteroeccetera. Anziché annoiarvi con un discorso tecnico vi espongo i fatti visti da un punto di vista strettamente CB. Ora supponiamo che SNOOPY 23esimo stia facendo un bel CO sul benedetto canale 14, nell'etere svolazzerà una meravigliosa onda hertziana a 27,125 MHz, il vostro baracchino allora ingoierà attraverso l'antenna la sua paziente chiamata e prima di percuotere i vostri timpani sarà costretto a trasformare il segnale ad alta frequenza in un segnale di bassa. Questo processo è volgarmente conosciuto col nome di rivelazione o di demodulazione e avviene in codesta sequenza: 1º il segnale in arrivo viene captato dall'antenna, inviato ai circuiti di preselezione, e di amplificazione; 2" la radiofrequenza amplificata viene posta in battimento nel circuito di miscelazione con il segnale dell'oscillatore locale (tenete a mente questo particolare); 3º sempre nel circuito di miscelazione viene estratta la differenza tra il segnale in ingresso e il segnale dell'oscillatore locale la quale avrà un valore di 455 kHz (valore standard di tutti i baracchini); 4º la catena di amplificazione a frequenza intermedia accordata appunto a 455 kHz provvede a rendere di ampiezza sufficiente il segnale così convertito al fine da subire il processo di rivelazione e anche a stringere la banda passante del ricevitore altrimenti potrebbe rivelare contemporaneamente tutti i 23 canali; 5° il segnale ottenuto ora viene demodulato e amplificato fino a giungere all'altoparlante, il resto lo sapete. A questo punto è ovvio che un segnale di 27.125 mega per convertirsi in uno a 455 kilo dovrà sottrarsi a un oscillatore locale avente un valore di 26,670 mega; consultando la tabella corrispondente al canale 14 troviamo che in ricezione è valida la combinazione di cristalli contrassegnata « d-b'', ora se d=33,150 MHz e b''=6,480 MHz come differenza troviamo il valore di 26,670 mega. Riassumendo, per ogni combinazione di cristalli in trasmissione ne avremo una in ricezione che fornirà sempre una differenza tra i segnali di 455 kHz, se non ci credete peggio per voi perché tanto le cose non cambiano! Questa quindi è la più rapida sintesi del circuito supereterodina, dico sintesi perché in realtà non basterebbero tutte le pagine della rivista per spiegare a fondo l'argomento, comunque mi auguro di essere stato sufficientemente « alla portata di tutti », perdonatemi se non ci sono riuscito. Ora voi mi capite, non è tanto semplice trasformare un baracchino da 6 canali in uno a 23 usando il sistema a 14 guarzi sintetizzati in quanto il lavoro richiederebbe una discretta conoscenza tecnica di parecchi problemi oltre a tre transistor, 14 quarzi, 1 commutatore a 3 vie e 23 posizioni (per un totale di 69 saldature solo sul commutatore) e tanti altri piccoli componenti come bobine, zoccoli, resistenze e condensatori varii. Tutto sommato è più conveniente dedicare il 6 canali ai principianti e acquistarne uno a 23 canali con l'aggiunta di qualche mille quando si è più ambiziosi.

Dopo aver dato onorevole sepoltura alle salme dei colpiti da colpo apoplettico in seguito a questa mia sconcertante rivelazione proseguo deludendo in maniera ancor più sadica tutti quelli che mi hanno pregato di progettare una modifica ai loro baracchini in AM per farli funzionare in SSB, ma dico io vi mancano delle vitamine? No-o, non è possibile, accantonate queste malsane speranze, posso dirvi che è facile trasmettere in AM con un TX progettato per la SSB, ma non fare l'inverso in quanto l'operazione è assolutamente irreversibile. Scusate sento una chiamata sul canale 10... Era Batman 184esimo (dico ma perché ci devono essere in aria tanti Snoopy e tanti Batman, beh, lasciamo perdere) il quale mi chiedeva con insistenza ampie delucidazioni in merito, e va bene, ti voglio accontentare con un confronto di schemi a blocchi sui TX in AM e quelli in SSB, apri bene i fanali e look qui appresso.


Come potete vedere dallo schema a blocchi del TX in AM, gli stadi essenziali sono quattro, nel primo viene generata la portante, nel secondo la portante generata viene amplificata per permettere il pilotaggio dello stadio finale, detto stadio serve anche a separare l'oscillatore (generatore di portante) dallo stadio finale per evitare che l'oscillatore stesso possa subire modulazioni di frequenza da parte del modulatore di bassa frequenza, da notare che lo stadio è in classe C e cioè in grado di amplificare solo segnali perfettamente sinusoidali senza modulazione alcuna (solo gli amplificatori lineari possono amplificare segnali modulati!), il terzo stadio, sempre in classe C, amplifica in potenza la portante e sovrappone a questa il segnale modulante di bassa frequenza fornito dal quarto stadio, all'uscita del terzo quindi avremo il circuito di antenna che si incaricherà di irradiare l'onda portante modulata. Grosso modo è tutto qui, vediamo ora come lavora un TX in SSB seguendo lo schema a blocchi. In questo caso gli stadi sono otto, il primo stadio genera una portante a valore fisso per qualsiasi frequenza si desideri trasmettere, il secondo stadio chiamato « modulatore bilanciato » sopprime la portante e ogni volta che viene eccitato dal terzo stadio (modulatore di bassa frequenza) lascia passare solo le bande laterali (vedi ampia spiegazione di tutto il meccanismo da parte di Anzani sul numero di ottobre 72).

Il quarto stadio è un filtro avente la stessa frequenza dell'oscillatore di portante combinato in modo tale da lasciar passare solo una banda laterale. Il quinto stadio avvalendosi del sesto converte il segnale a singola banda laterale sulla frequenza di emissione, il settimo provvede a rendere detto segnale di ampiezza sufficente a pilotare l'ottavo stadio il quale fornisce potenza atta a essere irradiata dall'antenna. Ora come potete vedere le differenze sono notevoli quindi rimane estremamente scomodo rifare tutto, potreste usare si e no il contenitore (unica cosa in comune tra i due sistemi), mentre per far lavorare in AM un TX in SSB basta prelevare parte della radiofrequenza fornita dal generatore con un semplice condensatore e collegare quest'ultimo all'uscita del filtro nel punto segnato con un asterisco riammettendo così la portante soppressa nel modulatore bilanciato.

Ora per non meritarmi l'appellativo di Can « Barboso » la 'pianto con tutta questa robaglia che deve aver messo a dura prova la cara materia grigia e passo a beatificarvi gli oculari con qualcosa di pratico, ultrasemplice e assolutamente innocuo, tò mi voglio rovinare, nemmeno vietato ai minori di 14 anni. Trattasi di un miniconvertitore a due transistor per ricevere la Citizen's Band con la vostra autoradio per onde medie senza dover manomettere quest'ultima.

Eh? Siete contenti? Ne ero certo! Augh, dissotterrate quindi il saldatore e ponetevi sul sentiero di guerra, ci sarà aspra battaglia tra voi e i transistor, ma riuscirete vincitori tanto io faccio il tifo per voi, mica sono amico del giaguaro!

Appena terminato il cablaggio verificate che non ci siano errori, date tensione al tutto servendovi della batteria dell'auto (non dimenticate la massa che va alla carrozzeria) sfilate l'antenna dell'autoradio e inviatela a L., poi collegate L_e alla presa di antenna dell'autoradio con C_e completamente chiuso o a metà corsa, ruotate la sintonia dell'autoradio attorno ai 1500 kHz e fermatevi nel punto dove ascoltate maggior fruscio, pregate qualche amico di trasmettere sul canale 12 a distanza ravvicinata, ruotate Ce fino a metà corsa, poi regolate C₇ con un cacciavite in plastica fino a che udrete l'emissione dell'amico già sopra citato, fatto ciò regolate C, per il massimo segnale in altoparlante, in ultimo regolate Co fino a rendere accettabile il compromesso fruscìo/segnale (perché se c'è troppo fruscìo i segnali deboli ne vengono sommersi). A questo punto troverete il canale 1 a variabile quasi tutto chiuso e il canale 23 a variabile quasi tutto aperto (C, si intende). Ecco che una normale autoradio che si è sempre comportata seriamente a un certo punto vi parrà di averla trasformata in un bailamme di infernali fischi, sibili, urlii, e tante altre robacce oltre a udire qualche distinto e nitidissimo OSO, ma che ci volete fare, questa è la CB!

Ora per stavolta la smetto di martirizzarvi e chiudo, ah, no, un momento, colgo l'occasione per ringraziare quanti di voi mi hanno inviato gli auguri di Buon Natale e Capodanno, non potendo contraccambiare a causa del ritardo a tutti loro e a tutti voi mando tanti auguroni di buona Pasqua e come al solito con una cordiale stretta di zampa e il mio personale bau bau vi saluto tutti t tti molto cordialmente.

CIRCUITI STAMPATI ESEGUITI SU COMMISSIONE PER DILETTANTI E RADIOAMATORI

Per ottenere circuiti stampati perfetti, eseguiti con la tecnica della fotoincisione, è sufficiente spedire il disegno degli stessi, eseguiti con inchiostro di china nera su carta da disegno o cartoncino per ricevere in poco tempo il circuito stampato pronto per l'uso. Per chiarimenti e informazioni, scrivere a: A. CORTE via G.B. Fiera, 3 46100 MANTOVA A tutti coloro che affrancheranno la risposta con L. 50 verrà spedito l'opuscolo illustrativo.

Prezzi e formati:

Formato minimo cm 7 x 10.

cm 7 x 10 L. 850 cm 10 x 12 L. 1.300 cm 13 x 18 L. 2.300 cm 18 x 24 L. 4.000

Esecuzione in fibra di vetro aumento 10 %.

ORA LOCALE italiana più favorevole per la ricezione dei satelliti APT sotto indicati

15 marzo/ /15 aprile 1973	FSSA 8 frequenza 137.62 MHz periodo orbitale 114,6' altezza media 1440 km inclinazione 101,6º	NOAA 2 frequenza 137,50 MHz periodo orbitale 114,9' altezza media 1454 km inclinazione 101,70		METEOR 10 frequenza 137,62 MHz periodo orbitale 102,2 altezza media 866 km inclinazione 81,2°
giorno	orbita nord-sud ore	orbita nord-sud ore	orbita sud-nord ore	orbita sud-nord
15/3	11,55	9,16°	20,16°	13.59°
16	10,32°	10,11	19,16	13.51°
17	11,23	9,11°	20,11°	13.43°
18	19,19	10,06	19,11	13.36°
19	11,10°	9,06	20,06°	13.29°
20	10,07	10,02*	19,06	13,21*
21	10.58*	9,02	20,02*	13,13*
22	11,49	9,57*	20,57	13,06*
23	10,45°	8,57	19,57*	12,58*
24	11,36	9,52*	20,57	12,50*
25	10,33°	8,52	19,52** 20,47 19,47 20,42 19,42	12.42°
26	11,24	9,47*		12.35*
27	10,21	8,47		12.27°
28	11,12°	9,42*		12.19°
29	10,09	8,42		12.11°
30	10,59°	9,37*	20,37°	12,04°
31	11,51	8,38	19,38	11,56°
1/4	10.47°	9,33*	20,33*	11,48°
2	11.38	8,33	19,33	11,40°
3	10.34°	9,28*	20,28*	11,33°
4	11.25	8,28	19,28	11,26°
5	10.22	9,23*	20,23	11,18°
6 7 8 9	11,13 10,09 11,01 11,52 10,48°	10,18 9,18* 10,13 9,13* 10,08*	19,23 20,18* 19,18 20,13* 19,13	11.10* 11.03* 10.55* 10.47* 10,39*
11 12 13 14	11,40 10.36° 11,27 10,23 11,14	9,09 10,04° 9,04 9,59° 8,59	20,09° 19,09 20,04° 20,59 19,59°	10.32° 10.24* 10.16° 10.08° 10.00°

L'ora indicata è quella locale italiana e si riferisce al momento in cui il satellite incrocia il 44º parallelo nord, ma con una tolleranza di qualche minuto può essere ritenuta valida anche per tutta l'Italia peninsulare e insulare. Per una sicura ricezione è bene porsi in ascolto quindici minuti prima dell'ora in dicata.

Per ricavare l'ora del passaggio prima o dopo a quello indicato in tabella basta sottrarre (per quello prima) o sommare (per quello dopo) all'ora indicata, il tempo equivalente al periodo orbitale del satellite (vedi es. su cq 1/71 pagina 54). L'ora contraddistinta con un asterisco si riferisce all'orbita più vicina allo zenit per l'Italia.

ATTENZIONE: per i collegamenti via OSCAR 6 servirsi dell'ora indicata per il NOAA 2, in quanto i due satelliti orbitano

a breve distanza.

ERRATA CORRIGE

Nel circuito di figura 1, cq 12/72, pagina 1668, il secondario del trasformatore di alimentazione per i 5 V stabilizzati deve erogare una tensione di 18 V con 0,1 A e non 9 V con 0,1 A. Nel caso si voglia impiegare un solo trasformatore usando però due raddrizzatori come descritto nel testo, esso deve avere le stesse caratteristiche citate. Nel circuito a pagina 300, cq 2/73, per il CA3085 non è stata trascritta la numerazione ai piedini dell'integrato. quindi per i collegamenti vale la numerazione riportata nel circuito similare pubblicato su cq 12/72 a pagina 1668.

CAUSA SCIOPERI LAVORATORI SETTORE GRAFICI la Rivista esce incompleta delle rubriche Satellite chiama terra (limitata alle sole effemeridi), cq audio e offerte e richieste.

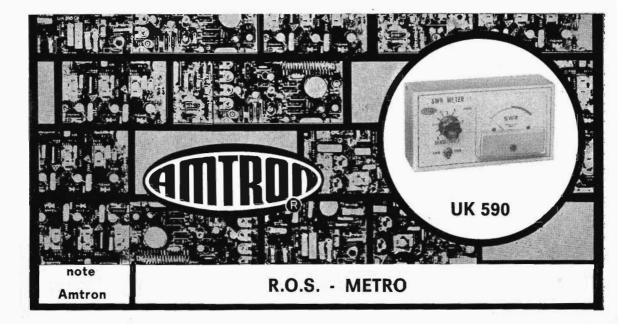
--- 472

EFFEMERIDI NODALI più favorevoli per l'Italia relative ai satelliti APT sotto indicati

\ n					,		
15 marzo/ /15 aprile 1973	frequen periodo altezza	SSA 8 iza 137,62 MHz orbitale 114,6' media 1440 km izione 101.6 ³		NOA frequenza 1 periodo orbi altezza medi inclinazion	37,50 MHz tale 114,9° a 1454 km.		
giorno	ora GMT	tongitudine ovest orbita nord-sud	ora GMT	longitudine ovest orbita nord-sud	ora GMT	longitudine est orbita sud-nord	
15/3	7,57,23	149,6	7,33,04	168.0	19,02,28	27.8	
16	8,48,31	162,4	8,28,09	173.8	19,57,33	14,0	
17	9,39,39	175,2	7,28,09	158.8	18,57,38	29.0	
18	8,36,05	159,3	8,23,20	172,6	19,52,44	15.2	
19	9,27,13	172,1	7,23,25	157.6	18,52,49	30,2	
20	8,23,39	156.2	8.18.31	171,4	19,47,55	16.4	
21	9,14,48	169.0	7,18,36	156.4	18,48,00	31,4	
22	8,11,13	153,1	8,13,42	170.1	19,33,06	17.7	
23	9,02,22	165.8	7,13,42	155,2	18,43,11	32,6	
24	7,58,48	149.9	8,08,53	168.9	19,38,21	18,9	
25	8,49,56	162.7	7,08,58	153.9	18,38,22	33,9	
26	9,41,04	175,5	8,04,04	167,7	19,33,28	20,1	
27	8,37,30	159.6	7,04,09	152.7	18,33.33	35,1	
28	9,28,38	172,4	7,59,15	166.5	19,28,39	21,3	
29	8,25,04	156,5	6,59,20	151.5	18,28,44	36,3	
30	9,16,12	169.3	7,54.26	165,3	19,23,50	22,5	
31	8,12,38	153.4	6,54,31	150,3	18,23,55	37,5	
1/4	9.03.46	165.2	7,49,36	164,1	19,19,00	23,7	
2	8,00,12	150,3	6,49,41	149,1	18,19,05	38.7	
3	8,51,20	163.0	7,44,47	162.8	19,14,11	25,0	
4	9,42,28	175,8	6,44,52	147.8	18,14,16	40.0	
5	8,38,54	159.9	7,39,58	161,6	19,09,22	26,2	
6	9,30.02	172.7	8,35,04	175.4	20,04,28	12,4	
7	8,26,28	156,8	7,35,09	160,4	19,04,33	27.4	
8	9,17,35	169.6	8,30.14	164,2	19,59,38	13,6	
9	8,14,02	153.7	7,30,20	159,2	18,59,44	28,6	
10	9,05,10	166,5	8,25,25	172,9	19,54,49	14,9	
11	8,01,33	150,6	7,25,31	158.0	18,54,55	29.8	
12	8,52,44	163,4	8,20,36	171.7	19,50,00	16,1	
13	9,43,52	176,1	7,20,42	156,7	18,50,08	31,1	
14	8,40,18	160,2	8,15.47	170.5	19,45,11	17,3	
15	9,31,28	173,0	7,15,53	155,5	18,45,17	32,3	

L'ora espressa in ore, minuti e secondi GMT si riferisce al momento in cui il satellite incrocia la verticale sulla linea dell'equatore durante l'orbita più favorevole alla nostra area di ascolto. La tabella comprende anche la longitudine in gradi e decimi di grado sulla quale il satellite incrocia l'equatore durante quel passaggio. La longitudine serve per impostare sulla mappa polare la traiettoria oraria del satellite onde ricavare con facilità l'ora e la longitudine alle quali il satellite incrocia la latitudine alla quale è posta la propria stazione ricevente APT. Per una corretta interpretazione e uso delle effemeridi nodali vedi cq 5/71, 6/71 e 7/71. Chi è in possesso del materiale tracking del Reparto del Servizio Meteorologico dell'Aeronautica Militare impleghi per il NOAA 2 le due traiettorie orarie e la tabella di conversione degli angoli geocentrici in angoli di elevazione già impiegati per l' ESSA 8 e l' ITOS 1.

TELESOUND COMPANY, Inc. via L. Zuccoli, 49 - 00137 ROMA - telefono 88.48.96



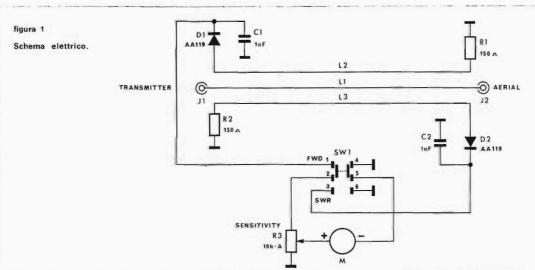
NUOVI PRODOTTI

Continua con successo la ormai affermata ed apprezzata produzione di alimentatori ed apparecchiature professionali

MINI MATE

Il piccolo alimentatore che racchiude la potenza di un gigante.
Tensione di uscita 12,6 V (regolabile se necessario mediante trimmer interno tra 3 e 15 V).
Corrente 2 A (lavoro continuo), 2,5 A (lavoro intermittente).
Totalmente protetto contro i cortocircuiti, Stabilità da vuoto a pieno carico eccezionale.

I tecnici, i riparatori ed in modo particolare i radioamatori ed i C.B. abbastanza spesso si trovano ad affrontare il problema dell'adattamento dell'antenna e della relativa linea di discesa che fa capo al trasmettitore. L'adattamento deve essere il più perfetto possibile, diversamente buona parte della potenza di uscita RF del tra-smettitore viene inutilmente dissipata, a scapito di chi riceve il segnale irradiato. Per superare questo ostacolo l'AMTRON ha realizzato uno strumento: il ROS-METRO UK 590, capace di misurare in pochi secondi il valore del rapporto di onde stazionarie.


Caratteristiche tecniche:

Impedenza: 52 Ω Gamma di frequenza: 3 ÷ 150 MHz

Strumento: microamperometro da 100 µA Sensibilità dello strumento: regolabile con continuità Diodi impiegati: 2 x AA119

Descrizione del circuito

Lo schema elettrico di questo ROS-METRO (Misuratore del rapporto di onde stazionarie) è visibile in figura 1. Esso è costituito da due prese coassiali J1 e J2 collegate

fra loro dalla linea L1. Parallelamente al suddetto tratto di linea sono disposte altre due linee L2 e L3 opposte tra loro. In queste ultime, quando il segnale a radiofrequenza viene fatto passare attraverso la linea L1, viene indotta una tensione proporzionale all'intensità della corrente ad alta frequenza. In pratica la linea L1 si comporta alla stessa stregua del primario di un trasformatore, che induce una tensione nei due secondari costituiti dalle due linee L2 e L3. Le suddette due linee L2 e L3 fanno entrambe capo a massa mediante due resistori di carico, R1 e R2, collegati alle due estremità reciprocamente opposte. L'altra estremità di ciascuna linea fa invece capo ad una cellula di rettificazione ciascuna delle quali consta di un diodo e di un condensatore, D1 (AA119) e C1 per la linea L2, D2 (AA119) e C2 per la linea L3, La cellula costituita dal diodo D1 e dal condensatore C2 rettifica il segnale dovuto alla potenza diretta irradiata nello spazio attraverso l'antenna, mentre la cellula costituita dal diodo D2 e dal condensatore C2 rettifica il segnale dovuto alla potenza riflessa che si manifesta quando il rapporto di onde stazionarie (ROS) è di valore apprezzabile. Ciascuno dei due segnali rettificati viene applicato allo strumento indicatore M. mediante il deviatore SW1, e regolato in ampiezza dal potenziometro R3.

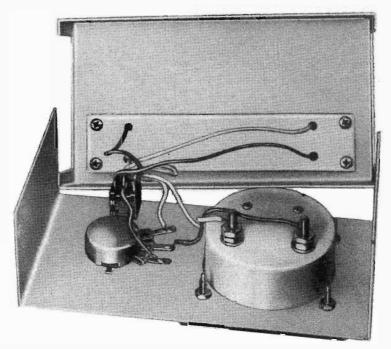


figura 2
Aspetto del ROS-METRO a montaggio ultimato.

Meccanica del ROS-METRO

Meccanicamente il ROS-METRO si compone di due parti e precisamente:

- 1) Contenitore nel quale sono montate le prese coassiali J1 e J2, il trasformatore e le cellule di rettificazione.
- 2) Pannello frontale sul quale sono montati lo strumento indicatore M, il deviatore con leva a pera SW1 e il potenziometro R3 per la regolazione della sensibilità.

La realizzazione pratica dello strumento non presenta particolari difficoltà e ciò grazie anche a un dettagliato opuscolo fornito a corredo del kit.

tabella 1

ROS

1:1,1

1:1.5

1:2.6

1:3.0

n %

99,5

99

96

91

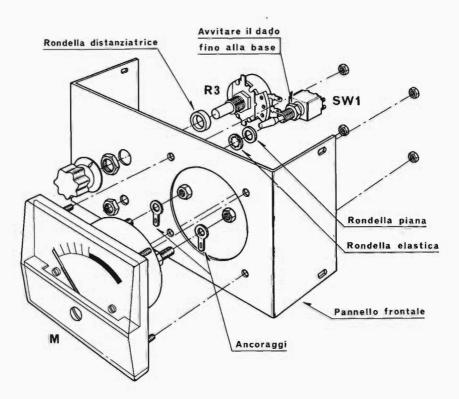
80

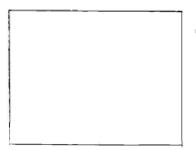
75

Modo d'impiego

La procedura per la misura del rapporto di onde stazionarie è la seguente:

- 1) Si inserisce il ROS-Metro in serie tra l'uscita del trasmettitore e la linea di discesa dell'antenna o alla base di essa.
- 2) Predisporre il deviatore con leva a pera SW1 in posizione FWD (onda diretta).
- 3) Regolare la sensibilità (sensitivity) al minimo.
- 4) Accendere il trasmettitore.
- 5) Regolare la sensibilità fino a portare l'indice dello strumento indicatore M a fondo scala indicato con ∞ .
- 6) Predisporre il deviatore con leva a pera SW1 in posizione SWR (onda riflessa)
- 7) Eseguire tutte le modifiche necessarie fino ad ottenere il miglior rendimento. Il massimo rendimento si ottiene quando il rapporto di onde stazionarie è 1 : 1 indicato nella scala dello strumento con 1.




figura 3

Esploso di montaggio della parti staccate sul pannello frontale.

Non è accettabile un rapporto superiore a 1:3, cioè inferiore del 75 %. A questo scopo la scala dello strumento indicatore M dal 3 in poi è contrassegnata con una linea rossa la quale sta ad indicare la pericolosità per il pessimo adattamento fra il trasmettitore e l'antenna.

Per chiarire meglio le idee nella tabella 1 viene indicato il rendimento corrispondente ai vari rapporti di onde stazionarie. La potenza applicabile al ROS-Metro va da un massimo di 500 W a 3 MHz ad un minimo di 30 W a 144 MHz.

N.B. - Le scatole di montaggio AMTRON sono distribuite in Italia dalla G.B.C.

Coloro che desiderano effettuare una inserzione utilizzino il modulo apposito

© copyright cq elettronica 1973

OFFERTE

73-0-221 - CQ SB vendo Zodiac N5024 usato in pochissimi colegamenti, causa passaggio in 144 (2 m) con Ground Plane - 85.000. Amplificatore RCF mod. AM820 30 W musicali maj .sato L. 40.000 trattabili, Luci psichedeliche 3 canali 1500 W canale L. 50.000. Cerco piastra giranastri Sony TC366 dispo-tio a spendere max. 60-80 kL. Cedo PW200 Tokay 20. kL. Gianfranco De Caro - via Belvedere 11 - 80127 Napoli

73-O-222 - VENDO: amplificatore stereo 12+12 W risp. 20-20.000 Hz con alimentatore stabilizzato e preamplificatore in-ressi Pick-Up ceramico e magnetico L. 30.000, luci strobosco-ciche psichedeliche 1000 W, velocità variabile da 42 a 600 lampi minuto L. 20,000

Mario Pallme - via Duomo 348 - 80133 Napoli.

73-O-223 - VENDO RX-TX Midland mod. 13880 B nuovo completo si micro per L. 210.000

Antonio Curcuruto - corso Europa 11 - 93017 S. Cataldo

73-O-224 · AFFARONE VENDO ricevitore Cobar CB70 L. 50.000 pande da 0,5 Mc a 30 Mc. S-Meter+preamplificatore RF Alto-parlante in tutto 3 pezzi. Fender Jazz Bass professionale quasi nuovo L. 250.000

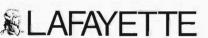
Duilio Sisto · A. Tina · 03042 Frosinone · 2 60330

73-O-225 - ATTENZIONE, IMPORTANTE, se abitate fuori citta e avete bisogno urgente di uno o più componenti, anche i più strani, ve li farò avere nel tempo più breve possibile. Massima garanzia.

Claudio Caverzasi - via Filelfo 7 - 20145 Milano - 🛱 02-314036.

73-O-226 - OCCASIONISSIMA! Vendo L 40.000 corso teorico della Scuola Radio Elettra (Corso Radio-Stereo) rilegato in 7 volumi con schemario e indice analitico, vendo L. 7.000. Regolatore elettronico di velocità e luminosità. Cedo inoltre provavalvole S.R.E. completo di valigetta, schema, istruzioni a L. 20,000. Vendo radiotelefono CB Tokay 502 non funzionante ma completo in ogni parte a L. 10.000.

Stefano Varani - via Principe di Napoli - 00052 Bracciano (Roma) . 🕸 9024926 (ore serali)


73-O-227 · PILE AL NICHEL-CADMIO, strumenti di misura, appa recchi elettronici e elettromeccanici ultra miniaturizzati, ecc. amplificatori per sordi, a transistor e a circuiti integrati, materiale per suddetti, mini-capsule microfoniche, mini-potenziometri ecc. ... Minimicro compressori ecc. Tutto questo materiale e a disposizione del miglior offerente. Il materiale è stato usato ma e tutto perfettamente funzionante Battistoni - via Torricelli 21 - Milano - 🕾 8396842

innonderai la casa di frasi amiche, via radio e avrai tutto il mondo in casa tua!

CI SON PIU' AMICI CON UN LAFAYETTE

BONARDI **BERGAMO**

Via Tremana 3 Tel. 23 20 91 CAP 24100

LAFAYETTE **HB 600** 23 canali - 5 W. L. 219.950 netto IzTLT

.........

FANTINI ELETTRONICA

SEDE:

Via Fossolo 38/c/d - 40138 BOLOGNA

C. C. P. N. 8/2289 - Telefono 34.14.94

FILIALE:

Via R. Fauro 63 - Tel. 80.60.17 - ROMA

ANTENNA DIREZIONALE ROTATIVA A TRE ELEMENTI ADR 3 PER 10-15-20 m

DIMENSION

metri 7,84 x 3,68 Peso Kq. 9 circa Caratteristiche tecniche:

Guadagno 7,5 dB

Rapporto avanti indietro: 25/30 dB.

Impedenza: 52 ohm.

Potenza ammissibile: 500 W - AM / 1 kW - SSB

Tabella frequenze

Telegrafia

Direttore: Dipolo: Riflettore: Contrassegnato col n. 1 frequenza Mc. 14,150 con elemento tutto sfilato. Contrassegnato col n. 2 frequenza Mc. 28,500 con elemento tutto sfilato. Contrassegnato col n. 3 freguenza Mc. 21,150 con elemento tutto sfilato.

Fonia

Direttore: Dipolo:

(come sopra) ma con elemento tutto inserito Mc/s 14,275 (come sopra) ma con elemento tutto inserito Mc/s 29 Riflettore: (come sopra) ma con elemento tutto inserito Mc/s 21,350

Completa di vernice e imballo L. 61.000 Confezione vernice ADR 3 anticorrosiva L. 2.000

ANTENNA VERTICALE AV 1 PER 10-15-20 m

Potenza ammissibile 500 W AM - 1 kW SSB

Impedenza 75 Ω

Copertura tre gamme: da 28 a 29 Mc

da 21 a 21,350 Mc da 14 a 14,275 Mc

Confezione Vernice AV1 anticorrosiva L. 1.200

CONTENITORE 16-15-8

Dimensioni: mm. 160 x 150 x 80 h.

In lamiera mm. 0,8 nervata, trattata con vernice autocorrugante resistente fino a 200 °C Colore unico Fantini: grigio-verde-azzurro.

Frontalino in alluminio mm 160 x 80 x 1,2 Maniglia inferiore di appoggio. Finestrelle laterali per raffreddamento.

Peso Kg. 1,700 - Altezza metri 3,70

Completa di vernice e imballo

Prezzo L. 2.000

L. 14.200

73-O-228 - AMPLIFICATORE HI-FI 30+30 W, costituito da un PS3G più 2 Mark 60, alimentazione stabilizzata, esecuzione in mobile noce. 5 ingressi, uscita registratore cuffia stereo. Massima serietà, perfettamente funzionante, vendo a L. 70.000 trattabili. Posso fornire anche le casse acustiche a sospensione pneumatica a 3 vie da 30 W cad. a L. 30.000 cadauna Alberto Duchini - via Simone Martini 22 - 20143 Milano

73-O-229 - OCCASIONE CEDO ORGANO ELETTRONICO marca Vox con accessori. Eventualmente cambio con materiale ra-diantistico RX e TX, antenne 10-15-20 m, fate le vostre offerte. Rispondo a tutti.

Pavani - corso Francia 113/4 - Grugliasco (TO)

73-O-230 - RICETRASMETTITORE 144 MHz vendo causa rinnovo apparecchiature con telaietti STE 2,2 W uscita completo di preamplificatore; ricevitore con telaietti PH+preamplif. antenna a Mosfet: Il tutto montato in eleganti custodie professionali complete di maniglie, strumenti S-meter e misuratore RF e modulazione. Apparati nuovi tuttora in funzione. L. 50.000 trattabili I1DSR Sergio Dagnino - corso Sardegna 81/24 - Genova

73-0-231 - ALLOCCHIO BACCHINI Mod. AC1414 semiprofessionale a 8 gamme d'onda 73,17 kHz ÷ 20 MHz costruito in Germania. Altop. esterno, indicatore assorbimento anodica, BFO, Stand-by. 2 prese per cuffia. Perfettamente funzionante (circuito ripassato totalmente) corredato alimentatore C.A. esterno, altop. e serie completa 5 valvole miniatura L. 40.000.
Bruno Gazzola - via C. Ridolfi 9 - 37100 Verona - \$\overline{\pi}\$ 524509.

73-O-232 - RICEVITORE BARLOW WADLEY a sintetizzatore - copertura continua MHz 0,5-30. Sensibilissimo. Lettura al kilociclo vendo a L. 150.000. Ricevitore Trio Custom Special JR-599, bande radioamatori + esterna lettura kilociclo vendo L 180.0 Alberto Pancallo strada Cavoretto 9 10133 Torino **2** 694422.

73.O.233 - DUEMETRISTI ATTENZIONE! Vendesi materiale causa OSY in HF. 1) Rotore « Stolle » ottimo per 11 el. con control box. + 10 m di cavo a 5 conduttori L. 20.000 + spediz. 2) Telaietto generatore di portante a XTAL con OOE 03/12 + modulatore STE (senza valuele) — trasformatora di modulazano. laretto generatore di portante a XAL con QUE 03/12 + modulazone tore STE (senza valvole) + trasformatore di modulazone L. 25.000 + spediz. 3) Converter a FET 144-146/28-30 L. 25.000 + spediz. 3) ti tratta di materiale usato pochissimo e perfetamente funzionante. Max. serietà Scrivere per chiarimenti 14DLS - via dei Lavoro 35 - Boingna - Q 305327 (ore pasti)

LE INDUSTRIE ANGLO-AMERICANE IN ITALIA VI ASSICURANO UN BRILLANTE AVVENIRE ...

... c'è un posto da INGEGNERE anche per Vol

Corsi POLITECNICI INGLESI Vi permetteranno di studiare a casa Vostra e di conseguire tramite esami Diplomi e Lauree INGE-GNERE regolarmente iscritto nell'Ordine Britannico.

un FUTURO ricco

di soddisfazioni

₩ 500347

una CARRIERA spiendida - Ingegneria CIVILE Ingegneria MECCANICA un TITOLO ambito - Ingegneria ELETTROTECNICA Ingegneria INDUSTRIALE

LAUREA DELL'UNIVERSITA' DI LONDRA Matematica - Scienze - Economia - Lingue, ecc.

RICONOSCIMENTO LEGALE IN ITALIA Ingegneria RADIOTECNICA - Ingegneria ELETTRONICA

in base alla legge n. 1940 Gazz. Uff. n. 49 del 26-2-1963

Informazioni e consigli senza impegno - scriveteci oggi stesso.

BRITISH INST. OF ENGINEERING TECHN.

Italian Division - 10125 Torino - via P. Giurla, 4/d -Sede Centrale Londra - Delegazioni in tutto Il mondo.

73-O-234 · VENDO PREAMPLIFICATORE professionale stereo a valvole, Scott tipo 130 a L. 40.000 (pagato da fattura L. 158.000) perfettamente funzionante. N. 2 box a compressione Isophon H45 $4\div16~\Omega$ 45 W + 16 tweeter separati Peerless 25 W + Crossover LC autocostruiti da 18 dB/ottaba a L. 90 000. Gino Ghirardato - via Guala 127 - 10135 Torino

73-O-235 - VENDO SINTONIZZATORE SINCLAIR nuovo L. 37.000 (pagato 43.000); provavalvale e provacirculti della S.R.E. L. 18.000; Proiettore diapositive Malinverno nuovo L. 19.000 (pagato 28.000). Cerco oscilloscopio della S.R.E., anche se ancora da montare. Alberto Cattaneo - via T. Grossi 9 - 20028 San Vittore Olona (MI) - 2 519081.

73-O-236 - RICETRASMETTITORE CB71 PONY 5 W 12 canali di cui 7 quarzati + ROSmetro E.R.E. praticamente nuovi scam-bierei con RX Geloso G4/216 purché perfettamente funzionante. Pat. MI/W776 Giorgio Merlani - via Valosa 23 - 20052 Monza (MI) Dopo le 21 @ 039-741563

73-O-237 - VENDO LINEA F-50 B (RX-TX) Sommerkamp, Yaesu, nuovissima, mai usata. Copertura m 10-11-15-20-40-80 - AM-SSB CW in imballaggio originale L 165.000. Vendo pure registratore a pile « Miny » a L. 7.000. Tratto solo di persona. 12-51920 Emilio Germani · via Gattametata, 6 · Milano

73-0-238 · CEDO BC683 alim. AC e 2 cuffie originali, ricevitore UK525/C con bassa UK145 incorporata, RX UK546, 2 SCR AEG UN32/C con bassa UN145 incorporata, KX UK549, 2 SUR AEG 500 V 8 A, 2 amplificatori per autoradio Grundig 6 W (finali 2 x AD149). 3 quarzi (6950 - 7050 - 21100 MHz), diodi raddriz-zatori e rivelatori, transistor (AD149, AD161, AD162, BF109, BC149C, 2N2219) nuovi e non ma perfetti, 70 riviste di elettro-pica (conertina 1 - 27 000) e molto attro materiale (valvole va nica (copertina L. 27.000) e molto altro materiale (valvole, va-riabili. 1 cinescopio 23"). Il tutto per L. 130.000 circa. O cambio con RX-TX 19 MK III o MK III. Tratterei con Torino.
Walter Scarpato - Via Buonarroti 11 - 10042 Nichelino (TO) **2** (011) 600961.

73-O-239 · VENDO O CAMBIO con oscilloscopio stesso valore ricevitore R107 copertura continua 1,8-18 MHz in 3 gamme alimentazione interna 220 Vca L. 38.000 funzionante. TX 144 2 W da revisionare L. 10.000. Giuseppe Romano - via M. Ortigara 22 - 20137 Milano.

73-O-240 · BC652A VENDO (vedere cq 1 agosto 68). Ottimo per le Broadcasting e le gamme marine (freq. 2-6 MHz; riceve anche i radioamatori sugli 80 m). Alimentazione 220 V. Due gamme d'onda con: calibratore quarzato, BFO, bocchettone da pannello per ant. ext., amplif. d'antenna, limitatore disturbi. CAV (automatico) prese per cuffa e altop. ext., commutatore fonia-CW, tuning e volume. Completo di antenna ext. stilo, altop. ext., culfia originale americana e opuscolo illustrativo (cq 1 agosto 68). Vendo a L. 25.000 o cambio con CB 6 canali unendo conquaglio. Tommaso Roffi - via Orfeo 36 - 40124 Bologna - 🕿 (ore pasti) 396173

73-0-241 - CEDO MANUALE TECNICO originale inglese per radiotelefono modulazione di frequenza BC1335. A. Crocicchia - via Sabbioni, 9 - 33170 Pordenone.

73-O-242 · VENDO RICETRANS per i 27 Mc, Sommerkamp TS600G 6 canali quarzati, 7 W in antenna a L. 35.000. Lineare 50 W 26-30 Mc a L. 30.000. Accumulatore di dimensioni ridotte e di tipo ermetico 12 V 2.6 A ricaricabile, adatto per Ricetrans uso mobile, portatile L. 7.000. Strumento 1 mA fondo scala, nuovo a L. 3.000.

Giuseppe Campestrini - via Ortner 62 - 39042 Bressanone.

73-O-243 · PER SOLO L. 160.000 un amplificatore Geloso BF 60 W + Chitarra basso Hofner + cassa acustica Geloso 60 W Il tutto ultrafunzionante. Cambio anche detto materiale con ricevitore Trasmettitore o transceiver (bande decametriche) tipo Geloso, Trio etc. in ottimo stato e funzionanti. Rispondo a tutti Maria Teresa Fustaino - via G. Sgambati 5 - 90100 Palermo.

Patterson

dispositivi elettronici

& Person

40068 S. LAZZARO DI SAVENA (BO) CAS. POST.

BRAIN BOX

Antifurto elettronico temporizzato dalle prestazioni nettamente superiori ai modelli in commercio e dal PREZZO RIVOLUZIONARIO.

- 1) Il BRAIN BOX nel suo contenitore stagno pressofuso
- 2) Connettore a combinazione (amphenol)
- 3) Piastrina di riconoscimento

LA VOSTRA AUTO UNA FORTEZZA **INESPUGNABILE COL BRAIN BOX!!!**

> Prezzo L. 13.800

FUNZIONAMENTO:

a piastrina inserita l'antifurto è disattivato: estratta la piastrina il BRAIN BOX attende 12 sec per permettervi di uscire dall'auto... quindi vigila attento. All'apertura di un qualsiasi sportello, cofano, vano motore ecc., il BRAIN BOX « dà fiato alle trombe » (la cadenza è regolabile). bloccando contemporaneamente il funzionamento del motore.

CARATTERISTICHE:

Antifurto per auto, casa, negozio... a combinazione elettronica e tripla temporizzazione. Alimentazione: 10-16 Vcc. Impiega 18 semiconduttori al silicio.

E' in allestimento una vasta gamma di accessori.

SPEDIZIONE PER PAGAMENTO ANTICIPATO O CONTRASSEGNO, SPESE POSTALI AL COSTO.

73-O-244 - ALT! OCCASIONE: cessata attività vendo tutto il materiale in mio possesso. BC312 DC con altoparlante originale L. 40.000, BC603 DC L. 14.000, oscilloscopio OS-8B/U L. 45.000, telescrivente TG7-B L. 75.000, decodificatore per la stessa auto costruito L. 15.000, inoltre moltissimo altro materiale (tester. trasformatori, materiali di recupero, relé, trapano B & D multiaccessoriato) a prezzi eccezionali. Per elenco, scrivere

Giacomo Zama - piazza Alighieri 11 - 48018 Faenza (RA).

Evinrude 18 HP L. 350.000. Disposto permutare con stazione CB SSB e lineare. Vendo arretrati Riviste e libri elettronici. Materiale Radio e minuteria permuto con telescopio. inviare foto e documentazione.

Rosario Scalamandré - via M. Grecia - 88068 Soverato (CZ).

73-O-246 - VENDO RX-TX + LINEARE autocostruito, TX da 3.5 W input+lineare da 8 W out RX supereterodina tutto compreso L. 60.000. TX e lineare insieme - RX anche staccato vendo Giuseppe Sperandio - via S. Angelo Nuovo 24 - Cannalola di

73-O-247 - VENDO MARK 60 amplificatore della Vecchietti 60 W (musicali) 30 eff con relativo preamplificatore PE 2 con i con trolli di tono separati due canali di entrata commutabili, alimentazione stabilizzata con presa diretta dalla rete 220 V ca. Montato in elegante mobile in legno lucidato completo di cassa cassa acustica cedo a L. 50.000 trattabili.
Vincenzo Calzolaio presso Remo Svaldi - via Piave 58 - 70031

Andria (BA)

73-O-248 - RICEVITORE VHF Lafayette Guardian 7000 6 gamme squeich S/meter 2 antenne a stilo incorporate, gamme coperte AM · FM · SW $4\div 12$ MHz \cdot $30\div 50$ MHz \cdot $88\div 108$ MHz \cdot $147\div 174$ MHz \cdot UHF $450\div 470$ MHz, sei mesi di vita. Imballo V. Caiazzo · via R. Cadorna 46 - 10137 Torino · ☎ 397283.

tacco a vite e anello di raccordo a baionetta + macchina Pola-73-O-245 · CEDO MOTOSCAFO Superconchita Jolly + motore roid J66 + Amplificatore per chitarra. Si prendono in considerazione cambi convenienti con altro materiale. Ad es.: oscilloscopio non autocostruito.

6.000 più S.P.

Piero Macri - via Carlo della Rocca 12 - 00177 Roma - 2 2719417.

Giuseppe Raubar - 34017 Prosecco 528 - Trieste.

73-O-249 - BLOCCO 50 RIVISTE così composto vendesi: Radiopratica annate '71-'72; numeri 7-68; 1,3,4,6,9,11,12-69; 1,2,3,6,7,8,9-70. Sistema Pratico n. 6-1961; 9-1960. Tecnica Pratica n. 10-1964. n. 1-1965; 12-1966; 4,11-1967; 1,2,3-1972 Elettronica pratica, prezzo

73-O-250 - CEDO MIGLIORE OFFERENTE: teleobiettivo Soligor mm 350 f 5.6 e grandangolo mm 35 f 2.8. Astucci cuoio. At-

73-O-251 - CB-RX-TX vendo Midland 13-795 5 W 23 ch portatile nuovo per 75.000 (listino 135.000), oppure cambio con RX-TX 5 W 23 ch. fisso. Vendo inoltre BC603 con alimentatore per 220 a L. 18,000. Vendo orologio digitale per 38,500 con alimentazione 110/220: magnifico! Un'occasione! 13 integrati + 6 Nixie. Franco Rabellino - via P. Cossa, 12 - 10146 Torino - 792362

73-O-252 - CERCASI TX-RX 144 o 27 MHz, Disposto a dare in cambio i seguenti materiali: baracchino TX-RX CB perfettamente funzionante 2 W. Ricevitore BC652 come nuovo alimentazione 220 c.a. tasto telegrafico nuovo. Platto giradischi LESA automa-tico vecchio tipo ma nuovo. n. 2 quarzi sui 27 MHz. Stadio finale di BF 50 W La mia offerta è valido solo per modelli non autocostruiti. Rispondo a TUTTI. Ubaldo Ciucchi c/o Gulmini - via D. Calvart 1/2 - 40129 Bologna

73-O-253 - CEDO a L. 15.000 registratore Philips a bobine completo di microfono e tre bobine da incidere. Inoltre cedo a L. 25.000 giranastri per cassette C60-90-120 da applicare in macchina tipo MM344 « Autovox » assolutamente nuovo e completo di accessori.

> Il servizio di assistenza tecnica é completamente gratuito

G. Giuseppe De Ambrogio - via Piscina, 39 - 10137 Torino.

Finalmente l'accensione elettronica in scatola di montaggio!!

La MAIOR ELETTRONICA dà a tutti la possibilità di realizzare con assoluta facilità per la propria autovettura l'accensione elettronica a scarica capacitiva K2 già montata e severamente collaudata su migliaia di autovetture.

I RISULTATI PRATICI SONO:

Partenze immediate alle più basse temperature - risparmio di carburante - candele e puntine platinate sempre pulite con durata illimitata (anche 100.000 Km) - minore inquinamento dell'atmosfera.

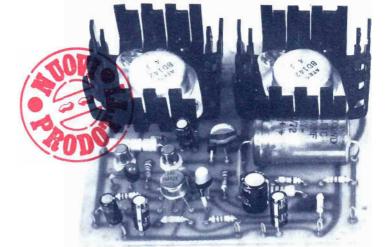
COMPONENTI

6 diodi IRCI 1N4007 - 2 transistor Motorola MJE 3055 - SCR Olivetti TUA 608 - Ferrite Siemens - Resistenze Philips - Condensatori ARCO - ITALFARAD - PROCOND. Interruttore d'emergenza quadripolare APR.

Scatola in alluminio con alette di raffredamento.

Prezzo pagamento anticipato £.14500 cc.PP Nº2/7143 F/co destinazione

c/assegno £. 15000


tel.87.91.61

Indirizzare a: MAIOR ELETTRONICA via Morazzone, 19 - 10132 TORINO

CIAMMA ABOOH BAAL

via Libero Battistelli, 6/C - 40122 BOLOGNA - telefono 55.07.61

MARK 30

Nuovo amplificatore Hi-Fi a circuiti integrati di media potenza espressamente realizzato per colmare il vuoto esistente tra l'AM4 ed il MARK 60.

Nella sua progettazione si è tenuto conto dei vasti campi di applicazione che trova questo amplificatore, rendendolo il più elastico e semplice da impiegarsi.

Per questi motivi si è spinta la sensibilità a valori tali da renderlo pilotabile direttamente da una testina piezoelettrica, interponendo il relativo circuito passivo di controllo dei toni Naturalmente trova il suo classico impiego in impianti HiFi, in unione ad un preamplificatore equalizzatore tipo PE2 o PE7, ai quali si adatta perfettamente.

Date le modeste dimensioni del MARK 30 è possibile la realizzazione di complessi con dimensioni estremamente ridotte.

CARATTERISTICHE:

Alimentazione max.: 32 V.,

Potenza d'uscita: 16 W_{ett} su 4 Ω (32 WRMS)

Sensibilità d'ingresso: 0,1 ÷ 0,5 V P.P.

Impedenza d'uscita: $4 \div 16 \Omega$

Risposta in frequenza: $15 \div 50000 \text{ Hz} \pm 1.5 \text{ dB}$

Montato e collaudato L. 8.800

Distorsione: ≤ 0.15 % a 15 W 1 kHz

Impiega: 1 circuito integrato. 7 semiconduttori e

1 NTC.

Dimensioni: 91 x 86 x 23 mm.

E' uscita l'edizione '73 del nostro catalogo generale componenti elettronici.

Per riceverlo inviare L. 200 in francobolli specificando chiaramente nome, cognome, indirizzo e

CAP.

Coloro che hanno ricevuto le precedenti edizioni lo riceveranno gratuitamente senza che ne facciano richiesta.

70121 BARI

85128 CATANIA 50100 FIRENZE

16129 GENOVA 20129 MILANO

41100 MODENA

- Bentivoglio Filippo -

via Carulli, 60 - Antonio Renzi - via Papale, 51

 Ferrero Paoletti via il Prato 40/r

 ELI - via Cecchi. 105 R
 Marcucci F.Ili via F.Ili Bronzetti, 37

- Elettronica Componenti via S. Martino. 39 43100 PARMA 00100 ROMA

17100 SAVONA

10128 TORINO

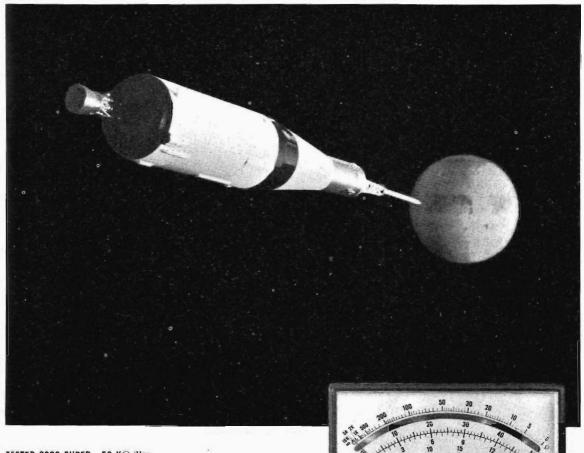
30125 VENEZIA

- Hobby Center - via Torelli.

Committieri & Alliè via G. Da Castelbolognese. 37

 Di Salvatore & Colombini -Corso Mazzini, 77

- C.R.T.V. di Allegro -Corso Re Umberto, 31


 Mainardi Bruno campo dei Frari, 3014

VISITATECI a BOLOGNA alla MOSTRA MERCATO del 3-4 Marzo

l'emozione del primo roger

DA NOI IL FUTURO É GIÁ UNA REALTÁ

1.5KV

TESTER 2000 SUPER 50 KΩ/Vcc

Analizzatore universale ad alta sensibilità con dispositivo di protezione Statola in ABS elastica ed infrangibile, di linea moderna con flangia granluce » in metacrilato.

mensioni: mm. 156 x 100 x 40. Peso gr. 650.

Commutatore rotante per le varie inserzioni.

Strumento a bobina mobile e nucleo magnetico centrale, insensibile ai campi magnetici esterni, con sospensioni elastiche antiurto.

indicatore classe 1, 16 µ A, 9375 Ohm.

Onmetro completamente alimentato da pile interne; lettura diretta 18 0,5 Ohm a 100 MOhm.

Contruzione semiprofessionale. Componenti elettrici professionali oualità.

Boccole di tipo professionale.

*ccessori in dotazione: astuccio in materiale plastico antiurto, coppia puntali ad alto isolamento, istruzioni dettagliate

cer l'impiego.

Cap. balistico 10 100 1000 10.000 100.000 µ. F

Richiedere catalogo a: CHINAGLIA DINO ELETTROCOSTRUZIONI 5.A Via Tiziano Vecellio, 32 - 32100 BELLUNO - Tel, 25.102

GENERAL Röhren

via Vespucci, 2 - 37100 VERONA - tel. 43.051

Transistori e valvole di alta qualità a prezzi fortemente competitivi.

Ritagliate e ripiegate i buoni offerta speciali, precisando il vostro indirizzo in stampatello completo di CAP, riceverete pure il listino prezzi e relativi sconti netti.

La GENERAL Röhren pratica i prezzi più bassi nell'area del M.E.C.

Spett. GENERAL 1

Spedite al mio indirizzo i seguenti tubi elettronici:

2 - PCL 805 2 - DY 802 1 - ECC 82

2 - PCL 86 2 - PL 504 1 - ECL 82

(Prezzo di listino delle 20 valvole Lire 54.600)

AL PREZZO ECCEZIONALE DI LIRE 10.000 (più spese postali).

Timbro e firma

Spett. GENERAL

2

Spedite al mio indirizzo i seguenti transistori:

n. 10 - BC 108 n. 4 - AC 187 K n. 10 - BC 148 n. 4 - AC 188 K n. 10 - BC 208 n. 10 - AC 184 n. 10 - AC 141 n. 10 - AF 126 n. 10 - AC 142 n. 10 - AF 200

n. 10 - AC 163 n. 10 - 1 N 4005 (BY 127) n. 2 - 2 N 3055

Totale 110 pezzi

con relativo raccoglitore componibile con 12 cassetti e tabella equivalenza transistors

IN OFFERTA SPECIALE AL PREZZO COMPLESSIVO DI LIRE 12.000 (più spese postali)

Timbro e firma

Per favore,

compilare in stampatello questa cartolina.

Grazie.

GENERAL - Rep. Propaganda tubi elettronici

Indirizzo tel.

(piegare)

NON AFFRANCARE

Affrancatura a carlco del destinatario da addebitarsi sul conto credito speciale N. 438 presso l'Ufficio P.T. di Verona Autorizzazione Direzione Provinciale P.T. di Verona I e P.T. di Verona N. 3850 - 2 del 9-2-1972.

Spett.le

GENERAL ELEKTRONENRÖHREN

37100 VERONA

Via Vespucci,

ricevitore RV-27

completo di amplificatore di B.F. a circuito integrato e limitatore di disturbi automatico

- gamma di frequenza: 26.950÷27.300 KHz
- sensibilità: 0,5 microvolt per 6 dB S/N
- selettività: ±4,5 KHz a 6 dB
- potenza di uscita in altoparlante: 1 W
- limitatore di disturbi: a soglia automatica
- oscillatore con alimentazione stabilizzata
- condensatore variabile con demoltiplica a frizione
- semiconduttori impiegati: n. 5 transistori al silicio,
- alimentazione 12 V 300 mA
- dimensioni mm 180 x 70 x 50
 - n. 1 circuito integrato al silicio, n. 1 diodo zener,
 - n. 3 diodi

SPEDIZIONI OVUNQUE CONTRASSEGNO. Cataloghi a richiesta

ELETTRONICA · TELECOMUNICAZIONI

VIA OLTROCCHI, 6 - TEL. 598.114 - 541.592

NUOVO SPEEDY + POTENTE

ORA ANCHE CON "SSB.,

- Frequence coverage Amplification mode
- Antenna impedence
- Plate power input - Plate power output
- Plate power output - Minimum R.F. drive required: 2 W
- : 26.8 27.3 MHz : AM
- : 45 60 N
- : 150 W
- : AM 55 W
- : SSB 115 pep

- Maximum R.F. drive
- Tube complement Semiconductor
- Power sources Dimension
- Peso - Garanzia mesi sei.
- : mm 300 x 140 x 240 : Kg. 5,980

Prezzo netto L. 82.500 SSB L. 90.000

: 4 diodes, 2 rectifier : 220 - 240 V - 50 Hz

: 6KD6

Novità del mese:

Ricevitore AIR-VHF

la gioia di ricevere in HI-FI radioamatori - aerei - ponti radio

Frequency range AM 540 - 1600 kHz FM 88 - 108 MHz AIR-VHF 108 - 175 MHz dispositivo per la ricarica delle batterie

CIRCUITO: 12 transistori + 12 diodi · Altoparlante Ø 80, imp. 8 Ω · Alimentazione luce a 220 V 50 Hz e con 4 batterie 1/2 torcia - Antenna interna e telescopica esterna - Potenza in uscita 350 mW - Dimensioni: 165 x 260 x 90. Corredato di schema elettrico, batterie e cinghia per trasporto a tracolla

Prezzo netto L. 23.900

CERCHIAMO RIVENDITORI PER ZONE LIBERE

C. T. E. COSTRUZIONI TECNICO ELETTRONICHE via Valli, 16 - 42011 BAGNOLO IN PIANO (RE) - tel. 61411 - 61397

ascolta! ci sono novità?

VIDEON GENOVA

Via Armenia 15 Tel. 36 36 07 CAP 16129 Mostra mercato di

RADIOSURPLUS ELETTRONICA

via Jussi 120 - c.a.p. 40068 S. Lazzaro di Savena (BO) tel. 46.22.01

Vasta esposizione di apparati surplus

ricevitori: 390/URR - SP600 - BC312 - BC454 - ARB

- BC603 - BC348 - BC453 - ARR2 - R445

ARC VHF da 108 a 135 Mc.

trasmettitori: BC191 (completi) - BC604 (completi di

quarzi) - BC653 - ART13 speciale a cristalli, 20-40-80 metri e SSB - BC610 -

ARC3.

ricetrasmettitori: 19 MK IV - BC654 - BC669 - BC1306 -

RCA da 200 a 400 Mc - GRC9 - GRC5.

 radiotelefoni: BC1000 - BC1335 (per CB a MF) - URC4 -PRC/6 - PRC/10 - TBY - TRC20 - BC611.

OFFERTE SPECIALI

TX BC604 - 30 W FM 20-28 Mc, completo di valvole, non manomesso con schemi L. 10.000.

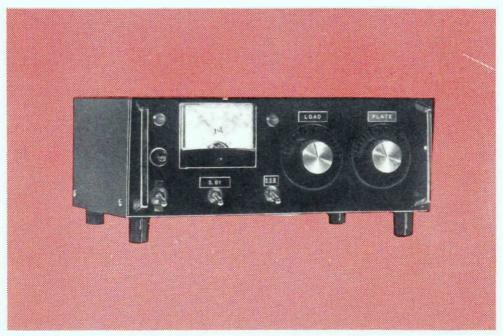
Alimentatori stabilizzati 0-15 V 5 A L. 17.000 - 0,25 V circa L. 20.000 completo di strumentazione.

RX-TX BC669 - 1,7-4,5 Mc 80 W AM in due gamme. Ricezione e trasmissione a cristallo e sintonia continua, efficienti in ogni loro componente con 12 cristalli e control box. Senza alimentatore esterno L. 25.000.

Selsing 50 V tipo grande L. 8.000 - piccolo L. 5.000 la coppia.

NOVITA' DEL MESE

Cannocchiale raggi infrarossi portatili.


Antenne Ground Plane a elementi componibili - Cercametalli SCR625 - RX BC603 con C.A.F. e modifiche per ricezione satelliti ITOS e OSCAR (beacon) - Convertitore RF per gamme 430-585 MHz sintonizzabile nelle bande CB 27,5 MHz, alimentazione 12 V.

VISITATECI - INTERPELLATECI

orario al pubblico dalle 9 alle 12,30 dalle 15 alle 19,30 sabato compreso

E' al servizio del pubblico: vasto parcheggio.

JUMBO IL SUPERSONICO dei C.B.

CARATTERISTICHE TECNICHE

Frequence coverages Amplification mode Antenna impedence Plate power input

Plate power output

26.8 - 27.3 MHz AM - SSB 45 - 60 Ohm 507 Watt AM 200 Watt SSB 385 Watt PEP Min. R.F. drive required Max. R.F. drive required Tube complement Power sources Dimensions Weight

2 Watt 8 Watt EL34 · 2 x EL509 220 Volt 50 Hz 300 x 200 x 110 H. Kg 10,200

Rivenditori:

CISOTTO ANTONIO

BERNASCONI & C. »

BOTTONI BERARDO

DEL GATTO SPARTACO

G LANZONI

Via G. Reni, 14
 34100 TRIESTE

 Via G. Ferraris. 66 C 80142 NAPOLI

 Via Bovi Campeggi. 3 40131 BOLOGNA

 Via Casilina, 514/516 00100 ROMA

 Via Comelico, 10 20135 MILANO E.R.P.D.

VETRI GIUSEPPE

FALSAPERLA ORAZIO

ELETTRONICO G.C.

ELETTRONICA ARTIGIANA .

· Via Milano, 286

92024 CANICATTI' (AG)

 Via Garibaldi, 60
 94019 VALGUARNERA (Enna)

 Via dello Stadio, 95 95100 CATANIA

 Via Bartolini, 52 -20155 MILANO

Via XXIX Settembre 8 BC 60100 ANCONA

VISITATECI A BOLOGNA ALLA MOSTRA MERCATO DEL 3-4 MARZO

C. T. E.

COSTRUZIONI TECNICO ELETTRONICHE via Valli, 16 · 42011 BAGNOLO IN PIANO (RE) · tel. 61411 · 61397

- cq elettronica - marzo 1973

190

Ditta SILVANO GIANNONI Via G. Lami 1 - Tel. uff.: 30096 - abit.: 30636

56029 Santa Croce sull'Arno (PI)

Laboratorio e Magazzeno · Via S. Andrea n. 46

VENDITA A ESAURIMENTO MATERIALI E APPARECCHIATURE di provenienza SURPLUS

MATERIALI ALTAMENTE PROFESSIONALI

RX-TX 10 W, 418-432 MHz senza valvole, ottimo						L.	12.000
ARN7 - Radiogoniometro, 3 gamme d'onda, senza valvole,	ottimo					L.	15.000
Antenna per detto ARN7, completa Selsing motore .						L.	8.000
BC620 - Completo di valvole, ottimo, da 20-28 MHz						L.	15.000
BC603 - Completo di valvole, ottimo, da 20-28 MHz						L.	12.000
BC604 - Completo di valvole, trasmettitore da 20-28 MHz						L.	15.000
WIRELESS N48 RX-TX 40-80 metri, completo, ottimo .						L.	20.000
WIRELESS N38 RX-TX 40 metri, completo, ottimo						L.	17.000
WIRELESS N22 RX-TX 40-80 metri completo, ottimo						L.	20.000
ALIMENTATORI per detti a richiesta, ottimi						L.	11.000
OSCILLATORE BF uscita 0-20000, onda □ e ~, ottimo .						L.	50.000
MAGNETRON nuovi 10 cm e 3 cm, con caratteristiche .						L.	25.000
GLAJSTON nuovi variabili						L.	15.000
STRUMENTI nuovi, completi, 2000-2800 MHz						L.	200.000
STRUMENTI nuovi, completi, 9000-10000 MHz						L.	350.000
RICEVITORI ARC3, 100-156 MHz completi di valvole						L.	40.000
WIRELESS 68P, 40 m, completi valvole e schemi						L.	20.000
BC669 - Ricetrasmettitore completo schemi, alimentatore kg 40 - Alimentatore kg 40 si vende completo dei c 807 in parallelo PACCO contenente materiale minuto alla rinfusa, alcuni variabile aria, resistenze, condensatori, peso totale kg cipazione della rimessa senza altre spese	transist	or, o	ione liodi luto	, va	nali 2 alvole anti-	L.	
TRASFORMATORI, IMPEDENZE, DINAMOTOR, ANTENNE, C		ИІСЕ	OF	INC			
GENERATORE marconiterapia (costruito dalla Marconi) p Consumo 500 W, monta triodo alta potenza con tension funzionanti, peso 35 kg. Rak in alluminio	ne 1500'	V an∙	odo.	Si	danno)	50.000
ELETTROCARDIOGRAFO scrivente, direttamente alimentato Ticchioni, costruito dalla Galileo Firenze, in ottimo stat fino ad esaurimento	to comp	leto	degl	li at	tacch	i .	65.000
FURLERFONE MK IV con generatore buzzer completo di tass senza batteria. Si adopera sia per scuola telegrafia trasmettitore per trasmettere telegrafia modulata	che pe	r l'ir	nser	ime	nto ir)	5.000
AUTODIODI, lavoro 50 V, 15 A						. L.	500
TRANSISTORS germanio nuovi commerciali						. L.	1.000
MOTORINO 0-9 V regolazione di velocità incorporato, Phi	lips .					. L.	1.000
VALVOLE miniatura serie di 5 differenti						. L.	3.000
CONDENSATORI variabili normali aria 2 sezioni						. L.	500
CONDENSATORI variabili speciali 3000 V 60 pF						. L.	1.000
CONDENSATORI Variabili speciali 3000 v 00 pr		•	•	•	•	. L.	1.000

SOCIETA' COMMERCIALE E INDUSTRIALE EUROASIATICA

16123 GENOVA - p.za Campetto 10/21 - tel. (010) 280717

00199 ROMA - largo Somalia 53/3 - tel. (06) 837477

ESCLUSIVISTA per l'Italia e l'Europa della PATHCOM INC. DIVISION

PACE 123 stazione mobile

23 canali - 5 W - doppia conversione limitatore di disturbi ad alta efficenza S-METER E MISURATORE POTENZA USCITA illuminato permette un preciso controllo dei segnali ricevuti e dell'efficenza del trasmettitore. E infine, le luci di ricezione e trasmissione non lasciano nessun dubbio sul funzionamento del PACE 123

PACE 100 S

6 canali - 5 watts.

SEMICONDUTTORI: 16 transistori - 10 diodi

SENSIBILITA': 0,5 µV per 10 dB rapporto segnale disturbo ALIMENTAZIONE: 12 V c.c.

ALIMENTAZIONE: 12 V c.c. DIMENSIONI: cm. 12 x 3 x 16

E STOLE

PACE GMV-13

12 canali - 10 watts - 1 watts
FREQUENZA: da 135 MHz a 172 MHz
ANTENNA: 50 OHMS + SENSIBILITA': 1 µV (20 dB) N.O.
SEMICONDUTTORI: 29 TR, 3 FET, 21 C 10 diodi
ALIMENTAZIONE: 13.8 V - REIEZIONE: canali adiacenti - 50 dB.

PACE SSB

23 canali AM - 46 SSB - EMISSIONE USB - LSB AM5 watts - SSB 15 watts PEP - MODULAZIONE: 100 % S/RF INDICATOR METER - ALIMENTAZIONE: 12 V C.C. SOPPRESSIONE DELLA PORTANTE: SSB/40 dB SOPPRESSIONE DELLA BANDA LATERALE INDESIDERATA: SSB/4P dB FILTRO SSB: 7,8 MHz tipo lattice a cristallo SELETTIVITA: SSB 2,1 kHz a 6 dB - 5,5 kHz a 50 dB

AM 2.5 kHz a 6 dB - 20 kHz a 40 dB

TESTER UNIVERSALE PER CB

Strumento combinato per effettuare tutte le misure necessarie al buon funzionamento della stazione.


IL TESTER COMPRENDE: 1) WATTMETRO: 0-5 watt - 2) ROSMETRO: 1 : 1-1-3 3) PERCENTUALE DI MODULAZIONE: 0-100% - 4) MISURATORE DI CAMPO

5) OSCILLATORE per la banda dei 27 MHz incorporato: uscita 300 mV 6) PROVA QUARZI - 7) OSCILLATORE BASSA FREQUENZA 1000 Hz

8) CARICO FITTIZIO INCORPORATO: 5 watt max

MISURATORE COMBINATO DI ONDE STAZIONARIE: 1/1-1/3

WATTMETRO: due scale da 0-5 0-50
PERCENTUALE DI MODULAZIONE: 0-100%
FILTRO: TVI incorporato: 55 MHz
Il misuratore è inoltre fornito di uno speciale circuito
con un indicatore LUMINOSO che si accende quando l'apparecchio
va in trasmissione:___

« PACE » Mod. 2300 LUSSO

23 canali - 5 W - lussuosamente rifinito, ricetrasmettitore mobile in classe « A » - 22 transistori al Silicio con sistema di protezione completa a diodi - S-meter: illuminato - P.A. - Alimentazione: 12 Vcc - Microfono: ceramico studiato appositamente per comunicazioni radio - Ricevitoria: supereterodina a doppia conversione, limitatore di disturbi e squelch - Sensibilità: 0,25 µV per 6 dB rapporto segnale disturbi - Selettività: reiezione dei canali adiacenti minimo 50 d³ - Trasmettitore: 5 W input - 4 W output a 12,5 V - Modulazione: 100 %.

COMUNICATO: Disponiamo di transistor originali giapponesi per tutti gli apparati.

VENDITA PROPAGANDA

ESTRATTO DELLA NOSTRA OFFERTA SPECIALE

NUOVI KITS DEL PROGRAMMA ASSORTIMENTO DI RESISTENZE CHIMICHE (assiale) EQUALIZZATORE . PREAMPLIFICATORE 20 valori ben assortiti. Il KIT lavora con due transistori al silicio. Mediante una d'ordinazione piccola modifica può essere utilizzato come preamplificatore WID 1-1/2 100 pezzi assortiti, 20 valori x 5 1/2 W L. 1.000 di microfono PARTICOLARMENTE INTERESSANTE La tensione di ingresso allora e 2 mV. Tensione di alimentazione 9 V - 12 V Corrente di regime 1 mA RESISTENZE CHIMICHE, assiale, nuova produzione, 1/4 W 18 O 120 () 3.3 kΩ 120 kO 470 Ω Tensione di ingresso 4,5 mV 56 Ω 18 kΩ 150 kO 820 Ω 330 kΩ Tensione di uscita 350 mV 62 O 27 kΩ 1 kO 47 kO 560 kΩ 82 () Resistenza di ingresso 47 ks2 per valore Ω 100 pezzi L. 420 per valore Ω 1000 pezzi L. 3.800 completo con circuito stampato, forato dim. 50 x 60 mm L. 1.350 INTERESSANTI ASSORTIMENTI E QUANTITATIVI DI TRANSISTORI AMPLIFICATORE MONO DI ALTA FEDELTA' N. d'ordinazione A PIENA CARICA 55 W TRA 1 50 Transistori al germanio assortiti La scatola di montaggio lavora con dieci transistori al sili-TRA 2 40 Transsitori al germanio sim. a AC176 L. 1.150 5 Transistori NPN al sil. sim. a BC140 L. 720 cio ed è dotata di un potenziometro di potenza e di regola-tori separati per alti e bassi. Questo KIT è particolarmen-TRA 4/B 5 Transistori di potenza al germanio sim. AD162 TRA 7/B te indicato per il raccordo a diaframma acustico (pic·up) a 550 cristallo, registratori a nastro ecc. AF124 TRA 9/B 20 Transistori AF al germanio sim a Tensione di alimentazione 54 V Corrente di regime 1,88 A **AF127** 675 a AC122 40 Transistori al germanio assort, sim TRA 10/ Potenza di uscita 55 W 1.200 Coefficiente di dista, a 50 W 1 % TRA 12 10 Transistori subminiatura AF al silicio BC121 Resistenza di uscita 4 12 1.000 Campo di frequenza 10 Hz -TRA 17/B 10 Transistori al germanio sim a AC121. AC126 Tensione di ingresso 350 mV Resistenza di ingresso 750 kΩ TRA 25/A 10 Transistori PNP al silicio BCY24 - BCY30 completo con circuito stampato, forato dim 105 x 220 mni 500 L. 8.950 TRA 28/A 50 Transistori al silicio BC157 4.300 KIT n. 18/A Transistori PNP al germani osim, a TF78/30 2 AMPLIFICATORI DI ALTA FEDELTA' A PIENA CARICA 55 W **TRA 29** 10 2 W L. 800 10 Transistori per OPERAZIONI STEREO **TRA 31** di potenza al germanio sim. TF78/15 2W L. 720 Dati tecnici identici al KIT n. 18 con potenziometri STEREO TRA 32 5 Transistori di potenza al germanio sim. e regolatore di bilancia 625 AD161 completo con due circuiti stampati, forati dim. 105 x 220 mm **TRA 33** 10 Transistori AF al silicio BF194 900 10 Transistori PNP al silicio BC178 10 Transistori PNP al silicio BC158 TRA 34 TRA 35 ALIMENTATORE per KIT n. 18, completo con trasformatore 5 Transistori di potenza al germanio AD130 TRA 36 e circuito stampato, forato dim. 60 x 85 mm 1.075 KIT n. 20 50 Transistori AF AF144 - AF147 - AF116 L. 50 Transistori AF AF150 - AF149 - AF117 L. 3.400 ALIMENTATORE per due KIT n. 18 (= KIT n. 18/A · STEREO) TRA 48 3.250 50 Transistori al silicio BC158 completo con trasformatore e circuito stampato, forato **TRA 79** 4.300 L. 10.800 dim. 90 x 110 mm **TRA 82** 50 Transistori al silicio BC178 4.300 DIODI UNIVERSALI AL GERMANIO ASSORTIMENTI A PREZZI SENSAZIONALI merce nuova, non controllata ASSORTIMENTI DI TRANSISTORI E DIODI n. d'ordinazione n. d'ordinazione: TRAD 1/A o organazione: IKAU 1/A
Transistori AF per MF in custodia metallica, sim. a
AF114, AF115, AF142, AF164
Transistori BF per fase preliminare in custodia metallica,
sim. a AC122, AC125, AC151,
Transistori BF per fase finale in custodia metallica,
sim. a AC121, AC126. DIO 3 100 Diodi subminiatura al germanio QUANTITATIVI DI RADDRIZZATORI AL SILICIO PER TV n. d'ordinazione 5 pezzi BO780 800 V 650 mA 50 pezzi BO780 800 V 650 mA GL 1 4.250 GL 3 ASSORTIMENTI DI CONDENSATORI ELETTROLITICI n. d'ordinazione Diodi subminiatura, sim. a 1N60, AA118 ELKO 1 30 pezzi BT min., ben assortiti 100 pezzi BT min., ben assortiti L. 1.175 Semiconduttori (non timbrati, bensì caratterizzati) ELKO 5 1 3.250 solo L. ASSORTIMENTO DI CONDENSATORI CERAMICI 500 V d'ordinazione: TRAD 2/B Transistori planar PNP al silicio, sim. a BC108. BC148
Transistori planar PNP al silicio, sim. a BCY24 - BCY30
Transistori BF per fase finale in custodia metallica, sim. a disco ,a perlina, a tubetto 5 n. d'ordinazione 100 condensatori ceramici assortiti. 20 valori x 5 a AC121, AC126. OFFERTA SPECIALISSIMA IN CONDENSATORI CERAMICI Diodi subminiatura, sim, a 1N60, AA118 per valore Semiconduttori (non timbrati, bensi caratterizzati) 100 pezzi 1.000 2,300 ASSORTIMENTO DI CONDENSATORI IN POLISTIROLO (KS) 125 V: 47-60 pF 290 500 V: 10-11-13-16-20-30 pF 500 V: 470-820 pF 340 2.850 n. d'ordinazione 360 3.000 100 condensatori in polistirofo assortiti.

Unicamente merce NUOVA di alta qualità. Prezzi NETTI Lit.
Le ordinazioni vengono eseguite da Norimberga PER AEREO in contrassegno. Spedizioni OVUNQUE. Merce ESENTE da dazio sotto il regime del Mercato Comune Europeo IVA non compresa. Spese d'imballo e di trasporto al costo. Richiedete GRATUITAMENTE la nostra OFFERTA SPECIALE COMPLETA che comprende anche una vasta gamma di COMPONENTI ELETTRONICI ed ASSORTIMENTI a prezzi particolarmente VANTAGGIOSI.

EUGEN QUECK Ing. Büro - Export-Import

2000 V: 82 pF

D-85 NORIMBERGA - Augustenstr. 6

L. 1.100

Rep. Fed. Tedesca

380

3,400

20 valori x 5

il TESTER che si afferma in tutti i mercati

VETTATO

ACCESSORI FORNITI A RICHIESTA

TERMOMETRO A CONTATTO PER LA MISURA ISTANTANEA DELLA TEMPERATURA Mod. T.1/N Campo di misura da —25° a +250°

PUNTALE PER LA MISURA DELL'ALTA TENSIONE NEI TELEVISORI, TRASMETTITORI, ecc. Mod. VC 1/N Portata 25.000 V c.c.

DERIVATORI PER LA MISURA DELLA CORRENTE CONTINUA Mod. SH/30, Portata 30 A c.c. Mod. SH/150 Portata 150 A c.c.

DEPOSITI IN ITALIA: ANCONA - Carlo Giongo Via Miano, 13 BARI - Biagio Grimaldi Via Buccari, 13 BOLOGNA - P.I. Sibani Attilio Via Zanardi, 2/10 CATANIA - Elettro Sicula Via Cadamosto, 18 FIRENZE · Dr. Alberto Tiranti Via Frà Bartolomeo, 38 GENOVA - P.I. Conte Luigi Via P. Salvago, 18 PADOVA - P.I. Pierluigi Righetti Via Lazara, 8 PESCARA - P.I. Accorsi Giuseppe Via Tiburtina, trav. 304 ROMA - Dr. Carlo Riccardi Via Amatrice, 15
TORINO - Rodolfo e Dr. Bruno Pomè
C.so Duca degli Abruzzi, 58 bis MOD. TS 210 20.000 Ω/V c.c. - 4.000 Ω/V c.a.

8 CAMPI DI MISURA 39 PORTATE

VOLT C.C. 6 portate: 100 mV 2 V 10 V 50 V 200 V 1000 V VOLT C.A. 5 portate: 10 V 50 V 250 V 1000 V 2.5 kV 50 µA AMP. C.C. 5 portate: 0,5 mA 5 mA 50 mA AMP. C.A. 4 portate: 1,5 mA 15 mA 150 mA ОНМ $\Omega \times 1$ $\Omega \times 10$ Ω x 100 Ω x 1 k 5 portate: $\Omega \times 10 \text{ k}$ 10 V~ **VOLT USCITA** 5 portate: 50 V~ 250 V~ 1000 V~ 2500 V~ DECIBEL 22 dB 36 dB 50 dB 62 dB 70 dB 5 portate: 4 portate: 0-50 kpF (aliment, rete) - 0-50 μF - 0-500 μF -CAPACITA' 0-5 kuF (aliment, batteria)

● Galvanometro antichoc contro le vibrazioni ● Galvanometro a nucleo magnetico schermato contro i campi magnetici esterni ● PROTEZIONE STATICA della bobina mobile fino a 1000 volte la sua portata di fondo scala. ● FUSIBILE DI PROTEZIONE sulle basse portate ohmmetriche ohm x 1 ohm x 1 ohm x 10 ripristinabile Nuova concezione meccanica (Brevettata) del complesso jack-circuito stampato a vantaggio di una eccezionale garanzia di durata ● Grande scala con 110 mm di sviluppo ● Borsa in moplen il cui coperchio permette 2 inclinazioni di lettura (30° e 60° oltre all'orizzontale) ● Misure di ingombro ridotte 138 x 106 x 42 (borsa compresa) ● Peso g 400 ● Assemblaggio ottenuto totalmente su circuito stampato che permette facilmente la riparazione e sostituzione delle resistenze bruciate.

CON CERTIFICATO DI GARANZIA

una MERAVIGLIOSA realizzazione della

20151 Milano - Via Gradisca, 4 - Telefoni 30.52.41/30.52.47/30.80.783

AL SERVIZIO: **DELL'INDUSTRIA**

DEL TECNICO RADIO TV DELL'IMPIANTISTA DELLO STUDENTE

un tester prestigioso a sole Lire 10.900

ESPORTAZIONE IN: EUROPA - MEDIO ORIENTE - ESTREMO ORIENTE - AUSTRALIA - NORD AFRICA - AMERICA

da oggi via libera ai 144 mobili!

let's go con KATHREIN (l'unica che vi garantisca un collegamento perfetto)

Antenne per 144 MHz

K 50 522

in 5/8 λ studiata per OM. Lo stilo è toglibile. G = 3.85 dB/iso.

K 50 552

in 5/8 λ professionale. Stilo in fibra di vetro e 5 m

cavo RG 58.

Si può togliere lo stilo svitando il galletto ed eventualmente sostituirlo con lo stilo 1/4 λ ordinabile separatamente (K50 484/ /01) G = 3,85 dB/iso.

K 50 492

in $1/4 \lambda$ completa di bocchettone per RG 58.

K 62 272

filtro miscelatore autoradio/VHF. Il collegamento con l'autoradio va fatto col cavetto K 62 248 ad alta Z e condensatore incorporato.

Antenne per 27 MHz

K 40 479 - $1/4 \lambda$ caricata alla base. Completa di cavetto RG 58.

K 41 129 - 1/4 λ caricata alla base. Attacco magnetico.

Oltre 600 tipi di antenne fisse e mobili professionali nella gamma 26 MHz... ...10 GHz.

Nota bene - Le antenne con base a forare e con galletto accettano qualunque stilo. E' così possibile « uscire » in varie frequenze solo con la sostituzione.

K 40 479

Punti di vendita:

Lanzoni - via Comelico 10 - 20135 Milano

Labes - via Oltrocchi, 6 - 20137 Milano Nov.El - via Cuneo, 3 - 20149 Milano Marcucci - via F.IIi Bronzetti 37

20129 Milano

SERTE Elettronica - via Rocca d'Anfo 27-29

Vecchietti - via L. Battistelli 6 Emilia: 40122 Bologna

Paoletti - via il Prato 40r - 50123 Firenze

Toscana:

Radio Meneghel - via 4 novembre 12 Veneto:

31100 Treviso ADES - v.le Margherita 9-11

36100 Vicenza

Fontanini - via Umberto 33038 S. Daniele del Friuli Piemonte: Liguria:

Lazio:

SMET Radio - via S. Antonio da Padova 11

10121 Torino

PMM - C.P. 234 - 18100 Imperia Videon - via Armenia - 16129 Genova

Di Salvatore & Colombini p.za Brignole - 16122 Genova

Refit Radio - via Nazionale 68 00184 Roma

Campania: Bernasconi - via GG. Ferraris 61

80142 Napoli

Sicilia: Panzera - via Maddalena, 12 98100 Messina

Panzera - via Capuana, 69

95129 Catania

e presso tutti i punti vendita G.B.C. Italiana

EXHIBO ITALIANA - 20052 MONZA VIA S. ANDREA, 6

TELEFONI (039) 360021 (4 LINEE) - TELEX 33583

libertà è anche parlare!

Libertà è anche sentirsi più sicuri in ogni evenienza. Libertà è anche essere in contatto con il mondo

C'E' PIU' LIBERTA' CON UN LAFAYETTE

&LAFAYETTE

ALTA FEDELTA'

Tel. 85 79 41 CAP 00198

i magnif

1 CORONADO SBE - 1CB AM MOBILE

2 CORONADO II SBE - 1CB AM MOBILE

ici sette

ALIMENTATORE STABILIZZATO « PG 114-1 »

CON PROTEZIONE ELETTRONICA CONTRO IL CORTOCIRCUITO

Nuovo prodotto

Caratteristiche tecniche:

: 220 V 50 Hz Entrata

Uscita : regolabile con continuità

da 6 a 14 V Carico : 2,5 A max in serviz. cont.

Ripple : 4 mV a pieno carico : migliore dell1 % per va-Stabilità

riazioni di rete del 10 % o del carico da 0 al 100 %

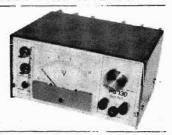
Protezione : elettronica a limitatore

di corrente

Dimensioni : 180 x 165 x 85 mm

Caratteristiche tecniche:

Tensione d'uscita: regolabile con continuità da 2 a 15 V


Ripple Stabilità

Corrente d'uscita: stabilizzata 2 A. : 0.5 mV

> : 50 mV per variazioni del carico da 0 al 100 % e di rete del 10% pari al 5 misurata a 15 V.

ALIMENTATORE STABILIZZATO « PG 130 »

CON PROTEZIONE ELETTRONICA CONTRO IL CORTOCIRCUITO

ALIMENTATORE STABILIZZATO « PG 112 »

CON PROTEZIONE ELETTRONICA CONTRO IL CORTOCIRCUITO

Caratteristiche tecniche:

: 220 V 50 Hz ± 10 % : 12,6 V Entrata

Uscita Carico : 2.5 A

Stabilità : 0.1% per variazioni di rete del 10% o del carico

da 0 al 100 %

Protezione : elettronica a limitatore

di corrente

1 mV con carico di 2 A. Ripple Precisione della tensione d'uscita: 1,5%

Dimension! : 185 x 165 x 85 mm

Caratteristiche tecniche:

Entrata : 220 V 50 Hz : 2-15 V

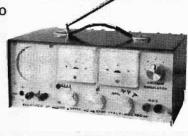
Uscita

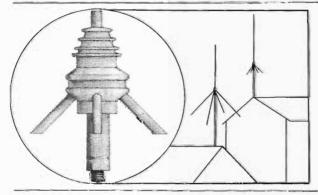
Carico

: 3 A

: a limitatore di corrente a Protezione

3 posizioni (0,3 A 1 A 3 A)


ALIMENTATORE STABILIZZATO « PG 190 »


PER LABORATORI DI ASSISTENZA AUTORADIO

Voltmetro ed amperometro incorporati.

L'alimentatore comprende anche un generatore di disturbi simile ai disturbi generati dalle candele dell'automobile, un altoparlante 4 Ω 6 W. una antenna con relativo compensatore.

Questo apparecchio è stato progettato per il servizio di assistenza e comprende tutti quegli accessori per il collaudo sul banco di un'autoradio.

ANTENNA GROUND PLANE PER C.B.

Frequenza 27 MHz - Potenza max 100 W

: 1 ÷ 1.2 max

STILO : in alluminio anodizzato in 1/4 d'onda RADIALI: n. 4 in 1/4 d'onda in fibra di vetro

BLOCCO DI BASE IN RESINA CON ATTACCO AMPHENOL

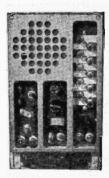
DONATI - via C.Battisti, 21 - MEZZOCORONA (TN) EPE HI-FI - via dell'Artigliere, 17 - 90143 PALERMO G.B. Elettronica - via Prenestina 248 - 00177 ROMA PAOLETTI - via il Campo 11/r - 50100 FIRENZE

S. PELLEGRINI - via S. G. del Nudi 18 - 80135 NAPOLI RADIOMENEGHEL - v.le IV Novembre 12 - 31100 TREVISO RADIOTUTTO - via Settefontane, 50 - 34138 TRIESTE REFIT - via Nazionale, 67 - 00184 ROMA G. VECCHIETTI - via L. Battistelli 6/c - 40122 BOLOGNA

P. G. PREVIDI - p.za Frassino, 11 - Tel. (0376) 24.747 - 46100 FRASSINO (MN)

Signal di ANGELO MONTAGNANI

Aperto al pubblico tutti i giorni sabato compreso ore 9 - 12.30


57100 LIVORNO - Via Mentana. 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22/8238

NUOVI PREZZI ANNO 1972-1973

L. 20.000 + 3.000 i.p. BC603 - 12 V BC603 - 220 V A.C. L. 25.000 + 3.000 i.p BC683 - 12 V L. 25.000 + 3.000 i.p. BC683 - 220 V A.C. L. 32.000 + 3.000 i.p.

Alimentatore separato funzionante a 220 V A.C. intercambiabile al'Dynamotor viene venduto al prezzo di L. 8.500 + 1.000 imballo e porto.

LOUDSPEAKER - LS7 - ALTOPARLANTE

Originale in cassetta metallica, corredato di cordone e jack. Tipo PL68:

Adatto per impedenze di 3,5 ohm Adatto per impedenze di 600 ohm Adatto per impedenze di 8000 ohm Cambio di impedenza tramite un commutatore rotativo e manopola.

Dispone di altoparlante con cono bachelizzato per alta fedeltà e speciale per le note della SSB.

Materiale nuovo imballato viene venduto a **L.** 8.000 + 1.000 imballo e porto.

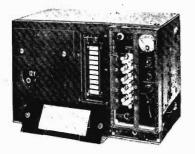
Consegna entro 10 giorni dal ricevimento ordine.

DONIAMO n. 1 BUONO PREMIO DA LIRE 10.000

Tutti gli acquirenti del nostro listino generale il cui prezzo è di L. 1.000 compreso la spedizione stampe-raccomandata, troveranno in detto listino n. 1 buono premio da Lire 10.000, da potersi spedire scegliendo fra tutti i materiali elencati nel listino stesso, senza alcuna limitazione. quale regalo.

N.B. SI PREGA DI ATTENERSI A QUANTO SONO LE NORME DI OMAGGIO.

Listino generale 1972-1973, corredato di tutto il materiale disponibile.


E' un listino SURPLUS comprendente RX-TX professionali, radiotelefoni e tante altre apparecchiature e componenti. Dispone anche di descrizione del BC312 con schemi e illustrazioni. Il prezzo di detto Listino è di L. 1.000, spedizione a mezzo stampa raccomandata compresa. Tale importo potrà essere inviato a mezzo vaglia postale. assegno circolare o con versamento sul c/c P.T. 22-8238 oppure anche in francobolli correnti. La somma di L. 1.000 viene resa con l'acquisto di un minimo di L. 10.000 in poi

materiale elencato in detto Listino. Per ottenere detto rimborso basta staccare il lato di chiusura della busta e allegarlo all'ordine.

Signal di ANGELO MONTAGNANI AP

Aperto al pubblico tutti i giorni sabato compreso ore 9 - 12,30 15 - 19,30

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22/8238

TRANSMITTER Tipo BC604

Frequenza da 20 a 28 Mc fissa a canali suddivisa in 80 canali. Modulazione di frequenza Modificabile in ampiezza.

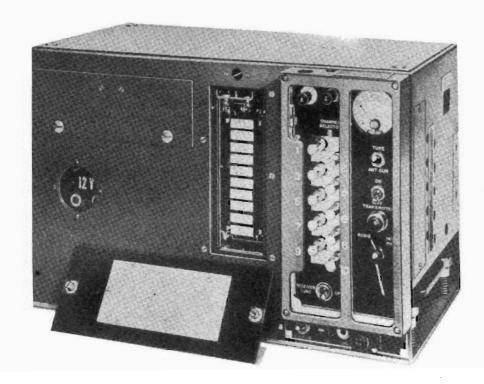
ATTENZIONE: viene venduto al prezzo speciale di L. 10.000 + 5.000 imb. porto completo e corredato come segue:

n. 1 BC604 corredato di n. 7 valvole tipo 1619 + n. 1 1624.

1 Dynamotor originale tipo DM-35 funzionante a 12 V CC

1 Microfono originale per detto tipo T-17

1 Antenna originale fittizia tipo A-62 (Phantom)


1 Connettore originale di alimentazione.

n. 1 istruzione completa in italiano + schema elettrico

N.B. Escluso la cassetta dei cristalli che possiamo fornirvi a parte al prezzo di L. 8.000 + 1.000 imb. porto.

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22/8238

BC604 TRASMITTER 27MC AM-FM

Frequenza coperta da 20 a 28 Mc suddivisa in 80 canali corredato di: n. 8 valvole termoioniche. - Relè di antenna: doppio contatto in ceramica. - Strumento di misura corredato di termocoppia R.F. - Dimensione del BC: cm $40 \times 30 \times 15$. Peso circa Kg 22.

Il tutto originariamente montato e corredato di tutto il materiale sopra descritto viene venduto al prezzo segnato accanto di L. 10.000 + L. 5.000 imb. e porto.

Condizioni di vendita

Pagamento all'ordine con assegni circolari o postali o con versamento su c/c postale 22-8238 di Livorno.

Per contrassegno: inviare metà dell'importo.

N.B. Gli ordini ricevuti vengono immediatamente evasi.

Tutti i materiali sono pronti per la consegna.

Signal di ANGELO MONTAGNANI Aperto al pubblico tutti i giorni sabato compreso ore 9 · 12,30 15 · 19,30

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22/8238

BC312 - RICEVITORE PROFESSIONALE A 10 VALVOLE - GAMMA CONTINUA CHE COPRE LA FREQUENZA DA 1500 Kc A 18.000 Kc SPECIALE PER 20 - 40 - 80 METRI E SSB

10 VALVOLE:

2 stadi amplificatori RF	6K7
Oscillatore	6C5
Miscelatrice	6L7
2 stadi MF	6K7
Rivelatrice, AVC, AF	6R7
BFO	6C5
Finale	6 F 6

Alimentatore 5 W 4

» 21,428 - 16,666

GAMMA A 1.500 a 3.000 Kc/s = metri 200 - 100

"B 3.000 " 5.000 " = " 100 - 60

"C 5.000 " 8.000 " = " 60 - 37,5

"D 8.000 " 11.000 " = " 37,5 - 27,272

"E 11.000 " 14.000 " = " 27,272 - 21,428

F 14.000 » 18.000 » =

FUNZIONANTI - PROVATI E COLLAUDATI CORREDATI DI MANUALE TECNICO ORIGINALE TM-11-4001 VENGONO VENDUTI IN 3 VERSIONI

Funzionante a 12 V cc L. 55.000 + 5.000 i.p. Funzionante a 220 V ac L. 65.000 + 5.000 i.p. Funz. a 220 V + media a cristallo L. 80.000 + 5.000 i.p. A parte altopar. LS3+cordone L. 6.500 + 1.000 i.p.

scrivi nel cielo i tuoi messaggi!

Libertà è anche sentirsi più sicuri in ogni evenienza. Libertà è anche essere in contatto con il mondo

C'E' PIU' LIBERTA' CON UN LAFAYETTE

LAFAYETTE COMSTAT 25 B

23 canali - 5 W. L. **153.500 netto** **&LAFAYETTE**

CRTV Torino

Corso Re Umberto 31 Tel. 51 04 42 CAP. 10128

8° fiera nazionale del radioamatore e dell'elettronica

pordenone 17 - 18 - 19 marzo 1973

associazione radiotecnica italiana sez. prov. pordenone

i2YO

Ditta NOVA

CASALPUSTERLENGO via Marsala 7 (MI)

Negozio: Telefono (0377) 84.520 Abitazione: Telefono (0377) 84.654

*

S O M M E R K A M P Y A E S U

TRIO

DRAKE

SWAN ecc.

TRANSCEIVER SSB

RICEVITORI

TRASMETTITORI

TELESCRIVENTI

ANTENNE

CAVI COAXIALI

MINUTERIE ecc.

apparecchiature ricondizionate 390/A URR ecc.

ESCLUSIVA PER GERMANIA - SVIZZERA - AUSTRIA dei PRODOTTI ERE CANNETO PAVESE

PREZZI ECCEZIONALI!
CONSULTATECI!!!

lafayette Service

Ecco la rete dei Distributori Nazionali:

ALBA (CN)
Santucci - Via V. Emanuele n. 30
ASCOLI PICENO
Sime - Via D. Angelini n. 112 - Tel. 2004
BARI
Discorama - Corso Cavour n. 99 - Tel. 216024
BERGAMO
Bonardi - Via Tremana n. 3 - Tel. 232091
BESOZZO (VA)

BOLOGNA Vecchietti - Via L. Battistelli n. 5/C - Tel. 550761 BRESCIA

Serte - Via Rocca d'Anfo n. 27/29 - Tel. 304813 CALTINESSETTA
Celp - Corso Umberto n. 34 - Tel. 24137

CATANIA Trovato - Piazza Buonarroti n. 14 - Tel. 268272

CITTA' S. ANGELO (PE)
Cieri - Piazza Cavour, 1 - Tel. 96342
COMO
Fert - Via Anzani n. 52 - Tel. 263032

COSENZA

GENOVA

Contini - Via XXV Aprile - Tel. 770156

F. Angotti - Via N. Serra, n. 58/60 - Tel. 34192 **CUNEO**Elettronica Benso - Via Negrelli n. 30 - Tel. 65513

FIRENZE
Paoletti - Via II Prato n. 40/R - Tel. 294974
FOGGIA

Radio Sonora - C.so Cairoli n. 11 - Tel. 20602 FORLI' Teleradio di Tassinari - Via Mazzini n. 1 - Tel. 25009

Videon - Via Armenia n. 15 - Tel. 363607 GORIZIA Bressen - Corso Italia n. 35 - Tel. 5765

Bressan - Corso Italia n. 35 - Tel. 5765 **LUCCA** Sare - Via Vitt. Veneto n. 26 - Tel. 55921

MANTOVA Galeazzi - Galleria Ferri n. 2 - Tel. 23305

MARINA DI CARRARA Bonatti - Via Rinchiosa n. 18/B - Tel. 57446

MESSINA

B. Fancello - Piazza Mulicello n. 21

MESSINA
Cinetecnica di Saia - Via T. Cannizzaro 98

Bernasconi - Via G. Ferraris n. 66/G - Tel. 335281

Da oggi siamo più vicini

rappresentati in tutta Italia da: MARCUCCI

MMP Electronics - Via Villafranca n. 26 - Tel. 215988

PARMA
Hobby Center - Via Torelli n, 1 - Tel. 66933

PERUGIA
Comer - Via Della Pallotta, n. 20/D - Tel. 46261
PESARO
Morganti - Via G. Lanza n. 9 - Tel. 67898

PIACENZA E.R.C. - Via S. Ambzrogio n. 35/B R. CALABRIA

Tieri di Castellani - C.so Garibaldi n. 114/D

R. EMILIA I.R.E.T. - Via Emilia S. Stefano, n. 30/C - Tel. 38213 RIMINI

Medda & Bonini - Via Cappellini n. 19 - Tel. 54563 ROMA

Alta Fedeltà - Federici - Corso d'Italia n. 34/C - Tel. 857942 ROVERETO (TN) Elettromarket - Via Paolo Cond. Varese - Tel. 24513

ROSIGNANO SOLVAY (LI)
Giuntoli Mario - Via Aurelia n. 254 - Tel. 70115
S. DANIELE DEL FR. (UD)
Fontanini - Via Umberto I n. 3 - Tel. 93104

TARANTO RA. TV. EL - Via Mazzini n. 136 - Tel. 28871 TERNI

Teleradio Centrale - Via S. Antonio n. 48 - Tel. 55309 TORINO C.R.T.V. di Allegro - Corso Re Umberto n. 31 - Tel. 510442

C.R.T.V. di Allearo - Corso Re Umberto n. 31 - Te TORTOREDO LIDO (TE)' Electronic Fitting - Via Trieste n. 26 - Tel. 37195 TREVI (PG)

Fantauzzi Pietro - Via Roma - Tel. 78247 TRIESTE Radiotutto - Via 7 Fontane, n. 50 - Tel. 767898 VARESE Migliarina - Via Donizetti n. 2 Tel. 82554

VENEZIA Mainardi - Campo dei Frari n. 3014 - Tel. 22238 VERONA

Mantovani - Via 24 Maggio n. 16 - Tel. 48113 VIBO VALENTIA Gulla - Via AFFaccio, n. 57/59 - Tel. 42833

VICENZA

Ades - Viale Margherita n. 21 - Tel. 43338

Fusaro, Via Monti 35 tel 44272

Via Bronzetti 37 20129 Milano Tel. 7386051

RICETRASMETTITORI 27 MHz

Mod. 972 IAJ

Mod. GA-22

Mod. H 21-4

Mod. OF 670 M

Distributrice esclusiva per l'Italia ITALIANA G. B. C.

Ricetrasmettitore «TENKO» Mod. 972 1AJ

6 canali 1 equipaggiato di quarzi Indicatore S/RF Controllo volume e squelch 14 transistori, 16 diodi Completo di microfono e altoparlante Potenza ingresso stadio finale: 5 W Uscita audio: 400 mW Alimentazione: 12 Vc.c. Dimensioni: 35 x 120 x 160

Supporto portatile Mod. GA-22

Per ricetrasmettitore Tenko 972-IAJ Completo di cinghia per trasporto, antenna telescopica incorporata. Alimentazione:

13,5 Vc.c. tramite 9 batterie da 1,5 V Dimensioni: 125 x 215 x 75

Ricetrasmettitore «TENKO» Mod. H 21-4

23 canali equipaggiati di quarzi Limitatore di disturbi Indicatore S/RF Commutatore Loc-Dist Presa per altoparlante esterno e P.A. Completo di microfono Potenza ingresso stadio finale: 5 W Alimentazione: 13,5 Vc.c. Uscita audio: 1.5 W Dimensioni: 140 x 175 x 58

Ricetrasmettitore «TENKO» Mod. OF 670 M

23 canali equipaggiati di quarzi Limitatore di disturbi Controllo di volume e squelch Indicatore intensità segnale

Presa per altoparlante esterno Completo di microfono Potenza ingresso stadio finale: 5 W Uscita audio: 2,5 W 19 transistori, 11 diodi, 1 I.C. Alimentazione: 12 ÷ 16 Vc.c. Dimensioni: 125 x 70 x 195

Ricetrasmettitore «TENKO» Mod. KRIS - 23

23 canali equipaggiati di quarzi Limitatore di disturbi Indicatore S/RF Sintonizzatore Delta Controllo di volume e squelch Presa per microfono, antenna e cuffia Alimentazione: 13,5 Vc.c. - 220 Vc.a -Potenza ingresso stadio finale: 5 W Uscita audio: 4 W Dimensioni: 300 x 130 x 230

RICHIEDETE IL NUOVO COMMUNICATIONS BOOK DI 136 PAGINE ALLA G.B.C. ITALIANA C.P. 3988 REP. G.A. - 20100 MILANO INVIANDO L. 150 IN FRANCOBOLLI

AMPLIFICATORI COMPONENTI **ELETTRONICI INTEGRATI**

VIALE E. MARTINI,9 20139 MILANO-TEL.53 92 378

già Ditta FACE

CONDENSATORI	ALIMENTATORI stabilizzati co cortocircuito, regolabili:	n protezione elettronica anti-	CIRCUITI INT	
TIPO LIRE	da 1 a 25 V e da 100 mA a 2 A	L. 7.500	CA3048	4.20
1 mF 40 V 70	da 1 a 25 V e da 100 mA a 5 /		CA3052	4.30
1.6 mF 25 V 70	RIDUTTORI di tensione per au	to da 6.7 5.9 V stabilizzati con	CA3055	2.70
2 mF 80 V 80	2N3055 per mangianastri e regis		ILA702	80
2 mF 200 V 120	ALIMENTATORI per marche Pa		μΑ703	90
4.7 mF 12 V 50	Philips - Irradiette - per mang		μ Α709	5
5 mF 25 V 50	stratori 6-7,5 V (specificare il		µA723	9
8 mF 350 V 110	MOTORINI Lenco con regolato		μΑ741	70
10 mF 12 V 40	TESTINE per registrazione e		μΑ748	81
10 mF 70 V 65	Lesa - Geloso · Castelli · P	niline . Europhon alla connia	SN7400	2
10 mF 100 V 70	cesa - deloso - Castelli - F	L. 1,400	SN7401	4
16 mF 350 V 200	MICROFONI tipo Philips per I		SN7402	2
25 mF 12 V 50	POTENZIOMETRI perno lungo		SN7403	4
25 mF 25 V 60	POTENZIOMETRI con interrutto		SN7404	4
25 mF 70 V 80			SN7405	4
5+25 mF 350 V 400	POTENZIOMETRI micromignon POTENZIOMETRI micron		SN7407	4
32 mF 12 V 50		L. 180 hterruttore L. 220	SN7408	5
32 mF 64 V 80	POTENZIOMETRI micron con i		SN7410	2
32 mF 350 V 300	TRASFORMATORI DI ALIMENT		SN7413	6
2+32 mF 350 V 400	600 mA primario 220 V secondo		SN7420	2
50 mF 15 V 60	600 mA primario 220 V secondo		SN74121	5
50 mF 25 V 75	600 mA primario 220 V secondo		SN7430	3
50 mF 70 V 100	1 A primario 220 V seconda		SN7440	3
50 mF 350 V 300	1 A primario 220 V secondo		SN7441	9
+50 mF 350 V 500	2 A primario 220 V secondo		SN74141	
00 mF 15 V 70	3 A primario 220 V secondo	rio 16 V L. 3.000	SN7443	1.3
00 mF 25 V 80	3 A primario 220 V second	ario 18 V L. 3.000	SN7444	1.4
00 mF 60 V 100	3 A primario 220 V second		SN7447	1.3
00 mF 350 V 450	4 A primario 220 V seconda	rio 50 V L. 5.000	SN7450	4
+100 mF 350 V 800	OFFERTA		SN7451	
	RESISTENZE - STAGNO +		SN7473	9
	Busta da 100 resistenze miste	L. 500	SN7475	!
	Busta da 10 trimmer valori m		SN7490	
	Busta da 100 condensatori pF		SN7492	1.6
0+100+50+25 mF	Busta da 50 condensatori eleti	rolitici L. 1.400	SN7493	1.0
350 V 900	Busta da 100 condensatori ele	trolitici L. 2,500	SN7494	1.0
250 mF 12 V 110	Busta da 5 condensatori a vito		SN7496	2.0
50 mF 25 V 120	a 2 o 3 capacità a 350 V	L. 1.200	SN74154	2.4
50 mF 40 V 140	Busta da gr 30 di stagno	L. 170	SN76013	1.6
000 mF 12 V 100	Rocchetto stagno da 1 Kg. al		TBA240	2.0
00 mF ₄ 25 V 150	Microrelais Siemens e Iskra a		TBA120	1.0
70 mF 16 V 110	Microrelais Siemens e Iskra a		TBA261	1.
00 mF 12 V 100	Zoccoli per microrelais a 4		TBA271	
00 mF 25 V 200	Zoccoli per microrelais a 2		TBA800	1.
00 mF 50 V 240	Molle per microrelais per i d		TAA263	
00 mF 15 V 180	Worle per microferats per i d	L. 40	TAA300	1.
00 mF 25 V 250	B400 C1500 700	55 A 400 V 7.500	TAA310	1.
00 mF 40 V 400	B400 C2200 1.100	55 A 500 V 8.300	TAA320	
00 mF 25 V 400	B420 C2200 1.600	90 A 600 V 18.000	TAA350	1.
00 mF 18 V 300	B40 C5000 1.100		TAA435	1.
00 mF 25 V 350	B100 C6000 1.600	TRIAC	TAA611	1.
00 mF 50 V 700	B60 C1000 550		TAA611B	1.
00 mF 15 V 400		3 A 400 V 900	TAA621	1.
00 mF 15 V 400	SCR	4,5 A 400 V 1.200	TAA661B	1.
00 mF 25 V 450	TIPO LIRE	6.5 A 400 V 1.500	TAA700	1.
00 mF 25 V 700	1,5 A 100 V 500	6,5 A 600 V 1.800	TAA691	1.
00 mF 15 V 900		8 A 400 V 1.600	TAA775	1.
00 mF 25 V 1. 000		8 A 600 V 2.000	TTA861	1.
0 A D D 0 1 7 7 A T O D 1		10 A 400 V 1.700	9020	• • • • • • • • • • • • • • • • • • • •
RADDRIZZATORI O LIRE		10 A 600 V 2.200		
		15 A 400 V 3.000	FEET	
		15 A 600 V 3.500	FEE	
		25 A 400 V 14.000	TIPO	L.
C450 220	8 A 400 V 1.500	25 A 600 V 18.000		
C750 350	8 A 600 V 1.800	40 A 600 V 38.600	SE5246	
C1000 400	10 A 400 V 1.700		SE5247	
0 C1000 450	10 A 600 V 2.000	UNIGIUNZIONE	2N5248	
0 C2200 700	10 A 800 V 2.500		BF244	
0 C3200 800	12 A 800 V 3.000	2N1671 1.200	BF245	
0 C1500 500	20 A 1200 V 3.600	2N2646 700	2N3819	
C3200 900	25 A 400 V 3.600	2N4870 700	2N3820	1.
00 C1500 600	25 A 600 V 6.200	2N4871 700	2N5248	

ATTENZIONE:

Al fine di evitare disguidi nell'evasione degli ordini si prega di scrivere in stampatello nome ed indirizzo del committente città e C.A.P., in calce all'ordine.

Non si accettano ordinazioni inferiori a L. 4.000; escluse le spese di spedizione.

Richiedere qualsiasi materiale elettronico, anche se non pubblicato nella presente pubblicazione.

PREZZI SPECIALI PER INDUSTRIE - Forniamo qualsiasi preventivo, dietro versamento anticipato di L. 1.000.

CONDIZIONI DI PAGAMENTO:

a) Invlo, anticipato a mezzo assegno circolare o vaglia postale dell'importo globale dell'ordine, maggiorato delle spese postali di un minimo di L. 450 per C.S.V. e L. 600/700, per pacchi postali.
 b) contrassegno con le spese incluse nell'importo dell'ordine.

AMPLIFICATORI COMPONENTI ELETTRONICI INTEGRATI

VIALE E. MARTINI,9 20139 MILANO-TEL.53 92 378

IPO	LIRE	TIPO	LIRE	TIPO	V A L	V O L E	LIRE	TIPO	LIRE	TIPO	LIR
AA91	520	ECL85	720	EY87	650	PFL200	850	6AX4	600	6CG8	65
V51	670	ECL86	720	EY88	650	PL36	1.300	6AF4	800	6CG9	70
Y51 Y87	620	EF80	480	EQ80	600	PL81	850	6AQ5	600		70 65
Y802	620	EF83	800	EZ80	500	DISA	640			12CG7	60
ABC80	600	EF85	500	EZ81	500	PL84 PL95	620	6AT6	530	6DT6	60
C86	700	EF86	700	PABC80	550	PL504	1.150	6AU8	520 700	6DQ6	1.40
C88	750	EF93	500	PC86	750	PL304	800	6AW6		9EA8	70
E92	570	EF94	500	PC88		PL83 PL509	2.000		650	12BA6	50
C03	800	EF97	700	PC92	760	PY81	500	6AW8	720	12BE6	50
C93 CC81	600	EF98	800	PC92	550 700	PY82	500	6AM8	700	12AT6	55
CC82	530	EF183	500			DV02	620	6AN8	1.000	12AV6	50
CC83	600	EF184	500	PC900	740	PY83 PY88	620	6AL5	500	12DQ6	1.40
CC84	650	EL34		PCC88	800	PY500	1.400	6AX5	700	12AJ8	1.4
CC85	550	EL34	1.400	PCC84	700	UBF89	620	6BA6	500	17DQ6	1.4
CC88	700	EL36		PCC85	550		600	6BE6	500	25AX4	6:
CC189		EL41	800 800	PCC189 PCF80	800	UCC85	620	6BQ6	1.400	25DQ6	1.4
CC808	800 800	EL83 EL84		PCF80	650	UCH81 UBC81	650	6BQ7	700	35D5	6:
CERO	750		650 550	PCF82 PCF86	600	UCL82	720	6EB8	700	35X4	5
CF80 CF82 CF83		EL90		PCF86	800	UCLBZ		6EM5	600	50D5	5
CF02	700	EL95	650	PCF200	800	UL41	850	6CB6	520	50B5	5
CL 42	700	EL504	1.100	PCF201	800	UL84	680	6CF6 6CS6	700	E83CC	1.4
CH43 CH81	800	EM84	750	PCF801	800	UY41 UY85	800	6056	600	E86C	2.0
CH83	600	EM87	750	PCF802	800	0185	550	6SN7	700	E88C	1.80
CH83	700	EY51	600	PCH200	820	1B3	600	6SR5	800	E88CC	1.80 1.80 2.21
CH200	800	EY80	640	PCL82	740	1X2B	700	6T8	600	E180F	2.2
CL80	800	EY81	520	PCL84	620	5U4	650	6DE6	700	35A2	1.4
CL80	750 800	EY82 EY83	520	PCL865	750	5X4	550	6U6	700	OA2	1.4
CL84	700	EY86	600 P	PCL86	750 750	5Y3 6X4	550 500	6AJ5 6CG7	700 620		
200			100	SEM							
PO C117K	LIRE 300	AC194K	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIR
C121	200	AD142	280 550	ASY26 ASY27 ASY28 ASY29 ASY37	400	BC147	180	BC267	200	BD138	45
C121 C122 C125	200	AD142 AD143	550	ASY27	400	BC148	180	BC268 BC269	200	BD139	50
C125	200	AD148		A5128	400	BC149	180	BC269	200	BD140	50
C126			600	AST29	400	BC149 BC153 BC154	180	BC270	200	BD141	1.50
C126 C127	200 170	AD149 AD150	550 550	ASTSI	400	BC154	180	BC286	300	BD142	70
C128	170	AD161	350	ASY46	400	BC157 BC158	200	BC287 BC300	300	BD162	55
C130 .	300	AD162	350	ASY48 ASY77			200	BC300	400	BD163	55
C132	170	AD262	400	ASY80	400	BC159	200	BC301	350	BD221	50
C134	200	AD263	450	ASY81	400	BC160 BC161	350 380	BC302 BC303	400	BD224 BD216	55
C135	200	AF102	350	ACVZE		DC161		BC303	350		
C136	200	AF102	300	AST/5	400 800	BC167 BC168 BC169	180 180	BC307 BC308	200	BY19	85
C137	200	AF105 AF106	250	AS716	800	BC160	180	BC309	200	BY20 BF115	9
C137 C138 C139	170	AF109	300	ASY75 ASZ15 ASZ16 ASZ17 ASZ18	800	BC171	180	BC315	300	BF123	30
C139	170	AF114	280	AS718	800	BC171	180	BC313		BF152	21
C141	200	AF115	280	AU106	1.300	BC173	180	BC317 BC318	180	BF153	23
C141K	260	AF110	280	AU107	1.000	BC173	220	BC319		BF154	21
C142	180	AF110 AF116	280	AU108	1.000	BC178	220	BC320	200	BF155	2
C142K	260	AF117	280	AU110	1.300	BC179	230	BC321	200	BF158	30
C142 C142K C151 C152	180	AF118	350	Allini	1.300	BC181	200	BC322	200	BF159	3
C152	200	ΔF121	300	AU111 AUY21	1.300	BC182	200	BC322 BC330		DF 133	2
G153	200	AF121 AF124	300	AUY22	1.400	BC171 BC172 BC173 BC177 BC178 BC179 BC181 BC182 BC183	200	BC340	450 350	BF160 BF161	4
C153K	300	AF125	300	AU35	1.300	BC184	200	BC360	350	, BF162	2:
C160	200	AF126	300	A1137	1.300	BC186	250	BC361	380	BF163	
C162	200	AF127	250	AU37 BC107 BC108	170	BC187	250	BC384	300	BF164	2:
C170	170	AF134	200	BC108	170	BC188	250	BC395	200	BF166	4
C171	170	AF136	200		180	BC201	700	BC429	450	BF167	3
C172	300	AF137	200	BC113	180	BC201	700	BC429	450	BF167	3
C178K	270	AF137 AF139 AF164	380	BC114	180	BC202 BC203 BC204	700	BC595	200	BF173	3
C179K	270	AF164	200	BC115	180	BC204	200	BCY56	250	BF174	3:
C180	200	AF166	200	BC113 BC114 BC115 BC116 BC117 BC118	200	BC205	200	BCY58	250	BF177	3
C180K	250	AF170	200	BC117	300	BC206	200	BCY59	250	BF178	3
C181	200	AF171	200	BC118	170	BC207	180	BCY71	300	BF179	3
C181K	250	AF172	200	BC119	220	BC208	180	BCY77	280	BF180	3:
C183	200	AF178	400	BC119 BC120	300		180		280	BF181	5
C184	200	AF181	400	BC126	300	BC110	300	BCY79	280	BF184	3
C185	200	AF185	400	BC125	200	BC211	300	BD106	800	BF185	30
C187	230	AF186	500	BC129	200	BC212	200	BD107	800	BF186	21
C188	230	AF200	300	BC129	200	BC213	200	BD111	900	BF194	2:
C187K	280	AF201	300	BC131	200	BC214	200	BD113	900	BF195	2
C188K	280	AF202	300	BC134	180	BC225	180	BD115	600	BF196	2
C190	180	AF239	500	BC134	300	BC231	300	BD117	900	BF197	2
C191	180	AF240	550	BC136	300	BC231 BC232	300	BD118	900	BF198	2
C192	180	AF251	500	BC137	300	BC232	180	BD124	900	BF198	2
	230	ACY17	400	BC139	300	BC237	180	BD124	400	BF200	4
		AUTIT				00230		DD 133			
C193		ACV24	400	R[:1/2						BE207	
	230 280	ACY24 ACY44	400 i	BC142 BC143	300 350	BC239 BC258	200	BD136 BD137	400 450	BF207 BF213	3

ACEI à Ditta FACE	-	VIALE	MARTINI,	9	-	20139	MILANO	-	TEL.	53 92 378

							Segue d	a pag. 509
		ICONI						•
TIPO	LIRE	TIPO	LIRE	TIPO	LIRE			
BF222	250	OC171	300	2N1711	280	f V		
BF233	250	SFT214	800	2N1890	400	ALMENTATOR		
BF234	250	SFT226	330	2N1893	400	ALIMENTATORI	DIO	DI
BF235	230	SFT239	630	2N1924	400	STABILIZZATI	D 4400	
BF236	230	SFT241	300	2N1925	400	SIABILIZZATI	BA100	120
BF237 BF238	230	SFT266	1.200	2N1983	400	!	BA102	200
BF238	280	SFT268	1.200	2N1986	400 400	Da 2.5 A 18 V L. 4.400	BA127	80
BF254	300	SFT307	200	2N1987	400	20 2,0 % 10 1	BA128	80
BF257 BF258	400	SFT308	200	2N2048	450	Da 2.5 A 12 V L. 4.200		
BF259	400	SFT316	220	2N2160 2N2188	700 400	Da 2,5 A 12 V L. 4.200	BA129	80
BF261	400 300	SFT320 SFT323	220 220	2N2166 2N2218	350		BA130	80
BF311	280	SFT325	220	2N2219	350	Da 2,5 A 24 V L. 4.600	BA148	160
BF332	250	SFT337	240	2N2222	300		BA173	160
BF333	250	SFT352	200	2N2284	350	Da 2,5 A 27 V L. 4.800 !	1N4002	150
BF344	300	SFT353	200	2N2904	300			
BF345	300	SFT367	300	2N2905	350	Da 2,5 A 38 V L. 5.000	1N4003	150
BF456	400	SFT373	250	2N2906	250		1N4004	150
BF457	450	SFT377	250	2N2907	300	Da 2,5 A 47 V L. 5.000	1N4005	160
BF458	450	2N172	800	2N3019	500	1 Da 2,0 A 47 . 2. 0.000	1N4006	180
BF459	500	2N270	300	2N3054	700	1		
BFY50 BFY51	400	2N301	400	2N3055	700	1	1N4007	200
BFY51 BFY52	450 400	2N371	300	MJ3055	900	AMPLIFICATORI	BY114	200
BFY56	400	2N395 2N396	250 250	2N3061 2N3300	400 600	AMITERITORI	BY116	200
BFY57	400	2N398	300	2N3375	5.500	1	BY118	1,300
BFY64	400	2N407	300	2N3373	200	Da 1.2 W a 9 V L. 1.300		
BFY90	800	2N409	350	2N3442	2.500		BY126	280
BFW16	1.300	2N411	700	2N3502	400	Da 2 Wa 9 V L. 1.500	BY127	200
BFW30	1.350	2N456	700	2N3703	200	1 Da 2 W a 9 V L. 1.300	BY133	200
BSX24	200	2N482	230	2N3705	200	Da 4 W a 12 V L. 2.000	BY103	200
BSX26	250	2N483	200	2N3713	1.800	Da 4 W a 12 V L. 2.000 ,		
BFX17	1.000	2N526	300	2N3731	1.800		TV6,5	450
BFX40	600	2N554	650	2N3741	500	Da 6 W a 24 V L. 5.000	TV11	500
BFX41 BFX84	600	2N696	350	2N3771	1.700		TV18	600
BFX89	600 800	2N697 2N706	350	2N3772	2.600 3.700	Da 10 W a 18 V L. 6.500		•••
BU100	1.300	2N706 2N707	250	2N3773 2N3855	3.700			
BU102	1.700	2N708	350 260	2N3866	200 1.300	Da 10 + 10 W a 18 V L. 15.000		
BU104	2.000	2N709	350	2N3925	5.000		ZENE	R
BU107	2,000	2N711	400	2N4033	500	Da 30 W a 40 V L. 16.000		
BU109	1,300	2N914	250	2N4134	400	Da 30 VV a 40 V L. 10.000	Da 1 W	280
BU103	1.500	2N918	250	2N4231	750	D= 20 : 20 W = 40 V 05 000	Da 400 mW	200
OC23	550	2N929	250	2N4241	700	Da 30+30W a 40V L. 25.000	Da 4 W	550
OC33	550	2N930	250	2N4348	900	1	Da 10 W	900
OC44	300	2N1038	700	2N4404	500	Da 5+5 W a 16 V completo	Da 10 W	900
OC45	300	2N1226	330	2N4427	1.200	di alimentatore escluso tra-		
OC70	200	2N1304	340	2N4428	3.200	sformatore L. 12.000	DIA	C
OC72 OC74	180	2N1305	400	2N4441	1.200		214	•
0074	180 200	2N1307 2N1308	400	2N4443	1.400 2.200	Da 3 W a blocchetto	400 V	400
OC75 OC76	200	2N1308 2N1358	400 1.000	2N4444 2N4904	1.000	per auto L. 2.000	500 V	500
OC77	300	2N1565	400	2N4904 2N4924	1.200	poi auto E. 2.000	500 V	300
OC169	300	2N1566	400	2114024	1.200			
OC170	300	2N1613	250					
	le condizio			ne vedi pag. 5	508			

U.G.M. Electronics

VIA CADORE, 45 - TELEFONO (02) 577.294 - 20135 MILANO

ORARIO: 9-12 e 15-18,30 - sabato e lunedi: CHIUSO

Radioricevitori VHF a circuiti integrati con ricezione simultanea FM+AM e copertura continua 26-175 MHz. Ricevitori 144/146 MHz, 26/30 MHz, ecc. Oscillatori di nota per telegrafia, Ricevitori per 10, 11 (CB), 15, 20 e 40 metri.

ELENCO DETTAGLIATO GRATIS A RICHIESTA

Ditta T. MAESTRI

57100 Livorno - via Fiume 11/13 - Tel. 38.062

MONITOR E TELECAMERA

a scansione lenta (Slow Scan)

Televisione a scansione lenta, adatto per comunicazioni in SSTV. Radioamatori! Fate i Vostri QSO guardando con chi parlate!

CERCAMETALLI

27T e 990B Excelsion

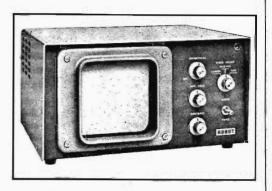
GENERATORI DI BF

SG-382-AU SG-299-CU TS 190 Maxson HSP-003/15 Funk

FREQUENZIMETRI

BC221 AM ultima vers.	120 Kc	-	20 1	Ис
FR4-U	120 Kc	-	20 1	Иc
AN-URM80	20 Mc	-	100 1	Иc
AN-URM81	100 Mc	-	500 M	Иc
TS488BU	9000 Mc	-	10000 1	Mc

CONTATORI DIGITALI


HP524B da 0 a 100 Mc Boonton da 0 a 45 Mc Cassetto estensore per 524B da 100 a 200 Mc

STRUMENTAZIONE VARIA

Decibelmeter ME222 Prova valvole profess. TV2 - TV7 e altri

CRISTAL METER

TS39A da 500 Kc a 30 Mc 014A da 370 Kc a 19 Mc

GENERATORI DI SEGNALI

TF144H Marconi	125	Kcs -	65	Mc
TF144G Marcon	i 75	Kcs -	25	Mc
TF145H Marconi	10	Mc -	400	Mc
AN-URM25F HP	125		54	Mc
AN-URM63 HP	Boonton 2 l	Mc -	500	Mc
TS418U	1000	Mc -	3000	Mc
HP623B	6500	Mc -	8700	Mc
TS147DUP	8000	Mc -	10000	Mc
AN URM42	24000	Mc -	27000	Mc

OSCILLOSCOPI

OS8B-U	Boonton
AN-USM50	Lavoie
148-S	Cossor
1046 HP	HP
AN-USN24	Boonton

RICEVITORI COLLINS 390URR

revisionati sempre pronti

VASTO ASSORTIMENTO DI:

Telescriventi Demodulatori per RTTY

ROTORI D'ANTENNA

Automatici Chanal

TELESCRIVENTI DISPONIBILI:

TT48/FG
TT98/FG
TT98/FG
Ia leggerissima telescrivente KLEINSHMDT
Ia moderna telescrivente KLEINSHMDT
TT76B
TERFORATORE e lettore scrivente con tastiera KLEINSHMDT
TT198
perforatore scrivente con lettore versione cofanetto
perforatore scrivente in elegante cofanetto
TT300/28
Teletype modernissima telescrivente a Ty-pingbox
Teletype elegantissima telescrivente con consolle
TT 174
Teletype modernissimo in elegante cofanetto Teletype

perforatore modernissimo in elegante cofanetto Teletype perforatore con Typing-box versione cofanetto in minuscolo lettore TELETYPE

TT 192 perforatore con Typing-box versione cofanetto in minusci TT 354 Ed inoltre tutti vecchi modelli della serie 15, 19, ecc. ...

Richiedete il catalogo generale telescriventi e radioricevitori inviando L. 1.000 in francobolli. Informazioni a richiesta, affrancare risposta, scrivere chiaro in stampatello.

VISITATECI A BOLOGNA

DEL 3-4 MARZO

ALLA MOSTRA MERCATO

VHF-FM

SR - C 806 M/816 MOBILE STATION 144-148 MHz/FM 12 channel 10 W / 1 W - RF output

SR - C 1400

MOBILE STATION 144-148 MHz/FM

22 channel 10 W 1 W - RF output

BASE STATION 144-148 MHz/FM

22 channel 10 W / 3 W 1 W - RF output SR - C 146

WORLD'S SMALLEST Handie rig 144-148 MHz/FM 5 channel

5 channel 1 W - RF output

STANDARD®

SR - C 12/120-2 AC POWER SUPPLY UNIT 9-16 V - 8 A

SR - C 12/120 - 5

AC POWER SUPPLY UNIT
13,8 V - 3 A

NOV.EL

VIA CUNEO 3 20149 MILANO TEL. 43.38.17 49.81.022

DISTRIBUTRICE ESCLUSIVA PER L'ITALIA

CB 27 MHz TS-624S il favoloso 10 W 24 canali tutti quarzati

caratteristiche tecniche

Segnale di chiamata - indicatore per controllo S RF - limitatore di disturb - controllo di volume e squeich - presa per an tenna e altoparlante esterno - 21 transistori 14 dio di - potenza ingresso stadio finale 10 W - uscita audio 3 W - alimentazione 12 Vc.c. - dimensioni: 150 x 45 x 165.

per auto e natanti.

TS-5024P

per stazioni fisse

caratteristiche tecniche

24 canali equipaggiati di quarzi - orologio digitale incorporato che permette di predisporre l'accensione automatica - mobile in legno pregiato - limitatore di disturbi, controllo volume e squelch - indicatore S/Meter - segnale di chiamata (1750-HZ) - presa per microfono, cuffia, antenna. 28 transistori, 19 diodi, 1 SCR. - potenza ingresso stadio finale senza modulazione: 36 W - potenza uscita RF senza modulazione: 10 W potenza uscita RF con modulazione 100%: 40 W P.E.P. - potenza uscita audio max: 5 W - alimentazione 220 Vc.a. 50 Hz - dimensioni 365 x 285 x 125.

RICHIEDETE IL NUOVO COMMUNICATIONS BOOK DI 136 PAGINE ALLA G.B.C. ITALIANA C.P. 3988 REP. G.A. - 20100 MILANO INVIANDO L. 150 IN FRANCOBOLLI