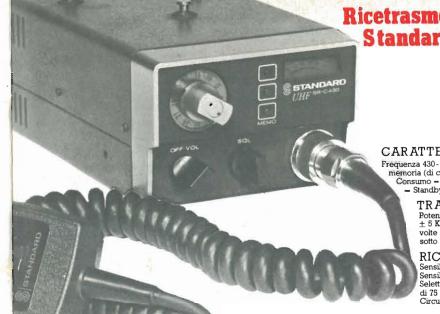





# 70DIAC VHF GEMINI




#### RICETRASMETTITORE 15 W VHF FM 144-148 NHz

Ricevitore supereterodina doppia conversione. Potenza output 1 W e 15 W. 12 canali di cui 1 fornito di quarzi. Microfono dinamico. Controllo squelch variabile. "S" e RF output meter combinati. Indicatore trasmissione. Circuito a 36 Transistor 3 FET 2 IC 18 diodi. Dimensioni 250x225x60 mm. Peso 2 kg.

SONO DISPONIBILI I QUARZI PER TUTTI I PONTI DA 0 A 9

41100 MODENA - Piazza Manzoni, 4 - Tel. 059/3/04164-304165



Ricetrasmettitore UHF-FM Standard-Nov. El. SR-C430

#### CARATTERISTICHE

Frequenza 430-440 MhZ.- N. Canali 12 + 1 canale memoria (di cui 3 quarzati) Alimentazione 13,8 V. C.C. Consumo - Ricezione 0,6 A.

- Standby 0,2 A. - Trasmissione 2,5 A.

#### TRASMETTITORE

Potenza uscita 10 Watt. - Modulazione FM., ( Dev.  $\pm$  5 KHz) - Fattore moltiplicazione dei quarzi 24 volte - Spurie e armoniche Almeno 50 dB sotto la portante.

#### RICEVITORE

Sensibilità 0,4 µV. a 20 dB. segnale disturbo. Sensibilità dello squelch 0,2 µV. Selettività Attenuazione del canale adiacente di 75 dB. Circuito Supereterodina a doppia conversione.



# NEDY.EL. Radiotelecomunicazioni

Ricetrasmettitore UHF-FM Standard-Nov. El. SR-C432

#### CARATTERISTICHE

Frequenza 430 - 440 Mhz. -N. Canali 6 (di cui 2 quarzati) Alimentazione 12,5 V.C.C. Consumo in Ricezione 100 mA. - in Standby 11 mA. in Trasmissione 800 mA.

#### TRASMETTITORE

Potenza uscita 2,2 Watt - Modulazione FM. ( Dev. ± 12 Khz.) Fattore moltiplicazione dei quarzi 24 volte. Spurie e armoniche Almeno 50 dB sotto la portante.

#### RICEVITORE

Sensibilità 0,4 µV a 20 dB. segnale disturbo. Sensibilità dello squelch 0,2 µV. Selettività Attenuazione del canale adiacente - di 75 dB. Circuito Supereterodina a doppia conversione.



Via Cuneo, 3 - 20149 Milano Telefono 433817 - 4981022





TESAK AZIENDA ITALIANA LEADER **NEL SETTORE DELL'ELABORAZIONE** E TRASMISSIONE DATI

| "" carcolatore elettronic                                                                                                                        | .u » |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ORDINE D'ACQUISTO                                                                                                                                | Cd   |
| Scatole di montaggio calcolatore<br>elettronico con relativa pubblicaz<br>tecnica al prezzo di L. 59.000 ca<br>(I.V.A. compresa) più spese posti | ione |
| i ∐ in contrassegno                                                                                                                              |      |
| mediante versamento immed<br>L. 59.000 (spedizione gratuit<br>sul vostro conto corrente pos<br>n° 5/28297                                        | a)   |
| Cognome                                                                                                                                          |      |
| Nome                                                                                                                                             |      |
| ViaN'                                                                                                                                            |      |
| CapCittà                                                                                                                                         |      |
| Prov.                                                                                                                                            |      |
| Firma                                                                                                                                            |      |
| Staccare e spedire a: TESAK s.,<br>150126 FIRENZE - Viale Donato Giannotti, 7:<br>Tel. 684296/686476/687006 - Telex ELF                          | 9 1  |

Voqliate inviarmi GRATIS

cq elettronica

maggio 1975

#### sommario

```
progetto 144 (Berci)
                   Trasmettitore eccitatore AM-FM-SSB per i due metri -
       Hi-Fi analog switch (Forlani)
       Contro-controelenco delle VT (Chelazzi)
       Un interessante monitor per SSTV (Scarpelli)
       CB-DX ... si tira un filo ... e l'antenna è fatta (D'Altan)
       Digitalizzatore filosofo (Giardina)
       La pagina dei pierini (Romeo)
                   Una strana... batteria - Grane su di un alimentatore stabilizzato
       5 circuiti 5 utili a tutti (Pallottino)
                   Metronomo elettronico - Compressore a bassa distorsione - Raffinato filtro passa-banda
Trigger di Schmitt a COSMOS - Rettificatore di precisione a onda intera -
       Un ricetrasmettitore FM per i due metri (D'Altan)
       Una nuova famiglia di integrati: i COSMOS (Pedevillano) (3" parte)
       Demodulazione di frequenza mediante due amplificatori operazionali (Panzieri)
       Singolar tenzone (Cattò)
       sperimentare (Ugliano)
                   re (Ognano)
Il progetto del mese (Centini)
Progettisti allo sbaraglio (Mellacqua, Ferraro, Cochetti, Masetti, Neve)
L'angolo della papocchia (Pasquale miniaturmaniaco)
       A proposito dell'oscilloscopio BF (Formigoni)
       Progetti per sanfilisti (Buzio)
                    Preamplificatore e adattatore d'antenna
                    Come collegare uno S meter transistorizzato a un RX a valvole
                    Antenna multibanda
       Amplificatori finali di potenza con transistori in « Darlington » (Borromei)
       Conversione dell'AN/URC-4 in un ricetrasmettitore per i 144 (Bianchi)
       Alcuni preamplificatori per scaler (Beltrami, Manicardi, Barbi)
       CB a Santiago 9+ (Can Barbone 1°)
                    Puntata dedicata all'autocostruzione:
                    Modifica antisplatters - Amplificatore lineare - Wattmetro - VFO per mattoncino -
748
       Effemeridi (Medri)
       De motu (Natali)
                   ovvero istoria e dimostrazioni intorno al captatore sideres
       Risultati 7º Giant RTTY Flash Contest (Fanti)
       offerte e richieste
       modulo per inserzioni 🕸 offerte e richieste 🕸
       pagella del mese
       indice degli Inserzionisti
```

(disegni di M. Montanari e G. Magagnoli)

edizioni CD DIRETTORE RESPONSABILE Giorgio Totti REDAZIONE - AMMINISTRAZIONE Registrazione Tribunale di Rologna, n. 3330 del 4-3-68 Tipo-Lito Lame - 40131 Bologna - via Zanardi, 506/B Spedizione in abbonamento postale - gruppo III Pubblicità inferiore al 70% DISTRIBUZIONE PER L'ITALIA

DISTRIBUZIONE PER L'ESTERO ESTERO L. 11.660 Arretrati L. 800 Mandat de Poste International Postanweisung für das Ausland payable à / zahlbar an

Cambio indirizzo L. 200 in francobolli



#### ELETTRONICA ELCO

via Manin 26/B - 31015 CONEGLIANO Tel. (0438) 34692

Compact cassette C 60 600 Compact Cassette C 90 800 Piastra Alimentatore stabilizzato con limitatore

di corrente: Regolabile fino 4,5 A - Tensione variabile da 0 a 25 V L. 8.500

Regolabile fino 4,5 A - Tensione variabile da 0 a 25 V L. 11.000 Cuffie stereo  $8 \Omega - 500 \, \text{mW}$ L. 7.000

SPECIALE FILTRI CROSSOVER LC 12 dB per ottava - Induttanza in aria - Impedenza d'ingresso e uscita  $4/8\Omega$  a richiesta.

2 VIE - Frequenza d'incrocio 700 Hz. Massima potenza sinusoidale d'ingresso:

25 W L. 9.500 - 36 W L. 9.900 - 50 W L. 12.900 -80 W L. 13.900 - 110 W L. 15.900.

3 VIE - Frequenza d'incrocio 700/4000 Hz. Massima potenza sinusoidale d'ingres.: 36 W L. 10.900 - 50 W L. 11.900 - 80 W L. 15.900 - 110 W L. 18.900 - 150 W L. 22.900.

Aumento del 5% per il controllo dei medi del tipo a tre posizioni.

4 VIE - Frequenza d'incrocio 450-1500-8000 Hz. Massima potenza sinusoidale d'ingresso:

50 W L. 21.900 - 80 W L. 23.900 - 110 W L. 28.900 - 150 W L. 32.900.

Aumento del 10 % per il controllo dei medi bassi - dei medi alti del tipo a tre posizioni. Nei controlli è escluso il commutatore. Per altre potenze, altre frequenze d'incrocio o altra impedenza fare richieste.

#### ALTOPARLANTI PER STRUMENTI MUSICALI

| Dimensioni Ø | Potenza W | Risonanza Hz | Frequenza Hz | PI         | REZZO  |
|--------------|-----------|--------------|--------------|------------|--------|
| <b>2</b> 00  | 15        | 90           | 80/7.000     | <b>L</b> . | 5.000  |
| 250          | 30        | 65 <i>*</i>  | 60/8.000     | L.         | 8.000  |
| <b>25</b> 0  | 60        | 100          | 80/4.000     | L.         | 16.900 |
| <b>3</b> 20  | 30        | 65           | 60/7.000     | L.         | 15.800 |
| <b>3</b> 20  | 40        | 65           | 60/6.000     | L.         | 24.900 |
| 380          | 80        | 50           | 40/6.000     | L.         | 59.000 |
| 450          | 80        | 25/50        | 20/4.000     | L.         | 74.500 |

#### ALTOPARLANTI PER ALTA FEDELTA' Impedenza $4/8 \Omega$ a richiesta

| TWEET | ERS |   |  |       |  |  |
|-------|-----|---|--|-------|--|--|
|       |     | _ |  | <br>_ |  |  |

| Dimensioni | Potenza W | Frequenza Hz | PREZZO |
|------------|-----------|--------------|--------|
| 88 x 88    | 15        | 1.500/18.000 | 3.600  |
| 88 x 88    | 15        | 2.000/17.000 | 4.500  |
| 95 x 95    | 50        | 1.500/20.000 | 7.200  |

Potenza W Frequenza Hz PREZZO

#### MIDDLE RANGE Dimensioni

| $\omega$              |       |              |     | •                           |        |
|-----------------------|-------|--------------|-----|-----------------------------|--------|
| 130                   |       | 15           |     | 0/18.000                    | 6.300  |
| 130                   |       | 25           | 60  | 0/18.000                    | 8.100  |
| WOOFER                |       |              |     |                             |        |
| Di <b>me</b> ns.<br>Ø |       | Potenza<br>W |     | Frequen.<br>di rison.<br>Hz | PREZZO |
| 200                   | 80 pr | neum.dop/co  | ono | 50                          | 7.200  |
| 200                   | 30    | pneumatic    | 0   | 25                          | 12.600 |
| 250                   | 35    | pneumatic    | 0   | 24                          | 15.200 |
| 250                   | 40 ·  | pneumatic    | 0   | 24                          | 19.900 |
| 320                   | 40    | pneumatic    | 0   | 30                          | 30.900 |

#### Per altri tipi di altoparlanti fare richiesta

rneumatico

| PIKOME | NII |                          |                    |
|--------|-----|--------------------------|--------------------|
|        |     | 40 x 40 mm<br>40 x 40 mm | <br>4.000<br>4.200 |

Amperometro 2 A fs dim. 40 x 40 mm L. 4.200 Amperometro 3 A fs dim. 40 x 40 mm L. 4.200 Amperometro 5 A fs dim. 40 x 40 mm L. 4.000 Microamper, 100 mA fs dim. 40 x 40 mm L. 4.400 Microamper. 200 mA fs dim. 40 x 40 mm L. 4.400 Microamper. 500 mA fs dim. 40 x 40 mm L. 4.200 Microamper.: 500 mA fs dim. 58 x 58 mm L. 5.000 Milliamper. 1 mA fs dim. 40 x 40 mm L. 4.200 Milliamper, 250 mA fs dim, 40 x 40 mm L. 4.200

LED Led rossi 400 Led verdi 800 Led gialli L. 800

**DISPLAY** FND70 2.400 FND71 2.400 FND500 L. 3.400 Zoccoli per integrati 14/16 piedini L. 300

#### Busta 100 condensatori ceramici assort. L. 2.600 TUBI PER OSCILLOSCOPI

| 2AP1  | L. 10.530 |
|-------|-----------|
| 3AP1  | L. 12.100 |
| 5CP1  | L. 14.350 |
| 7BP7A | L. 20.200 |
| 7VP1  | L. 24.650 |

#### Per altro materiale vedere le Riviste precedenti.

69.000

#### ATTENZIONE

Al fine di evitare disquidi nell'evasione degli ordini si prega di scrivere in stampatello nome ed indirizzo del committente città e C.A.P. in calce all'ordine.

Non si accettano ordinazioni inferiori a L. 4.000; escluse le spese di spedizione. Richiedere qualsiasi materiale elettronico, anche se non pubblicato nella presente pubblicazione.

CONDIZIONI DI PAGAMENTO:

a) Invio, anticipato a mezzo assegno circolare o vaglia postale dell'importo globale dell'ordine maggiorati delle spese postali di un minimo di L. 450 per C.S.V. e L. 600/700, per pacchi postali.

b) Contrassegno con le spese incluse nell'importo dell'ordine.

#### ovoTest

Classe 1,5 c.c. 2,5 c.a. FUSIBILE DI PROTEZIONE GALVANOMETRO A NUCLEO MAGNETICO 21 PORTATE IN PIU' DEL MOD. TS 140

Mod. TS 141 20.000 ohm/V in c.c. e 4.000 ohm/V in c.a. 10 CAMPI DI MISURA 71 PORTATE

15 portate: 100 mV - 200 mV - 1 V - 2 V - 3 V - 6 V - 10 V - 20 V - 30 V - 60 V - 100 V - 200 V - 300 V - 600 V - 1000 V - 200 V - 300 V - 600 V - 1000 V - 1500 V - 2000 V - 150 V - 100 V - 150 V - 200 V - 500 V - 100 V - 150 V - 200 V - 200 V - 100 μA - 0.5 mA - 1 mA - 5 mA - 10 mA - 500 mA - 100 mA - 100 mA - 500 mA - 100 mA VOLT C.C. VOLT C.A. AMP. C.C. 1 A - 5 A - 10 A 4 portate: 250 µA - 50 mA - 500 mA - 5 A AMP. C.A.

4 portate:  $\Omega$  x 0.1 -  $\Omega$  x 1 -  $\Omega$  x 10 -  $\Omega$  x 10 -  $\Omega$  x 100 -  $\Omega$  x 1 K -  $\Omega$  x 10 K 1 portata: da 0 a 10 M $\Omega$  1 portata: da 0 a 10 M $\Omega$  1 REATTANZA

FREQUENZA VOLT USCITA

DECIBEL CAPACITA da 0 a 5000 µF (aliment, batteria)

#### Mod. TS 161 40.000 ohm/V in c.c. e 4.000 ohm/V in c.a. 10 CAMPI DI MISURA 69 PORTATE

15 portate: 150 mV - 300 mV - 1 V - 1.5 V - 2 V - 3 V - 5 V - 10 V - 30 V - 50 V VOLT C.C. 60 V - 100 V - 250 V - 500 V -

1000 V 1.5 V - 15 V - 30 V - 50 V -100 V - 300 V - 500 V - 600 V VOLT C A 10 portate: - 1000 V - 2500 V - 1000 V - 2500 V 13 portate: 25 μA - 50 μA - 100 μA - 0.5 mA - 1 mA - 5 mA AMP. C.C.

10 mA - 50 mA - 100 mA 500 mA - 1 A - 5 A - 10 A AMP. C.A. 4 portate: 250 μA - 50 mA - 500 mA - 5 A 6 portate:  $\Omega \times 0.1 - \Omega \times 1 - \Omega \times 100$ OHMS

 $\Omega$  x 1 K -  $\Omega$  x 10 K REATTANZA 1 portata: da 0 a 10  $M\Omega$ FREQUENZA ENZA 1 portata: da 0 a 50 Hz -da 0 a 500 Hz (condens, ester.)

VOLT USCITA 10 portate: 1,5 V (conden. ester.) - 15 V - 30 V - 50 V - 100 V - 300 V - 500 V - 600 V -1000 V - 2500 V

DECIBEL 5 portate: da - 10 dB a + 70 dB

CAPACITA' 4 portate: da 0 a 0.5 μF da 0 a 50 μF (aliment. rete) da 0 a 500 u.E da 0 a 5000 µF (alim. batteria)

MISURE DI INGOMBRO mm. 150 x 110 x 46

sviluppo scala mm 115 peso gr. 600



20151 Milano Via Gradisca, 4 Telefoni 30.52.41 / 30.52.47 / 30.80.783

#### una grande scala in un piccolo tester

#### ACCESSORI FORNITI A RICHIESTA



RIDUTTORE PER CORRENTE **ALTERNATA** 

Mod TA6/N portata 25 A -50 A - 100 A -200 A

FIRENZE - Dr. Alberto Tiranti Via Frà Bartolommeo, 38

C.so D. degli Abruzzi, 58 bis

GENOVA - P.I. Conte Luigi

Via P. Salvago, 18



CORRENTE CONTINUA Mod. SH/30 portata 30 A

PUNTALE ALTA TENSIONE

Mod. VC5 portata 25.000 Vc.c.



Mod. L1/N campo di misura da 0 a 20.000 LUX



**NUOVA SERIE** 

PREZZO INVARIATO

**TECNICAMENTE MIGLIORATO** 

PRESTAZIONI MAGGIORATE

Mod. T1/N campo di misura da —  $25^{\circ}$  +  $250^{\circ}$ 

#### DEPOSITI IN ITALIA :

ANCONA - Carlo Giongo Via Miano, 13

BARI - Biagio Grimaldi Via Buccari, 13

BOLOGNA - P.I. Sibani Attilio Via Zanardi, 2/10

CATANIA - Elettro Sicula Via Cadamosto, 18

PADOVA - Pierluigi Righetti Via Lazzara, 8 PESCARA - GE - COM Via Arrone, 5 TORINO - Rodolfo e Dr. Bruno Pomè

IN VENDITA PRESSO TUTTI I MAGAZZINI ROMA - Dr. Carlo Riccardi DI MATERIALE ELETTRICO E RADIO TV

## DIEITRONIC STRUMENTI DIGITALI

22038 TAVERNERIO (CO) Via Provinciale, 59 Tel. (031) 427076 - 426509

#### Novità



#### **IMPORTANTE!** "a lettura diretta, (senza pre Scaler)

300 MHz **DG1002** L. 319.200

DG1002/S 450 MHz L. 352.800

**DG1003** 600 MHz L. 392.000

(IVA compresa)

#### CARATTERISTICHE TECNICHE

 Misura di freguenza canale A 10 Hz - 50 MHz canale B 50 MHz - 300 MHz (DG1002) 50 MHz - 450 MHz (DG1002/S)

50 MHz - 600 MHz (DG1003)

- Risoluzione 1 kHz - 100 Hz - 10 Hz

- Numero letture regolabile da 10 a 2 per secondo con possibilità di blocco (hold)

- Visualizzazione 6 indicatori numerici a stato solido (LED) con zero BLANKING

 Punto decimale spostabile automaticamente

 Sensibilità d'ingresso canale A migliore di 20 mV (RMS) canale B migliore di 50 mV (RMS)

 Massima tensione canale A 400 V canale B 10 V (RMS) — Impedenza d'ingresso canale A 1 MΩ / 22 pF canale B 50 Ω

 Base dei tempi guarzo a 1 MHz

Stabilità

±1.10 dopo 30' riscaldamento

 Invecchiamento ± 2.10<sup>-7</sup> mese

Precisione

± 1 digit ± errore base tempi

 Gamma di temperatura da 0° a 50° C

Alimentazione

220 V 50/60 Hz (12 V DC optional)

- Dimensioni mm. 220 x 78 x 205

--- Peso gr 3000

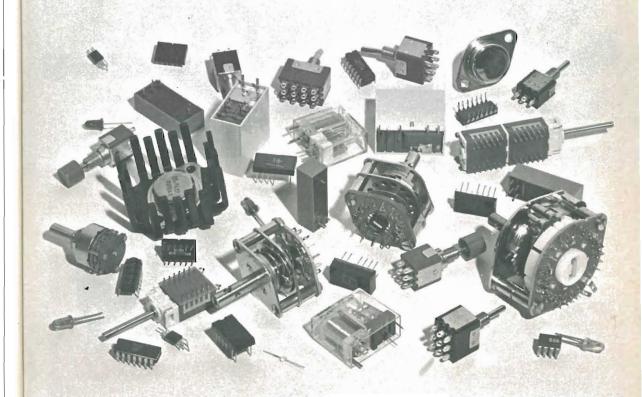
#### PUNTI DI VENDITA:

40122 Bologna 20071 Casalpusterlengo

50123 Firenze

31100 Treviso 00193 Roma 36100 Vicenza VECCHIETTI G. - via L. Battistelli 6 - tel. 051-550761

NOVA - via Marsala 7 - tel. 0377-84520-84654 PAOLETTI-FERRERO - via il Prato 40r - tel. 055-294974


RADIOMENEGHEL - viale IV Novembre 12-14 - tel. 0422-40656 ELETTRONICA DE ROSA ULDERICO - via Crescenzio 74 - tel. 06-389456

: A.D.E.S. - viale Margherita 21 - tel. 0444-43338

# elettromeccanica

21040 cislago (va) via palestro 93 telefono (02) 9630511

componenti elettronici
interruttori miniatura - commutatori miniatura - relé reed - relé miniatura - integrati semiconduttori - display singoli e multipli - led - led microminiatura - componenti vari - surplus.



#### alcuni pezzi

integrati TTL serie 74 da £. 250 integrati MOS per orologi e calcolatrici da £. 9.000 display singoli e multipli da £. 1.300 regolatori di tensione ad integrato da £. 1.500 integrati per timer tipo 555 da £. 2.000 interruttori miniatura da £. 600

#### surplus

interruttori automatici magnetotermici da quadro ed esterni £. 1000 cadauno - sconto per quantitativi - specificare amperaggi - ottimi per protezione banchi di lavoro e impianti elettrici di casa - garantiti.

a richiesta sarà inviato listino prezzi completo. condizioni: pagamento contrassegno - ordine minimo £. 5.000 - spese di spedizione a carico del committente.

# UFFERI SPEGIA

**CB 27** MHz AM-SSB

#### Ricetrasmettitore «Cobra» Mod. 135

23 canali equipaggiati di quarzi Sistemi di modulazione: AM/SSB (LSB-USB)

Munito di orologio digitale che permette di predisporre l'accensione automatica

Potenza ingresso stadio finale: 5 W AM/15 W SSB-PEP

45 transistori, 1 FET, 1 IC, 64 diodi, 1 modulo noise-blanker

Alimentazione:

13,8 Vc.c. - 220 Vc.a. - 50 Hz Dimensioni: 140 x 340 x 300

#### Ricetrasmettitore «Cobra»

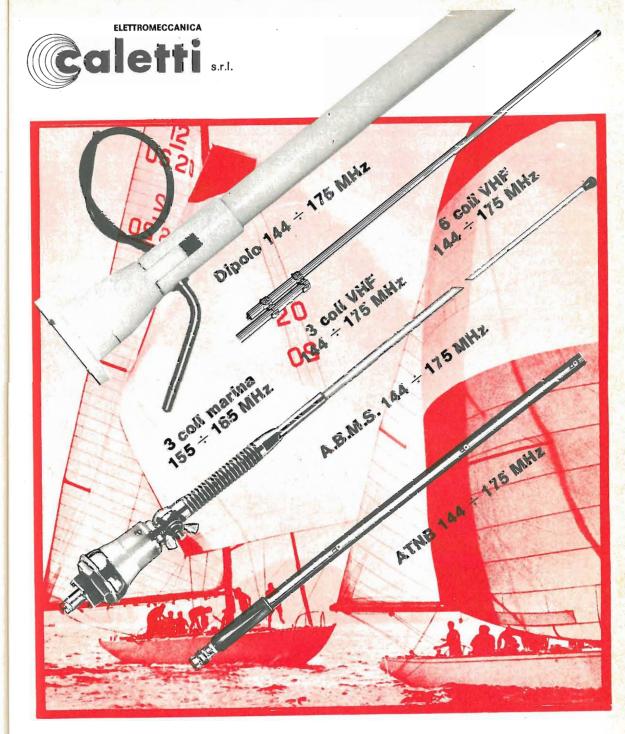
Mod. 132

23 canali equipaggiati di quarzi Sistemi di modulazione: AM/SSB (LSB-USB)

Potenza ingresso stadio finale: 5 W AM/15 W SSB-PEP Potenza uscita audio: 3 W

Alimentazione: 13,6 Vc.c. 42 transistori, 1 FET, 1 IC, 56 diodi,

1 modulo noise-blanker Dimensioni: 60 x 190 x 260




L**. 299.000** 



G.B.C.

IN VENDITA PRESSO TUTTE LE SEDI



20127 MILANO - via Felicita Morandi, 5 Telefono (02) 28.27.762 - 28.99.612

#### EL.RE ELETTRONICA REGGIANA

VIA S. PELLICO, 2 - TEL. (0522) 82.46.50 42016 GUASTALLA (R.E.)

#### OCCASIONI DEL MESE!

#### RICETRASMETTITORE « SOMMERKAMP »: Mod. TS-624S

24 canali equipaggiati di quarzi Segnale di chiamata Indicatore S/RF. Limitatore di disturbi Controllo volume e squeich Presa per antenne e altoparlante esterno 21 Transistori - 14 Diodi Potenza ingresso stadio finale: 10 W Uscita audio: Alimentazione: 12 Vcc Dimensioni: 150 x 45 x 165



#### RADIORICEVITORE PORTATILE: Mod. FAPW0119

11 transistor Completo di auricolare Gamme di ricezione: Potenza d'uscita: Alimentazione: Dimensioni:

MW/FM/AIR-PB-WB Max 500 mW 6 Vcc o 220 Vca 167 x 246 x 413



22,000

#### RADIORICEVITORE PORTATILE: Mod. L/3030

Gamme di ricezione: AM/MB/SW1-2/PB/FM/VHF1 - VHF2 - WB Controlli: volume, tono, squelch

Frequenze:

AM 540 + 1600 kHz

MB 1,5 - 4 MHz - SW1,4 - 6 MHz SW2 6 - 12 MHz - PB 30 - 50 MHz

FM 88 - 108 MHz - VHF 1 108 - 140 MHz VHF 2 140 - 173 MHz - WB 162,5 MHz

Potenza uscita: Allmentazione:

max 1 W

Completo di auricolare e mappa mondiale.

Dimensioni:

330 x 265 x 128



42,000

**SOMMERKAMP TS-630S L. 129,000** SOMMERKAMP TS-5030P L. 149.000 TENKO JACKY 23 L. 164.000

#### IL NEGOZIO RESTERA' CHIUSO:

Sabato pom. e domenica: da maggio a settembre Domenica e lunedi: da ottobre a aprile

| <u>DERICA ELETTRONICA</u> | 00181 ROMA - via Tuscolana, 285 B - tel. 06-727376   |
|---------------------------|------------------------------------------------------|
| TRANSISTORS:              | TUBI CATODICI (usati ma funzionanti) 5ABP1 L. 10.000 |

| DETTION                 | landay land     | LUCKIUM                          | 00181     | KUMA - via Tuscolana, 285 B - tel. U6-/2/3/6               |
|-------------------------|-----------------|----------------------------------|-----------|------------------------------------------------------------|
| TRANSISTORS:            |                 |                                  |           | TUBI CATODICI (usati ma funzionanti) 5ABP1 L. 10.000       |
| BC 113                  | L. 180          | BF 199                           | L. 250    | TUBI CATODICI (usati ma funzionanti) 7MP7 L. 7.500         |
| BC 139                  | L. 350          | BF 258                           | L. 400    | CINESCOPIO RETTANGOLARE 6" schermo alluminizzato           |
| BC 148/b                | L. 200          | BF 367                           | L. 250    | 70° completo dati tecnici (NUOVI) L. 7.000                 |
| BC 158/B                | L. 200          | BF 374                           | L. 250    | MICROFONI CON CUFFIA alto isolamento                       |
| 2N 333                  | L. 120          | BF 394                           | L. 350    |                                                            |
| BD 159                  | L. 500          | TJ 291/b(BC 207                  | L. 200    | acustico MK 19 L. 4.500                                    |
| BD 506                  | L. 400          | TJ 292/b (BC 208                 |           | MOTORINI STEREO 8 AEG usati L. 1.800                       |
| BF 198                  | L. 250          | 10 202 5 (50 20)                 | o, L. 200 | MOTORINI Japan 4,5V per giocattoli L. 350                  |
|                         |                 |                                  |           | MOTORINI temporizzatori 2,5 RPM - 220V L. 1.500            |
| DIODI:                  |                 |                                  |           | MOTORINI 70W Eindowen a spazzole                           |
| BA 129                  | L. 130          | OA 91<br>TR0 5 (200V-1A)         | L. 75     | 120-160-220V L. <b>2.000</b>                               |
| BA 130                  | L. 90           |                                  |           | MOTORI MARELLI monofasi                                    |
| SFD 115 (1N542)         | L. 75           | EM513                            | L. 220    | 220 V- Ac pot. 110W L. 12.000                              |
| BY 188                  | L. 200          | R6083                            | L. 70     | MOTORIDUTTORI 115V AC pot. 100W 4 RPM                      |
| BA 157                  | L. 300          | R6125                            | L. 70     | reversibili adatti per rotori antenna L. 15.000            |
| ZENER: 500 mW           | 7-6 8V-8 2V     | /-10.1V-12V-27-33V               | /         | BOBINE da 250 mt. CAVETTO BIPOLARE                         |
| <b>ZENZIII</b> 000 IIIV | 0,01 0,21       | L.                               |           | PER CABLAGGI 2x5/10 L. 2.500                               |
| <b>ZENER 1W:</b> 15V    | -18\/           | ī.                               |           | BOBINE da 300 mt. CAVETTO BIPOLARE                         |
|                         |                 |                                  |           | PER CABLAGGI 2x5/10 L. 3.000                               |
| SCR 100V-1,8A           |                 | L.                               | 450       | BOBINE da 300 mt. CAVETTO UNIPOLARE                        |
| SCR 400V-5A             |                 |                                  | 1.200     | AL SILICONE 5/10 L. 3.000                                  |
| SCR 120V-70A            |                 |                                  | 8.000     | PACCO 2 KG. materiale elettronico assortito con            |
| LED FLW 117             |                 |                                  |           | schede, diodi, transistors, bachelite ecc. <b>L. 2.000</b> |
| TRIMPOT 500 Ω           | BOURNS          | L.                               |           | PACCO 100 RESISTENZE assortite al 2% e 5% L. 1.500         |
| INTEGRATO MO            |                 |                                  |           |                                                            |
|                         |                 |                                  |           | BASETTE RAYTHEON con transistors 2N 837 oppure             |
| INTEGRATO TA            |                 | L.                               | 650       | 2N 965, resistenze diodi, condensatori ecc. a L. 50        |
| PER ANTIFURTI           |                 |                                  |           | TRASFORMATORI DA SMONTAGGIO da 130W                        |
| INTERRUTORE R           |                 |                                  | 450       | e da 150 a 250 V U 6,3-0-6,3 L. 6.000                      |
| COPPIA MAGNET           | LE E INTER      | RRUTTORE REED                    |           | TRASFORMATORI NUOVI e 220V-U 12V-11A L. 5.000              |
| in contenitore pla      | astico          | L.                               | 1.800     | CONTENITORI IN FERRO PER DETTI 18x18x18 L. 1.500           |
| COPPIA MAGNET           | LE E DEVI       | ATORE REED                       |           | TRASFORMATORI NUOVI SIEMENS 8W                             |
| IN CONTENITOR           | E PLASTIC       | :O L.                            | 2.800     | E universale U 12V L. 1.200                                |
| INTERRUTTORE A          | A VIBRAZI       | ONE (Tilt) L.                    | 2.800     |                                                            |
| SIRENE POTENTI          | ISSIME 12       | V L.                             | 15.000    | COMMUTATORI CTS a 10 posizioni 2 settori perni             |
| MICRORELAIS 24          | 4V-4 scam       | bi <b>L.</b>                     | 2.000     | coassiali, comando indipendente alto isolamento L. 600     |
| RELAIS in vuoto         | orig. amer      | icani 12V-6 interru              | tori      | COMMUTATORE A LEVETTA 1 via-3 posizioni L. 350             |
| con zoccolo - 40        | x36xh56         | L.                               | 1.500     | COMMUTATORE 1 via-17 posizperno a vite                     |
| CALAMITE in ni          | actica ner      | r tutti gli usi mm               | 8 × 12 5  | contatti arg. L. 650                                       |
| CALAMITE III pi         | astica pei      |                                  | 1.200     | COMMUTATORE 2 vie-6posizperno a vite                       |
| CALAMITE mm 2           | 2v15v17         | cad L.                           |           | contatti arg. L. 550                                       |
| CALAMITE mm 3           |                 |                                  |           | COMMUTATORI CERAMICI OHMITE 1 via                          |
| CALAMITE mm             |                 | cad. <b>L.</b><br>cad. <b>L.</b> |           | 5 posizioni contatti arg. L. 800                           |
|                         |                 |                                  |           | SUPPORTO CERAMICO per Pi - greco completo di               |
| ANTENNA A QUAD          | HO O TEL        | AIO PER ONDE MED                 |           | avvolgimento con prese intermedie Ø cm 5 L. 3.500          |
| WITEDDI TTOE            |                 | L.                               |           | TERMOMETRI 50-400 °F L. 1.300                              |
| INTERRUTTORI K          |                 |                                  |           | COMPLESSO TIMER-SUONERIA 0-60 min. e interruttore          |
| MICROSWITCH of          |                 |                                  |           | prefissabile 0-10 ore, tipo pannello 200x60x70             |
| MICROSWITCH SEN         |                 |                                  | 1.100     | "General Electric" 220V - 50 Hz L. <b>4.500</b>            |
|                         |                 | _IXON (nc) a temp                |           |                                                            |
| regolabile da 37º       | e oltre         | L.                               |           | QUARZI per BC 610 varie frequenze L. 500                   |
| PIATTINA 8 CAPI         | 8 COLOR         | l al mt. L.                      | 320       | QUARZI da 20 a 26 MHz con progressione                     |
| LAMPADE MIGNO           | N WESTING       | HOUSE 6 V cad. L.                | 70        | di 100 Khz (BC 603) L. 1.000                               |
| ACIDO - INCHIOS         | STRO per        |                                  |           | QUARZI da 20 a 28 Mhz con progressione                     |
| gratis 2 hg. bach       |                 |                                  | 1.500     | di 100 Khz (BC 603) L. 1.500                               |
| MICROFONI PIEZ          | O - LESA        | con start L.                     | 3.000     | CONTACOLPI elettromeccanici a 5 cifre 12/24V               |
|                         |                 | a start c/ supporto L.           | 3.000     | cad. <b>L. 500</b>                                         |
|                         |                 | VETRONITE - doppi                |           | SCHEDE MINNE OHIVETTI OOD UD TOOT TOLE TO                  |
|                         |                 |                                  |           | SCHEDE nuove OLIVETTI con un reed-relè de-                 |
|                         |                 | biamo quantità enoi              |           | viatore, 11 Trans al silicio, diodi, resistenze, ecc.      |
|                         |                 |                                  | 2.750     | cad. L. 2.000                                              |
|                         |                 |                                  | 2.200     | SCHEDE nuove OLIVETTI con un reed-relè,                    |
|                         |                 |                                  | 2.900     | 11 Trans al silicio, diodi, resistenze ecc. L. 1.200       |
|                         | isure che       | Vi occorrono, ne a               | omaidd    | CONNETTORI SOURIAU a elementi combinabili con              |
| altri 120 tagli.        |                 |                                  |           | 5 spine da 5A o con 8 spine da 3A con attacchi             |
| <b>AMPLIFICATORI</b>    | <b>NUOVI</b> di | i importazione BI-PA             | 4K 50W    | a saldare, coppie maschi e femmine L. 500                  |
| RMS (25 eff) a f        | transistor,     | risposta 15 Hz a                 | 100,000   |                                                            |
| + 1 dD distansia        |                 | - 0.40/ 1/11.                    |           | N. B I                                                     |

N.B.: Per le rimanenti descrizioni vedi CQ.

I prezzi vanno maggiorati del 12% per I.V.A. - Spedizioni in contrassegno più spese postali.

mm 63 x 105 x 13.

± 1 dB, distorsione migliore 0,1% a un KHz, rapporto

segnali disturbo 80 dB, alimentazione 10-35V; misure

con schema L. 8.500

#### - via Varesina 205 - 20156 MILANO - 2 02-3086931

KIT per la preparazione dei circuiti stampati comprensivo di:

4 piastre laminato fenolico

1 inchiostro protettivo autosaldante con conta-

500 cc acido concentrato 1 pennino da nomiografo

1 portapenne in plastica per detto istruzioni allegate per l'uso

#### OCCASIONISSIMA!!

Busta contenente 25 resistenze ad alto wattaggio da 2 - 20 W Transistor recuperati buoni, controllati

Confezione da 100 (cento) transistor L. 1.000 Ventilatori centrifughi con diametro mm 55 utilissimi per raffreddare apparecchiature elettro-L. 6.000 Cloruro ferrico dose da un litro 250

Confezione manopole grandi 10 pz. **L. 1.000** Confezione manopole piccole 10 pz. **L.** 400



Volmetri, Amperometri, Microamperometri, Milliamperometri della ditta MEGA L. 6.500



÷ ALTOPARLANTI PER NOTE BASSE (Woofers)

| 1 - | 126 | 65  | 8  | 10.000 | 48.000  | 45 | 50-10.000 | 4 - 8 | 6.800  |
|-----|-----|-----|----|--------|---------|----|-----------|-------|--------|
| 2 - | 170 | 65  | 10 | 10.000 | 47.000  | 28 | 50-2.000  | 4 - 8 | 7.680  |
| 3 - | 206 | 81  | 15 | 10.500 | 61.000  | 26 | 40-2.000  | 4 - 8 | 9.600  |
| 4 - | 265 | 104 | 20 | 9.500  | 94.000  | 24 | 40-2.000  | 4 - 8 | 14.240 |
| 5 - | 315 | 132 | 25 | 11.000 | 146.000 | 18 | 35-1.500  | 4 - 8 | 28.800 |

#### ALTOPARLANTI PER NOTE MEDIE (Middle Range)

6 - 130 65 10 9.000 21.000 --- 600-18.000 4 - 8 5.600

#### ALTOPARLANTI PER NOTE ALTE (Tweeters)

| 7  | - | 88x88 | 32 | 10 | 8.500  | 15.000 — 1.500-18.000 4 - 8 | 3.200 |
|----|---|-------|----|----|--------|-----------------------------|-------|
| 8  | - | 88x88 | 32 | 10 | 8.500  | 15.000 — 2.000-17.000 4 - 8 | 4.000 |
| 9  | - | 130   | 53 | 10 | 12.000 | 22.000 — 2.000-16.000 4 - 8 | 4.240 |
| 10 | - | 130   | 50 | 20 | 9.000  | 21.000 2.000-18.000 4 - 8   | 4.640 |

| ALTOPARLANTI A LARGA BANDA |     |     |    |        |         |    |           |       |        |  |  |  |  |
|----------------------------|-----|-----|----|--------|---------|----|-----------|-------|--------|--|--|--|--|
| 11 -                       | 170 | 63  | 4  | 10.500 | 31.500  | 90 | 80-15.000 | 4 - 8 | 2.640  |  |  |  |  |
| 12 -                       | 205 | 77  | 4  | 10.500 | 31.500  | 70 | 60-15.000 | 4 - 8 | 3.040  |  |  |  |  |
| 13 -                       | 265 | 97  | 12 | 10.500 | 62.000  | 65 | 60-14.000 | 4 - 8 | 8.000  |  |  |  |  |
| 14 -                       | 315 | 132 | 15 | 14.000 | 120.000 | 50 | 40-16.000 | 4 - 8 | 19.200 |  |  |  |  |

Penne per la preparazione dei circuiti stampati L. 3.300

KIT per la preparazione di circuiti stampati col metodo della fotoincisione (1 flacone fotoresit) (1 flacone di developar + istruzioni per l'uso)



Indicatore di livello per apparecchi stereofonici

L. 3.500

Ventilatore tangenziale 220 V doppio L. 5.000 45 x 9 x 11

25 x 8 **L. 10.000** 



L. 15.000

Scatole per strumentazione in lamiera verniciata a fuoco (blu) con frontale in alluminio - dimensioni 20 x 10 x 15

Trasformatori di alimentazione occasionissima 500 mA secondario 12 V con prese a 6 V 7,5 - 9 -L. 1.000

Trasformatori di alimentazione c.s. 500 mA a scelta 6 - 7.5 - 9 - 12 - 18 V L. 1.000

Trasformatori di alimentazione c.s. 700 mA a scelta 12 V x 12 V 15 V x 15 V L. 1.600

Trasformatori di alimentazione c.s. 1 A a scelta 7 x 7 V - 12 x 12 V L. 2.800

Trasformatori di alimentazione c.s. 1 A a scelta 6 V - 7.5 V - 9 V - 24 V - 12 V L. 2.800

Trasformatori di alimentazione c.s. 2 A a scelta 6 V - 7,5 V - 9 V - 12 V - 24 V L. 3.600

Trasformatori di alimentazione c.s. 2 A 45 V con prese a 40 e 35

Trasformatori di alimentazione c.s. 2 A 30 V con presa a 6 - 12 - 24 V L. 3.800

Trasformatori di alimentazione c.s. 5 A 24 V con prese a 6 - 12 V L. 7.000

Compact cassette C/60 550 Compact cassette C/90 720

#### OFFERTE

#### RESISTENZE - TRIMMER - CONDENSATORI

| Busta 100 resistenze miste                                           | L.   | 500                   |
|----------------------------------------------------------------------|------|-----------------------|
| Busta 10 trimmer misti                                               | L.   | 600                   |
| Busta 50 condensatori elettrolitici                                  | L.   | 1.400                 |
| Busta 100 condensatori elettrolitici                                 | L.   | 2.500                 |
| Busta 100 condensatori pF                                            | L.   | 1.500                 |
| <b>Busta 5</b> condensatori elettrolitici a baionetta 2 o 3 capacità |      | one -<br><b>1.200</b> |
| Busta 30 potenziometri doppi e semp                                  | lici | e con                 |



#### - via Varesina 205 - 20156 MILANO - 🥸 02-3086931



Cassette per esperimenti e montaggi elettronici:

| 1 - 17 x 8 x 14  | L. 5.000 |
|------------------|----------|
| 2 - 20 x 10 x 20 | L. 6.500 |
| 3 - 25 x 11 x 20 | L. 7.500 |

TIPO

1 A 100 V

1,5 A 100 V

1,5 A 200 V

2,2 A 200 V

3,3 A 400 V

8 A 100 V

8 A 200 V

8 A 300 V

8 A 400 V

8 A 600 V

6,5 A 400 V

6.5 A 600 V

10 A 400 V

10 A 600 V

10 A 800 V

25 A 400 V

25 A 600 V

35 A 600 V 50 A 500 V

90 A 600 V

120 A 600 V

240 A 1000 V

340 A 400 V

340 A 600 V

TIPO

TIPO

da 4 W

TIPO

1 A 400 V

6 A 600 V

10 A 400 V

10 A 500 V

15 A 400 V

15 A 600 V

25 A 400 V

25 A 600 V

40 A 400 V

40 A 600 V

100 A 800 V

100 A 1000 V

4,5 A 400 V 6,5 A 400 V

da 10 W

da 400 mW

da 400 V

da 500 V

DIAC

ZENER

LIRE

500

700

850

950

950

1.050

1 200

1,400

1.500

1.700

1 900

2.500

4 800

6.300

7.000

64.003

54.000

65.000

LIRE

400

500

LIRE

220

1.100

LIRE

800

1.500

1.500

1.800

2.200

3.100

3 600

14.000

15.500

34.000

39.000

68.000

| FND70 IL RE DEI DISPLAY                                                                    |
|--------------------------------------------------------------------------------------------|
| sette segmenti allo stato solido<br>per ogni applicazione dettata dalla<br>vostra fantasia |

L. 2.400

| FLV 310                                      | FLV 117                  |
|----------------------------------------------|--------------------------|
| LED ad alta lu-<br>minosità - color<br>verde | LED multi usi -<br>rosso |

L. 700

L. 3.000

FND 500 displays di gros-

se dimensioni di alta lu-

FND 507 come FND 500

ad anodo comune L. 3.000

minosità catodo comune

L. 400

SN7441 1.100 1,450 SN7442 SN7447 1.700 1.700 SN7448 SN7450 500 450 SN7451 650 SN7470 SN7472 500 SN7473 1,100 SN7474 1.000 SN7475 1.100

SN7400

SN7401

SN7402

SN7403

SN7404

SN7405

SN7406

SN7409

SN7410

SN7413

SN7420

SN7430

SN7440

CIRCUITI INTEGRATI

320 500

320

500

500

500

800

500

320

800

320

320

500

SN7496

SN74103

SN74105

SN74121

SN74123

SN74154

SN74191

SN74192

SN74193

SN74194

SN74198

SN74166

SN74167

SN74174

SN74194

SN74H00

SN74H01

SN74H04

SN74H05

SN74H06

SN74H10

SN74H20

SN74H30

SN74H40

SN74H50

SN74H51

SN75108

SN75451

SN75154

SN75453

SN75110

SN75361

T101

T102

T112

T115

T118

T150

T163

920

945

948

931

942

945

9001

9002

9005

9004

9007

9014

4102

9300

9306

9308

9309

9312

9368

9601

9602

L115

L709

L710

L711

L723

L747

L748

LM311

**NE536** 

NE555

P1103

ZN414

9099 o 15809 450

SN74H106

900

800

1.350

4.000

2.500

2.500

2.500

3.200

3.200

2.300

2.300

4 000

3.200

600

600

600

600

600

600

600

600

600

600

600

1.200

1.200

1.200

1.200

1.200

1.200

600

500

400

300

500

450

450

450

450

450

450

530

530

530

530

810

3.000

2.350

3.000

3.500

1.800

3.650

1.780

3.000

1.600

2.200

1.200

1.000

1.200

1.000

2.000

2.000

4.000

2.000

2.500

800

700

1.000

1.200

2.500

1.000 SN7476 SN7486 2.000 LED ad alta lu-SN7490 1.000 minosità - giallo 1.100 SN7492 SN7493 1.200 SN7494 1.200 L. 700

#### VASTO ASSORTIMENTO DI MOS

FLV 450

L. 19.300 MK 5002 contatore a quattro cifre, L. 22,500 MK 5017 orologio con calendario ML 50250 orologio a 4 o 6 cifre con allarme L. 12.900

MK5009 divisore di frequenze digitale Serie 7800 regolatori stabilizzati a tensione fissa con portata massima assicurata 1 A disponibili a 5 - 6 - 8 - 12 - 15 - 18 - 24 V

L. 2.000

plessi a richiesta a L. 100 il foglio.

Zoccoli FND 70 Zoccoli FND 500 L. 1.500 Zoccoli 14 piedini L. 250 con piedini sfalsati L. 280 Zoccoli 16 piedini L. 250 con piedini sfalsati L. 280

NIXIE 2M1183 completo di zoccolo L. 2.500 NIXIE 2M1020 VETRONITE (doppia faccia ramata) al kg L. 2.500

Grande assortimento

valvole, transistor, potenziometri (prezzi su precedenti riviste.

#### PER STRUMENTI DIGITALI

L. 11.000

Serie 78 M 00 idem come sopra ma a tensione 0,5 A

Forniamo schemi di applicazione dei MOS più com-

L. 2.200



41100 Modena, via Medaglie d'oro, nº 7-9 telefono (059) 219125-219001-telex 51305

# nella nuova versione

SIMBA SSB

**BENGAL SSB** 







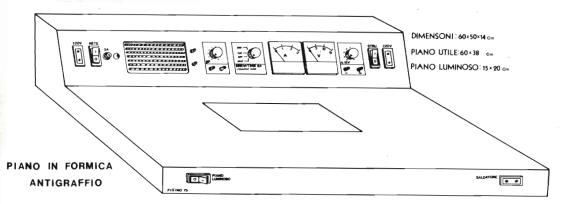


CHEETAH SSB

PANTHER SSB



220V.50Hz


00195 ROMA - via Dardanelli, 46 - tel. (06) 319448 35100 PADOVA - via Eulero, 62/a - tel. (049) 623355

"consultate le pagine gialle per i nostri punti di vendita"

# P. G. BILBCTRONICS FRASSINE...46100.MANTOVA

TAVOLO DA LAVORO COMPLETO DI PIANO LUMINOSO PER HOBBISTI RADIOAMATORI TECNICI RIPARATORI E SCUOLE

PIGINO-75.



#### CARATTERISTICHE:

- ALIMENTATORE STABILIZZATO REGOLABILE DA 3V. A 15V. CON PROTEZIONE CONTRO IL CORTOCIRCUITO - CARICO MAX 2.5 A - STABILITA' 0,1% - RIPPLE 0,01 V. VOLTMETRO ED AMPEROMETRO INCORPORATI
- GENERATORE DI B.F. CON USCITA A 200 400 800 1600 HZ E ATTENUATORE REGOLABILE DA O A 5 V.
- ALTOPARLANTE INCORPORATO 5 OHM 3 W.
- PIANO LUMINOSO DA 15 X 20 CM, PER OSSERVARE I CIRCUITI STAMPATI
- INTERRUTORE GENERALE SOTTO FUSIBILE CON LAMPADA SPIA
- PRESE DI SERVIZIO: N'2 DA 6A. 220 V. + 1 PER IL SALDATORE CON COMANDO PER RIDURRE DEL 50% LA CORRENTE DI RISCALDAMENTO (ESCLUDIBILE)





Y-27 S

non avrete rivali



#### **CARATTERISTICHE:**

Potenza continua AM Potenza P. e P. SSB 400 W 1000 W Input min/max 1,5/5 W Alimentazione 220 V 50 Hz

#### ACCESSORI INCORPORATI:

Ventola per raffreddamento 41 e/s ROS'metro e reflettometro preamplificatore a cascode a FET per ricezione guadagno 12 dB

747 B.B.E.



23 canali - 5 W - 12 volt provvisto di DELTA-TUNE e limitatore di disturbi

#### **INOLTRE RICORDIAMO**



Y 27 JUNIOR 60 W

YP

12 V 5 A

Y 27 MINI

Y 27

220 W

50 W



DISTRIBUTORT

CANICATTI - ERPD - via Milano 300 CASAL.PUSTER.NGO - NOVA - via Marsala 7 COSENZA - Magazzini ASTER - via Piave 34
COSTA VOLPINO - ELTRA OSCAR - via Nazionale 160
FORLI - RADIO A. PERSIANI - via Della Repubblica 111
GENOVA - VIDEON - via Armenia 15
MILANO - ELETROPRIMA - via Primaticcio 32

MILANO - LANZONI - via Comelico 10 MILANO - MARCUCCI - via F.Ili Bronzetti 37 NAPOLI - BERNASCONI - via G. Ferraris 66/G

PIEDIMONTE S. GERMANIO - ORNELIA BIANCHI - via Crispi 2 RIESI - BUTERA CATENA - via Principe Umberto 91

ROMA - FEDERICI - C.so Italia-34 ROMA - PANAMAGNETICS - via Della Farnesina 269 Pal XII ROS. SOLVAY - GIUNTOLI - via Aurelia 254 SOCI - BARGELLINI - via Bocci 50
TORINO - TELSTAR - via Gioberti 37
TREVISO - RADIOMENEGHEL - via 4 Novembre 14
VARESE - MIGLIERINA - via Donizzetti 2

VERONA - RADIO COM. CIVILI - via S. Marco 70 VELLETRI - MASTROGIROLAMO - v.le Oberdan 118 VIAREGGIO - CENTRO CB - via Aurelia Sud 61 VICENZA - ADES - v.le Margherita 21

P.O. BOX 227 - 13051 BIELLA - Telef. 015-34740

#### EUGEN QUECK Ing. Büro - Export-Import

D-85 NORIMBERGA - Augustenstr. 6 Rep. Fed. Tedesca

#### RIBASSI E NOVITA'

#### concernenti la nostra OFFERTA SPECIALE

| Da 28 anni forniamo le affermate VALVOLE ELETTRONICHE di ALTA QUALITA' a prezzi imbattibili.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRIAC marca TRANSITRON 1 p. 10<br>BTW 11/400 400 V 6 A 1.300 11.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Imballaggio individuale Garanzia 6 mesi<br>Estratto dal nostro programma di vendita:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cust. met. TO-66  ASSORTIMENTI DI THYRISTORS a scopi sperimentali                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DY86         540         EL504         1.350         PCL84         650           DY802         640         PC86         830         PCL85         740           ECC81         510         PC88         880         PCL86         730           ECC82         460         PC900         650         PCL805         810           ECH81         510         PCC189         890         PFL200         1.050           ECH84         640         PCF80         600         PL36         1.000           ECL82         660         PCF82         580         PL84         620           EF183         590         PCF801         820         PL504         1.250           EF184         590         PCF802         730         PY81         490           EL34         1.300         PCH200         1.050         PY82         490           EL84         400         PCL82         600         PY88         600           SCONTI         PER OUANTITATIVI:         10 pezzi per tipo         3 %           da         50 pezzi anche ass.         6 % | N. d'ordinazione  TH-19 10 pezzi 0,8 A 5-200 V TO-92 & M-367 1000 TH-20 10 pezzi 1 A 5-600 V TO-39 1.800 TH-20 A 10 pezzi 1 A 200-600 V TO-39 2.200 TH-21 A 5 pezzi 3 A 5-200 V TO-66 900 TH-22 5 pezzi 7,5 A 5-500 V TO-64 1.750 TH-23 5 pezzi 7,5 A 5-500 V TO-64 1.750 TH-24 5 pezzi 10 A 5-500 V TO-48 2.400 TH-25 5 pezzi 15 A 5-500 V TO-48 3.409 TH-25 5 pezzi 15 A 5-500 V TO-48 4.000  ASSORTIMENTO DI TRIAC as copi sperimentali N. d'ordinazione TRI-21 5 pezzi 6 A 5-400 V met. TO-66 2.000  NUOVI PREZZI per le nostre affermate |
| da 100 pezzi anche ass. 8 % da 200 pezzi anche ass. 10 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCATOLE DI MONTAGGIO (KITS): KIT N. 2A - AMPLIFICATORE BF senza trasformatore 1-2 W                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ASSORTIMENTI DI CONDENSATORI ELETTROLITICI N. d'ordinazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | con 5 semiconduttori 3.100 complete con circ. stampato, forato; dim. 50 x 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELKO 1 30 cond. el. BT min., ben'assortiti 1.400 ELKO 2 C 10 cond. el. BT min., ben'assortiti 550 ELKO 4 50 cond. el. BT min., ben'assortiti 2.100 ELKO 5 100 cond. el. BT min., ben'assortiti 3.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KIT N. 7 - AMPLIFICATORE BF DI POTENZA senza trasfor- matore 20 W - con 6 semiconduttori 8.000 completo con circ. stampato, forato; dim. 115 x 180 mm KIT N. 14 - MIXER con 4 ENTRATE 4.300                                                                                                                                                                                                                                                                                                                                                   |
| TRANSISTORI DI POTENZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | completo con circ. stampato, forato; dim. 50 x 120 mm  KIT N. 16 - REGOLATORE DI TENSIONE DELLA RETE 5.150                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 p. 10 p. 10°0<br>TO-41 15 A 30 W <b>390 3.350 2</b> 6. <b>500</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | completo con circ. stampato, forato; dim. 65 x 115 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AD 161 329 2.750 25.000<br>AD 162 320 2.750 26.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOPPRESSORE delle interferenze di tensione per Kit n. 16<br>1.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CONDENSATORI ELETTROLITI BT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KIT N. 17 • EGUALIZZATORE - PREAMPLIFICATORE 2.100 completo con circ. stampato, forato; dim. 50 x 60 mm                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| esecuzione verticale esecuzione assiale 1 p. 10 p. 100 1 p. 100 p. 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KIT N. 17A - MIXER con 4 ENTRATE per Kit N. 18 4.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 μF 50 V 40 360 3.200 4,7 μF 25 V 55 500 4.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KIT N. 178 - MIXER per STEREO Kit N. 16A<br>(2 x Kits N. 18) 9.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KIT N. 18 - AMPLIFICATORE MONO DI ALTA FEDELTA' a piena carica 55 W completo con circ. stampato, forato; dim. 105 x 220 mm  KIT N. 18A - 2 AMPLIFICATORI DI ALTA FEDELTA' a piena carica 55 W per operazione STEREO 26,000 completo con circ. stampati, forati; dim. 105 x 220 mm  KIT N. 19 - ALIMENTATORE per 1 x Kit N. 18 15.200 completo con trasformatore e circ. stampato, forato; dim. 60 x 85 mm                                                                                                                                     |
| 1 p. 10 1 p. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KIT N. 20 - ALIMENTATORE per 2 x Kit N. 18 (Kit N. 18A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.8 A cust. res. M-367 o T0-92 10 A, cust. met. T0-48 TH 0.8/100 100 V 210 1.900 TH 10/100 100 V 1.50 10.350 TH 0.8/200 200 V 240 2.150 TH 10/200 200 V 1.260 11.350 TH 10/200 300 V 1.260 11.350 TH 10/400 400 V 1.450 13.050 TH 10/500 500 V 1.580 14.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | compl. con trasformatore e circ. stampato, forato; dim, 90 x 110 mm  21.000  KIT N. 21 x CONVERTITORE DI TENSIONE 150 W  16.300 completo con schema  Per ogni SCATOLA DI MONTAGGIO (KIT) SCHEMA di montaggio più distinta dei Componenti elettr. allegati.                                                                                                                                                                                                                                                                                    |
| TH 1/200 200 V 270 2.450 22.000 15 A, cust. met. TO-48 TH 1/300 300 V 340 3.050 26.500 1 p. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TH 1/300 300 V 340 3.030 26.300 TH 15/ 50 50 V 1.320 11.800 TH 1/500 500 V 400 3.650 33.500 TH 15/100 10 V 1.450 13.200 TH 1/500 500 V 400 3.650 33.500 TH 15/100 10 V 1.450 13.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOVITA' ASSORTIMENTI PARTICOLARMENTE VANTAGGIOSII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### ASSORTIMENTI PARTICOLARMENTE VANTAGGIOSII

| ASSOCITIMENT PARTICULARMENTE                     | VANTAGGIOSIS             |
|--------------------------------------------------|--------------------------|
| N. d'ordinazione                                 |                          |
| 20 transistori differenti al germanio            | 950                      |
| 8 50 transistori differenti al germanio          | 2.200                    |
| c 20 transistori differenti al silicio           | 1.150                    |
| D 50 transistori differenti al silicio           | 2.450                    |
| 10 transistori di potenza differenti al germanio | l silicio ed al<br>2.350 |
| F 100 transistori differenti AF & BF al germanio |                          |
| Richiedete gratuitamente la nostra               |                          |
|                                                  | PECIALE COMPLETA         |

TH 15/200 200 V 1.600 14.600 300 V 1.750 16.000

TH 15/400 400 V 1.800 16.700

TH 15/500 500 V 1.900 17.250 TH 15/600 600 V 2.100 18.800 TH 15/700 700 V 2.350 21.550 TH 15/800 800 V 2.650 23.650

TRI 6/400M 400 V 1.120 10.100

TRI 6/500M 500 V 1.320 11.900

TRI 6/600M 600 V 1.580 14.250

TH 15/300

TRIACS TRI 6/300M 300 V

TH 1/600 600 V 460 4.250 39.000

500 V

600 V

1 p. 10

7.500 840

50 V 430 3.900 100 V 460 4.150

200 V 480 4.300 300 V 550 5.000 400 V 720 6.500

930 8.400

700 V 1.180 10.700

800 V 1.450 13.000

7 A, cust. met. TO-64

TH 7/ 50 TH 7/100

TH 7/200 TH 7/300 TH 7/400

TH 7/500

TH 7/600

TH 7/700

TH 7/800

UNICAMENTE MERCE NUOVA DI ALTA QUALITA' PREZZI NETTI LIT. Disponibilità limitate. Le ordinazioni vengono eseguite prontamente dalla nostra Sede di Norimberga. Spedizioni ovunque. Spese d'imballo e di trasporto al costo. Spedizioni in contrassegno. Merce ESENTE da dazio sotto il regime del Mercato Comune Europeo. I.V.A. non compresa. Richiedete GRATUITAMENTE la nostra OFFERTA SPECIALE COMPLETA che comprende anche una vasta gamma di altri Componenti elettronici, assortimenti e quantitativi di Semiconduttori. Condensatori elettrolitici. Resistenze. Valvole elettroniche ecc. a prezzi veramente VANTAGGIOSI

#### ELT

**VFO 27** 

#### elettronica

Spedizioni celeri Pagamento a 1/2 contrassegno Per pagamento anticipato, spese postali a nostro carico.





Gamma di frequenza 26-28 MHz, stabilità migliore di 100 Hz/h, uscita 75 ohm, alimentazione 12-16 V, adatto a pilotare trasmettitori che usano quarzi da 26...28 MHz, oppure da usarsi per la costruzione di trasmettitori a conversione per la gamma 144-146 MHz, dim. 13 x 6.

L. 22.000 (IVA compresa)

#### **VFO 72**

Gamma di frequenza 72-73 MHz, uscita 100 mW, stabilità migliore di 200 Hz/h, uscita 75 ohm, alimentazione 12-16 V, adatto a pilotare trasmettitori che usano quarzi da 72...73 MHz, ingresso BF per modulare in FM, dimensioni 13 x 6.

L. 23.000 (IVA compresa)

#### VFO 27 "special"

Come il VFO 27, ma con frequenza di uscita:

"punto rosso" 36,600-39,800 MHz
"punto blu" 22,700-24,500 MHz
"punto giallo" 31,800-34,600 MHz

L. 22.000 (IVA compresa)

L. 20.500 (IVA compresa)

#### Convertitore PL1

Da usarsi in unione alla sintonia digitale SEK7 (versione 143-147,999 MHz), misura la frequenza di uscita di qualsiasi trasmettitore per 144-146 MHz, sensibilità 200 mV, alimentazione 12-16 V, 6 transistor, oscillatore quarzato, dimensioni  $8.5\times6$ .

Sintonia digitale SEK7

Versione 20...29,999 MHz

5 tubi nixie, 15 circuiti integrati, ingresso fino a 40 MHz, adatta al ricevitore K7 ed a qualsiasi ricevitore operante sulla frequenza indicata avente la prima media frequenza a 4,6 MHz, permette la lettura esatta al KHz, base dei tempi quarzata, regolazione di frequenza e di sensibilità, alimentazione 5 V 500 mA, 150-190 V 10 mA, dimensioni 15x7,5x4.

L. 49.500 (IVA compresa)

Versione 143-147,999 MHz

Caratteristiche come versione precedente, 6 tubi nixie, dimensioni 15x8.5x4.

L. 56.000 (IVA compresa)

Frequenzimetro per 144-146 MHz

Scatola metallica dimensioni 24x17x7,5, contiene la sintonia digitale SEK7, il modulo PL1, alimentatore incorporato (a richiesta a 220 V o a 12 V), legge direttamente la frequenza di uscita di qualsiasi trasmettitore 144-146 MHz.

L. 123.000 (IVA compresa)



Informiamo che il convertitore KC7 viene sostituito dal KC7/A avente le seguenti caratteristiche: gamma di frequenza 144-146 MHz, uscita 26-28 MHz (oppure 28-30 MHz), guadagno 24 dB, figura di rumore 1,2 dB, alimentazione 12-16 V, dimensioni 10,5x5.

ALTRE FREQUENZE A RICHIESTA (non inferiori a 21 MHz) stesso prezzo.

L. 23.000

Tutti i moduli si intendono in circuito stampato (vetronite), imballati e con istruzioni allegate.

ELT elettronica - via T. Romagnola, 92 - tel. (0571) 49321 - 56020 S. Romano (Pisa)

#### CONNETTORI PL259 Amphenol 600 SO239 600 PL258 doppia fem. 1000 UG306/U curva BNC L. 1000 BNC doppia fem vol. L. Coppla BNC maschio-fem. pan, alto Isolamento L. 1600 UG58A/U N fem. pan. nuovi recuperati N maschio volante nuovi recuperati UG1094/U BNC fem. pan. Riduzione PL 200 UG88/U BNC maschio L. 700

|     | POTENZIOMETRI                          |     |
|-----|----------------------------------------|-----|
| 37  | 30 Ω lineare a filo L.                 | 600 |
| 43  | 1 M $\Omega$ +interruttore L.          | 400 |
| 44  | 200 Ω 2 W a filo CLAROS                | TAT |
|     | L.                                     | 600 |
| 45  | 2,5 kΩ a strato CLAROS                 | TAT |
|     | L.                                     | 600 |
| 48  | 3 kΩ lin. a filo L.                    | 600 |
| 51  | $5 k\Omega$ a strato L.                | 300 |
| 52  | 1,5 MΩ <b>L</b> .                      | 300 |
| 53  | 100 k+25 kΩ coass. L.                  | 900 |
| 280 | 50Ω min. 1,5W a filo L.                |     |
| 285 | 1kΩ min 1,5W a filo <b>L</b> .         | 900 |
| 286 | $75 \mathrm{k}\Omega$ min, 1,5W a filo |     |
|     | L.                                     | 900 |
| _   |                                        |     |

| PONTI RADDRIZZATORI |                         |      |  |
|---------------------|-------------------------|------|--|
| 170                 | SKB 1,2/04 400 V 1,2 A  | TO5  |  |
|                     | L.                      | 650  |  |
| 174                 | IR BSB05 50 V 2,5 A L.  | 700  |  |
| 175                 | IR BSB1 100 V 2.5 A L.  | 900  |  |
| 179                 | IR BSB4 400 V 2,5 A L.  | 1300 |  |
| 180                 | IR 26MB3 30 V 20 A L.   | 1200 |  |
| 169                 | IR 26MB10 100 V 20 A L. | 2500 |  |

COMMUTAT. ROTANTI BACHELITE

128 6 vie 5 pos. con manopola

| 130<br>133<br>136<br>137<br>139<br>140 | 2 vie 4 pos. L. 400<br>2 vie 7 pos L. 400<br>3 vie 4 pos. min. L. 400<br>2 vie 6 pos. min L. 400<br>1 via 4 pos. L. 300<br>2 vie 6 pos. L. 400 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 183                                    | DOPPIO DEVIATORE USA<br>a levetta 4 A L. 250                                                                                                   |
| 184                                    | DOPPIO DEVIATORE APR a levetta 4 A L. 300                                                                                                      |
| 68                                     | DEVIATORE ROTANTE DAVEN min. stagno 3 A L. 800                                                                                                 |

|     | COMPENSATORI CERA      | MICI |     |
|-----|------------------------|------|-----|
| 78  | 10-60 pF botticella    | L.   | 200 |
| 79  | 3-10 pF botticella     | L.   | 200 |
| 82  | 10-470 pF botticella   | L.   | 200 |
| 101 | 4-20 pF botticella     | L.   | 200 |
| 90  | 7-150 pF aria semifis. | L.   | 800 |
| 115 | 18 pF aria semifisso   | L.   | 400 |
|     |                        |      | _   |

ACHIEFUS MARIABUL OFFICE

| CO       | NDENS. VARIABILI CERAMICI                             |
|----------|-------------------------------------------------------|
| 85<br>86 | 3x300 pF 3500 VI arg. L. 6500<br>150 pF 1 kVI L. 1200 |
| 83       | 10 pF min. Johnson L. 700                             |
| 84       | 10 pF 300 VI Geloso L. 800                            |
| 87       | 3 x 90 pF 3000 VI L. 3000                             |
| 88       | 300 pF 3500 VI ottimi L. 4500                         |
| 89       | 3 x 30 pF demoltipl. L. 1500                          |
| 91       | 5 x350pF 1 kVI dem. L. 6000                           |
| 92       | 50 pF 3500 VI Hammarlund                              |
| 1        | L. 1600                                               |
| 100      | 150 pF 600 VI L. <b>800</b>                           |
| 111      | 10 pF Hammarlund L. 1000                              |
| 113      | 10-150 pF 3500 VI Hammarlund                          |
| 1        | L. 3500                                               |
| 122      | 20 ± 20 nF argentato I 1000                           |

| Ĺ                               | FILO ARGENTATO                                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 235<br>236<br>237<br>238<br>239 | Ø 2 mm conf m 6 L. 2000<br>Ø 2,5 mm conf m 6 L. 2500                                                                                                              |
| 215                             | BOBINA supporto ceramico  50 51 x 127 mm. Filo rame argentato 50 1,5 mm. Per accordi antenna 10-20-40-80 m. Compensata termicamente al- l'interno. Ottima L. 2500 |

ELLO ADCENTATO

| _,          | RE  | LAIS PER COMMUTAZ. UHF                                                            |
|-------------|-----|-----------------------------------------------------------------------------------|
| 0           | 151 | CERAMICO ALLIED CONTROL<br>2 sc 10 A+AUX 12 Vdc<br>L. 2500                        |
| 0           | 163 | COASSIALE MAGNECRAFT 12 Vdc Imp. tip $50 \Omega$ miniat.                          |
| 0<br>T<br>0 | 164 | ultracompatto L. 5000<br>CERAMICO 12-24 Vdc 2 bobi-<br>ne 2 sc 10 A+5 contatti in |
| 0           |     | apertura registrabili L. 6000                                                     |

REI AIS

| 146 | SIEMENS 12 Vdc 3 sc per te-<br>lescriventi L. 3000                                                             |  |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 155 | ISKRA 2 sc 10 A 12 Vdc                                                                                         |  |  |  |  |  |  |  |  |  |
| 158 | ISKRA 2 sc 10 A 12 Vdc a giorno L, 1500                                                                        |  |  |  |  |  |  |  |  |  |
| 159 | KACO 1 sc 12 Vdc miniatura                                                                                     |  |  |  |  |  |  |  |  |  |
| 206 | KLAYSTRON 2K41 Sperry<br>2660-3310 MHz. Con manopola<br>e foglio caratteristiche<br>L. 10000                   |  |  |  |  |  |  |  |  |  |
| 224 | TUBO CRT Ø 5'pollici. 5<br>cannoni elettronici - Lunga<br>persistenza - Fosforo P7 -                           |  |  |  |  |  |  |  |  |  |
| 355 | Nuovi imballati L. 50000<br>PROLUNGHE cavo coax RG5<br>AMPHENOL 50 Ω L. 220 cm.<br>Complete di 2 PL259 L. 1500 |  |  |  |  |  |  |  |  |  |

| DIODI IR |                               |  |  |  |  |  |  |  |  |  |
|----------|-------------------------------|--|--|--|--|--|--|--|--|--|
| 193      | 1N4003 200 Vpiv 1 A           |  |  |  |  |  |  |  |  |  |
| 191      | L. 110<br>1N4004 400 Vpiv 1 A |  |  |  |  |  |  |  |  |  |
| 131      | L. 120                        |  |  |  |  |  |  |  |  |  |
| 190      | 1N4005 600 Vpiv 1 A<br>L. 140 |  |  |  |  |  |  |  |  |  |
| 192      | 1N4006 800 Vpiv 1 A           |  |  |  |  |  |  |  |  |  |
| ,        | L. 160                        |  |  |  |  |  |  |  |  |  |
| 189      | 1N4007 1000 Vpiv 1 A          |  |  |  |  |  |  |  |  |  |
| 188      | 71HF5 50 V 70 A L. 2000       |  |  |  |  |  |  |  |  |  |
| 195      | 71HF5R come sopra - polarità  |  |  |  |  |  |  |  |  |  |
| 1        | inversa L. 2000               |  |  |  |  |  |  |  |  |  |

|     | TRANSISTOR 2N3055 Motorola                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------|
| 167 | INTEGRATO regolatore di ten-                                                                               |
| 168 | INTEGRATO regolatore di tensione CA3085A RCA L. 2700<br>INTEGRATO regolatore di tensione µA723-L123 L. 900 |

| ı | ١. |       |                                                     |
|---|----|-------|-----------------------------------------------------|
|   |    | CON   | MUTAT. ROTANTI CERAMICA                             |
| ı |    | 125   | 6 vie 3 pos. L. 1600<br>1 via 11 pos. 10 A antiarco |
| ĺ |    | 132   | 1 via 11 pos. 10 A antiarco                         |
| l | П  | 134   | L. 1600<br>2 vie 4 pos L. 800                       |
| l | П  | 135   | 2 vie 4 pos. L. 800<br>4 vie 3 pos. min. stagno     |
| ı | П  | 143   | CLAROSTAT L. 1500<br>1 via 5 pos. 10 A antiarco     |
| ı | H  | 143   | L. 1200                                             |
| ľ |    | 144   |                                                     |
| ı | H  | 4 4 5 | L. 3000<br>2 vie 4 pos. 8000 VI GE                  |
| 1 |    | 143   | 2 VIE 4 PUS. 0000 VI GL                             |

L. 2500

|     | POTENZ | 10 | METE | RΙ | DI  | PRECIS | SIONE | MULTIGIRI | 5 \ | N     |
|-----|--------|----|------|----|-----|--------|-------|-----------|-----|-------|
| 250 | 3 kΩ   | 3  | giri | L. | 0,5 | %      |       |           | L.  | 2500  |
| 255 | 10 kΩ  | 3  | giri | L. | 0,5 | %      |       |           | L.  | 2500  |
| 256 |        |    |      |    |     |        |       |           | L.  | 2500  |
| 251 | 5 kΩ   | 10 | giri | L. | 0,1 | %      |       |           | L.  | 3500  |
| 253 | 10 kΩ  | 10 | giri | L. | 0,5 | %      |       |           | L.  | ·3500 |
| 259 | 1 kΩ   | 10 | giri | L. | 0,0 | 5 %    |       |           | L.  | 3500  |
| 254 | 50 kΩ  |    |      |    |     |        |       |           | L.  | 3500  |
| 261 | 2 kΩ   | 10 | giri | L. | 0,0 | 15 %   |       |           | L.  | 3500  |

| PO  | TENZIOMETRI DI PREC. MULTIGIRI | MINIATURA | 2 W  |
|-----|--------------------------------|-----------|------|
| 262 | 25 kΩ 10 giri L. 0,3 %         | L.        | 3500 |
| 267 | 2,8 kΩ 10 girl L. 0,5 %        | L.        | 3500 |
| 269 | 5 kΩ 10 giri L. 0,5 %-0,2 %    | L.        | 3500 |
| 270 | 1 kΩ 10 giri L. 0,2 %-0,5 %    | L.        | 3500 |
| 278 | 20 kΩ 10 giri L. 0,5 %         | L.        | 3500 |
| 268 | 10 k + 10 kΩ 10 giri L. 0,1 %  | L.        | 4000 |
| 273 |                                | L.        | 4000 |

CAVO COASSIALE RG8 originale USA - Ottimo - al m L. 600

50 ANTENNA GROUND PLANE per 144 MHz tipo AB77/
/TRC7 costituita da 6 radiali contrapposti ramati e verniciati. Imp. tip. 52 Ω. Completa di base per il fissaggio ed attacco tipo SO239 - Ottima L. 14000
ANTENNA DIPOLO accordabile 420-450 MHz tipo AT413/TRC. Robusta costruzione in ottone protetto elettroliticamente, completa di connettore C maschio e femmina - Ottima L. 10003
TEMPORIZZATORE HAYDON 0-30 sec in 150 tempi

prefissabili con manopola inclusa. Alimentazione 24-28 Vdc L. 3500 490 RICETRASMETTITORE APX6, nuovo, con le sole tre valvole delle cavità, completo di schemi ed istruzioni per le modifiche da effettuare per pertarlo in gamma 1290 MHz L. 30000 230 TRASFORMATORE prim. 220 V - sec. 12 V 10 A

L. 6000

TRASFORMATORE prim. 220 V - n. 4 sec. separati 6 V - 5 A cad. Impregnati sottovuoto - ottimi L. 6000

MOTORINI 16-24 Vdc doppio senso di marcia professionale L. 2500

MOTORINO 27 Vdc 1/100 HP 7000 Rpm professionale L. 4000

#### OPTOELETTRONICA

178 DISPLAY MAN 7 MONSANTO 7 seg LED rosso - 5 Vdc - 20 mA per seg. Punto decimale - H20 x L10 mm L. 2000 L. 2000 DISPLAY PANAPLEX 9 DIGITS (cifre) a scarica di gas: 160-180 Vdc completo di foglio caratteristiche.

gas: 160-180 Vdc Complete of Togrio Caratteristics.

L70 × H20 × P3 mm

205 NIXIE ZM1000 PHILIPS

L 2000

176 DIODO LED ROSSO OPCOA Ø 5 mm

L 300

L 400

INTEGRATI MOS-LSI

181 CHIP CALCOLATORE CAL-TEX CT 5005. 12 digits - 3 funzioni di memoria - Costante - punto decimale fisso ad 1, 2, 3, 4, 5, o 0 - uscite ed ingressi in multiplex per il min. dei componenti esterni - possibilità di essere trasformato in calcolatore scrivente - possibilità di operazione con visualizzatori a LED, incandescenza, fluorescenti ed a scarica di gas. Tutto in unico chip a 28 piedini DIL. Con foglio dati e applicazioni. L. 10000

CHIP ORCLOGIO CAL-TEX CT 7001 con calendario Indicazione dei secondi, minuti, ore, giorni e mesi. Comprende temporizzatori a ritardo programmabile per ON-OFF radio e pilotaggio sveglia. Operazioni 12-24 ore ed indicazione AM-PM. In unico chip a 28 piedini DIL Con foglio dati e schema di applicazione completo. E' l'ultimo nato ed il più sofisticato dei MOS per orologi.

CONDIZIONI DI VENDITA - La merce è garantita come descritta. Le spedizioni sono a 1/2 PT o FFSS. Il pagamento contrassegno salvo diversi accordi con il cliente. Le spese di spedizione sono a carico del cliente, l'imballo sempre ben curato è gratis. Preghiamo non inviare importi anticipati. Non si accettano ordini di materiale inferiori a L. 4000 escluse le spese di porto.





#### AMPLIFICATORI COMPONENTI INTEGRATI ELETTRONICI

viale E. Martini 9 - tel. (02) 5392378 - tel. (02) 5390335 via Avezzana 1

20139 MILANO

| CONDENS | ATORI | TANTALIO |
|---------|-------|----------|
| A       | GOCC  | IA       |

glà Ditta FACE

| TIPO         | LIRE |
|--------------|------|
| 0.1 mF 25 V  | 150  |
| 0,22 mF 25 V | 150  |
| 0,47 mF 25 V | 150  |
| 1 mF 16 V    | 150  |
| 1 mF 35 V    | 176  |
| 1,5 mF 16 V  | 153  |
| 1,5 mF 25 V  | 170  |
| 2,2 mF 25 V  | 170  |
| 3,3 mF 16 V  | 153  |
| 3,3 mF 25 V  | 170  |
| 4,7 mF 10 V  | 150  |
| 4,7 mF 25 V  | 170  |
| 6,8 mF 16 V  | 150  |
| 10 mF 10 V   | 150  |
| 10 mF 20 V   | 170  |
| 22 mF 6,3 V  | 159  |
| 22 mF 12 V   | 170  |
| 33 mF 12 V   | 170  |
| 33 mF 16 V   | 190  |
| 47 mF 6,3 V  | 180  |
| 47 mF 12 V   | 200  |

#### CONDENSATORI ELETTROLITICI

| TIPO                                |       | LIRE       |
|-------------------------------------|-------|------------|
| 8 mF 350 V                          |       | 160        |
| 10 mF 350 V                         |       | 160        |
| 16 mF 350 V                         |       | 220        |
| 25 mF 350 V                         |       | 240        |
| 32 mF <b>350 V</b>                  |       | 300        |
| 32 + 32 mF 350 V                    |       | 450        |
| 50 mF 350 V                         |       | 433        |
| 50 + 50 mF 350 V                    |       | 650        |
| 80 mF 350 V                         |       | 600        |
| 100 mF 50 V                         |       | 150        |
| 100 mF 350 V                        |       | 650        |
| 100 mF 500 V                        |       | 1.000      |
| 100 + 100 mF 350 V                  |       | 900        |
| 200 mF 25 V                         |       | 130        |
| 200 mF 50 V                         |       | 200        |
| 200 mF 350 V                        |       | 900        |
| 200 mF 500 V                        |       | 1.200      |
| 250 mF 25 V                         |       | 1G0        |
| 250 mF 50 V                         |       | 200        |
| 300 mF 16 V                         |       | 160        |
| 470 mF 16 V                         |       | 130        |
| 470 mF 25 V                         |       | 180        |
| 470 mF 50 V                         |       | 260        |
| 1000 mF 16 V                        |       | 250        |
| 1000 mF 25 V                        |       | 350        |
| 1000 mF 50 V<br>1000 mF 100 V       |       | 500        |
|                                     |       | 850        |
| 1500 mF 25 V<br>1500 mF 50 V        |       | 400<br>700 |
| 2000 mF 25 V                        |       | 450        |
| 2000 mF 50 V                        |       | 8C)        |
| 2000 mF 100 V                       |       | 1.300      |
| 3000 mF 16 V                        |       | 450        |
| 3000 mF 25 V                        |       | 550        |
| 3000 mF 50 V                        |       | 800        |
| 4000 mF 25 V                        |       | 750        |
| 4000 mF 50 V                        |       | 1.000      |
| 10000 mF 35 V                       |       | 2.000      |
| 200 + 100 + 50 + 25 mF              | 350 V |            |
| , , , , , , , , , , , , , , , , , , |       |            |

| VIG         | MY OZZUNU I            |                    | 0000000              | ł     |           |             |
|-------------|------------------------|--------------------|----------------------|-------|-----------|-------------|
| - Compact ( | cassette C/60          |                    | L.                   | 550   | UNIGIUNZ  | IONI        |
|             | assette C/90           |                    | Ē.                   | 800   | 2N1671    | 3.000       |
|             | ori con protezione e   | elettronica antic  |                      |       | 2N2646    | 700         |
| da 6 a 30   | V e da 500 mA a 2 A    | orettionica antic  |                      |       |           |             |
|             | V e da 500 mA a 4,5    | ۸                  | L. 8                 |       | 2N2647    | 900         |
|             |                        |                    | L. 10                |       | 2N4870    | 700         |
|             | ori a 4 tensioni 6-7   | ,5-9-12 v per m    |                      |       | 2N4871    | 700         |
|             | registratori, ecc.     |                    | L. 2                 | .400  | FET       |             |
|             | i cancellazione e i    | registrazione Le   |                      | Ca-   | SE5246    | 700         |
| stelli, Eur | ophon la coppia        |                    | L. 2                 | .000  | SE5247    | 700         |
| Testine K   | 7 la coppia            |                    |                      | .000  | BF244     | 700         |
|             | K7 e vari              |                    |                      | .000  |           |             |
|             | etri perno lungo 4 o ( | 6 cm. e vari       | Ĺ.                   | 200   | BF245     | 700         |
|             | etri con interruttore  | onn. o van         | ĩ.                   | 230   | BFW10     | 1.500       |
|             | etri micron senza inte |                    |                      | 200   | BFW11     | 1.500       |
|             |                        |                    | Ļ.                   |       | MPF102    | 700         |
|             | etri micron con interr |                    | Ļ.                   | 220   | 2N3819    | 650         |
|             | etri micromignon con   | interruttore       | L.                   | 120   | 2N3820    | 1.000       |
|             | ori d'alimentazione    |                    |                      |       | 2N3823    | 1.500       |
|             | imario 220 secondario  |                    | / o 12 V <b>L. 1</b> | .000  | 2N5457    | 700         |
| 1 A primar  | rio 220 V secondario 9 | 9 e 13 V           | L. 1                 | .600  | 2N5458    | 700         |
| 1 A primar  | rio 220 V secondario 1 | 2 V o 16 V o       | 23 V L. 1            | .600  | MEM564C   | 1.500       |
| 800 mA pr   | imario 220 V seconda   | rio 7.5 + 7.5 V    |                      | .100  |           |             |
| 2 A primar  | io 220 V secondario 3  | 30 V n 36 V        |                      | .000  | MEM571C   | 1.500       |
| 3 A prima   | rio 220 V secondario   | 12 1/ 0 18 1/ 0 24 |                      | .000  | 40290     | 1.600       |
|             | io 220 V secondario 1  |                    |                      |       | DIODI, DA | MPER        |
| 4 A primar  | io 220 V secondario    | 12+12 V O 13+1     | 5 V L. 3             | .000  | RETTIFICA | TORI        |
| 4 A primar  | rio 220 V secondario   | 15+15 V 0 24+      |                      |       | E RIVELA  |             |
| OFFERTE F   |                        |                    | L. 6                 | .000  |           |             |
| OFFERIE I   | RESISTENZE, TRIMME     | , STAGNO, COM      | IDENSATORI           |       | TIPO      | LIRE        |
| Busta 100   | resistenze miste       |                    | L.                   | 500   | AY102     | 900         |
| Busta 10    | trimmer misti          |                    | L.                   | 600   | AY103K    | <b>500</b>  |
|             | condensatori elettroli | tici               |                      | .400  | AY104K    | 400         |
| Busta 100   | condensatori elettroli | tici               |                      | .500  | AY105K    | 600         |
| Rusta 100   | condensatori pF        | 1101               | L. 1                 |       | AY106     | 900         |
|             |                        | iai a vitana       |                      |       |           |             |
|             | ondensatori elettroli  | ici a vitone,      | baionetta 2          |       | BA100     | 140         |
| capacità    |                        |                    | L. 1                 | .200  | BA102     | 240         |
| Busta 30 p  | otenziometri doppi e   | semplici e co      |                      |       | BA127     | 100         |
|             |                        |                    | L. 2                 | .200  | BA128     | 100         |
| Busta 30    | gr stagno              |                    | L.                   | 260   | BA129     | 140         |
| Rocchetto   | stagno 1 Kg a 63%      |                    |                      | 600   | BA130     | <b>10</b> 0 |
| Cuffie ster | reo 8 ohm 500 mW       |                    | L. 6                 | .000  | BA136     | 300         |
|             | is Siemens e Iskra     | a 2 scambi         |                      | 100   | BA148     | 250         |
|             | is Siemens e Iskra     |                    |                      | .300  | BA173     | 250         |
|             |                        |                    |                      |       |           | 400         |
| Malla -ar   | r micro relais a 2 s   | callion e a 4 SC   |                      | 280   | BA182     |             |
| Wiolla per  | micro relais per i     | aue tipi           | L.                   | 40    | BB100     | 350         |
| Zoccoii pe  | r integrati a 14 e 16  | piedini Dual-in    | -line <b>L.</b>      | 230   | BB105     | 350         |
|             | ALIMENTATORI STABI     | LIZZATI            |                      |       | BB106     | <b>35</b> 0 |
|             | 2 V o 15 V o 18 V      |                    | L. 4                 | 200   | BB109     | 350         |
|             | 4 V o 27 V o 38 V o 4  | 17 V               | L. 5                 | .000  | BB122     | 350         |
| AMPLIFICA   | ATORI                  |                    |                      |       | BB141     | 350         |
| Da 1.2 W    | 9 V con integrato S    | N76001             | L. 1.                | 500   | BY103     | 220         |
| Da 2 W 9    | V con integrato TAA    | 611B testina ma    | anetica I 1          | 900   | BY114     | 220         |
| Da 4 W 12   | V con integrato TAA    | 611C testina me    | gnetica L. 1         |       | BY118     | 220         |
| Da 6 W 18   | V con integrate 1AA    | orro testina me    | ignetica L. Z.       | 500   |           |             |
|             |                        |                    | L. 4                 |       | BY126     | 240         |
| Da 30 W     |                        | aman liftar to     | L. 15                |       | BY127     | 240         |
| Da 25+25    | 36/40 V SENZA pre      | ampinicatore       | L. 21                |       | BY133     | 240         |
|             | 36/40 V CON pream      |                    | L. 30                |       | TV11      | <b>5</b> 50 |
| Da 5+5 1    | 6 V completo di ali    | mentatore esclu    |                      |       | TV18      | 620         |
|             |                        |                    | L. 12                | .000  | TV20      | 670         |
| Da 5 W se   | nza preamplificatore   | e con TBA641       | L. 2                 |       | 11/14002  | 150         |
|             | blocchetto per auto    |                    |                      | 100   | 1N4003    | 160         |
|             | re per amplif. 25+25   | W stabil a 12      |                      |       | 1N4004    | 170         |
| CONTRAVE    |                        | SPALLETTE          |                      | 200   | 1N4005    | 180         |
| decimali    | L. 1.800               |                    |                      | 200   |           |             |
|             |                        | ASIE IIIetti       | ate con dadi         | 450   | 1N4006    | 200         |
| binari      | L. 1.800               |                    | L.                   | 150   | 1N4007    | 220         |
| BADDIS      |                        |                    |                      |       | ΟΛ72      | 80          |
| RADDRIZZAT  |                        |                    | B120 C7000           | 2.600 | OA81      | 100         |
|             | B60 C7500              |                    | B200 C2200           | 1.400 | OA85      | 100         |
| B30 C250    | 220 B80 C2200          | /3200 900          | B400 C1500           | 650   | OA90      | 03          |
| B30 C300    | 240 B100 A30           | 3.500              | B400 C2200           | 1.500 | OA91      | 80          |
| B30 C400    | 260 B200 A30           |                    | B600 C2200           | 1.800 | OA95      | 80          |
| B30 C750    | 350 Valanga c          | ontrollate         | B100 C5000           | 1.500 | AA116     | 80          |
| B30 C1200   | 450 Valaliga C         | L. 6.000           | B200 C5000           | 1.500 | AA117     | 80          |
| E40 C1000   | 400 B120 C220          | 0 1.000            | B100 C10000          | 2.800 | AA118     | 80          |
| B80 C1000   |                        |                    |                      |       |           |             |
|             | 450 BOU C/000          | /9000 1.800        | B200 C20000          | 3.000 | AA119     | 80          |

Richipoere qualishit misteriale elettronico, anche se non pubblicato nella presente pubblicazione.

PREZZI SPECIALI PER INDUSTRE. Forniamo, qualsiasi preventivo, dietro versamento anticipato di L. 1.000.

CONDUZIONI DI PAGAMENTO:



v.le E. Martini 9 - tel. (02) 5392378 via Avezzana 1 - tel. (02) 5390335

20139 MILANO

|   |  | 0 | E |
|---|--|---|---|
| V |  |   |   |
|   |  |   |   |

|   | TIPO EAA91 DY51 DY87 DY802 EABC80 EC36 EC92 EC97 EC900 ECC81 ECC82 ECC83 ECC84 ECC85 ECC88 ECC189 ECF80 ECH83 ECH84 ECH200 ECL80 ECR0 ECR0 ECR0 ECR0 ECR0 ECR0 ECR0 ECR | 800<br>800<br>800<br>800<br>730<br>900<br>900<br>750<br>850<br>900<br>700<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>90 | TIPO<br>ECL85<br>ECL86<br>EF80<br>EF83<br>EF85<br>EF98<br>EF94<br>EF97<br>EF98<br>EF183<br>EF184<br>EL36<br>EL81<br>EL83<br>EL84<br>EL95<br>EL95<br>EL504<br>EM81<br>EM84<br>EM87<br>EM84<br>EM87<br>EM84<br>EM87<br>EM84<br>EM87<br>EY88<br>EY86<br>EY88<br>EY88 | LIRE 950 900 900 650 850 900 650 650 900 670 670 3.000 1.800 900 800 800 800 900 1.000 750 750 800 800 800 800 800 800 800 800 800 8 | TIPO<br>EZ81<br>OA2<br>PABC80<br>PC86<br>PC88<br>PC92<br>PC97<br>PC900<br>PCC84<br>PCC85<br>PCC88<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>PCF80<br>P | LIRE 700 1.600 1.600 720 900 930 650 850 900 900 900 900 900 900 900 900 900 9 | TIPO PL504 PL508 PL509 PY81 PY82 PY83 PY500 UBC81 UCH81 UCH81 UUCH81 ULH1 ULB4 EBC41 UY85 1B3 1X2B 5U4 5X4 6AX4 6AF4 6AA5 6AA6 6AA6 | LIRE 1.600 1.050 2.200 3.000 700 750 780 800 2.200 800 1.000 800 950 1.000 900 1.000 800 800 800 800 800 1.000 800 800 800 800 800 800 800 800 800 | TIPO 6AU8 6AW8 6AW8 6AN8 6AX4 6AX4 6AX4 6BA6 6BE6 6BE7 6EB8 6ET1 6CB6 6CS7 6CG8 6CG7 6CG8 6CG7 6CG8 6CG9 6DC6 6DC6 6DC6 6DC6 6DC6 6DC6 6DC6 6DC | LIRE<br>850<br>750<br>900<br>1.100<br>800<br>900<br>730<br>650<br>650<br>650<br>700<br>1.600<br>850<br>900<br>700<br>700<br>750<br>700<br>1.000<br>850<br>900<br>900<br>1.700<br>850<br>900 | TIPO<br>6TP4<br>6TP4<br>6TP4<br>6TP4<br>9EA8<br>12AU6<br>12BA6<br>12BA6<br>12BA6<br>12AU6<br>12AU6<br>12AU6<br>12AU6<br>12AU6<br>12AU6<br>12DG6<br>17DG6<br>12SDG6<br>2SE2<br>2SF11<br>3SD5<br>50D5<br>50D5<br>50B5<br>50B5<br>50B5<br>50B5<br>50B5<br>50 | LIRE 700 700 900 800 850 650 650 650 750 1.600 1.600 800 1.700 1.600 900 900 750 700 700 800 1.200 2.000 1.200 2.500 2.000 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | ECL84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 850                                                                                                                              | EZ80                                                                                                                                                                                                                                                              | 650                                                                                                                                  | PL95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900                                                                            | 6AU6                                                                                                                                | 720                                                                                                                                                | 6TP3                                                                                                                                            | 850                                                                                                                                                                                         | E88C<br>E88CC                                                                                                                                                                                                                                             | 2,000<br>2,000                                                                                                             |
|   | TIPO<br>EL80F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIRE<br>2.500                                                                                                                    | TIPO<br>AC191                                                                                                                                                                                                                                                     | LIRE 220                                                                                                                             | S E I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MICO<br>LIRE<br>250                                                            | TIPO<br>BC109                                                                                                                       | T T O R                                                                                                                                            | BC184                                                                                                                                           | 220                                                                                                                                                                                         | BC322                                                                                                                                                                                                                                                     | 220                                                                                                                        |
|   | EC8010<br>EC8100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.500<br>2.500                                                                                                                   | AC192<br>AC193                                                                                                                                                                                                                                                    | 220<br>240                                                                                                                           | AF178<br>AF181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500<br>550                                                                     | BC113<br>BC114                                                                                                                      | 200<br>200                                                                                                                                         | BC187<br>BC201                                                                                                                                  | 250<br>700                                                                                                                                                                                  | BC327<br>BC328                                                                                                                                                                                                                                            | 230<br>230                                                                                                                 |
|   | E288CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.000                                                                                                                            | AC193K                                                                                                                                                                                                                                                            | 300                                                                                                                                  | AF185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 550<br>600                                                                     | BC115<br>BC116                                                                                                                      | 220<br>220                                                                                                                                         | BC202<br>BC203                                                                                                                                  | 700<br>700                                                                                                                                                                                  | BC337<br>BC340                                                                                                                                                                                                                                            | 230<br>350                                                                                                                 |
|   | AC116K<br>AC117K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300<br>300                                                                                                                       | AC194<br>AC194K                                                                                                                                                                                                                                                   | 240<br>300                                                                                                                           | AF186<br>AF200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250                                                                            | BC117                                                                                                                               | 350                                                                                                                                                | BC204                                                                                                                                           | 220                                                                                                                                                                                         | BC341                                                                                                                                                                                                                                                     | 400                                                                                                                        |
|   | AC121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230                                                                                                                              | AD130                                                                                                                                                                                                                                                             | 700                                                                                                                                  | AF201<br>AF202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250<br>250                                                                     | BC118<br>BC119                                                                                                                      | 220<br>320                                                                                                                                         | BC205<br>BC206                                                                                                                                  | 220<br>220                                                                                                                                                                                  | BC360<br>BC361                                                                                                                                                                                                                                            | 400<br>400                                                                                                                 |
|   | AC122<br>AC125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220<br>220                                                                                                                       | AD139<br>AD143                                                                                                                                                                                                                                                    | 650<br>650                                                                                                                           | AF239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 550                                                                            | BC120                                                                                                                               | 330                                                                                                                                                | BC207                                                                                                                                           | 200                                                                                                                                                                                         | BC384                                                                                                                                                                                                                                                     | 300                                                                                                                        |
|   | AC126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AD142                                                                                                                                                                                                                                                             | 650                                                                                                                                  | AF240<br>AF267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 550<br>1.200                                                                   | BC121<br>BC125                                                                                                                      | 600<br>300                                                                                                                                         | BC208<br>BC209                                                                                                                                  | 200<br>200                                                                                                                                                                                  | BC395<br>BC396                                                                                                                                                                                                                                            | 220<br>220                                                                                                                 |
|   | AC127<br>AC127K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220<br>300                                                                                                                       | AD145<br>AD148                                                                                                                                                                                                                                                    | 750<br>650                                                                                                                           | AF267<br>AF279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.200                                                                          | BC126                                                                                                                               | 300                                                                                                                                                | BC210                                                                                                                                           | 350                                                                                                                                                                                         | BC429                                                                                                                                                                                                                                                     | 400                                                                                                                        |
|   | AC128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AD149 -                                                                                                                                                                                                                                                           | 650                                                                                                                                  | AF280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.200                                                                          | BC134                                                                                                                               | 220<br>220                                                                                                                                         | BC211<br>BC212                                                                                                                                  | 350<br>220                                                                                                                                                                                  | BC430<br>BC440                                                                                                                                                                                                                                            | 500<br>400                                                                                                                 |
|   | AC128K<br>AC132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 300<br>200                                                                                                                     | AD150<br>AD161                                                                                                                                                                                                                                                    | 650<br>500                                                                                                                           | AF367<br>AL102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.200<br>1.000                                                                 | BC135<br>BC136                                                                                                                      | 350                                                                                                                                                | BC213                                                                                                                                           | 220                                                                                                                                                                                         | BC441                                                                                                                                                                                                                                                     | 400                                                                                                                        |
|   | AC135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AD162                                                                                                                                                                                                                                                             | 600                                                                                                                                  | AL103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                          | BC137                                                                                                                               | 350<br>350                                                                                                                                         | BC214                                                                                                                                           | 220<br>220                                                                                                                                                                                  | BC460<br>BC461                                                                                                                                                                                                                                            | 500<br>500                                                                                                                 |
|   | AC136<br>AC138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220<br>220                                                                                                                       | AD262<br>AD263                                                                                                                                                                                                                                                    | 600<br>600                                                                                                                           | AL112<br>AL113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900<br>950                                                                     | BC138<br>BC139                                                                                                                      | 350                                                                                                                                                | BC225<br>BC231                                                                                                                                  | 350                                                                                                                                                                                         | BC401<br>BC537                                                                                                                                                                                                                                            | 230                                                                                                                        |
|   | AC138K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                              | AF102                                                                                                                                                                                                                                                             | 450                                                                                                                                  | ASY26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                            | BC140                                                                                                                               | 350                                                                                                                                                | BC232                                                                                                                                           | 350<br>200                                                                                                                                                                                  | BC538                                                                                                                                                                                                                                                     | 230<br>230                                                                                                                 |
|   | AC139<br>AC141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220<br>220                                                                                                                       | AF105<br>AF106                                                                                                                                                                                                                                                    | 400<br>350                                                                                                                           | ASY27<br>ASY28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450<br>450                                                                     | BC141<br>BC142                                                                                                                      | 350<br>350                                                                                                                                         | BC237<br>BC238                                                                                                                                  | 200                                                                                                                                                                                         | BC595<br>BCY56                                                                                                                                                                                                                                            | 320                                                                                                                        |
|   | AC141K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                              | AF109                                                                                                                                                                                                                                                             | 360                                                                                                                                  | ASY29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 450                                                                            | BC143                                                                                                                               | 350                                                                                                                                                | BC239                                                                                                                                           | 220                                                                                                                                                                                         | BCY58                                                                                                                                                                                                                                                     | 320                                                                                                                        |
|   | AC142<br>AC142K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220<br>300                                                                                                                       | AF114<br>AF115                                                                                                                                                                                                                                                    | 300                                                                                                                                  | ASY37<br>ASY46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400<br>400                                                                     | BC144<br>BC145                                                                                                                      | 350<br>400                                                                                                                                         | BC250<br>BC251                                                                                                                                  | 220<br>200                                                                                                                                                                                  | BCY59<br>BCY71                                                                                                                                                                                                                                            | 320<br>320                                                                                                                 |
|   | AC151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AF116                                                                                                                                                                                                                                                             | 300                                                                                                                                  | ASY48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                                                            | BC147                                                                                                                               | 200                                                                                                                                                | BC258                                                                                                                                           | 220                                                                                                                                                                                         | BCY72                                                                                                                                                                                                                                                     | 320                                                                                                                        |
| 1 | AC152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230<br>220                                                                                                                       | AF117                                                                                                                                                                                                                                                             | 500                                                                                                                                  | ASY75<br>ASY77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400<br>500                                                                     | BC148<br>BC149                                                                                                                      | 200<br>200                                                                                                                                         | BC267<br>BC268                                                                                                                                  | 230<br>230                                                                                                                                                                                  | BCY77<br>BCY78                                                                                                                                                                                                                                            | 320<br>320                                                                                                                 |
|   | AC153<br>AC153K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300                                                                                                                              | AF118<br>AF121                                                                                                                                                                                                                                                    | 300                                                                                                                                  | ASY80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                                                            | BC153                                                                                                                               | 220                                                                                                                                                | BC269                                                                                                                                           | 230                                                                                                                                                                                         | BCY79                                                                                                                                                                                                                                                     | 320                                                                                                                        |
|   | AC160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AF124                                                                                                                                                                                                                                                             | 300<br>300                                                                                                                           | ASY81<br>ASZ15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500<br>950                                                                     | BC154<br>BC157                                                                                                                      | 220<br>220                                                                                                                                         | BC270<br>BC286                                                                                                                                  | 230<br>350                                                                                                                                                                                  | BD106<br>BD107                                                                                                                                                                                                                                            | 1.200<br>1.200                                                                                                             |
|   | AC162<br>AC175K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220<br>300                                                                                                                       | AF125<br>AF126                                                                                                                                                                                                                                                    | 300                                                                                                                                  | ASZ16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 950                                                                            | BC158                                                                                                                               | 220                                                                                                                                                | BC287                                                                                                                                           | 350                                                                                                                                                                                         | BD109                                                                                                                                                                                                                                                     | 1.300                                                                                                                      |
|   | AC178K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                              | AF127                                                                                                                                                                                                                                                             | 300                                                                                                                                  | ASZ17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 950<br>950                                                                     | BC159<br>BC160                                                                                                                      | 220<br>350                                                                                                                                         | BC288<br>BC297                                                                                                                                  | 600<br>230                                                                                                                                                                                  | BD111<br>BD112                                                                                                                                                                                                                                            | 1.050<br>1.050                                                                                                             |
|   | AC179K<br>AC180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>250                                                                                                                       | AF134<br>AF135                                                                                                                                                                                                                                                    | 250<br>250                                                                                                                           | ASZ18<br>AU106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                                           | BC161                                                                                                                               | 400                                                                                                                                                | BC300                                                                                                                                           | 400                                                                                                                                                                                         | BD113                                                                                                                                                                                                                                                     | 1.050                                                                                                                      |
|   | AC180K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                              | AF136                                                                                                                                                                                                                                                             | 250                                                                                                                                  | AU107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1300                                                                           | BC167                                                                                                                               | 220                                                                                                                                                | BC301                                                                                                                                           | 400                                                                                                                                                                                         | BD115                                                                                                                                                                                                                                                     | 700                                                                                                                        |
|   | AC181<br>AC181K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250<br>300                                                                                                                       | AF137<br>AF138                                                                                                                                                                                                                                                    | 250<br>250                                                                                                                           | AU108<br>AU110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300<br>1500                                                                   | BC168<br>BC169                                                                                                                      | 220<br>220                                                                                                                                         | BC302<br>BC303                                                                                                                                  | 400<br>400                                                                                                                                                                                  | BD116<br>BD117                                                                                                                                                                                                                                            | 1.050<br>1.050                                                                                                             |
|   | AC183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AF139                                                                                                                                                                                                                                                             | 450                                                                                                                                  | AU111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.000                                                                          | BC171                                                                                                                               | 220                                                                                                                                                | BC304                                                                                                                                           | 400                                                                                                                                                                                         | BD118                                                                                                                                                                                                                                                     | 1.050                                                                                                                      |
|   | AC184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                                                              | AF147                                                                                                                                                                                                                                                             | 300<br>300                                                                                                                           | AU112<br>AU113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.100<br>1900                                                                  | BC172<br>BC173                                                                                                                      | 220<br>220                                                                                                                                         | BC307<br>BC308                                                                                                                                  | 220<br>220                                                                                                                                                                                  | BD124<br>BD135                                                                                                                                                                                                                                            | 1.500<br>500                                                                                                               |
|   | AC184K<br>AC185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>220                                                                                                                       | AF148<br>AF149                                                                                                                                                                                                                                                    | 300                                                                                                                                  | AUY21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.600                                                                          | BC177                                                                                                                               | 250                                                                                                                                                | BC309                                                                                                                                           | 220                                                                                                                                                                                         | BD136                                                                                                                                                                                                                                                     | 500                                                                                                                        |
|   | AC185K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                              | AF150                                                                                                                                                                                                                                                             | 300                                                                                                                                  | AUY22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.600                                                                          | BC178                                                                                                                               | 250<br>250                                                                                                                                         | BC315<br>BC317                                                                                                                                  | 220<br>220                                                                                                                                                                                  | BD137<br>BD138                                                                                                                                                                                                                                            | 500<br>500                                                                                                                 |
|   | AC187<br>AC187K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 240<br>300                                                                                                                       | AF164<br>AF166                                                                                                                                                                                                                                                    | 250<br>250                                                                                                                           | AUY27<br>AUY34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000<br>1.200                                                                 | BC179<br>BC180                                                                                                                      | 240                                                                                                                                                | BC317<br>BC318                                                                                                                                  | 220                                                                                                                                                                                         | BD139                                                                                                                                                                                                                                                     | 500                                                                                                                        |
|   | AC188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240                                                                                                                              | AF169                                                                                                                                                                                                                                                             | 250                                                                                                                                  | AUY37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.200                                                                          | BC181                                                                                                                               | 220                                                                                                                                                | BC319                                                                                                                                           | 220                                                                                                                                                                                         | BD140                                                                                                                                                                                                                                                     | 500<br>900                                                                                                                 |
|   | AC188K<br>AC190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>220                                                                                                                       | AF170<br>AF171                                                                                                                                                                                                                                                    | 250<br>250                                                                                                                           | BC107<br>BC108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200<br>200                                                                     | BC182<br>BC183                                                                                                                      | 220<br>220                                                                                                                                         | BC320<br>BC321                                                                                                                                  | 220<br>220                                                                                                                                                                                  | BD142<br>BD157                                                                                                                                                                                                                                            | 600                                                                                                                        |

ATTENZIONE: l'esposizione continua nella pagina seguente.

ATTENZIONE
Al fine di evitare disguidi nell'evasione degli ordini si prega di scrivere in stampatello nome ed indirizzo del committente città e C.A.P.. in calce all'ordine.

Non si accettano ordinazioni inferiori a L. 4.000; escluse le spese di spedizione.

a) invio, anticipato a mezzo assegno circolare o vaglia postale dell'importo globale dell'ordine, maggiorato delle spese postali di un minimo di L. 450 per C.S.V. e L. 600/700, per pacchi postali.
b) contrassegno con le spese incluse nell'importo dell'ordine.

| ACE<br>già Ditta FAC |                     | v.le E. N      | Martini 9<br>zana 1  | - tel. (02) 5<br>- tel. (02) 5 | 392378<br>390335 | 20139 MILAN         | 10                  | ZENE<br>TIPO                             | R<br>LIRE<br>220    |
|----------------------|---------------------|----------------|----------------------|--------------------------------|------------------|---------------------|---------------------|------------------------------------------|---------------------|
| Segue pag. 6         | 345                 | SEMI           | COND                 | UTTO                           | RI               |                     | Callin II           | da 400 mW<br>da 1 W<br>da 4 W<br>da 10 W | 300<br>600<br>1.100 |
| BD158                | 600                 | BF222          | 300                  | OC45<br>OC70                   | 400<br>220       | 2N3019<br>2N3020    | 500<br>500          |                                          |                     |
| BD159<br>BD160       | 1.600               | BF232<br>BF233 | 450<br>250           | OC71                           | 220              | 2N3053              | 600                 | TRIA                                     |                     |
| BD162                | 630                 | BF234          | 250                  | OC72                           | 220<br>240       | 2N3054<br>2N3055    | 900<br>900          | 1 A 400 V                                | 800<br>1,500        |
| BD163                | 650<br>600          | BF235<br>BF236 | 250<br>250           | OC74<br>OC75                   | 220              | 2N3061              | 500                 | 4,5 A 400 V<br>6,5 A 400 V               | 1.500               |
| BD175<br>BD176       | 600                 | BF237          | 250                  | OC76                           | 220              | 2N3232              | 1.000               | 6 A 600 V                                | 1.800               |
| BD177                | 600                 | BF238          | 250                  | OC169<br>OC170                 | 350<br>350       | 2N3300<br>2N3375    | <b>600</b><br>5.800 | 10 A 400 V<br>10 A 500 V                 | 1.600<br>1.800      |
| BD178<br>BD179       | 600<br>600          | BF241<br>BF242 | 250<br>250           | OC171                          | 350              | 2N3391              | 220                 | 10 A 600 V                               | 2.200               |
| BD180                | 600                 | BF251          | 350                  | SFT203                         | 350              | 2N3442              | 2.700               | 15 A 400 V                               | 3.100               |
| BD215                | 1.000               | BF254<br>BF257 | 260<br>400           | SFT214<br>SFT239               | 1.000<br>650     | 2N3502<br>2N3702    | 400<br>250          | 15 A 600 V<br>25 A 400 V                 | 3.600<br>14.000     |
| BD216<br>BD221       | 600                 | BF258          | 450                  | SFT241                         | 350              | 2N3703              | 250                 | 25 A 600 V                               | 15.500              |
| BD224                | 600                 | BF259          | 500                  | SFT266                         | 1.300            | 2N3705              | 250<br>2.200        | 40 A 400 V                               | 34.000              |
| BD232<br>BD233       | 600<br>600          | BF261<br>BF271 | 450<br>400           | SF [268<br>SFT307              | 1.400<br>220     | 2N3713<br>2N3731    | 2.000               | 40 A 600 V<br>100 A 600 V                | 39.000<br>55.000    |
| BD234                | 600                 | BF272          | 500                  | SFT308                         | 220              | 2N3741              | 600                 | 100 A 800 V                              |                     |
| BD235                | 600                 | BF273          | 350                  | SFT316                         | 220<br>220       | 2N3771              | 2.400<br>2.600      | 100 A 1000 V                             | 68.000              |
| BD236<br>BD237       | 600<br><b>600</b>   | BF274<br>BF302 | 350<br>350           | SFT320<br>SFT322               | 220              | 2N3772<br>2N3773    | 4.000               | SCR                                      |                     |
| BD238                | 600                 | BF303          | 350                  | SFT323                         | 220              | 2N3790              | 4.000               |                                          |                     |
| BD239                | 800<br>800          | BF304<br>BF305 | 350<br>400           | SFT325<br>SFT337               | 220<br>240       | 2N3792<br>2N3855    | 4.000<br>240        | 1 A 100 V<br>1,5 A 100 V                 | 500<br>600          |
| BD240<br>BD273       | 800                 | BF311          | 300                  | SFT351                         | 220              | 2N3866              | 1.300               | 1,5 A 200 V                              | 700                 |
| BD274                | 800                 | BF332          | 300                  | SFT352                         | 220              | 2N3925              | 5.100               | 2,2 A 200 V                              | 850<br>950          |
| BD281                | 700<br>700          | BF333<br>BF344 | 300<br>350           | SFT353<br>SFT367               | 220<br>300       | 2N4001<br>2N4031    | 500<br>500          | 3,3 A 400 V<br>8 A 100 V                 | 950                 |
| BD282<br>BD375       | <b>700</b>          | BF345          | 350                  | SFT373                         | 250              | 2N4033              | 500                 | 8 A 200 V                                | 1.050               |
| BD378                | 700                 | BF394          | 350                  | SFT377                         | 250              | 2N4134              | 450                 | 8 A 300 V<br>6.5 A 400 V                 | 1.200<br>/ 1.400    |
| BD433<br>BD434       | 800<br>800          | BF395<br>BF456 | 350<br>450           | 2N174<br>2N396                 | 2.200<br>300     | 2N4231<br>2N4241    | 800<br>700          | 8 A 400 V                                | 1.500               |
| BD434                | 600                 | BF457          | 500                  | 2N398                          | 330              | 2N4347              | 3.000               | 6,5 A 600 V                              | 1.600               |
| BD461                | 700                 | BF458          | 500                  | 2N409                          | 400              | 2N4348              | 3.200               | 8 A 600 V<br>10 A 400 V                  | 1.800<br>1.700      |
| BD462<br>BD663       | 700<br>800          | BF459<br>BFY46 | 500<br>5 <b>0</b> 0  | 2N411<br>2N456                 | 900<br>900       | 2N4404<br>2N4427    | 600<br>1.300        | 10 A 400 V                               | 1.900               |
| BDY19                | 1.000               | BFY50          | 500                  | 2N482                          | 250              | 2N4428              | 3.800               | 10 A 800 V                               | 2.500               |
| BDY20                | 1.000               | BFY51          | 500                  | 2N483                          | 230              | 2N4429              | 8.000               | 25 A 400 V<br>25 A 600 V                 | 4.800<br>6.300      |
| BDY38<br>BF110       | 1.300<br>400        | BFY52<br>BFY56 | 500<br>500           | 2N526<br>2N554                 | 300<br>800       | 2N4441<br>2N4443    | 1.200<br>1.600      | 35 A 600 V                               | 7.000               |
| BF115                | 300                 | BFY57          | 500                  | 2N696                          | 400              | 2N4444              | 2.200               | 50 A 500 V                               | 9.000               |
| BF117                | 400_                | BFY64          | 500                  | 2N697                          | 400              | 2N4904              | 1.300 .             | 90 A 600 V.<br>120 A 600 V               | 29,000              |
| BF118<br>BF119       | 400<br>400          | BFY74<br>BFY90 | 500<br>1.200         | 2N699<br>2N706                 | 500<br>2ช0       | 2N4912<br>2N4924    | 1.000<br>1.300      | 240 A 1000 V                             |                     |
| BF120                | 400                 | BFW10          | 1.400                | 2N707                          | 400              | 2N5016              | 16.000              | 340 A 400 V                              | 54.000              |
| BF123                | 220                 | BFW11          | 1.400                | 2N708                          | 300              | 2N5131              | 330                 | 340 A 600 V                              | 65.000              |
| BF139<br>BF152       | 450<br>250          | BFW16<br>BFW30 | 1.500<br>1.400       | 2N709<br>2N711                 | 500<br>500       | 2N5132<br>2N5177    | 330<br>14.000       | DIAC                                     |                     |
| BF154                | 260                 | BFX17          | 1.200                | 2N914                          | 280              | 2N5320              | 650                 | da: 400 V                                | 400                 |
| BF155                | 450                 | BFX34          | 450                  | 2N918                          | 350              | 2N5321              | 650                 | da 500 V                                 | 500                 |
| BF156<br>BF157       | 500<br>500          | BFX38<br>BFX39 | 600<br>600           | 2N929<br>2N930                 | 320<br>320       | 2N5322<br>2N5323    | <b>650</b><br>700   |                                          |                     |
| BF158                | 320                 | BFX40          | 600                  | 2N1038                         | 750              | 2N5589              | 13.000              | INTEGR                                   |                     |
| BF159                | 320                 | BFX41          | 600                  | 2N4100                         | 5.000<br>350     | 2N5590              | 13.000<br>9.000     | CA3018                                   | 1.700               |
| BF160<br>BF161       | 220<br>400          | BFX84<br>BFX89 | 800<br>1.100         | 2N1226<br>2N1304               | 400              | 2N5649<br>2N5703    | 16.000              | CA3045<br>CA3065                         | 1.500<br>1.700      |
| BF162                | 230                 | BSX24          | 300                  | 2N1305                         | 400              | 2N5764              | 15.000              | CA3048                                   | 4.500               |
| BF163<br>BF164       | 230<br>230          | BSX26          | 300<br>600           | 2N1307                         | 450<br>450       | 2N5858<br>2NG122    | 300<br>700          | CA3052<br>CA3085                         | 4.500               |
| BF164<br>BF166       | 450                 | BSX45<br>BSX46 | 600                  | 2N1308<br>2N1338               | 1.200            | MJ3403              | 640                 | CA3090                                   | 3.200<br>3.500      |
| BF167                | 350                 | BSX50          | 600                  | 2N1565                         | 400              | MJE3030             | 1.800               | L129                                     | 1.600               |
| BF169<br>BF173       | 350<br>350          | BSX51<br>BU100 | 300<br>1.500         | 2N1566<br>2N1613               | 450<br>300       | M IF3055<br>MJE3771 | 900<br>2.200        | L130<br>L131                             | 1.600<br>1.600      |
| BF174                | 400                 | BU102          | 2.000                | 2N1711                         | 320              | T1P3055             | 1.000               | μ <b>Α702</b>                            | 1.400               |
| BF176                | 240                 | BU104          | 2.000                | 2N1890                         | 500              | TIP31               | 800                 | μ <b>Α703</b>                            | 850                 |
| BF177<br>BF178       | 350<br>350          | BU105<br>BU106 | 4.000<br>2.000       | 2N1893<br>2N1924               | 500<br>500       | T1P32<br>T1P33      | 800<br>800          | μ <b>Α709</b><br>μ <b>Α711</b>           | 700<br>1,200        |
| BF179                | 450                 | BU107          | 2.000                | 2N1925                         | 450              | 40260               | 1.000               | μ <b>A723</b>                            | 1.000               |
| BF180                | 550                 | B11109         | 2.000                | 2N1983                         | 450              | 40261               | 1.000               | μ <b>Α741</b>                            | 850                 |
| BF181<br>BF182       | 550<br>600          | BU111<br>BU114 | 1.800<br>1.800       | 2N1986<br>2N1987               | 450<br>450       | 40262<br>40290      | 1.000<br>3.000      | μ <b>Α747</b><br>μ <b>Α748</b>           | 2.000<br>900        |
| BF184                | 350                 | BU114<br>BU120 | 2.000                | 2N2048                         | 500              | PT1017              | 1000                | μ <b>A</b> 7824                          | 1.700               |
| BF185                | <b>3</b> 5 <b>0</b> | EU122          | 1.800                | 2N2160                         | 2.000            | PT2014              | 1100                | SG555                                    | 1.300               |
| BF186<br>BF194       | 350<br>220          | BU125<br>BU126 | 1.100<br>2.000       | 2N2188<br>2N2218               | 500<br>400       | PT4544<br>PT5649    | 11.000<br>16.000    | SG556<br>SN7400                          | 1.600<br>320        |
| BF195                | 220                 | BU128          | 2.000                | 2N2218<br>2N2219               | 400              | PT8710              | 16.000              | SN7401                                   | 500                 |
| BF196                | 220                 | BU133          | 2200                 | 2N2222                         | 300              | PT8720              | 13.000              | SN7402                                   | 320                 |
| BF197<br>BF198       | 230<br>250          | BUY13<br>BUY14 | 4.000<br>1.200       | 2N2284<br>2N2904               | 380<br>320       | B12/12<br>B25/12    | 9.000<br>16.000     | SN7470<br>SN7472                         | 1000<br>900         |
| BF199                | 250                 | BUY43          | 900                  | 2N2904<br>2N2905               | 360              | B40/12              | 23.000              | SN74195                                  | 2000                |
| BF200                | 500                 | BUY46          | 900                  | 2N2906                         | 250              | B50/12              | 28.000              | SN74196                                  | 2300                |
| BF207<br>BF208       | 33 <b>0</b><br>350  | BUY48<br>OC44  | 1.200<br><b>4</b> 00 | 2N2907<br>2N2955               | 300<br>1.500     | C3/12<br>C12/12     | 7.000<br>14.000     | SN74H00<br>SN74H02                       | 60 <b>0</b><br>600  |
|                      |                     |                |                      | , 2.1.2.333                    |                  |                     |                     |                                          |                     |

2.000 **TDA440** LIRE 500 500 TBA231 1.800 2.000 9368 3.200 SN76013 SN7453 SN7403 600 600 500 500 1.100 TBA240 2.000 SN76533 SN7454 μ**Α7824** 1.800 SN7404 SN166848 2.000 **TBA261** 1.700 500 SN7405 2.000 **TBA271** REGOLATORI E STABILIZZATORI SN166861 SN7406 800 SN7470 SN166862 2.000 **TBA311** 2.000 SN7472 SN7407 800 500 320 800 500 800 700 320 500 **TAA121 TBA400** 2.000 SN7473 SN7408 1,5 A 2.000 1.400 1.600 1.800 TBA440 TBA520 2.000 1.100 **TAA310** SN7475 SN7410 2.000 1.000 **TAA320** LM340K5 2,600 SN7413 SN7476 TBA530 2.000 TAA350 SN7481 SN7415 LM340K12 2.600 TAA435 TAA450 TAA550 TBA540 2.000 2.000 SN7483 SN7416 2.000 TBA550 2.000 LM340K15 2.600 SN7485 SN7417 700 TBA560 1.800 1.000 1.200 1.300 SN7486 LM340K18 2,600 SN7420 1.800 TBA641 TAA570 SN7490 SN7425 LM340K24 2.600 TAA611 1.000 TBA720 SN7492 SN7430 TAA611b **TBA750** 2.000 SN7432 1.400 SN7493 DISPLAY e LED 900 500 1.100 1.200 1.500 1.300 TAA611c 1.600 TBA780 1.600 SN7494 SN7437 1.800 1.600 TBA790 TBA800 1.200 **TAA621** SN7495 SN7440 2.000 2.000 1.600 LED bianco 1.800 2.000 TAA630S SN7496 SN7441 TBA810 1.800 400 LED rosso SN74141 TAA640 SN7442 SN7443 SN7444 TBA810S 2.600 2.200 TAA661a TAA661b SN74150 LED verdi 800 1.600 TBA820 1.600 SN74154 LED gialli 2.000 TBA950 **TAA710** SN7445 2.400 SN74181 2.500 TAA861 2.000 TCA440 FND70 2.200 2.000 SN74191 SN7446 TB625A 1.600 TCA511 2.200 SN7447 SN74192 FND500 900 1.600 950 TCA610 TB625B SN7448 1.900 SN74193 3.000 **DL**707 TCA830 TCA910 TB625C 1.600 SN74544 2.100 (con schema) SN76001 SN7451

La ditta



segue INTEGRATI

#### AMPLIFICATORI COMPONENTI ELETTRONICI INTEGRATI

v.le E. Martini 9 - tel. (02) 5392378 via Avezzana 1 - tel. (02) 5390335 20139 MILANO

rende noto che le ordinazioni della zona di ROMA possono essere indirizzate anche a:

CENTRO ELETTRONICA BISCOSSI via Della Giuliana, 107 - tel. 319493

00195 ROMA

e per la SARDEGNA:

Ditta ANTONIO MULAS - via Giovanni XXIII - 09020 S. GIUSTA (Oristano) - tel. 0783-70711

— si assicura lo stesso trattamento — oppure tel. 72870



#### A.R.I. SEZIONE PROVINCIALE DI TERNI



# MOSTRA MERCATO DEL RADIOAMATORE

TERNI 31 maggio e 1-2 giugno 1975 Centro ANCIFAP Terminale viale Brin

Informazioni:

A.R.I. c.p. 19 - 05100 TERNI

cq - 5/75

N.B.: Per le condizioni di pagamento e d'ordine vedi pag. 644

#### La ELETTRO NORD ITALIANA di Milano - via Bocconi 9 - tel. (02) 589921 offre in questo mese:

| 11B - CARICABATTERIE aliment. 220 V uscite 6-12-V 4 A attacchi morsetti e lampada spia .                                                                                                                                                                                                                                                                                      |     | 0.000               |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|--------------|
| 11C - CARICABATTERIE aliment. 220 V uscite 6-12-24 V 4. attacchi morsetti e lampada spia.                                                                                                                                                                                                                                                                                     | - 1 | 9.000 +<br>13.200 + | 5.5.         |
|                                                                                                                                                                                                                                                                                                                                                                               | ī.  | 7 800               | 5.5.         |
| 31P - FILTRO CROSS OVER per 30/50 W 3 vie 12 dB per ottava - 4 oppure 8 Ω                                                                                                                                                                                                                                                                                                     | ī.  | 10 200              | 5.5.         |
| 310 FILTRO C.S. ma solo a due vie · 4 oppure 8 Ω                                                                                                                                                                                                                                                                                                                              | Ē.  | 9.000+              | 5.5.<br>e e  |
| 315 - SCATOLA MONTAGGIO filtro entidisturbo per rete fino a 380 V 800 W con impedenze di altissima                                                                                                                                                                                                                                                                            |     | 3.000+              | 5.5.         |
| qualità isolate a bagno d'ollosima  112C - TELAIETTO per ricezione filodiffusione senza bassa frequenza 112D - CONVERTITORE a modulazione di frequenza 88/108 MHz modificabili                                                                                                                                                                                                | L.  | 2.400 +             |              |
| 112D - CONVERTITORE a modulational file and bassa frequenza                                                                                                                                                                                                                                                                                                                   | L.  | 8.2004              |              |
| 112D - CONVERTITORE a modulazione di frequenza 88/108 MHz modificabili per frequenze (115/135) - (144/146) - (155/165 MHz). Più istruzioni per la modifica per la gamma interessata 151F - AMPLIFICATORE ultralineare Olivetti aliment. 9/12 V ingresso 270 kohm - uscità 2 W su 4 ohm                                                                                        |     |                     |              |
| 151F - AMPLIFICATORE Altradiana Oliverian per la modifica per la gamma interessata                                                                                                                                                                                                                                                                                            | L.  | 5.400 +             | S.S.         |
| 151FR - AMPLIFICATORE stereo 6+6 W ingr anniero o coramics reside 20 kohm - uscita 2 W su 4 ohm                                                                                                                                                                                                                                                                               | L.  | 2.400 +             | 5.5.         |
| 151FR - AMPLIFICATORE stereo 6+6 W ingr. piezo o ceramica uscita 8 ohm 151FT - 30 30 W come il precedente in versione stereo nuovo modello 151FZ - AMPLIFICATORE 30 W - ALIMENT. 40 V - ingresso piezo o ceramica - uscita 8 ohm 151M - AMPLIFICATORE 2,5 W senza regolazioni buona sens. al. 9-12 V                                                                          | L.  | 14.400+             | 5.5.         |
| 151FZ - AMPLIFICATORE 30 W - ALIMENT, 40 V - ingresso piezo o ceramico                                                                                                                                                                                                                                                                                                        | Ļ.  | 39.600+             | s.s.         |
| 151M - AMPLIFICATORE 30 W - ALIMENT. 40 V - ingresso piezo o ceramica - uscita 8 ohm 151M - AMPLIFICATORE 2,5 W senza regolazioni buona sens. al.; 9-12 V 151P- AMPLIFICATORE 4 W con regolazioni bassi acuti volume al.; 12 V 153G - GIRADISCHI semiprofessionale B5R mod. C116 cambadischi automatico 153H - GIRADISCHI professionale B5R mod. C117 cambiadischi automatico | Ļ.  | 21.600 +            | s.s.         |
| 15TPP- AMPLIFICATORE 4 W con regolazioni bassi acuti volume al 12 V                                                                                                                                                                                                                                                                                                           | ь.  | 2.400               | 5.5.         |
| 153G - GIRADISCHI semiprofessionale B5R mod, C116 cambadischi automatico                                                                                                                                                                                                                                                                                                      | ٠.  | 4.600               | S.5.         |
| 153H - GIRADISCHI professionale BSR mod. C117 cambadischi automatico 153L - PIASTRA GIRADISCHI automatica senza cambiadischi modifici automatica                                                                                                                                                                                                                              |     | 35.000+             | s.s.         |
| 153L PIASTRA GIRADISCHI automatica senza cambiadischi modello professionale con testina ceramica  L. 48.000 con testina magnetica                                                                                                                                                                                                                                             |     | 44.000+             | 5.5.         |
| L. 48.000 con testina magnetica cambiadischi modello professionale con testina ceramica                                                                                                                                                                                                                                                                                       | - 1 | 60.000+             |              |
| ALIMENIAIUKINI per radio mandianactus undistruturi                                                                                                                                                                                                                                                                                                                            |     | 00.000+             | 5.5.         |
| 0.4 A attacchi a richiesta secondo marche                                                                                                                                                                                                                                                                                                                                     | L.  | 3.500+              |              |
| 1541 - RIDUTTORE di tensione per auto da 12 V a 6-7,5-9 V stabilizzata 0,5 A                                                                                                                                                                                                                                                                                                  | Ē.  | 3.900+              | 5.5.         |
|                                                                                                                                                                                                                                                                                                                                                                               |     |                     |              |
| con relativi schemi e filtri campo di frequenza 40 18.000 Hz                                                                                                                                                                                                                                                                                                                  | L.  | 9.900+              | S.S.         |
| 156G1 - SERIE ALTOPARLANTI per HF. Composta di un wooter diametro mm 250 pneumatico medio dia-<br>metro 130 mm pneumatico blindato begger mm 10 v 10 Eina 23 00011 pneumatico medio dia-                                                                                                                                                                                      |     |                     |              |
| 20/22000 Hz più filtro 3 via 12 dB para ette initi 10 x 10. Pillo a 22 000 Hz Special, gamma utile                                                                                                                                                                                                                                                                            |     |                     |              |
| 157a - RELAIS tipo (SIEMENS) PP 15 due sent til                                                                                                                                                                                                                                                                                                                               | L.  | 34.000+             | S.S.         |
| 157a - RELAIS tipo (SIEMENS) PR 15 due contetti scambio, portata due A. Tensione a rischiesta da 1 a 90 V. 157b - Come sopra ma con quattro contetti scambio                                                                                                                                                                                                                  | L.  | 1.700+              | S.S.         |
| 158A - TRASFORMATORE entrata 220 V wester 0                                                                                                                                                                                                                                                                                                                                   | Ļ.  |                     | s.s.         |
|                                                                                                                                                                                                                                                                                                                                                                               | L.  | 1.000+              | s.s.         |
| nucleo territe dimensioni 35 x 35 x 30                                                                                                                                                                                                                                                                                                                                        |     | 1 000               |              |
| 158D - TRASFORMATORE entrata 220 V uscita 6-12-18-24 V 0.5 A (6-6-6-6)                                                                                                                                                                                                                                                                                                        | ٠.  | 1.800 +             | s.s.         |
| 158E - TRASFORMATORE entrata 220 V uscita 12+12 V 0.7 A                                                                                                                                                                                                                                                                                                                       |     | 1.600 +<br>1.600 +  | 5.5.         |
| TRASFORMATORE entrata 220 V uscite 6-9-15-18-24-30 V 2 A                                                                                                                                                                                                                                                                                                                      | ٠.  | 3.600 +             | 5.5.         |
| 158M - TRASFORMATORE entrata 220 V uscite 35-40-45-50 V - 1.5 A                                                                                                                                                                                                                                                                                                               | Ē.  | 3.600+              | 5.5.         |
| 158D - TRASFORMATORE entrata 220 V uscita 6-12-18-24 V 0.5 A (6+6+6+6)                                                                                                                                                                                                                                                                                                        | Ē.  |                     | 5.5.         |
| 158P TRASEOPMATORE entrata 220 V uscita 0-6-12-24 V 2 A                                                                                                                                                                                                                                                                                                                       | Ē.  | 3.600+              | 5.5.         |
| 1580 - TRASFORMATORE entrata 110 e 220 V uscite 20+20 V 5 A + uscita 17+17 V 3.5 A                                                                                                                                                                                                                                                                                            | L.  | 6.000 +             | 5.S.         |
| 166A - KIT per circulti stampati complete di la 6-12-24 V 10 A                                                                                                                                                                                                                                                                                                                | L.  | 9.600+              | 5.5.         |
| 166B - KIT come sonra ma con 20 Place of 10 plastre, inchiostro, acidi e vaschetta antiacido mis. 180 x 230                                                                                                                                                                                                                                                                   | L.  | 2.400+              | S.S.         |
| 166A - KIT per circulti stampati, completo di 10 piastre, inchiostro, acidi e vaschetta antiacido mis. 180 x 230 168B - KIT come sopra ma con 20 PIASTRE più una in vetronite e vaschetta 250 x 300 188 - SALDATORE, istantaneo 80/100 W                                                                                                                                      | Ļ.  | 3.400+              | S.S.         |
|                                                                                                                                                                                                                                                                                                                                                                               | L,  | 6.800+              | <b>5.5</b> . |
| 185B - CASSETTA MANGIANASTRI come sonra da 90 min L 800, 5 pezzi L. 3000, 10 pezzi L. 6000+s.s.                                                                                                                                                                                                                                                                               |     |                     |              |
| 1858 - CASSETTA MANGIANASTRI come sopra da 90 minut .L. 650, 5 pezzi L. 3000, 10 pezzi L. 6000+s.s.  - VARIATORE DI LUCE da sostituire all'interruttore incasso già preesistente (350 W L. 4.200) -  (650 W L. 5.400) - (1200 W L. 6600)                                                                                                                                      |     |                     |              |
| (650 W L. 5 400) . (1200 W L. 6 500)                                                                                                                                                                                                                                                                                                                                          |     |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                               |     |                     |              |
| 303g - RAFFREDDATORI A STELLA per TO5 TO18 a scelta cad. L. 180                                                                                                                                                                                                                                                                                                               |     |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                               |     |                     |              |
| lazione di corrente, autoprotetto compreso trasformatore e schemi senza contenitore.  Come sopra già montato senza contenitore.                                                                                                                                                                                                                                               | - 1 | 11.400+ 9           |              |
| 360a - Come sopra già montato senza contenitore .  366A - KIT per contatore decadica contenitore                                                                                                                                                                                                                                                                              | Ē.  | 14.400+             | 5.5.         |
| 366A - KIT per contatore decadico, contenente: una Decade 5N7490, una decodifica SN7441, una valvola Nixie GR10M più relativi zoccoli, circuito stampato a schemi II humani.                                                                                                                                                                                                  |     |                     | 3.3.         |
| GR10M più relativi zoccoli, circuito stampato e schemi. Il tutto a                                                                                                                                                                                                                                                                                                            | L.  | 6.000+ 9            | 5.5          |
| oppure a 8.0. Televity altopariant wooter diam. 160 mm; Tweeter diam. 100 mm a 4                                                                                                                                                                                                                                                                                              |     |                     | 3.3.         |
|                                                                                                                                                                                                                                                                                                                                                                               | L.  | 5.400 + s           | S.S.         |
|                                                                                                                                                                                                                                                                                                                                                                               | L.  | 300 + s             | 5.5.         |
| 800C - VALVOLA NIXIE sette segmenti (display) tipo END70                                                                                                                                                                                                                                                                                                                      | L.  | 3.000 + s           | s.s.         |
| 800 - ZOCCOLI per integrati 14/16 piedini 800B - VALVOLA NIXIE TIPO CD71 - CD79 - CD61 con relativi schemi 800C - VALVOLA NIXIE sette segmenti (display) tipo FND70 LEED DIODI LUMINESCENTE 1.5 V max MINIATURA - ROSSO L. 400 - VERDE L. 700+s.s.                                                                                                                            | L.  | 2.500 + s           | S.S.         |
|                                                                                                                                                                                                                                                                                                                                                                               |     |                     |              |
| control porenziometri, condensatori, resistenze, compensatori variabili es                                                                                                                                                                                                                                                                                                    | ε.  |                     |              |
| PER SEMICONDUTTORI CONSULTARE PUBBLICAZIONE PRECEDENTE                                                                                                                                                                                                                                                                                                                        |     |                     |              |
|                                                                                                                                                                                                                                                                                                                                                                               |     |                     |              |

|                                                                                                  |                                                     |                                                                                                                     | A                                     | LTOPARLANTI I                   | PER HF                                                                                                                                                     |                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156F -<br>156h -<br>156l -<br>156m -<br>156m -<br>156p -<br>156p -<br>156g -<br>156s -<br>156r - | Diam. 460 320 320 270 270 210 210 240 x 180 210 160 | Frequenza<br>30/8000<br>40/8000<br>50/7500<br>55/9000<br>65/10000<br>60/9000<br>100/12000<br>180/14000<br>180/13000 | Risp. 32 55 60 65 70 80 75 70 100 110 | Watt 75 30 25 15 10 10 10 10 10 | Tipo Woofer bicon; Woofer bicon. Woofer norm. Woofer bicon. Woofer norm. Woofer bicon. Woofer norm. Middle ellitt. Middle norm. Middle bicon. Middle norm. | L. 55.000+1500 s.s. L. 20.800+1500 s.s. L. 10.500+1000 s.s. L. 7.500+1000 s.s. L. 6.800+1000 s.s. L. 4.200+700 s.s. L. 3.500+700 s.s. L. 3.500+700 s.s. L. 3.500+700 s.s. L. 4.200+700 s.s. L. 2.200+500 s.s. |
|                                                                                                  |                                                     |                                                                                                                     |                                       | TWEETER BLINE                   | DATI                                                                                                                                                       |                                                                                                                                                                                                               |
| 156t -<br>156u -<br>156v -<br>156Z -                                                             | 130<br>100<br>80<br>50 x 10                         | 2000/20000<br>1500/19000<br>1000/17500<br>2000/22000                                                                |                                       | 15<br>12<br>8<br>15             | Cono esponenz. Cono bloccato Cono bloccato Blindato M5                                                                                                     | L. 3.900+ 500 s.s.<br>L. 2.200+ 500 s.s.<br>L. 1.800+ 500 s.s.<br>L. 6.950+ 500 s.s.                                                                                                                          |
| 156xa                                                                                            |                                                     |                                                                                                                     | SOSPI                                 | ENSIONE PNEU                    | MATICA                                                                                                                                                     |                                                                                                                                                                                                               |
| 156XB<br>156Xc<br>156xc<br>156XL                                                                 | 125<br>130<br>200<br>250<br>320                     | 40/18000<br>40/14000<br>35/6000<br>20/6000<br>20/6000                                                               | 40<br>42<br>38<br>25<br>22            | 10<br>12<br>16<br>20<br>50      | Pneumatico<br>Pneum./Blindato<br>Pneumatico<br>Pneumatico<br>Pneumatico                                                                                    | L. 6.950 + 700 s.s.<br>L. 6.950 + 700 s.s.<br>L. 9.900 + 700 s.s.<br>L. 11.900 + 1000 s.s.<br>L. 33.000 + 1000 s.s.                                                                                           |

#### CONDIZIONI GENERALI di VENDITA della ELETTRO NORD ITALIANA

AVVERTENZA. Per semplificare ed accelerare l'evasione degli ordini, si prega di citare il N. ed il titolo della rivista cui si riferiscone gli osgetti richiesti rilevati dalla rivista stessa. - SCRIVERE CHIARO (possibilmente in STAMPATELLO) nome e indirizzo del Committente, città e N. di codice postale anche nel corpo della lettera. OGNI SPEDIZIONE viene effettuata dietro invio ANTICIPATO, a mezzo assegno bancario o vaglia postale, dell'importo totale del pezzi ordinati, più le spese postali da calcolarsi in base a L. 400 il minimo per C.S.V. e L. 500/600 per pacchi postali. Anche in caso di PAGAMENTO IN CONTRASSEGNO, occorre anticipare, non meno di L. 2.000 (sia pure in francobolli) tenando però presente che le spese di spedizione aumentano de L. 300 a L. 500 per diritti postali di assegno.
RICORDARSI che non si accettano ordinazioni per importi inferiori a L. 3.000 oltre alle spese di spedizione.

#### ADVANCE: OSCILLOSCOPI e MULTIMETRI DIGITALI

... per risolvere i vostri problemi tecnici con il minimo costo



#### OSCILLOSCOPIO Modello OS240

- DC 10 MHz
- 2 canali con sensibilità 5 mV/cm
- schermo 8 x 10 div.
- trigger semi-automatico
- sincronismo TV
- molto compatto (13 x 27 x 31 cm)
- L. 365.000 consegna pronta

#### OSCILLOSCOPIO Modello OS140

- ome il Modello OS240 ma a 1 canale
- L. 305.000 consegna pronta

#### ALTRI OSCILLOSCOPI DISPONIBILI

modello OS250 : DC - 10 MHz modello OS1000A: DC - 20 MHz modello OS3000 : DC - 40 MHz



#### MULTIMETRO DIGITALE ALPHA

- 3 cifre a LED + fuori scala 20 %
- Vdc, Vac, Idc, Iac, Ohm
- precisione in Vdc 0,5 %
- alimentazione a batteria
- estremamente compatto (12 x 6 x 17 cm)
- L. 155.000 consegna pronta

Per maggiori informazioni, offerte, dimostrazioni TELEFONATE o SPEDITE IL TAGLIANDO A LATO al Distributore esclusivo per l'Italia:

#### ELETTRONUCIEONICA s. p. a.

Divisione strumenti elettronici di misura Piazza De Angell, 7 - 20146 MILANO - Tel. 49.82.451

Aprile 75 - Prezzi e caratteristiche tecniche potranno essere modificati senza preavviso.

#### elettronucleonica s.p.a.

Divisione strumenti elettronici di misura Piazza De Angeli, 7 - 20146 MILANO

#### TAGLIANDO VALIDO PER

- □ avere una dimostrazione del Modello ....... ☐ ricevere un'offerta del Modello .........
- ☐ ricevere il catalogo dettagliato del Mod, .....

Nome e Cognome ....... Ditta o Ente .....

Indirizzo

cq - 5/75



# CTC

# THE POWER IN RF POWER

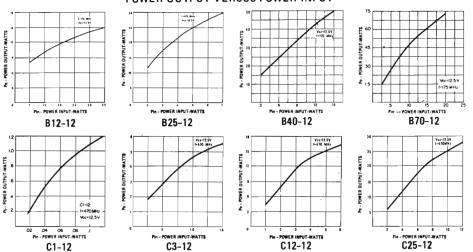
Communications Transistor Corporation An affiliate of Varian Ass. VARIAN S.P.A. · LEINI · TORINO

Authorized Distributors: STE · v. Maniago 15 · MILANO SFERA · v. Asmara 72 · ROMA



#### **COMMUNICATIONS TRANSISTOR CORPORATION**






La Communications Transistor Corporation, facente parte del famoso gruppo industriale Eimac/Varian (U.S.A.), produce oltre 70 differenti tipi di transistor per tutti i modi di trasmissione in una gamma di frequenze comprese tra 1,6 MHz e 3 GHz con potenze di uscita da 1 W fino a 200 W e con tensioni di alimentazione da 8 V a 28 V ● STRUTTURA « STRIPLINE » SU SUPPORTO CERAMICO ERMETICO ● BASSA RESISTENZA TERMICA ● BASSA INDUTTANZA ● RESISTENZA A VSWR INFINITO ● MTF SUPERIORE A 150.000 ORE.

| Mod.     | Freq.<br>MHz | Pout W<br>12,5 Vcc | Prezzo<br>(I.V.A. incl.) |
|----------|--------------|--------------------|--------------------------|
| A 25-12  | 27           | 25                 | 19.250                   |
| A 50-12  | 27           | 50                 | 30.800                   |
| S 10-12  | 1,5-30       | 10 PEP             | 15.400                   |
| S 30-12  | 1,5-30       | 30 PEP             | 26.950                   |
| S 70-12  | 1,5-30       | 70 PEP             | 52.500                   |
| Varactor |              | Pin W              |                          |
| VAB 890  | 432          | 50                 | 18.500                   |
| VAB 891  | 1296         | 25                 | 18.500                   |

| Mod.    | Freq.<br>MHz | Pout W<br>12,5 Vcc | Prezzo (I.V.A. incl.) |
|---------|--------------|--------------------|-----------------------|
| B 3-12  | 145          | 4                  | 6.500                 |
| B 12-12 | 145          | 12                 | 8.900                 |
| B 25-12 | 145          | 25                 | 17.600                |
| B 40-12 | 145          | 40                 | 21.700                |
| B 70-12 | 145          | 70                 | 44.700                |
| C 1-12  | 432          | 1                  | 5.800                 |
| C 3-12  | 432          | 3                  | 7.700                 |
| C 12-12 | 432          | 12                 | 12.300                |
| C 25-12 | 432          | 25                 | 27.700                |

#### POWER OUTPUT VERSUS POWER INPUT



Sono disponibili su richiesta transistori come i sopracitati con tensione di alimentazione di 28 V, transistori per CATV, per classe lineare A e B fino a 50 W e fino a 2500 MHz.

Spedizione a richiesta di documentazione dettagliata per ogni tipo di transistore C T C e quotazioni per quantitativi.

Amplificatore lineare per FM, AM e SSB

mod. AL 8

Potenza d'uscita: 10 W FM, 8 W PEP AM e SSB a 13,5 V Potenza d'ingresso: 1,2 W FM, 1 W PEP AM e SSB Impedenza d'ingresso e d'uscita:  $50~\Omega$  (regolabile) Alimentazione: 11-15~Vcc.~1,2~A Dimensioni: 132~x~53~x~35~mm.

Impiega un transistore strip-line CTC B 12-12 quale amplificatore in classe B con il punto di lavoro stabilizzato da un diodo zener. Completo di relè d'antenna con via ausiliaria per commutare l'alimentazione RX-TX.



CONDIZIONI DI VENDITA: Per pagamento contrassegno, contributo spese di spedizione e imballo L. 1.000. Per pagamento anticipato a 1/2 vaglia, assegno, o ns. c/c postale 3/44968, spedizione e imballo a ns. carico. DEPLIANTS DETTAGLIATI CON SCHEMI E LISTINO PREZZI SARANNO INVIATI GRATUITAMENTE A CHIUNQUE NE FACCIA RICHIESTA.

STE s.r.7. - via Maniago, 15 - 20134 MILANO - Tel. 21 57 891 - Cable: STETRON

#### ALIMENTATORE PS 10 STABILIZZATO

PROFESSIONALE • ULTRACOMPATTO • BASSO COSTO



- Tensione costante
- Corrente costante
- Protezione integrale alle sovracorrenti
- Protezione integrale alle sovratensioni
- Elevata affidabilità senza limiti impiego
- Garanzia 12 mesi
- L. 72.000 tutto compreso

#### CARATTERISTICHE TECNICHE:

Tensione di uscita: 10 - 14 V D.C.

Corrente erogata: 10A in modo continuo. Corrente regolata: 0-10A variabile con continuità

Stabiliz. carico: entro ± 15mV alla max corrente Stabiliz. rete:  $\pm$  0.0 1% per variaz. del  $\pm$  10% a tensione costante: 1mV max

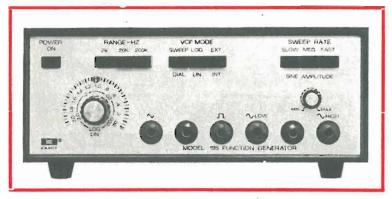
Ripple: a corrente costante: 2mV max Alimentazione: 220 V A.C. 50Hz-280VA Dimensioni: 1 200 x h 120 x p 260 mm

Peso: 8 Kg.

Sono disponibili depliants illustrativi.

Condizioni di vendita: Spedizioni ovunque - Porto assegnato

Pagamento contrassegno - Imballo gratis.


#### **ELECTRONIC DIVISION**

06050 IZZALINI DI TODI (PG) ITALY - TEL. (075) 88.21.27

cq - 5/75

#### GENERATORI DI FUNZIONI EXACT

... per risolvere i vostri problemi tecnici con il minimo costo



#### GENERATORE DI FUNZIONI Modello

Forme d'onda in uscita: sinusoidale, quadra, triangolare Gamma di frequenza: 2 Hz - 200 kHz con variazione lineare e logaritmica

Tensione d'uscita: 1 V<sub>RMS</sub>, regolabile, per onde sinusoidall; 3 V<sub>n</sub>, fissa, per onde quadre (livello TTL); 1 V<sub>pp</sub>, fissa, per onde triangolari V.C.F.: possibilità di controllare mediante un segnale esterno la frequenza del gene-

ratore (fino a 3 decadi di variazione con un segnale da 0 a 1 V)

SWEEP automatico lineare e logaritmico su tre decadi di frequenza (rapporto 1000 : 1) ALIMENTAZIONE AUTONOMA MEDIANTE BATTERIA DA 9 V INCORPORATA.

L. 150.000 - consegna pronta



Modello 190

Modello 196

Modello 191

Forme d'onda sinusoidale, quadra, triangolare, rampa, impulsi 0 0,1 MHz - 1 MHz 20 Vpp a circuito aperto, 10 V<sub>pp</sub> su 600 Ω • V.C.F. • DC offset Alimentazione 220 V - 50 Hz.

L. 250.000 - consegna pronta

Come modello 190 ma con alimentazione 220 V 50 Hz e mediante batterie ricaricabili

L. 350.000 - consegna pronta

Come modello 190 ma con in più SWEEP automatico lineare e logaritmico

L. 360.000 - consegna pronta

#### Più di 30 altri modelli disponibili Interpellateci!

Per maggiori informazioni, offerte, dimostrazioni TELEFONATE o SPEDITE IL TAGLIANDO A LATO al Distributore esclusivo per l'Italia:

#### ELETTRONUCIONICA S. p. a.

Divisione strumenti elettronici di misura Piazza De Angeli, 7 - 20146 MILANO - Tel, 49.82.451

Aprile 75 - Prezzi e caratteristiche tecniche potranno essere modificati senza preavviso.

cq - 5/75 -

#### elettronucleonica s.p.a.

Divisione strumenti elettronici di misura Piazza De Angeli, 7 - 20146 MILANO -

□ avere una dimostrazione del Modello

#### TAGLIANDO VALIDO PER

|   | ricevere | un'offerta  | del | Modello    |        |
|---|----------|-------------|-----|------------|--------|
| П | ricevere | il ontalogo | dot | taaliata d | al Mad |

☐ ricevere il catalogo dettagliato del Mod. .....

Nome e Cognome ......

Ditta o Ente .....

cq - 5/75

#### **ORION 1001**

#### elegante e moderno amplificatore stereo professionale 30+30 WRMS

Ideale per quegli impianti dai quali si desidera un buon ascolto di vera alta fedeltà sia per la musica moderna che classica.

Totalmente realizzato con semiconduttori al silicio nella parte di potenza, protetto contro il sovraccarico e il corto circuito, nella parte preamplificatrice adotta una tecnologia molto avanzata: i circuiti ibridi a film spesso interamente progettati e realizzati nei nostri laboratori.

Mobile in legno e metallo, pannello satinato argento, V-U meter per il controllo della potenza di uscita.



 $\Omega$  8 Uscita altoparlanti Uscita cuffia Ingressi aux Ingressi tuner Tape monitor reg. Tape monitor ripr. Controllo T. bassi Controllo T. alti Banda passante Rapp. segn./distur.

 $\Omega$  8 Ingressi phono magn. 3 mV 100 mV 250 mV 150 mV/100K 250 mV/100K ± 18 dB a 50 Hz + 18 dB a 10 kHz 20 ÷ 40.000 Hz (-1,5 dB) Distorsione armonica < 0,2 % Distorsione d'interm. < 0,3 % Ingresso b. livello Rapp. segn./disturb. ingresso a. ilvello Dimensione

420 x 290 x 120 Alimentazione 220 V c.a. Speakers system: in posiz. off funziona la cuffia (phones) in posiz. A solo 2 box principali in posiz. B solo 2 box sussidiari in un'altra

30 + 30 W RMS

**ORION 1001** montato e collaudato L. 106.000 ORION 1001 KIT di montaggio con unità premontate L. 87.000

Per chi volesse acquistare singolarmente tutti i pezzi che costituiscono il mod. ORION 1001 sono disponibili:

| MPS                      | L. 21.500 | Mobile ORIO         | N 1001 <b>L. 7.000</b> |
|--------------------------|-----------|---------------------|------------------------|
| AP30S                    | L. 28.500 | Pannello ORIOI      | N 1001 <b>L. 2.500</b> |
| Telaio ORION 1001        | L. 6.500  | KIT minuterie ORIOI | N 1001 <b>L. 9.600</b> |
| <b>TR80</b> 220/36/12+12 | L. 6.200  | V-U meter           | L. 5.200               |

#### per un perfetto abbinamento DS33

35 ÷ 40 W sistema tre vie a sospens, pneum. altoparlanti:

1 Woofer da 26 cm

Midrange da 12 cm

1 Tweeter a cupola da 2 cm risposta in frequenza 30 ÷ 20.000 Hz frequenza di crossover 1200 Hz; 6000 Hz impedenza  $8 \Omega$  ( $4 \Omega$  a richiesta) dimensioni cm  $35 \times 55 \times 30$ 

**DS33** montato e collaudato L. 63.000 cad.

L. 53.500 cad. **DS33 KIT** di montaggio

Per chi volesse acquistare singolarmente tutti i pezzi che costituiscono il mod. DS33 sono disponibin:

Mobile Tela

L. 17.000 L. 2.000 Filtro 3-30/8 L. 10.500 W250/8

L. 12.500

MR127/8 Dom-Tw/8 L. 5.500 L. 6.000

PREZZI NETTI imposti compresi di I.V.A. - Garanzia 1 anno su tutti i modelli tranne i kit di montaggio. Spedizione a mezzo pacco postale o corriere a carico del destinatario. Per gli ordini rivolgersi ai concessionari più vicini o direttamente alla sede.



#### **ZETA** elettronica

via L. Lotto, 1 - tel. (035) 222258 24100 BERGAMO

#### CONCESSIONARI

- 10128 TORINO - 16121 GENOVA L'ELETTRONICA A.C.M. 20128 MILANO 34/38 TRIESTE AGLIETTI & SIENI 50/29 FIRENZE DEL GATTO 00177 ROMA Elett. BENSO 12/00 CUMPO - 20128 MILANO

Bottega della Musica - 29100 PIACENZA

- via H. Balzac, 19 via Settefontane, 52
via S. Lavagnini, 54 - via Casilina, 514-516 - via Negrelli, 30 - v.le Margherita, 21 - via XXIX Settembre 8/b-c - 36100 VICENZA 60100 ANCONA

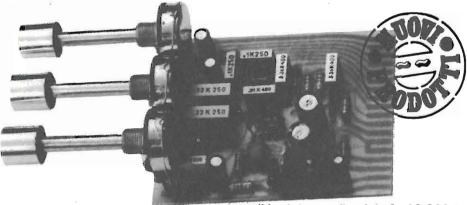
via Farnesiana 10/b

- via Gioberti, 37/D

· via Brig. Liguria, 78-80/r

# ODIAL

#### TANTI AMICI IN PIÙ NELL'ETERE




Esclusiva per l'Italia; MELCHIONI ELETTRONICA - Divisione RADIOTELEFONI - Via Colletta, 39 - 20135 Milano



Modernissima unità a circuiti integrati per il controllo attivo dei toni. Il TC 6 è stato espressamente realizzato per essere usato in unione ad un equalizzatore HI-FI del tipo PE 6, del quale costituisce il naturale complemento. Progettato per fornire la massima dinamica possibile sul'l'intero spettro delle frequenze audio, è in grado di effettuare una escursione totale di 46 dB ai due estremi della banda acustica.

Fornito di una notevole capacità di sopportazione dei sovraccarichi in ingresso mantiene una grande linearità di risposta. Grazie a queste sue caratteristiche si presta ottimamente ad essere impiegato con qualsiasi equalizzatore o miscelatore, od anche fra uno o più preamplificatori, nella veste di amplificatore sommatore in impieghi professionali quali discoteche, locali pubblici ecc.. Per estendere le possibilità d'impiego è stato dotato della regolazione di sensibilità d'ingresso, nonchè dei filtri di scratch e rumble. La stabilizzazione a zener della tensione di alimentazione ne rendono l'impiego sicuro e praticamente universale.



(Montato e collaudato L. 12.900 IVA inclusa)

#### **CARATTERISTICHE:**

Sensibilità d'ingresso: max 0,2 V eff. Impedenza d'ingresso: maggiore/uguale 100 Kohm. Possibilità di sovraccarico: maggiore/uguale 15 dB Uscita: tarata per 400 mV eff. Impedenza d'uscita: maggiore/uguale 50 Kohm. Distorsione: minore o uguale 0,12% Banda Passante: 20 ÷ 20000 Hz ± 2 dB Rapporto Sn: maggiore o uguale 70 dB. Alimentazione: ± 20 ÷ ± 50 Vcc. 9 mA Dimensioni: 92 x 76 x 41 mm.

| Escurs. toni    | rif. a 1 KHz | Esaltazione  | Attenuazio |
|-----------------|--------------|--------------|------------|
| Bassi           | 50 Hz        | + 18 dB      | - 20 d     |
|                 | 30 Hz        | + 22 dB      | - 23 d     |
| Acuti           | 15 KHz       | + 18 dB      | - 20 d     |
|                 | 20 KHz       | + 24 dB      | - 22 d     |
| Filtri riferiti | a 1 KHz.     | Attenuazione |            |
| Scratch         | 6 KHz        | - 6 dB       |            |
|                 | 8 KHz        | - 9 dB       |            |
|                 | 15 KHz       | - 20 dB      |            |
| Rumble          | 55 Hz        | - 6 dB       |            |
|                 | 32 Hz        | - 32 dB      |            |

## GVH GIANNI VIECCHIETTI

ELENCO CONCESSIONARI: ANCONA DE DO ELECTRONIC - VIA GIORIAN BRIVO A SCIERAL BENTIVOCALO FILIPPO VIGERIII N. GEOGRAPIA BENTIVOCALO FILIPPO VIGERIII N. GEOGRAPIA RENEZIONA DE LA VIA GEOGRAPIA DE LA VIA VIA DE LA VIA VIA DE LA VIA VIA VIA DE LA VIA VIA VIA VI

RICHIEDETE SUBITO GRATIS il depliant in cui sono descritte tutte le nostre unità: preamplificatori, amplificatori per ogni esigenza,



#### sconti a chi si abbona

sconto 16%

per ogni nuovo abbonamento (non abbonato nel 1974)

974) 12 numeri L. 12-800

L. 10.000

sconto 20%

per i già abbonati 1974 che rinnovano

(fedeltà)

12 numeri L. 12:000

L. 9.500

sconto 15%

sull'acquisto di libri delle edizioni CD, riservato agli abbonati.



L. \$3500

L. 30800

L. 45500

L. 4>50

scontato L. 3.000 scontato
L. 3.000

scontato

scontato
L. 4.000

sconto 20% sui due raccoglitori indivisibili per anno L. 2.500 totali per sole L. 2.000 riservato agli abbonati - Disponibili le annate 1975 - 74- 73.

TUTTI I PREZZI INDICATI comprendono tutte le voci di spesa (imballi, spedizioni, tasse, ecc.) quindi null'altro è dovuto all'Editore.

**SI PUO' PAGARE** con assegni personali e circolari, vaglia postali, C/C P.T. 8/29054 intestati «Edizioni CD». Per piccoli importi anche in francobolli da L. 50 e presso la nostra sede.

#### LETTORI, DATE PIU' VALORE AI VOSTRI ANNUNCI!

Avrete certo notato che da molti mesi cq seleziona le offerte e le richieste in quattro grandi classi: CB, OM/SWL, SUONO, VARIE.

Questo è stato attuato per dare un migliore servizio a voi inserzionisti, per semplificare la ricerca, per rendere più sicuro il reperimento delle notizie che interessano il singolo. Approfittatene, dunque, e vicino alla casellina  $\square$  in cui dovete fare la X, indicate anche la categoria della inserzione.

Al retro ho compilato una

Esempio:



RICHIESTA

cq offre la più ampia e qualificata rubrica di inserzioni gratuite tra tutte le riviste italiane del ramo: date valore alle vostre merci selezionando le inserzioni!

# progetto 144

15BVH, Guerrino ("Rino") Berci

La necessità di poter trasmettere in AM-FM-SSB mi ha spinto a progettare e a costruire la presente apparecchiatura.

Al momento della stesura dell'articolo il TX è stato collaudato per circa tre mesi durante i quali sono stati rilevati i pregi e minimizzati gli eventuali piccoli difetti con opportune modifiche circuitali.

Spero che questa mia esposizione possa essere di una certa utilità a chi ha la possibilità teorica e pratica di costruire i propri apparati: non tanto, penso, nella globalità del progetto perché ognuno tende sempre a mettere una propria impronta nelle autocostruzioni, ma nel « pizzicare » qua e là qualche sistema circuitale ritenuto di un certo interesse.

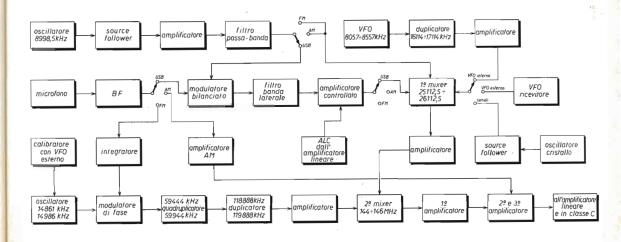
# Trasmettitore eccitatore AM-FM-SSB per i due metri

Poichè il circuito si presenta di una certa difficoltà e complessità, sconsiglio di intraprendere la realizzazione a chi non possiede almeno una piccola esperienza in questo campo. La realizzazione di un complesso a VFO per AM-FM-SSB a doppia conversione richiede la massima funzionalità di ogni piccola parte e per quanto io cercherò di essere il più chiaro possibile nella esposizione delle varie sezioni, è necessario da parte dell'autocostruttore quella piccola esperienza che lo può trarre da eventuali difficoltà incontrate durante le varie fasi della realizzazione.

Con questo non voglio scoraggiare nessuno, però voglio esporre le cose in maniera realistica perché abbastanza spesso accade che alcuni realizzano un circuito senza conoscere l'esatto funzionamento delle singoli parti e se il risultato poi è molto scadente, non attribuiscono la colpa alla propria inesperienza ma a immaginari errori di schema o di progettazione.

Il trasmettitore è in sostanza un eccitatore, un pilota per un amplificatore lineare in quanto la potenza in uscita varia dai 70 ai 100 mW a seconda della frequenza. Ho ritenuto opportuno non aumentare la potenza in uscita per non creare difficoltà circuitali in stadi lineari a transistori. Con 70 mW di radiofrequenza è possibile pilotare in pieno e forse anche eccessivamente una QQE03/12 in classe A ottenendo 2,5 W in uscita. Se a questa valvola si fa seguire una QQE06/40 la potenza output sarà di circa 70 W in FM, 60 W pep in SSB, 25 W pep in AM, più che sufficienti per un ottimo traffico in due metri.

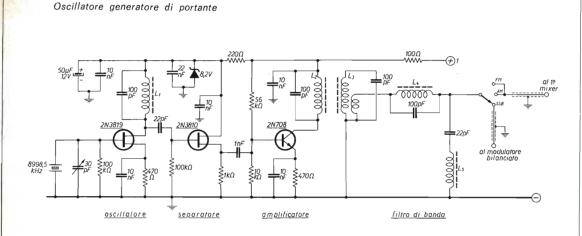
Un amplificatore lineare di queste caratteristiche non richlede eccessiva esperienza, penso quindi che moltissimi potranno intraprendere da soli il progetto e la costruzione anche perché varie riviste hanno pubblicato a più riprese schemi di tal genere. Comunque, nell'ambito di questo « progetto 144 », illustrerò il mese prossimo l'amplificatore da me usato, comprendente una QQE03/12 pilota e una QQE06/40 finale di potenza.


La condizione più importante è di avere un eccitatore che possa soddisfare le più difficili esigenze, e qui sorgono le difficoltà, mentre per il fattore potenza le cose cambiano in quanto con due sole valvole si ottengono mediamente 60 W con difficoltà estremamente ridotte.

Dopo questa doverosa premessa e dopo aver esposto le ragioni per cui l'eccitatore ha una potenza di uscita molto bassa, vediamo quali sono le caratteristiche essenziali:

- Potenza di uscita dai 70 ai 100 mW a seconda della frequenza;
- VFO con stabilità di circa 100 Hz l'ora dopo 10 min dall'accensione;
- Copertura dei due megacicli in due bande;
- Possibilità di operare con VFO interno, VFO esterno, canalizzato;
- Modulazione AM con percentuale di profondità al 100 % nei picchi;
- Banda laterale unica con soppressione della banda laterale indesiderata rispecchiante le caratteristiche del filtro a cristalli;
- Modulazione di frequenza indiretta ottenuta modulando di fase l'oscillatore della seconda conversione con opportuno stadio integratore;
- Impiego di 26 transistor, 10 FET, 5 MOSFET, 16 diodi.

#### Lo schema a blocchi


Dallo schema a blocchi si possono comprendere a grandi linee le varie parti dell'eccitatore in modo da poter analizzare successivamente le varie funzioni delle varie sezioni avendo già un'idea ben precisa di tutto il complesso.



#### Oscillatore generatore di portante

E' composto da un'oscillatore controllato a cristallo e da uno stadio amplificatore. La frequenza nominale del cristallo è di 8998,5 kHz in modo da poter successivamente generare la banda laterale superiore. La frequenza centrale del filtro a cristalli è di 9 MHz, in corredo ad esso sono forniti due cristalli a 8998,5 e 9001,5 kHz.

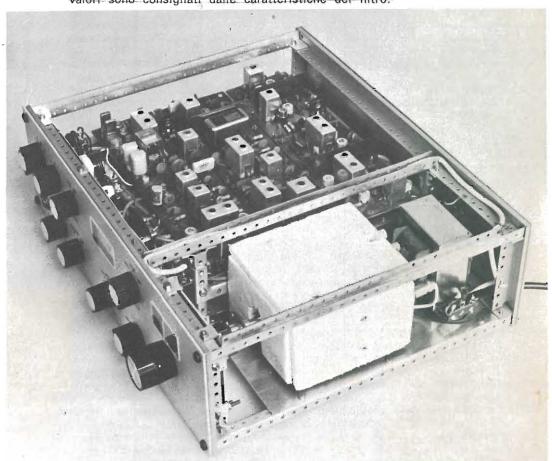
Dato che le conversioni del presente eccitatore sono effettuate per somma, se si usa il primo cristallo avremo la USB, e se si usa il secondo la LSB. Io non ho previsto una commutazione per i due cristalli in quanto in due metri, convenzionalmente, viene usata la USB, però nulla vieta di inserire un piccolo relay e commutare i due cristalli.



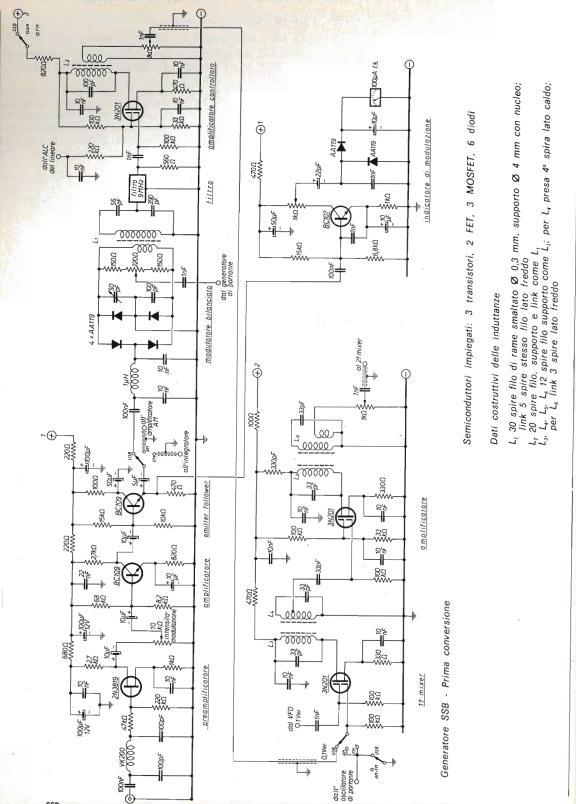
Semiconduttori impiegati: 1 transistor, 2 FET, 1 diodo.

Dati costruttivi delle induttanze

 $L_1$ ,  $L_2$ ,  $L_3$ ,  $L_4$  20 spire filo di rame smaltato Ø 0,3 mm, supporto Ø 4 mm con nucleo; per  $L_3$  link 3 spire stesso filo lato freddo.  $L_5$  10 spire supporto e filo come  $L_1$ .


Dopo l'oscillatore è stato necessario inserire uno stadio amplificatore in quanto all'uscita è presente un filtro di banda a tre circuiti accordati a 9 MHz più un circuito trappola a 27 MHz. I circuiti accordati attenuano il segnale in uscita ma filtrano sufficientemente le armoniche tanto che i prodotti spurii in 144 MHz sono abbondantemente al di sotto degli 80 dB rispetto la fondamentale. Le bobine  $L_2$  e  $L_3$  sono state eseguite in contenitori a « doppio accordo ». Da tenere presente, e così anche in seguito, che se non vi sono circuiti a doppio accordo, le varie bobine devono essere perfettamente schermate l'una dall'altra. Per la taratura si proceda come segue:

- 1) Ruotare il nucleo della L<sub>1</sub> fino all'innesco delle oscillazioni;
- 2) Tarare  $L_2$ ,  $L_3$ ,  $L_4$  per la massima uscita che sotto carico sarà di circa 1,5 V;
- 3) Con l'aiuto di un ricevitore sintonizzato a circa 27 MHz, ruotare il nucleo della  $L_{\scriptscriptstyle 5}$  fino alla minima indicazione dello S-meter.


#### Generatore SSB e prima conversione

Lo stadio modulatore ha come preamplificatore un FET: si ottiene una discreta preamplificazione con alta impedenza di ingresso e bassissimo rumore. Segue un amplificatore accoppiato in alternata e un emitter follower che ha la funzione di abbassare notevolmente l'impedenza di uscita.

Il modulatore bilanciato è di tipo convenzionale con quattro diodi posti ad anello; con il compensatore da 50 pF e il trimmer resistivo da 220  $\Omega$  si opera il bilanciamento. Per non ripetere sempre le stesse cose rimando ai miei precedenti articoli e più recentemente ad altri di diverso autore apparsi su **cq elettronica**, per quanto concerne il funzionamento e la taratura del modulatore bilanciato. L'accoppiamento tra  $L_1$  e filtro a quarzi avviene attraverso un partitore capacitivo i cui valori sono consigliati dalle caratteristiche del filtro.



Una particolare attenzione va posta all'amplificatore controllato. Per ottenere una linearità eccellente, ho usato un MOSFET a doppio gate. I MOSFET inoltre hanno la particolarità di variare il proprio guadagno a seconda della tensione presente sul gate 2: generalmente con  $+3\,\mathrm{V}$  si ha il massimo guadagno, mentre con  $-1.5\,\mathrm{V}$  si ottiene una ottima attenuazione. Nelle presenti condizioni di polarizzazione si hanno all'incirca  $+2.8\,\mathrm{V}$  sul gate 2 del 3N201; avremo quindi il massimo guadagno dell'amplificatore. Se noi applichiamo una tensione negativa all'ingresso della resistenza da 220 k $\Omega$ , otterremo una progressiva diminuzione della tensione positiva sul gate 2, quindi una minore amplificazione. Da questo si comprende che usando un amplificatore lineare, per conservare la linearità anche sotto i picchi più pronunciati, si può controllare lo stadio a MOSFET con una tensione negativa generata dal lineare stesso.



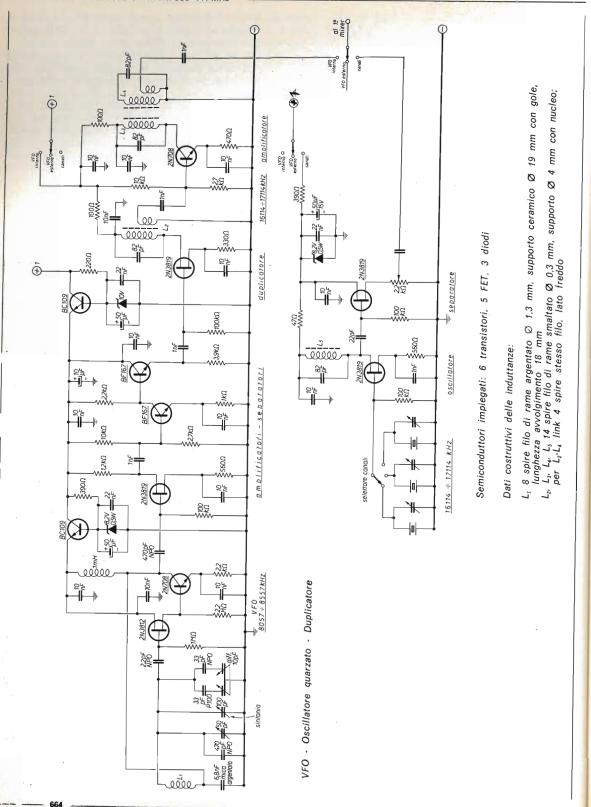
A questo controllo si dà il nome di ALC (Automatic Level Control). La ALC è utilissima, di ottimo funzionamento, presente in tutti i trasmettitori in SSB anche se è stata definita dall'Handbook come « chiudere la porta della stalla quando i primi cavalli sono fuggiti ». Se si ragiona un po' sul funzionamento, si comprende la ragione di tale definizione; con opportune costanti di tempo, però, si può fare in maniera che « solo i primi cavalli fuggono, mentre i successivi rimangono imprigionati »

Il trimmer da 1 k $\Omega$  sul link della  $L_2$  va regolato in modo da avere non più di 0,1 V di RF all'ingresso del mixer. Sempre per le stesse ragioni di linearità, un MOSFET viene usato come mixer. Sul gate 1 viene immesso il segnale modulato e sul gate 2 il VFO. A un attento e pignolesco esame dello schema, ci si accorge che il trimmer per la regolazione del livello di ingresso del segnale al mixer non viene posto nella posizione AM-FM. Mentre per la SSB gli stadi devono assolutamente e necessariamente lavorare nel tratto lineare, quindi il rapporto tra segnale modulato e non deve essere 1:10, per la AM e FM questo non è necessario in quanto a questo punto del circuito vi è solo portante, e non modulazione come per la SSB. Si può immettere nel gate 1 anche 0,5  $V_{\rm RF}$ : avremo dunque una maggiore potenza in uscita. E' opportuno però non esagerare per non avere segnali spurii molto forti.

Un altro MOSFET viene usato come amplificatore lineare e all'uscita avremo un segnale variabile da 25112,5 a 26112,5 kHz di discreta ampiezza tanto che sul link della  $L_{\delta}$  è presente un trimmer da 1 k $\Omega$  per regolare opportunamente il livello del segnale in ingresso al secondo mixer.

Le bobine L<sub>3</sub>-L<sub>4</sub> e L<sub>5</sub>-L<sub>6</sub> sono a doppio accordo: il trasferimento di energia avvieng induttivamente in modo da ripulire il più possibile il segnale utile. Naturalmente devono essere accordate in maniera tale che malgrado l'escursione di un megaciclo l'ampiezza del segnale in uscita rimanga pressoché costante.

#### VFO, oscillatore quarzato, duplicatore


Il VFO qui presentato è praticamente lo stesso da me pubblicato su **cq elettronica** 7/72. Per le necessarie informazioni rimando il lettore all'articolo da me scritto su quel numero. La prerogativa principale del VFO è la estrema stabilità tanto che le caratteristiche sono veramente buone anche se viene operata una duplicazione di frequenza. Una particolare cura dovrà essere posta nella costruzione della bobina il cui supporto dovrà essere necessariamente in ceramica con gole e il filo di rame argentato dovrà essere avvolto ben teso. Anche la costruzione meccanica dovrà essere estremamente solida. Io ho usato il profilato di alluminio di 2 mm, dopo averlo piegato ho fatto saldare la congiunzione. Per isolare termicamente il VFO, ho incollato dei fogli di polistirolo espanso su tutte le facciate dell'involucro. Penso sia superfluo raccomandare un condensatore variabile molto solido, esente da giochi sull'asse, con lamelle abbastanza spesse per evitare la microfonicità. I due stabilizzatori di tensione dovranno essere posti fuori dal-l'involucro in modo che il tenue calore da essi generato non alteri minimamente la frequenza.

Lo stadio duplicatore è a FET, mentre l'amplificatore è un comunissimo 2N708. Le bobine L<sub>3</sub>-L<sub>4</sub> sono a doppio accordo: devono essere tarate assieme alla L<sub>2</sub> per avere un livello pressoché costante di RF in uscita su tutta l'escursione del VFO. Per operare canalizzato, si sostituisce al posto del VFO un oscillatore controllato a quarzo del tutto convenzionale. Da notare che durante la trasmissione sia a canali, sia a VFO esterno, si interrompe **solo** l'alimentazione allo stadio duplicatore e **non** anche al VFO interno, questo per mantenere il VFO nelle condizioni di stabilità necessaria.

Per calcolare la frequenza del cristallo, se si vuol trasmettere su un prestabilito canale, si usa la seguente formula: frequenza cristallo = frequenza che si vuol ricevere — (oscillatore di portante + otto volte la frequenza del cristallo della seconda conversione).

Se per esempio si vuol trasmettere sulla frequenza di ingresso del R7, ossia 145.175 MHz. avremo

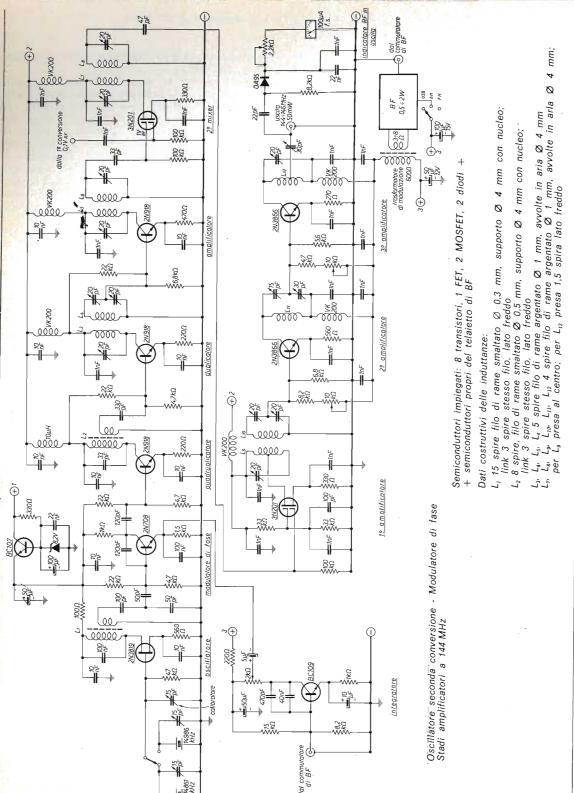
X = 145175 — (8998,5 + 8 x 14986) X = 145175 — (8998,5 + 119888) X = 145175 — 128886,5 = 16288,5 kHz.



#### Oscillatore seconda conversione, modulatore di fase, stadi amplificatori a 144 MHz

Il valore dell'oscillatore della seconda conversione è di 118.888 kHz per la gamma  $144 \div 145$  e di 119.888 kHz per la gamma  $145 \div 146$ .

Sarebbe stato molto più semplice usare quarzi su questa frequenza oppure valori di frequenze la metà più basse in modo da eliminare diversi stadi moltiplicatori e amplificatori. Se il tx fosse stato progettato solo per AM e SSB, ciò sarebbe stato possibile, il tx però deve trasmettere anche in FM ed è stato necessario introdurre diverse moltiplicazioni di frequenza per ottenere un indice di deviazione opportuno. Le moltiplicazioni di frequenza sono otto, più che sufficienti per ottenere senza distorsioni una deviazione massima di  $\pm$  10 kHz. L'oscillatore è a FET, i valori delle frequenze sono di 14.861 kHz e di 14.986 kHz rispettivamente per le due gamme. Se si usa un VFO esterno, nel mio caso quello del ricevitore, è necessario porre sul pannello frontale una manopola contrassegnata con CAL ADJ alla quale fa capo un variabile da 15 pF in modo da poter variare la frequenza di qualche chilociclo. Il mio ricevitore ha in comune con il trasmettitore solo il VFO, inevitabilmente c'è una leggera differenza sui valori finali delle conversioni quindi è necessario compensaria con il CAL ADJ. Ponendo il trasmettitore in calibrazione, il VFO nella posizione RX, il ricevitore in posizione USB, si ascolta una nota di battimento dovuta a due differenti frequenze. Con il CAL ADJ si ritocca la frequenza di conversione in modo che la differenza tra trasmissione e ricezione sia zero. A questo punto il ricevitore e trasmettittore sono isofrequenza e con il solo VFO del ricevitore si può trasmettere esattamente nella frequenza in cui si riceve. Sempre usando il VFO del ricevitore si potrebbe operare con una differenza di 600 kHz; per questa condizione occorrerebbe usare un quarzo di conversione di 14.911 kHz. All'oscillatore segue uno stadio che ha il compito di operare una rotazione di fase proporzionale alle frequenze audio. Lo schema è all'incirca quella dello Standard-Base Station, così pure lo stadio integratore. Per ottenere una modulazione di frequenza da un circuito modulatore di fase è necessario interporre tra modulatore e BF un circuito di deenfasi o, meglio, un circuito integratore. Con il trimmer da 2 kΩ sul collettore del BC109 si regola la deviazione di freguenza. Comunque, nel caso di guesto tx, consiglio di porre

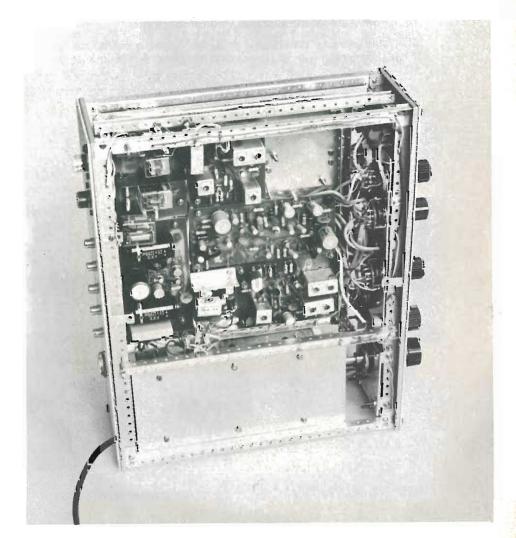

Non ho ritenuto opportuno applicare sulla BF uno stadio clipper proprio per non alterare la riproduzione che è veramente molto, molto buona. Consiglio comunque di usare un microfono con il compressore della dinamica proprio per avere una uscita di BF il più possibile uniforme. Io uso il **Turner** +3 che si è dimostrato il migliore sotto tutte le caratteristiche: possiede un compressore eccellente e una riproduzione perfetta. Si ascolta spesso sui ripetitori che è inutile e soprattutto dannoso usare microfoni con compressore in modulazione di frequenza. Questa affermazione è completamente errata. Se si sa usare con un po' di ragione quella manopola che sta sul microfono, i risultati ottenuti sono di gran lunga superiori a quelli che si ottengono con microfoni tradizionali e la modulazione verrà fuori piena e uniforme. Se invece si userà il microfono come fanno certi CB sulla 27, ovvero si girerà la solita manopola più che si può, rammaricandosi che invece di un giro non ne possa fare due, allora si otterrà una modulazione bruttissima, strappata, con un misto di effetto botte e cattedrale.

il potenziometro di intensità di modulazione a circa un terzo, poi regolare il trimmer dello stadio integratore per ottenere una deviazione opportuna, non ecceden-

te i  $\pm 5 \,\mathrm{kHz}$  in osseguio alle norme IARU.

Al modulatore di fase segue uno stadio quadruplicatore, successivamente uno stadio duplicatore. Per elevare il livello di uscita è stato necessario un amplificatore provvisto di due circuiti accordati allo scopo di eliminare frequenze estranee. La tensione RF è circa 1 V, ottenuta facilmente anche dopo otto moltiplicazioni proprio perché viene prelevata ai capi di un circuito accordato, ad alta impedenza. Se per caso si usassero transistori con minor guadagno e non fosse possibile ottenere questa uscita, si interponga tra il quadruplicatore e il duplicatore uno stadio amplificatore.

Quando si vuol trasmettere in FM si applica la BF allo stadio integratore e ai capi della  $L_{\delta}$  avremo RF modulata in frequenza pronta per essere trasformata mediante il secondo mixer a  $144 \div 146$  MHz.




Il secondo mixer è a MOSFET per le solite ragioni di linearità, quando si opera in SSB, e per avere una alta impedenza di ingresso favorendo il trasferimento di tensione a radiofrequenza.

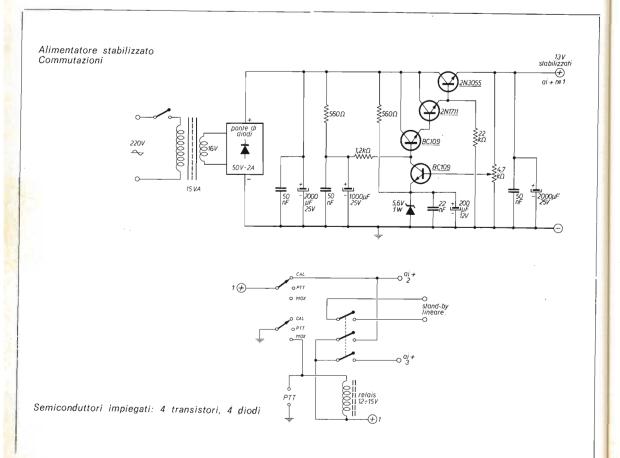
Il livello del segnale proveniente dalla prima conversione, sempre nel caso della SSB, non deve superare gli 0,1 V proprio per mantenere il solito rapporto ottimale di 1:10.

Al secondo mixer segue un amplificatore lineare a MOSFET i cui circuiti a doppio accordo induttivo ( $L_9$ - $L_{10}$ ) assieme ai precedenti  $L_7$ - $L_8$  conferiscono una risposta abbastanza piatta su tutta l'escursione di frequenza mentre attenuano decisamente bene i segnali fuori dalla gamma utile. Ci si ricordi che i circuiti accordati  $L_7$ ,  $L_8$ ,  $L_9$ ,  $L_{10}$ , pur operando sui 144 MHz, hanno un Q discretamente alto essendo pochissimo caricati dai MOSFET.

I due transistor 2N3866 sono in classe A. Con il trimmer di polarizzazione di base si regoli l'assorbimento del primo a circa 10 mA. Ai livelli di segnali qui adoperati si mantengono a un punto di lavoro molto lineare. La modulazione di ampiezza viene generata proprio attraverso questi ultimi due transistori. Non ho voluto modulare in ampiezza, come avviene in altri trasmettitori, la parte a 9 MHz perché sarei incorso in gravi problemi di linearità nei mixer e negli amplificatori successivi, precludendo la possibilità di una percentuale vicina al 100 %.



In SSB la via da seguire è semplice, ma in AM le cose si complicano notevolmente. E' stato molto più semplice e di risultato di gran lunga migliore modulare i due transistori finali. La BF usata per la SSB e la FM non era sufficiente quindi ho comperato un telaietto di BF (l'unica parte non autocostruita) di circa 2 W e un trasformatore con primario a 8 $\Omega$  e secondario a 600 $\Omega$ . Sinceramente due watt di BF sono eccessivi però il controllo di profondità di modulazione è posto sul pannello frontale e va usato proprio per ridurre l'intensità.


Teoricamente non è molto giusto modulare in ampiezza transistori operanti in classe A, però modulando la tensione positiva generale, anche quella che polarizza le basi, si ottiene una AM profonda e molto fedele. Ci sarebbe da discutere teoricamente, me ne rendo conto, però più della teoria a me interessa l'effetto pratico che, ripeto, è molto buono.

La caratteristiche principali di questa AM è la asimmetria: il picco positivo è di gran lunga superiore a quello negativo, comunque il picco negativo tende a sopprimere (oscillograficamente) la portante. Vi è quindi un alto incremento di potenza in uscita sotto modulazione. La distorsione è nei limiti di una convenzionale emissione AM.

Ho previsto anche un indicatore di radiofrequenza in uscita, molto utile durante la taratura.

#### Alimentatore stabilizzato, commutazioni

L'alimentatore stabilizzato è di tipo convenzionale: tre transistori in Darlington, un transistor comparatore e una tensione di riferimento ottenuta mediante zener.



La stabilizzazione è più che sufficiente per tutto il tx nelle varie condizioni Di sufficiente chiarezza mi pare sia lo schema delle commutazioni. A ogni segno degli schemi si riferisce un numero, quindi è sufficiente unire i vari numeri uquali tra di loro e le commutazioni per quanto riguarda le tensioni saranno facilmente eseguite.

#### Considerazioni finali

L'eccitatore, da come si può vedere dalle fotografie, è stato alloggiato in un contenitore Ganzerli. La robustezza meccanica è molto elevata. I circuiti stampati sono posti in due piani per ridurre le dimensioni e nello stesso tempo per non microminiaturizzare i medesimi. La robustezza meccanica è particolarmente curata nell'ancoraggio del VFO. I comandi sul pannello frontale sono posti con disposizione geometrica per dare un aspetto estetico accettabile. Sempre per il lato estetico le lampadine che illuminano lo strumentino e la scala sono colorate in verde. I fori sui lati del contenitore provvedono a fornire una certa aereazione e dissipare il calore generato dal trasformatore e dalle lampadine.

Nella parte posteriore il 2N3055 stabilizzatore di tensione ha come piastra raffreddatrice tutto il pannello sul quale trovano posto i bocchettoni per l'antenna e quelli per lo stand-by del ricevitore, del lineare, per la ALC e per il VFO esterno. Un bocchettone rimane libero per qualsiasi altra eventuale funzione.

I valori delle frequenze delle conversioni non sono assolutamente vincolanti, se si ecettuano i 9 MHz del filtro a quarzi. Nel mio caso ho scelto questi valori per il fatto che il VFO del ricevitore copre i 16.114 - 17.114 kHz. Si possono usare altre frequenze con i soliti risultati sempre però facendo particolare attenzione alle 

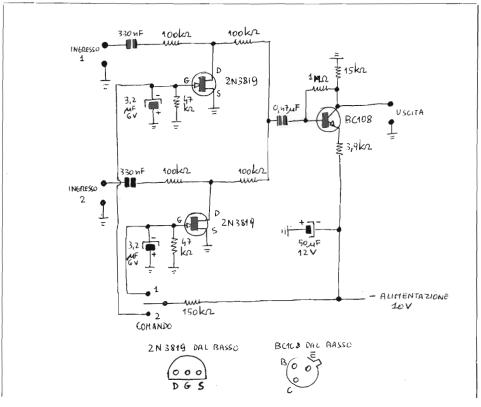
藜 葵 藜 葵 葵 蓉 葵 葵 葵 荽 荽 Gegue al prossimo numero) 葵 葵 蓉 蓉 蓉 蓉 蓉 蓉 蓉 蓉 蓉



POTENZA DI USCITA: 80 W IN AM e 120 W IN SSB SELETTORE DI POTENZA A 3 POSIZIONI MOD. NORGE 60/2 CON DOPPIA ALIMENTAZIONE A 220 V c. a. e 12 V c. c. MOD. NORGE 60 CON SOLA ALIMENTAZIONE a 220 V c. a.

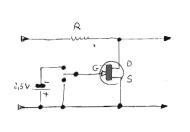
PREGASI RICHIEDERE DOCUMENTAZIONE

COSTRUZIONI ELETTRONICHE PROFESSIONALI MILANO - VIA BOTTEGO 20


# Hi-Fi analog switch

#### ing. Paolo Forlani

Voglio presentare in questo articoletto un apparecchio simpatico. e forse anche utile: un commutatore elettronico per bassa frequenza, particolarmente adatto a « switchare » due fonti di suono all'ingresso di un amplificatore. L'interruzione è eseguita non dai contatti di un interruttore comune, ma da transistori a effetto di campo, a loro volta pilotati, ad esempio, da un deviatore meccanico.


Perché un interruttore elettronico e non un bel due vie - due posizioni? Ve lo spiego in un minuto: nel deviatore usato per il comando scorre solo corrente continua, quindi esso può trovarsi in qualsiasi posto, anche a vari metri dal punto in cui la commutazione realmente avviene, senza paura di raccogliere rumore. Poi, la commutazione elettronica non fa rumore: non ci sono più quei fastidiosi e pericolosi BUMP quando si commuta.

Ultimo vantaggio è che la commutazione può essere eseguita non manualmente, ma da organi totalmente elettronici. Ad esempio: quando finisce il disco si commuta l'amplificatore, automaticamente, sul registratore, in modo che la musica rimane ininterrotta; oppure si munisce l'interruttore elettronico di un radiocomando o di un temporizzatore.



Dal momento che a qualcuno il circuito potrà sembrare strano, spiego un po' come funziona.

Dunque: un FET, quando la tensione V<sub>GS</sub> tra gate e source è prossima a zero, presenta tra drain e source una resistenza piuttosto bassa (ho misurato meno di 500  $\Omega$  per i 2N3819, **non** con l'ohmetro), mentre ponendo una V<sub>cs</sub> negativa e di qualche volt (2,5 V nel nostro caso) tra drain e source appare una resistenza molto elevata.



E' dunque evidente che un circuito del tipo riportato a lato si comporta praticamente come un partitore, in cui la resistenza sull'uscita varia tra limiti molto diversi: praticamente, un interruttore. E' anche chiaro che il FET, usato come resistenza, non è alimentato, come siamo abituati a fare, da nessuna tensione continua sul drain. Nel circuito che vi presento, la tensione di -2,5 V per il gate è ottenuta ripartendo la tensione di alimentazione, con due resistenze. I condensatori da 3,2 µF generano un certo ritardo, in modo che l'interruzione avvenga gradualmente e senza colpi (dura circa due decimi di secondo).

Quando l'interruttore è chiuso, il segnale è attenuato di

Niente di eccezionale, ma non ho potuto far meglio con gli economici 2N3819: infatti, aumentando la resistenza in serie (da 100 k $\Omega$ ) si avrebbe maggiore attenuazione, però la capacità del FET inizierebbe a dar fastidio, attenuando le frequenze alte quando l'interruttore è aperto.

Per commutare due sorgenti sono usati due di questi interruttori a FET; quando uno è aperto, l'altro è chiuso. Lo stadio a transistor che segue è necessario per riportare il livello del segnale al valore originario (esso viene diviso per tre dalle resistenze da 100 k $\Omega$ : osservare bene).

Anzi, vi consiglio uno stadio del genere, quando avete bisogno di guadagnare qualcosa: ha alta impedenza d'ingresso, alta controreazione; solo non va caricato troppo in uscita (min 100 k $\Omega$ ) per non perdere tutto il quadagno.

Del resto, è studiato per essere connesso all'ingresso di amplificatori (non all'ingresso per testina magnetica: dopo il preamplificatore!) dove il livello è di 100  $\div$  500 mV e l'impedenza d'ingresso è spesso 470 k $\Omega$ . Il circuito è presentato in versione mono: per lo stereo, se ne fanno ovvia-

mente due uguali.

Come vedete, c'è il positivo a massa; non penso però che vi siano grandi problemi, collegandosi con apparecchi aventi a massa il negativo, a rovesciare il tutto e mettere in comune le alimentazioni. Se la tensione disponibile è maggiore di 9÷10 V, uno zenerino è l'ovvia soluzione.

Il consumo è intorno ai 300 µA per il mono.

A chi volesse perfezionare lo strumento, ricordo che esistono ottimi MOSFET (ad esempio, li fa la GI) costruiti apposta per fare gli interruttori; ve ne sono anche di multipli, con vari transistori in un solo involucro tipo integrato.

Dimenticavo di dire che un simile dispositivo viene comunemente detto 



Tutti i componenti riferiti agli elenchi materiale che si trovano negli schemi della rivista sono anche reperibili presso i punti di vendita dell'organizzazione G.B.C. Italiana

#### **DIVAMPA LA POLEMICA**

#### il mondo del surplus più caldo dello scacchiere indocinese

## il contro - controelenco delle VT

#### Gino Chelazzi junior

Ho esaminato attentamente l'elenco delle valvole VT pubblicato sul n. 3/75 alle pagine 344 e 345, e ho potuto notare in esso come sia stato fatto tutto un mazzo tra la maggior parte di valvole ex-militari USA e una certa quantità di valvole militari inglesi.

Questo perché proprio una certa serie di sigle VT erano usate anche dalla RAF, però con riferimenti numerici differenti da quelli USA.

Quindi, personalmente (solo a titolo di cronaca), avrei fatto una selezione, trattando solamente i VT USA (che per lo più sono trattati nel 70 % delle apparecchiature surplus, dato che la percentuale delle apparecchiature surplus USA supera abbastanza quelle inglesi o canadesi reperibili).

Questo lo dico per il fatto che uno, trovandosi una valvola tipo octal in mano (di fabbricazione inglese), vedendo la sigla in VT, pensando a una valvola militare USA, vada sulla tabella relativa, e questa gli darà un altro tipo di valvola, con i pericoli connessi all'errato uso della valvola, prendendo per buona la descrizione della tabella USA.

In allegato invio le mie annotazioni e un elenco di quelle che, almeno personalmente, ritengo inesattezze, trovate sulla distinta.

Su alcune di esse vorrei aggiungere questo: prendiamo ad esempio la valvola VT176 della distinta. Essa corrisponde alla 6AB7, ma spesso sulle valvole, dati i diversi usi a cui erano destinate, sono riportate altre sigle, quindi la 6AB7 può avere scritto sul bulbo di vetro non la sigla 6AB7, ma bensì 1853, valvola che, essendo uguale alla 6AB7, ha le stesse funzioni.

Quindi certe tabelle USA riportano in spiegazione alla VT l'una sigla e l'altra (perché si possono, come detto, trovare con una o l'altra sigla).

| т.                   | eq.                     | т.                   | eq.                   |  |
|----------------------|-------------------------|----------------------|-----------------------|--|
|                      |                         | VT 50 (E)            | = HL 2 K              |  |
|                      | 1                       | VT 50                | = 50                  |  |
|                      |                         | VT 51 (E)<br>VT 51   | = Pen 220 A<br>= 841  |  |
|                      |                         |                      | = EL 32 45.           |  |
|                      |                         | VT 52                | = 0 1 outeur          |  |
|                      | 1                       | VT 53<br>VT 54       | = 872 A T = 34        |  |
| т1 🖟                 | <b>√ €</b> 203 A        | VT 55                | = 865                 |  |
| T 2 _ V              | <b>√</b>                | VT 56                | = 56<br>= 57          |  |
| T 4 B T              | = 211<br>A+ 211 SP      | VT 57<br>VT 58       | = 5/<br>= E 960       |  |
|                      | ₩ <b>E</b> 215 A        | VT 58                | = 58                  |  |
| T 6                  | = 212 A                 | VT 59                | = 59<br>= 850         |  |
| T /<br>T 8           | = WX-12<br>= UV 204     | VT 60<br>VT 60/A (E) |                       |  |
| T 17                 | = 860                   | VT 61 (E)            | = 2 C 34              |  |
| /T 19                | = 861                   | VT 61 A (E)          | = 4074 B<br>= 2 C 34  |  |
| /T 20 (E)<br>/T 22   | = 220 P<br>= 204 A      | VT 61 B<br>VT 62 (E) | = 8019                |  |
| T 23 (E)             | = 230 XP                | VT 62                | = 801 A               |  |
| T 24                 | = 864                   | VT 63<br>VT 64       | = 46<br>= 800         |  |
| /T. 25 (E)<br>/T. 25 | = DET 25<br>= 10        | VT 65                | = 6 C 5               |  |
| T 25 A               | = 10 Y                  | VT 65 A              | = 6 C 5 G             |  |
| /T 25 A              | = 2 C 25                | VT 66<br>VT 66 A     | = 6 F 6<br>= 6 F 6 G  |  |
| /T 26<br>/T 26 A     | = 22<br>= 4062 A        | VT 67                | = 30 SPevial          |  |
| /T 27                | = 30                    | VT 68                | = 6 B 7               |  |
| /T 28                | = 24 A                  | VT 69<br>VT 70       | = 6 D 6<br>= 6 F 7    |  |
| /T 29<br>/T 30       | = 27<br>= 4060 A        | VT 72                | = 842                 |  |
| /T 30                | = O1-A                  | VT 73                | = 6 E 5               |  |
| /T 31                | = SG 250                | VT 73<br>VT 74       | = 843<br>= 5 Z 4      |  |
| /T 31<br>/T 33       | = 31<br>= 33            | VT 74 (E)            | = 6 J 7               |  |
| /T 34                | = DET 73                | VT 75 (E)            | = KT 66               |  |
| /T 34                | = 207                   | VT 75<br>VT 75 A/B   | = 75 $= KT 44$        |  |
| VT 35<br>VT 36       | = 35<br>= 36            | VT 76 (E)            | = TZ 40               |  |
| /T 37                | = 37                    | VT 76                | = 76                  |  |
| /T 38 .<br>/T 39     | = 38<br>= 869           | VT 77<br>VT 78       | = 77<br>= 78          |  |
| /T 39 A              | = 869 A                 | VT 79 (E)            | = KT 8                |  |
| √T 40                | = 40                    | VT. 79               | = 79 $= 430 7A$       |  |
| /T 41 .<br>√T 42     | = 851<br>= 872          | VT 80 (E)<br>VT 80   | = 80                  |  |
| VT 42 A              | = 872 A                 | VT 81 (E)            | = 4052 A              |  |
| VT 43                | = 845 W                 | VT 83<br>VT 84       | = 83<br>= 84          |  |
| VT 44<br>VT 45 (E)   | = 32<br>= X 56          | VT 86                | = 6 K 7               |  |
| VT 45 (E)            | = \times 30<br>= 45     | VT 86 A              | = 6 K 7 G             |  |
| VT 46                | = PT 25 H               | VT 86 B<br>VT 87     | = 6 K 7 GT<br>= 6 L 7 |  |
| VT 46<br>VT 46 A     | = 866<br>= 866 A        | VT 87 A              | = 6 L 7 G             |  |
| VT 47                | = TZ05-20               | VT 88 (E)            | = 832                 |  |
| VT 47                | = 47                    | VT 88 AV             | = 6 R 7<br>= 6 R 7 G  |  |
| VT 48<br>VT 49       | = 41<br>= 39 <b>/44</b> | VT 88 B              |                       |  |
| 71 77                | = 37/77                 |                      |                       |  |

#### Note sulla distinta delle VT

Nell'elenco sono frammiste valvole di uso militare sia americane che inglesi.

Per mio conto sarebbe stato bene trattare solamente le VT degli USA, riservandosi poi, in un secondo tempo di trattare le VT inglesi (che sono state usate, come sigla, per una piccola percentuale dalla RAF). Chi disponesse di apparati USA, o avesse tra le mani valvole il cui solo riferimento fosse il VT + numero, in qualche caso (conoscendo solamente le VT USA) non saprebbe, o non riuscirebbe a sapere, che valvola

Un esempio: il VT61 non è riportato negli elenchi delle VT USA, ma è una valvola impiegata dalla RAF.

Nella distinta vi sono alcune dimenticanze, che ritengo non vadano omesse, allo scopo di avere un elenco completo delle VT USA e alcune inesattezze che ritengo, attualmente, di dover segnalare. Esse sono le seguenti:

Completare la VT1 in WE203 A Completare la VT2 in WE205 B. Sigla corretta per VT4 è VT4 B.

Completare la VT49 in 39/44.

La VT52, oltre che per la 6K6, è indicativa anche per la valvola tipo 45 Special.

Completare la VT67 in Special.

Manca la VT90 A = 6H6 GT

Ritengo errore di stampa la VT92 e VT92 A. Non sono 697 o 697 G, ma 6Q7 e 6Q7 G.

Ritengo meglio estendere la sigla della VT94 B, com-

pletando le lettere SP in Special. VT98, completare in 6U5/6G5.

VT111, completare in 5BP4/1802P4 VT112, completare in 6AC7/1802

VT119, completare in 2X2/879 Mancano sei valvole (riportate a lato) tra VT130 e

Mancano tre valvole (riportate a lato) tra VT139 e

Mancano tre valvole (riportate a lato) tra VT145 e

Sarebbe bene completare la sigla della VT149 in

Errata la VT154. Negli USA la VT154 è la 814.

Manca una valvola tra VT165 e VT167/A (riportata a lato): VT166.

Completare la VT176 in 6AB7/1853.

Completare la VT182 in 3B7/1291. Completare la VT183 in 1R4/1294. Completare la VT185 in 3D6/1299.

Manca la VT186 (riportata a lato).

Togliere le barrette alle VT197 A; VT198 A; VT201 C; VT206 A.

Errata la VT204: nelle VT USA la VT204 è la HK24G Errata la VT220: nelle VT USA la VT220 è la 250TH. Errata la VT221: nelle VT USA la VT221 è la 3Q5

(penso sia un errore di stampa). Manca la VT222 (riportata a lato).

Errata la VT224: nelle VT USA la VT224 è la RK34. Errata la VT225: nelle VT USA la VT225 è la 307 A. Errata la VT230: nelle VT USA la VT230 è la 350 A.

Completare la sigla della VT234 in HY-114 B. Errata la VT240: nelle VT USA la VT240 è la 710 A.

Completare la VT241 in 7E5/1201 Completare la VT243 in 7C4/1203 A

Manca la VT251 (riportata a lato)

Errata la VT264: nelle VT USA la VT264 è la 3Q4 (ri-

tengo trattarsi di errore di stampa). Errata la VT267: nelle VT USA la VT267 è la 578. Mancano nove valvole (riportate a lato) tra la VT268

|                                         | - Contro - con       | troelenco VT —                |                          | -               |                       | 10 11              |                                        |
|-----------------------------------------|----------------------|-------------------------------|--------------------------|-----------------|-----------------------|--------------------|----------------------------------------|
|                                         | T.                   | eq.                           | т.                       | -               | eq.                   | т.                 | eq.                                    |
|                                         | VT 89                | = 89                          | VT 127 (E)               | _ ;             | Pen 46                | VT 204             | = 3 <del>2 24</del> HK246              |
|                                         | VT 90                | = 87                          | VT 127                   | = 1             | 100 TL                | VT 205             | = 6 S T 7                              |
| VT90                                    | A VT 90              | HE-617                        |                          |                 | 3-100 D 2<br>304 TL   | VT 206/A<br>VT 207 | = 5 V 4<br>= 12 AH 7                   |
|                                         | VT 91 A              | = 6 J 7 GT                    | VT 130                   | = 2             | 250 TL                | VT 208             | = 7 B 8                                |
|                                         | VT 92<br>VT 92 A     | = 697 6 Q 7<br>= 697 G        | The second second second | = 1<br>= 1      |                       | VT 209<br>VT 210   | = 12 SG 7<br>= 1 S 4                   |
|                                         | VT 93                | = 6 B 8                       | VT 138                   | = 1             | 629                   | VT 211             | = 6 SG 7                               |
|                                         | VT 93 A<br>VT 94     | = 6 B 8 G<br>= 6 j 5          |                          | = 0<br>= 8      | D 3                   | VT 212<br>VT 213/A | = 958<br>= 6 L 5                       |
|                                         | VT 94 A              | = 6 J 5 G                     | VT 144                   | = 8             | 13                    | VT 214             | = 12 H 6                               |
| VT131=125K7                             | VT 94 B<br>VT 94 C   | = 6 J 5 Special $= 6 J 5 GSp$ | VT 145 :                 | = 5<br>= 3      | Z 3<br>A 8 <b>G T</b> | VT 215<br>VT 216   | = 6 E 5<br>= 816                       |
| VT132=12K8spe                           | VT 94 D              | = 6 J 5 GT                    | VT 150/A                 | = 6             | SA 7                  | VT 217             | = 811                                  |
| VT133=125R7                             | VT 96 (E)            | = 2 A 3<br>= 5 B/502 A        |                          |                 | A 8<br>K 6            | VT 218<br>VT 220   | = 100 TH<br>= <del>RK 63</del> 250 TH  |
| VT134=12A6                              | VT 96                | = 6 N 7                       | VT 153 =                 | = 1             | 2 C 8                 | VT 221             | = <del>395</del> 3@5                   |
| VT125-127-0                             | VT 96 B<br>VT 97     | = 6 N 7 GT<br>= 5 W4,         |                          |                 | ≥ 914<br>2 SA 7       | VT 223<br>VT 224   | = 1 H 5<br>= 2 G 34 RK 3 4             |
| VT135=125567                            | VT 98                | = 6 U 5/6 45                  | VT 162 =                 | = 13            | 2 SJ 7                | VT 225             | = 2K-75 307A                           |
| VT135A=1275                             | VT 98<br>VT 99       | == E 960 T<br>== 6 F 8        |                          | = 6<br>= 10     | C 8<br>619            | VT 227<br>VT 228   | = 7184<br>= 8012                       |
| J                                       | VT 99 A              | = 6 F 8 G                     | VT 165 =                 | = 16            | 524                   | VT 229             | = 6 SL 7                               |
|                                         | VT 100<br>VT 100/A   | = 807<br>= 807 Sp             |                          |                 | K 8<br>Y 6            | VT 230<br>VT 231   | = RK + 350 A<br>= 65 N 7               |
|                                         | VT 101<br>VT 102     | = 837                         | VT 169 =                 |                 | 5 € ,8                | VT 232             | = E 1148                               |
|                                         | VT 103               | = 6 K 6<br>= 6 SQ 7           |                          |                 | E 5<br>R 5            | VT 233<br>VT 234   | = 6 SR 7<br><b>∮¥-</b> 114 B           |
|                                         | VT 104 (E)<br>VT 104 | = PT 15<br>= 12 SQ 7          | VT 172 = VT 173 =        |                 | S 5                   | VT 235             | = HY 615                               |
|                                         | VT 105               | = ML 6                        | VT 173 =                 |                 | T 4<br>S 4            | VT 235<br>VT 236   | = 615<br>= 836                         |
|                                         | VT 105<br>VT 106     | = 6 SC 7<br>= 803             | VT 175 = VT 176 =        | = 16            | 13<br>A B7/1853       | VT 237             | = 957                                  |
| VT140A=1628                             | VT 107               | = 6 V 6                       | VT 177 =                 | : 1             | 1 3                   | VT 238<br>VT 239   | = 956<br>= 1 LE 3                      |
| VT141 = 531                             | VT 107 A<br>VT 107 B | = 6 V 6 GT<br>= 6 V 6 GT      |                          |                 | LC 6<br>LN 5          | VT 240<br>VT 241   | = 0011- 710A<br>= 7 E 5/1204           |
|                                         | VT 108               | = 450 TH                      | VT 180 =                 | : 3             | LF 4                  | VT 243             | = 7 C 4/1203 A                         |
| VT142=WE39<br>DY1                       | VT 109<br>VT 111     | = 2051 = 5 BP 4/802 P4        |                          |                 | Z 4<br>B 7/1291       | VT 244<br>VT 245   | = 5 U 4<br>= 2050                      |
| _                                       | VT 112<br>VT 114     | = 6 A C 7/18c2                |                          | 1               | R 4/1244              | VT 246             | = 918                                  |
| VT 146 = 1N56T                          | VT 114               | = E 1024<br>= 5 T 4           | VT 184 = VT 185 =        | 3               | B 3<br>D 6/1299       | VT 247<br>VT 249   | = 6 AG 7<br>= 1006                     |
| VT147=1A76T                             | VT 115<br>VT 115 A   | = 6 L 6                       | VT 187 =                 | 57              | 5 A'                  | VT 250             | = EF 50                                |
| VT148=1086T                             | VT 116               | = 6 L 5 G<br>= 6 S J 7        |                          | 7  <br><b>7</b> | 1                     | VT 252<br>VT 254   | = 923<br>= 304 TH                      |
| , , , , , , , , , , , , , , , , , , , , | VT 116 A<br>VT 116 B | = 6 S J 7 GT<br>= 6 S J 7 Y   |                          | 7 i<br>316      |                       | VT 255             | = 705 A                                |
| VT166 = 371A                            | VT 117               | = 6 S K 7                     | VT 192 =                 | 7 /             | A 4                   | VT 259<br>VT 260   | = 829 B<br>= 0 A 3                     |
|                                         | VT 117 A<br>VT 118   | = 6 S K 7GT<br>= 832          |                          | 7 (<br>7 J      | _                     | VT 264<br>VT 266   | = <del>304</del> 3 <b>94</b><br>= 1616 |
| VT186 = special                         | VT 119               | $= 2 \times 2/879$            | VT 195 =                 | 100             | )5                    | VT 267             | = 1010<br>= 2020 578                   |
| VT 222 = 884                            | VT 120<br>VT 121     | = 954<br>= 955                |                          | 6 \<br>5 \      |                       |                    | = 12 SC 7<br>= 717 A                   |
| VT251= 441                              | VT 122<br>VT 123     | = . 530                       | VT 198 <b>f</b> A =      | 6 (             | 5 6                   | VT 286             | = 832 A                                |
| VT 269=717A                             | VT 124               | = 1630<br>= 1 A 5 GT          |                          | 6 S             |                       |                    | = 815<br>= 12 SH 7                     |
| VT 277= 417                             | VT 125<br>VT 126     | = 1 C 5 GT<br>= 6 X 5         | VT 201 C =               | 25<br>900       | L 6                   | VT 289             | = 12 SL 7                              |
| VT 279=64-2                             | VT 126 A/B           | = 6 X 5                       | VT 203 =                 | 900             | 3                     | ¥ 1 306 :          | = 5 C/450 A                            |
| VT2802 = (<br>VT2812 = H                | 7063                 | IVT 282 =                     |                          |                 | 2849 =                | QF-19.             | 7                                      |
| NT 2812 = H                             | Y 145ZT              | VT 283a=                      | 44-506 (1                | ľΤ              | 2859=                 | QF-200             | d                                      |

Valvole della distinta non impiegate dagli USA bensì dalla RAF inglese.

| VT26 A   | = 4062 A                                 | VT79  | = KT8      |
|----------|------------------------------------------|-------|------------|
| VT30     | = 4060 A                                 | VT80  | = 4307 A   |
| VT31     | = SG250                                  | VT81  | = 4052     |
| VT45 F   | = X56                                    | VT88  | = 832      |
| VT46     | = PT25 A                                 | VT90  | = 8011     |
| VT47     | = T205-20                                | VT96  | = 5B/502 A |
| VT50     | = HL2 K                                  | VT98  | = E960 T   |
| VT51     | = Pen 220 A                              | VT104 | = PT15     |
| VT52     | = EL32                                   | VT105 | = ML6      |
| VT58     | = E960                                   | VT127 | = Pen 46   |
| VT61 E   | = 2C34                                   | VT164 | = RK47     |
| VT61     | = 4074 B                                 | VT204 | = 3C24     |
| VT61 A   | = 4074 B                                 | VT220 | = RK63     |
| VT62     | = 8019                                   | VT224 | = 2C34     |
| VT74     | = 6J7                                    | VT225 | = RK75     |
|          | A relativo a VT74 è per la valvola 5Z4). | VT230 | = RK49     |
| VT75     | = KT66                                   | VT240 | = 8011     |
| VT75 a/b | = KT44                                   | VT267 | = 8020     |
| VT76     | = TZ40                                   |       |            |

Notizie sulle VT USA tratte dal TB 11-2627-2 del 1952 Notizie sulle VT RAF tratte da Handbook Babani - London 1974.

Il prossimo mese:

DIZIONARIO DELLE VALVOLE SURPLUS INGLESI (di Gino Chelazzi)

# CREDE NELLE RICERCHE

Se hai un'età tra i 12 e i 21 anni, e ti interessano le ricerche, Philips DI CHI crede in te.

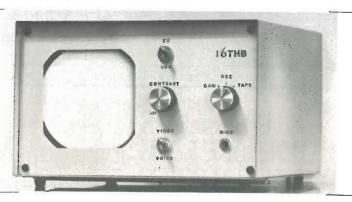
**PHILIPS** 

E indice un concorso europeo per premiare i giovani della tua età che abbiano compiuto lavori di ricerca

e innovazione in qualsiasi campo scientifico e tecnico. Sono in palio ricchi premi, borse di studio, viaggi, strumenti scientifici. Se desideri partecipare, chiedi il regolamento completo e la scheda di adesione a:

PHILIPS S.p.A.
Segreteria del Concorso Europeo per
Giovani Inventori e Ricercatori P.za IV Novembre, 3 - 20124 Milano **giovani inventori** 

8ºconcorso europeo PHILIPS per Tel. 6994 (int. 359/453) ericercatori 1975/76


#### di Mario Scarpelli, I6THB

La sempre crescente diffusione della trasmissione di immagini a scansione lenta nel traffico di radioamatore, la richiesta da parte degli appassionati di schemi validi per la realizzazione di monitor, la continua, assillante ricerca della novità, mi hanno indotto a cimentarmi con la nuova tecnica.

Il primo approccio è costituito dal monitor, che consente di ricevere immagini e di entrare subito nel vivo della tecnica e del traffico SSTV.

E il monitor è stato quindi il primo traguardo.

Vista frontale



Nella progettazione, ho assunto i seguenti presupposti:

- impostazione originale del circuito, con ampio uso di integrati al fine della maggiore affidabilità;
- scansione non visibile in assenza di segnale;
- oscillatori interni di scansione sincronizzabili;
- scelta di componenti di facile reperibilità;
- predisposizione per gli standards europeo e americano;
- comandi sul pannello anteriore ridotti al minimo;
- dimensioni contenute.

Come si può notare, non mancano soluzioni originali.

Soprattutto nell'uso si rilevano la praticità, la versatilità e l'efficienza di questo monitor.

Chi ha già qualche dimestichezza con i monitor del commercio può meglio apprezzare le differenze principali.

In assenza di segnali, quì lo schermo è « spento »: mancano infatti sia il forte riverbero del luminosissimo punto fuori schermo di alcuni tipi di monitor, e sia la scansione luminosa di altri tipi. L'immagine si forma soltanto all'arrivo del segnale, con quanto sollievo per gli occhi si lascia immaginare.

Un interessante monitor per SSTV -

Inoltre, immagini europee o americane riempiono correttamente lo schermo senza rimpicciolimenti o accartocciamenti, a semplice commutazione.

Non più continui andirivieni tra le manopole della luminosità e del contrasto, per fissare il miglior livello visivo.

E infine le dimensioni dell'insieme: pannello anteriore di soli cm 25 x 15, profondità cm 30, beninteso con alimentazione entrocontenuta. Il contenitore adottato è della Ditta Ganzerli, mod. 5000/23, che conferisce al monitor un aspetto gradevole e... professionale.

La descrizione è sufficientemente dettagliata per consentire una agevole comprensione del circuito, opportunamente suddiviso nelle sue parti essenziali.

#### *LIMITATORE*

L'ingresso del monitor è a bassa impedenza. Il segnale in ingresso perviene, opportunamente « tosato » dai diodi  $D_1$  e  $D_2$ , all'integrato  $\mu$ A709 C che svolge funzioni di amplificatore e limitatore. La sensibilità è tale che un segnale anche di pochi millivolt viene portato al massimo livello d'uscita, pari a circa 18  $V_{np}$ .

#### DISCRIMINATORE E FINALE VIDEO

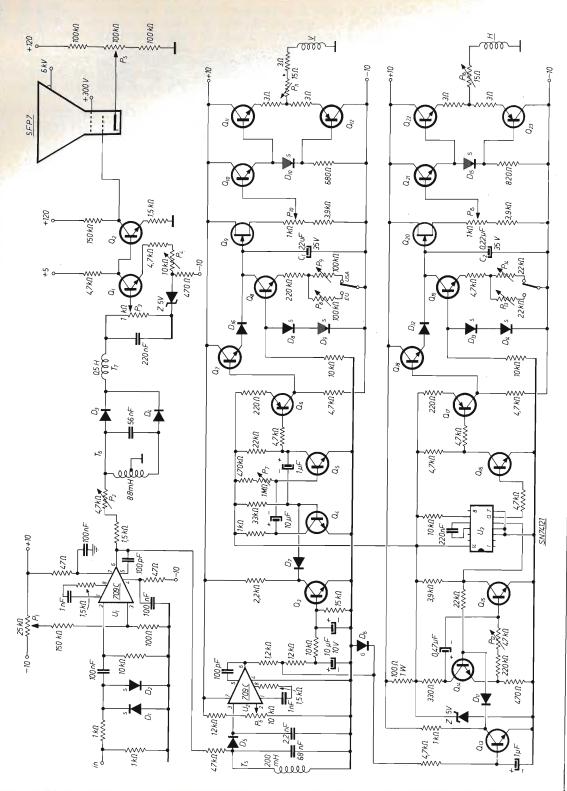
La funzione di discriminatore viene svolta da un circuito risonante costituito da un toroide da 88 mH e da un condensatore da 56 nF, accordato quindi su 2300 Hz, seguito da un rivelatore a doppia onda, con uscita positiva, e da un semplice filtro passa basso costituito da una induttanza di 0,5 H e da un condensatore da 220 nF.

La discriminazione avviene sul fianco basso della curva di risonanza. In uscita si ottengono tensioni positive proporzionali alla frequenza, in rapporto sufficientemente lineare, con un massimo per 2300 Hz (livello del bianco) e con un minimo per 1500 (livello del nero).

Il trimmer  $P_2$  regola sia la massima tensione disponibile che l'andamento della

curva di risonanza del circuito accordato.

Sul potenziometro  $P_3$  (comando di contrasto), è disponibile tutto il segnale video, ora modulato in ampiezza. Detto segnale, invertito di polarità dal transistore  $Q_1$ , viene presentato al transistore finale video  $Q_2$  che lo riporta alla corretta polarità e lo amplifica al livello necessario per il pilotaggio della griglia 1 del tubo RC, attraverso la connessione diretta col collettore di  $Q_2$ . Il catodo del tubo RC è connesso al cursore del trimmer  $P_5$  regolatore del livello del nero (comando di luminosità).


Come si è visto, il discriminatore è progettato in modo che il segnale video, contrariamente a quanto accade normalmente nei monitor SSTV e persino nei televisori commerciali, viene presentato al tubo RC in modo che i comandi di luminosità e di contrasto non interagiscono tra loro; ne consegue che la luminosità può essere quindi regolata una volta per tutte al livello del nero, mentre il comando di contrasto resta l'unico dispositivo che presiede alla regolazione delle immagini.

A tal fine il comando di luminosità trova una sua più razionale collocazione sul pannello posteriore, mentre sul pannello frontale verrà posto il solo comando di contracto.

di contrasto.

#### AMPLIFICATORE DEI SINCRONISMI

All'uscita del limitatore viene prelevata una frazione del segnale squadrato e, tramite una resistenza da 47 k $\Omega$ , viene presentato al circuito accordato a 1200 Hz, formato da una induttanza da 200 mH (toroide) e dal condensatore da 68 nF. Particolare cura deve essere posta perché la frequenza di risonanza sia la più prossima a 1200 Hz.



| $egin{array}{lll} Q_2 & BF174 & o & equivalenti & (V_{ceo} = 150 \ V) & BC178 & o & equivalenti & $  | resistenze                                 |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| $Q_{11}$ e $Q_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | quantità                                   | valore $(\Omega)$ |
| $Q_{10} = Q_{21}$ 2N1711 o equivalenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                          | 0.5               |
| $Q_s$ e $Q_{20}$ FET 2N5248 (non sostituibile con altri tipi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                          | 3                 |
| $Q_{24}$ e $Q_{25}$ 2N3055 o equivalenti $Q_{32}$ 2N1306 o equivalenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                          | 15                |
| $Q_{26}$ 2N1306 O equivalenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                          | 47                |
| $Q_{24} = Q_{25}$ 2N3055 o equivalenti<br>$Q_{26}$ 2N1306 o equivalenti<br>$Q_{27}$ AC128<br>$Q_{28}$ AU110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 1                                        | 100 (1 W)         |
| $Q_{28}$ AUTIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                          | 100               |
| tutti gli altri: BC107 o equivalenti ( $V_{ceo} = 45 \text{ V}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                          | 220               |
| 0.005 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                          | 330               |
| D <sub>r</sub> 0A95 (germanio)<br>D <sub>In</sub> e D <sub>Is</sub> 1N4001 o equivalenti (silicio, da 1 A)<br>D <sub>In</sub> e D <sub>Is</sub> diodo FAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                          | 470               |
| $D_{10} \in D_{15}$ 1N4001 o equivalenti (silicio, da 1 A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                          | 680               |
| D <sub>16</sub> 01000 E711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                          | 820               |
| $D_{17}$ , $D_{18}$ , $D_{19}$ BY127 o equivalenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                          | 020               |
| Z zener da circa 5 V<br>tutti gli altri: 1N914 o eguivalenti (silicio)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                   |
| $P_{tt}$ 5 $\Omega$ , a filo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | (kΩ)              |
| $P_{16}$ 15 $\Omega$ . a filo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                          | 1                 |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                          | 1.2               |
| tutti gli altri a strato di carbone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                          | 1,5               |
| U, e U, µA709 C amplificatore operazionale (circolare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                          | 2,2               |
| II SN74121 multivibratore monostabile (dual in line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                          | 2,7               |
| $U_4$ e $U_5$ L123 regolatore di tensione (circolare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                          | 3,9               |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                         | 4,7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          | 6,8               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                          | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          | 12                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                          | 15                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          | 22                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                          | 33                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                          | 47                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                          | 100               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                          | 150               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                          | 220               |
| The state of the s | 1                                          | 470               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | condensatori                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ità valore                                 | note              |
| quant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 pF                                     | 6000 V isolamei   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 6000 V isolame    |
| 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 nF                                       | 6000 V isolame    |
| 5 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 nF<br>2,2 nF                             | 6000 V isolame    |
| 5 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 nF<br>2,2 nF<br>10 nF                    | 6000 V isolame    |
| 5 2 1 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 nF<br>2,2 nF<br>10 nF<br>47 nF           | 6000 V isolame    |
| 5 2 1 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 nF<br>2,2 nF<br>10 nF<br>47 nF<br>100 nF | 6000 V isolame    |
| 5<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 nF<br>2,2 nF<br>10 nF<br>47 nF           | 6000 V isolame    |

 $T_t$  trasformatore d'alimentazione per circa 40 W, di cui è detto nel testo  $T_2$  induttore con nucleo in ferrite a olla da mm 25, con 200 spire  $\varnothing$  0,2 mm, con presa centrale (oppure toroide da 88 mH)

(oppure toroide da 88 min)  $T_3$  trasformatore con nucleo in ferrite a olla da mm 25, con primario di 120 spire Ø 0,2 mm e secondario di 24 spire Ø 0,6 mm  $T_4$  trasformatore di riga per televisori commerciali a transistori (marca CGE o analoga, avuto riguardo della corrispondenza delle connessioni degli avvolgimenti interni ai piedini esterni); CGE modello T290 DS30

T, induttore in ferrite toroidale da 200 mH o valore prossimo (da adattare al valore capacitivo

per una  $F_{ris}$  di 1200 Hz)  $T_6$  induttore in ferrite toroidale da 88 mH

 $T_{\tau}$  induttore da 0,5 H o valore prossimo, in ferrite (a olla o toroidale)

Vista dall'alto

15 V elettrolitico

35 V al tantalio 500 V elettrolitico

15 V elettrolitico

15 V elettrolitico

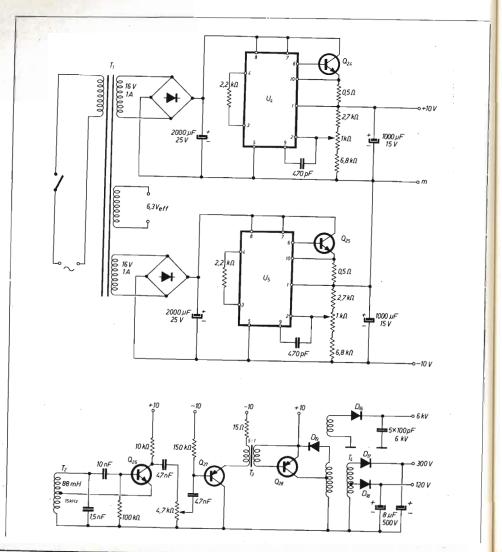
25 V elettrolitico

1 µF 2,2 juF

8 µF 10 uF

1000 µF

2000 uF


Ai capi di detto circuito vengono isolati gli impulsi di sincronismo che, rivevelati dal diodo  $D_5$  e livellati dal condensatore da 2200 pF, vengono presentati all'ingresso « non-inverting » dell'integrato  $\mu$ A709 C. L'altro ingresso viene polarizzato tramite il trimmer  $P_5$ .

All'uscita si ottengono gli impulsi di sincronismo positivi, perfettamente squadrati, la cui larghezza viene portata al valore ottimale mediante la corretta regolazione del trimmer  $P_6$  da porre, ove possibile, sul pannello anteriore.

Detti impulsi vengono opportunamente separati mediante appositi circuiti integratori e presentati ai rispettivi multivibratori attraverso i diodi  $D_7$  e  $D_{II}$ , posti sui collettori dei transistori formatori di impulsi, rispettivamente  $Q_3$  (verticale) e  $Q_{I3}$  (orizzontale).

Si noterà che il multivibratore verticale è connesso direttamente al circuito di deflessione verticale, mentre nel corrispondente circuito orizzontale è stato interposto un monostabile integrato seguito dal transistore  $Q_{16}$ .

La ragione risiede nella maggiore delicatezza della deflessione orizzontale e nella necessità di pilotare il circuito di deflessione orizzontale con impulsi perfettamente dimensionati, quali solo un monostabile integrato può dare. Il transistore  $Q_{16}$  rovescia la polarità dell'impulso per la corretta applicazione allo stadio seguente.



#### CIRCUITI DI DEFLESSIONE

Per comprendere la dinamica dei circuiti di deflessione, consideriamo il circuito per la deflessione verticale, a partire dal multivibratore asimmetrico costituito dai transistori  $Q_4$  e  $Q_5$ . La forma d'onda all'uscita del multivibratore è tale che la tensione è alta per circa 8 sec e bassa per 30 msec.

Al verificarsi dell'impulso di 30 msec, il collettore di  $Q_6$  sale al massimo valore positivo,  $Q_7$  conduce bruscamente e, tramite il diodo  $D_{16}$ , carica il condensatore da  $2.2~\mathrm{uF}$  alla massima tensione.

Di conseguenza tutte le tensioni in uscita dei transistori  $Q_9$ ,  $Q_{10}$ ,  $Q_{11}$  vanno alte. In quell'istante, nella bobina di deflessione verticale scorre la massima corrente e il punto luminoso raggiunge la sommità dello schermo del tubo RC.

Contemporaneamente, inizia la scarica del condensatore attraverso il transistor  $Q_8$ , disposto in circuito di corrente costante. La scarica risulta perciò rigorosamente lineare e la sua durata è fissata regolando i trimmer  $P_8$  e  $P_9$  nel circuito di emettitore di  $Q_8$ .

Il funzionamento del circuito si esplica osservando i diagrammi di cui alla figura seguente, in cui è riportata l'escursione della tensione del condensatore C<sub>1</sub>.

Il valore h rappresenta la massima tensione possibile di carica. Il valore s rappresenta l'escursione di tensione consentita dalla posizione del trimmer  $P_8$  (o  $P_0$ ).

Il caso s < h si verifica quando  $P_8$  (o  $P_9$ ) è regolato in modo che la scarica di  $C_1$  avvenga in tempi superiori a 8 sec, cioè quando  $P_8$  (o  $P_9$ ) assume un valore elevato. Ciò dipende dal fatto che l'impulso giunge dal multivibratore prima Il caso s = h si ha quando  $P_8$  (o  $P_9$ ) è regolato esattamente per un tempo di scarica di 8 sec.

Quando  $P_8$  (o  $P_9$ ) assume un valore più basso, la scarica di  $C_1$  avviene in tempi inferiori a 8 sec. Ne consegue un tratto « zero » del diagramma di scarica che, nel raster, si traduce in un appiattimento dell'immagine sul lato basso del tubo RC. Si osservi infatti che la posizione del punto sullo schermo del tubo RC è rigorosamente legata alla tensione istantanea del condensatore  $C_1$  e che, pertanto, quanto sopra detto trova immediato riscontro sullo schermo del tubo RC. Il resistore di emettitore di  $Q_6$  regola il valore della massima tensione sul condensatore  $C_1$ . Se la resistenza è zero si ha la massima tensione alta; se è pari a 1500  $\Omega$  si ha la minima tensione alta. Il valore prescelto di 220  $\Omega$  rappresenta un ottimo compromesso.

I trimmer  $P_8$  e  $P_9$ , commutabili dall'esterno, consentono l'adattamento del monitor agli standards europeo e americano che, com'è noto, differiscono sensibilmente. Infatti, col monitor predisposto per lo standard europeo, allorché si ricevono immagini americane, queste risultano « compresse » sui lati destro e basso. Viceversa, col monitor predisposto per lo standard americano, le immagini europee risultano più strette e basse.

Il trimmer P<sub>10</sub> consente il centraggio verticale dell'immagine, oltre a una lieve regolazione dell'ampiezza.

Il trimmer  $P_{II}$  regola l'ampiezza della scansione. Pur assolvendo a compiti diversi, i trimmer  $P_8$ ,  $P_9$ ,  $P_{I0}$ ,  $P_{II}$  e il resistore sull'emettitore di  $Q_6$  interagiscono lievemente tra loro. La sistemazione del raster va quindi ottenuta mediante la regolazione combinata di tutti i trimmer citati.

Il diodo  $D_{16}$  impedisce che  $C_1$  si scarichi attraverso  $Q_7$ . Il diodo  $D_{10}$  (al silicio), differenzia di circa 0,6 V le tensioni sulle basi dei transistori finali  $Q_{11}$  e  $Q_{12}$ , evitando la lieve contrazione della linearità della scansione in corrispondenza di tensioni prossime allo zero.

In assenza di  $D_{10}$  e con le basi di  $Q_{11}$  e  $Q_{12}$  collegate tra loro e all'emettitore del pilota  $Q_{10}$ , sullo schermo del tubo RC si forma una linea lievemente più luminosa delle altre, posta a metà altezza. Per transistori finali al germanio la disposizione è quella illustrata nello schema generale, con un solo diodo.

Per transistori finali al silicio è necessario porre in serie due diodi al silicio, in luogo di uno.

Il multivibratore verticale, come già detto, viene agganciato agli impulsi di sincronismo verticale in arrivo, messi in forma da  $Q_3$  e trasferiti tramite il diodo  $D_7$  alla base di  $Q_4$ .

Tutto quanto sopra detto per la deflessione verticale è perfettamente analogo a quanto avviene nel circuito di deflessione orizzontale, con la differenza dei tempi di scansione che sono pari a 60 msec per lo standard europeo e a 66,6 msec per lo standard americano.

#### MESSA A PUNTO

La messa a punto del monitor non è particolarmente difficoltosa. Tuttavia, trattandosi di circuiti relativamente critici, accoppiati in c.c., sarà necessario provvedere a una corretta taratura onde ottenere i migliori risultati.

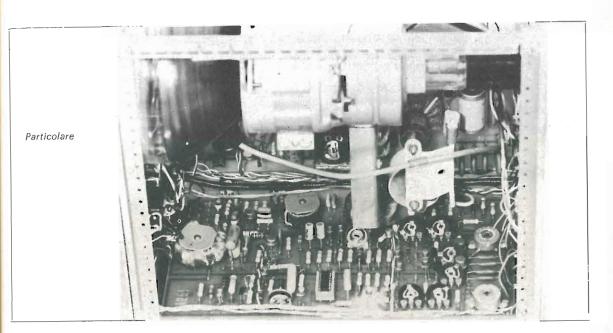
Si inizia col regolare il trimmer  $P_l$  fino a ottenere al piedino 6 dell'integrato  $U_l$ , limitatore, una tensione c.c. il più possibile prossima allo zero.

Il trimmer  $P_2$  va inizialmente ruotato tutto a destra (lo stesso si faccia col potenziometro  $P_3$  del contrasto); quindi, collegato all'ingresso un segnale di 1500 Hz (livello del nero), si regola il trimmer  $P_4$  fino a ridurre al minimo la tensione di collettore di  $Q_2$ . Se la regolazione è corretta, detta tensione non varia se si sconnette la frequenza a 1500 Hz. Si porta quindi la frequenza a 2300 Hz (livello del bianco), e si regola  $P_2$  fino a ottenere, con  $P_3$  sempre tutto aperto, circa 50 V sul collettore di  $Q_2$ . Il trimmer  $P_5$  (luminosità) è posto sul pannello posteriore e va regolato, una volta per tutte, fino a ottenere lo spegnimento della traccia.

Il trimmer  $P_{\delta}$  va regolato con un segnale in ingresso fino a ottenere un sicuro aggancio dei sincronismi.

Il trimmer  $P_7$  va regolato fino a ottenere nel multivibratore verticale una cadenza di 8 sec.

Il trimmer  $P_9$  predispone il monitor per lo standard americano e va regolato (dopo aver azionato l'apposito commutatore posto sul pannello anteriore) in modo che il ritorno verticale si verifichi immediatamente dopo il formarsi dell'ultima linea di scansione sul lato basso del raster, e non prima.


Il trimmer  $P_8$ , analogo al precedente, ma per lo standard europeo, va regolato fino a ottenere l'appiattimento del raster sul lato basso, in ragione di circa il 10 % del numero di linee.

Il trimmer  $P_{12}$  va regolato per ottenere nel multivibratore orizzontale, un periodo di circa 67 msec.

I trimmer  $P_{13}$  e  $P_{14}$  predispongono il monitor (circuito orizzontale) per gli standard europeo e americano. Non sarà difficile, ricevendo buoni segnali di entrambi gli standard, regolarli al meglio facendo coincidere i lati dell'immagine a quelli del raster. I trimmer  $P_{10}$  e  $P_{15}$  (centraggio) e  $P_{11}$  e  $P_{16}$  (ampiezza) si regolano agevolmente col raster.

#### **ALIMENTATORE**

Particolare cura è stata posta nella progettazione dell'alimentatore. Le tensioni sono state ridotte al numero minimo necessario. Le tensioni di base, + 10 V e -10 V, sono ottenute da due identici alimentatori e risultano rigorosamente stabilizzate a mezzo di regolatori integrati (tipo L123 e simili) e booster (tipo 2N3055 e simili). L'uso di regolatori del genere impone l'adozione di un trasformatore con secondari separati (i normali trasformatori con secondari a presa centrale non sono adatti) previsti per correnti di almeno 0,8 A e tensioni di almeno 15 V. Uri terzo secondario, di 6,3 V e 0,3 A, alimenta il filamento del tubo RC. Si fa presente che, ove si disponga già di un trasformatore con due soli secondari adeguati, si potrà agevolmente alimentare il filamento del tubo RC derivando la corrente da uno dei due secondari a 15 V, interponendo una resistenza di caduta di 15  $\Omega$ , 10 W, che riporterà la tensione a circa 6 V.



I trimmer da 1 k $\Omega$  vanno regolati una volta per tutte fino a ottenere tensioni di 10 V in entrambi gli alimentatori.

L'alimentatore per EAT è formato da un primo stadio oscillatore con 2N1306, a frequenza di circa 15 kHz, seguito da uno stadio pilota con AC128 e da un finale con AU110. L'unica regolazione necessaria è quella del trimmer da 4,7 k $\Omega$  per un sicuro funzionamento dell'intero circuito. Il trasformatore d'uscita è quello tipico per televisori commerciali transistorizzati (trasformatori di riga). Anche il diodo  $D_{16}$ , per EAT, è ovviamente allo stato solido. Le tensioni ottenute sono: 6000 V per il secondo anodo del tubo RC, 300 V per il primo anodo e 120 V per lo stadio finale video.

#### DISSIPATORI

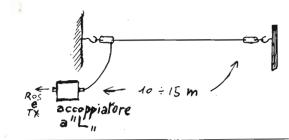
I transistori  $Q_{11}$ ,  $Q_{12}$ ,  $Q_{22}$ ,  $Q_{23}$ ,  $Q_{24}$ ,  $Q_{25}$ , vanno montati su adeguati dissipatori di calore, con isolatori in mica, che possono essere costituiti anche dal pannello posteriore. Il transistore  $Q_{28}$  va invece montato su un dissipatore posto sulla piastra « alimentatore ».  $\stackrel{*}{\sim}$   $\stackrel{*}{\sim}$ 

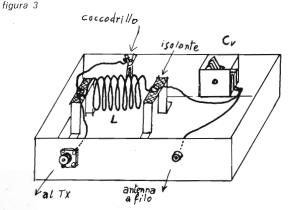
### **CB - DX ...** ... si tira un filo ... e l'antenna è fatta

#### IW2AIU. dottor Alberto D'Altan

Il titolo piuttosto semplicistico può far pensare a baracchini in fiamme e relative lettere minatorie all'autore.

Niente di tutto questo.


Voglio ricordare solamente che un filo teso, lungo qualche lunghezza d'onda, può diventare un'antenna eccellente se alimentato a una estremità interponendo tra il TX e il filo un semplice dispositivo d'accordo adattatore d'impedenza.


L'impedenza d'ingresso di un'antenna monofilare di lunghezza generalmente superiore a mezza lunghezza d'onda è assai elevata sia nella componente resistiva che in quella

reattiva.

figura 2

figura 1





Poiché il TX necessita di un carico resistivo (o quasi) di circa 50  $\Omega$ . l'adattatore di impedenza che meglio si presta allo scopo è l'accoppiatore a L. collegato come in figura 1, che neutralizza la componente reattiva e trasforma in 50  $\Omega$  per il TX la componente resistiva dell'impedenza d'antenna.

Il filo che costituisce l'antenna può essere montato come in figura 2, per esempio tra una finestra e un albero, tra due pali della biancheria, ecc.

In ogni caso, ovviamente, l'antenna va supportata con tiranti isolanti e più lontana è dai muri e dalla terra, meglio e.

Veniamo ora all'accoppiatore.

Esso può essere costruito utilizzando un condensatore variabile C, con capacità max di 100 ÷ 150 pF e una bobina L costituita da circa 15 spire di filo da 2 mm avvolte su un diametro di 6 cm e una lunghezza di circa 5 cm.

L'accoppiatore va montato su un telaietto d'alluminio in modo che il ritorno di massa del variabile sia collegato al telaio stesso. Un connettore standard serve per il collegamento al TX mediante il solito cavetto RG/58.

La bobina è montata su supporti isolanti e le sue spire possono essere parzialmente cortocircuitate con un « coccodrillo » collegato a uno spezzone di

L'uscita verso l'antenna è costituita da uno spinotto unipolare (figura 3).

Per la messa a punto si deve far uso di un ROSmetro montato tra TX e accoppiatore come in figura 1. Si sposta il coccodrillo (variabile a metà posizione) fino a che il ROS visto dal TX è minimo, poi si gira il variabile fino a che il ROS scende ulteriormente. Si ritoccano alternativamente L e C<sub>v</sub> fino a che il ROS è praticamente 1:1.

Può essere opportuna una buona terra per il TX o per l'accoppiatore. L'antenna, se lunga più di venti metri, è alquanto bidirezionale nel senso del filo e offre quadagno nei confronti di gran parte delle verticali.

Ovviamente i vantaggi offerti in trasmissione valgono anche in ricezione.

Tutto qui. 茶茶茶茶茶茶茶茶茶茶茶茶茶茶茶



ing. Enzo Giardina

#### IL DIGITALIZZATORE FILOSOFO

Signore e Signori, ecco a voi il digitalizzatore, che viene a parlarci della sua vita, scegliendo in particolare questa volta un campo fin'ora poco evidenziato, ma sostanziale, della prassi pragmatistica, ovvero della sperimentazione.

Già, infatti non bisogna dimenticare (e troppo spesso lo si fa) che, a monte della pratica, c'è la teoria. Niente paura, non verranno dette parolone grosse, ma solo discorsi piani e sintetici.

Le parole del digitalizzatore sono guesta volta dirette sia ai Volponi che ai Pierini digitali: insomma «ingresso libero per tutti ».

Un'ultima avvertenza: i pragmatisti a oltranza rimarranno sicuramente delusi dalla mancanza totale di qualsiasi forma di circuito o di formula matematica, ma niente paura, una delle prossime volte sarà scodellato loro un capolavoro di marchingegno tale da lasciarli allibiti e da creare i presupposti per un « compito a casa » di notevoli dimensioni.

Qui si punta sul grosso e ne vedremo delle belle, ma lasciamo per ora spazio ai concetti sui quali il nostro amico vuole informarci...



Eseguendo un rapido flash sulla logica automatica, al giorno d'oggi, possiamo senz'altro dire che ciò che più la caratterizza è l'elettronica logica, ma non si deve con questo concludere che transistori, integrati, diodi, condensatori, resistenze, ecc. siano gli unici elementi in grado di simulare forme logiche o comporre automatismi più o meno autosufficienti.

Pur senza voler fare della filosofia, si può facilmente intuire che, non essendovi nulla di intelligente dentro un elaboratore, le « facoltà » che sembra avere a disposizione non sono altro che il frutto di una umana associazione di informazioni e/o convenzioni.

Queste convenzioni possono essere realizzate in milioni di modi tutti diversi tra loro sia concettualmente che costruttivamente.

Volendo fare un esempio grossolano, ma indicativo, immaginiamo di avere otto rubinetti connessi ad altrettante vasche che rappresentano le risorse idriche di una casa e immaginiamo di voler controllare lo stato di questi otto contenitori semplicemente aprendo i rubinetti. Ci troviamo di fronte a 256 possibili combinazioni, secondo che ciascuno degli otto rubinetti versi oppure no ac-

Non avendo preventivamente fatto alcuna convenzione, al massimo si può concludere che nessuno, uno, due, tre ... oppure tutti e otto i contenitori sono vuoti, ma avendo per esempio associato a ogni rubinetto versante un 1 logico e a ogni rubinetto asciutto uno 0 logico, già si può determinare univocamente lo stato delle risorse idriche in uno dei 256 possibili.

Immaginiamo di aver trovato per esempio lo stato binario 1100 0001, che corrisponde all'esadecimale C1 e al decimale 193 ... ma, un attimo, torniamo sui nostri passi e analizziamo più attentamente quanto detto. Dunque con otto rubinetti siamo in grado di associare concetti matematici, e quindi logici, al solo fatto che essi versino, oppure no, acqua. Ed espandendo questo macroscopico esempio, non si potrebbero fare ragionamenti analoghi con fazzoletti annodati o no, o con stecchini presenti o meno?

Ancora una volta ci appare come il concetto di informazione non sia legato al suo supporto fisico, che può essere di natura più varia, ma alle convenzioni sotto cui lo si vede.

L'informazione, che può giungere sotto forma di messaggio di qualsiasi tipo (ottico, elettrico, acustico, etc.), è dunque il parametro da analizzare e misurare quando si considerano apparati logici di natura più varia (elettronica, meccanica, fluidodinamica, ecc.).

In sintesi si può dire che l'informazione è un quid che può essere considerato e misurato in base a determinate convenzioni che esulano dalla conoscenza del supporto fisico usato.

Quando si parla di informazione, non si deve necessariamente pensare a un rapporto macchina-uomo o uomo-macchina-uomo, ma si può pensare anche a un rapporto macchina-macchina; un esempio concreto di ciò è la controreazione. Un amplificatore controreazionato è un classico esempio di come un sistema (l'amplificatore) venga informato di controreazione) di ciò che avviene alla sua uscita.

Da quanto detto risulta come un automatismo è tanto più completo e autonomo quanto più è « informato » sulle funzioni che sta esplicando. Viceversa, quanto più è « ignorante » dell'ambiente esterno e di se stesso, tanto più tende a comportarsi come un sistema a catena aperta ovvero privo di controreazione.

Un altro esempio potrebbe vedersi in un registratore normale o munito di controllo automatico di registrazione; nel primo caso l'anello di controreazione è rappresentato dall'uomo che. guardando sull'apposito strumento il livello di registrazione. controlla il volume di registrazione; nel secondo caso è il registratore stesso che, in base a blocchi di controreazione. controlla che non avvenga distorsione. Ancora una volta voglio sottolineare l'indipendenza del concetto informativo dal mezzo: immaginiamo di voler prendere con la mano un oggetto. Detta azione, apparentemente semplice, comporta una complessa analisi sui principi dei controlli controreazionati. Infatti quando si inizia a spostare la mano verso l'oggetto in questione, a priori non si sa dove la mano andrà a toccare (una persona bendata avrebbe buone probabilità di insuccesso), ma tramite gli occhi si indirizza il moto della mano nella direzione esatta, moto che, scisso in moti elementari, può essere rappresentato da tanti segmenti che tendono, al limite, alla linea congiungente la posizione attuale della mano con l'oggetto da prendere. Le oscillazioni che la mano (organo motore) compie attorno alla linea congiungente sono controllate (controreazione) dagli occhi (organi sensori) tramite il cervello (organo di calcolo), che comanda alla mano le correzioni della traiettoria che sta percorrendo. Un esempio di controreazione che sfrutta un mezzo meccanico può essere il regolatore centrifugo di Watt. molto usato una volta per mantenere la velocità di rotazione costante nelle macchine a vapore, ma che si ritrova in versione moderna in quasi tutte le automobili odierne sotto forma del dispositivo che controlla l'anticipo automatico.

Con questo non si intenda che solo le macchine munite di controreazione possano esplicare funzioni logiche, basti pensare che una qualsiasi addizionatrice da tavolo meccanica o no, pur essendo sprovvista di controllo controreazionato, esplica la funzione prettamente logica del calcolo.

Dunque il grande sviluppo della logica automatica nel campo elettronico è dovuto essenzialmente a due fattori: alla velocità di funzionamento e al favorevole rapporto spazio occupato/funzioni esplicate; infatti velocità operazionali del nanosecondo o immagazzinamento di milioni e milioni di bytes entro frazioni di metro cubo sono possibili, allo stadio attuale della tecnologia, solo per via elettronica.

Viceversa altre qualità, attribuite comunemente alle macchine elettroniche, quali ad esempio la sicurezza di funzionamento o l'autogestione delle risorse, sono ottenute a prezzo di complesse realizzazioni sia di hardware che di software. Tanto per aumentare la quantità di informazione che vi sto travasando. i due paroloni appena usati rappresentano, in inglese, i due aspetti della macchina: quello materiale, meccanico (hardware che sta per « duro », « tangibile ») e quello logico, filosofico (software che sta per « morbido ». « intangibile »).

E così si scopre che quello che si credeva fosse una sola macchina diventano due entità: una reale e una logica; una parte tangibile e una parte speculativa, filosofica.

Certamente nel campo dell'elaborazione questa strana simbiosi di funzioni che definisce la macchina è esaltata e macroscopica, ma, attenzione, basta riflettere un attimo per capire che tutte le macchine posseggono la dualità descritta di hardware e di software. Prendiamo ad esempio il registratore già menzionato: esso è composto da un certo numero di ingredienti elettromeccanici, ed esplica la funzione di riproduzione del suono.

Data la semplicità del software è chiaro che i tecnici lo sanno usare, ma data la complessità dello hardware una ottima percentuale di utenti ne ignora la meccanica di funzionamento.

Dirò di più: questa dualità si trova pure in natura (un essere vivente qualsiasi ne è l'esempio, direi, « vivente ») e questo fatto induce a pensare che i criteri speculativi in nostro possesso siano realizzati in maniera tale da modificare la realtà a nostro uso e consumo.

Per non divagare ulteriormente e correre il rischio di fare una critica filosofica della filosofia, ovvero un bel mordersi la coda, torniamo a considerare, per concludere, una realizzazione qualsiasi digito-elettro-meccanica, sia essa un frullino a induzione o un cavaturaccioli a laser, per imparare a vederla sotto il profilo un po' più generale della cibernetica, con lo scopo di ampliare i nostri orizzonti e restituire al marchingegno generico quei valori che gli competono in quanto frutto di una umana speculazione mentale.

chiamate digitalizzatore

Non si consideri questo rovesciamento di posizioni come una sterile filosofia, ma come una delle strade da seguire per dare un valido apporto creativo alla conoscenza tecnologica. Per esemplificare in termini più concreti, consideriamo il caso del matematico Maxwell il quale, sulla base delle nozioni di

del matematico Maxwell il quale, sulla base delle nozioni di elettromagnetismo che i fisici della fine del secolo scorso accettavano per valide, creò, del tutto a tavolino, le leggi dell'elettromagnetismo tuttora riconosciute ufficialmente. Bene, questo signore fu ampiamente deriso all'epoca, ma un enorme numero di applicazioni tecnolo-

giche sfrutta ora i principi da lui dimostrati. E' da notare l'atto di coraggio dimostrato da Maxwell nell'enunciare i suoi principi, con tutti i rischi impliciti che si corrono quando si altera il meccanismo usuale di apprendimento, la filosofia corrente, il punto di vista comune. Impariamo quindi a criticare costruttivamente la logica in nostro possesso, sia pure limitatamente alle cognizioni possedute, e analizzare quell'esile filo di rasoio che distingue l'informazione dal suo supporto, il software dallo hardware, in ultima analisi il pensiero dalla materia. ※※※※※※※※※

IL DIGITALIZZATORE HA COLPITO ANCORA.



Spedizione contrassegno - ELECTROMEC s.p.a. - via D. Camporetti 20 - 00141 Roma - tel. (06) 8271959

#### La pagina dei pierini

Essere un pierino non è un disonore, perché tutti, chi più chi meno, siamo passati per quello stadio: l'importante è non rimanerci più a lungo del normale.

> 14ZZM. Emilio Romeo via Roberti, 42 41100 **MODENA**

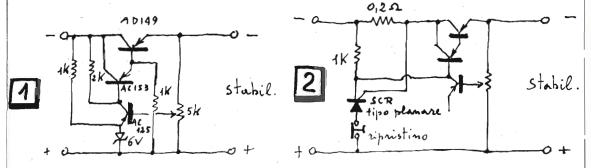


C copyright cq elettronica 1975

Pierinata 164 - Questa volta è il signor Er. Co. di Rovato (BS) che vorrebbe prendermi in giro: per me faccia pure, tanto non mi arrabbio, al massimo posso rispondere in maniera adeguata al mio stato pierinesco del momento.

L'amico Ermanno in una lettera alguanto lunga dice che possiede una batteria molto grossa e pesante e che lui suda le sette classiche camicie quando la deve caricare, e che degli amici non si fida, e che bla bla per due pagine fitte fitte, invocando da me un « carica-batteria automatico » di quelli che al comando di un interruttore si prendono in cura la batteria e fanno tutto loro, e dice che solo io posso aiutarlo, e via di questo passo fino a quando, all'inizio della terza pagina mi confessa candidamente: dimenticavo di dirie che la mia è una batteria speciale, è composta da un tamburo, una grancassa, un timpano, pi atti, scacciapensieri, « putipu », « marranzanu » e altri rumorogeni vari.

Lo possino... direbbero a Roma.


Comunque, grazie per la tua spiritosa lettera e per aver ni fatto fare una sonora risata dopo avere sudato una fatica boia nel decifrare le prime due pagine della tua orripilante calligrafia.

Pierinata 165 — L'amico As. Pa. di Cécina (LI) dice di aver costruito un alimentatore stabilizzato costituito da un trasformatore, dei dioci raddrizzatori, degli elettrolitici e due transistor, un AC153 e un AD149. Sorvolando sul fatto che vi è un altro secondario per poter ottenere una variazione di tensione regolata partendo dallo zero, mi sembra che due transistor siano pochi per una buona stabilizzazione: infatti, secondo i dati forniti, la tensione cala di circa il 2,5 % quando il carico varia da zero al massimo (un ampere), il che vuol dire che a 10 V si abbassa di 0,25 V, e non è certo questa una cosa piacevole. Ma non è questo il nòcciolo della questione. L'amico Ascanio dice che ha bruciato l'AD149 e al suo posto ha messo un AD142 « più potente », che però scalda molto. Vorrebbe che gli spiegassi questo fatto e vorrebbe uno schema di protezione elettronica contro i frequenti cortocircuiti che lui provoca.

Per il primo quesito ho potuto appurare che la Philips proclama più potente il suo AD149 mentre altre Ditte proclamano più potente il loro AD142: io non dico nulla, però mi sembrerebbe ben fatto il rimettere un AD149 nuovo nel posto dovuto.

Per la storia della protezione elettronica, bisognerebbe che io realizzassi il circuito, facendo ripetute prove per trovare i valori più opportuni dei vari componenti: e ciò perché questo circuito è del tutto particolare, alquanto diverso da quelli classici e da me collaudati. Ma siccome si tratta di un alimentatore dalle prestazioni modeste, penso che non valga la pena di perdere questo tempo. Tuttavia voglio rammentare qui, per i più freschi di « pierinismo», lo schema semplificato di una protezione elettronica, il cui circuito completo è apparso su cq 8/72 a pagina 1068 e seguenti: ma poiché il circuito citato si riferisce a transistor NPN, quello che presento adesso si riferisce ai transistor PNP, sperando di fare così una cosa utile.

Ecco dunque uno schema classico semplificato (valori indicativi) (schema 1), ed ecco ancora in qual modo potrebbe inserirsi la protezione elettronica (schema 2).

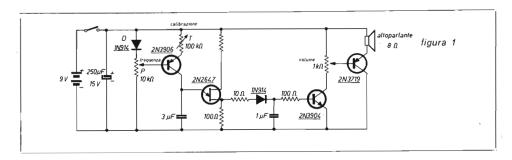


La resistenza da  $0.2 \Omega$  è del tutto indicativa: per variare la soglia di intervento della protezione si può usare un commutatore che inserisce varie resistenze, a partire da 0.1  $\Omega$  fino a 0.5  $\Omega$  oppure adottare l'accorgimento usato nell'articolo citato.

Detto questo, ci sarebbe da rispondere a un terzo quesito proposto dal buon Ascanio. Fargli cioè sapere chi vende in Italia transistor originali giapponesi. Mi spiace, non posso accontentarlo, i miei servizi di spionaggio non sono finora riusciti a comunicarmi alcun indirizzo

Per questa volta ho finito: saluti a tutti dal vostro

pierinissimo maggiore E. Romeo 14ZZM


# 5 circuiti 5 utili a tutti

GIANVITTORIO PALLO

#### Metronomo elettronico

I primi due schemi sono dedicati ai musicofili elettronici ai quali si fornisce innanzitutto un metronomo ossia uno strumento che fornisce il ritmo con una frequenza regolabile, nel nostro caso tra 15 e 380 colpi al minuto.

Lo schema di figura 1 è basato su un generatore di corrente costante, l'intensità della quale si regola mediante il potenziometro P, che carica il condensatore C, il livello di tensione ai capi del quale è osservato da un transistore unigiunzione.



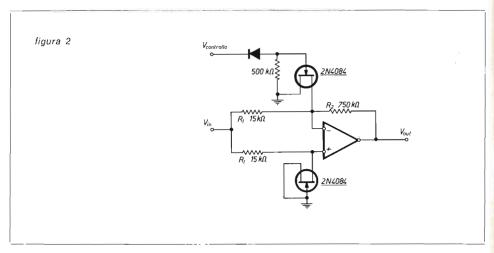
Quando la tensione raggiunge il valore di soglia (circa 6 V) l'unigiunzione entra in conduzione scaricando il condensatore e producendo un impulso che va in altoparlante. Nonostante la semplicità dello schema la frequenza d'uscita è piuttosto stabile sia rispetto alla temperatura, grazie anche all'impiego del diodo D di compensazione, sia rispetto all'invecchiamento della batteria di alimenta-

Il potenziometro P deve essere del tipo a dieci giri in modo da sfruttare bene le buone possibilità di questo circuito.

Molto importante è la calibrazione dello strumento che si esegue regolando una volta per tutte il valore del trimmer T in modo che regolando il potenziometro P si abbia il campo di frequenza desiderato.

Mediante un contasecondi o un cronometro si costruisce poi la curva di calibrazione che lega il valore letto sull'indicatore del potenziometro con la frequenza d'uscita in colpi al minuto.

Come si vedrà, il grafico è una retta perché il tempo di carica del condensatore C è proporzionale alla corrente di carica che a sua volta è proporzionale alla tensione applicata alla base del transistore a corrente costante tramite il potenziometro P.


#### Compressore a bassa distorsione

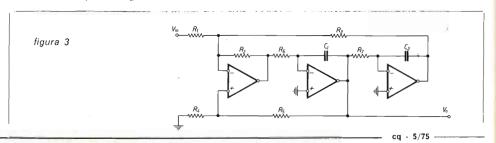
Per realizzare la compressione, e anche l'espansione, della dinamica si utilizzano in genere dei FET o dei diodi con risultati buoni dal punto di vista della dinamica, ma assai meno buoni dal punto di vista della distorsione.

Con tali dispositivi infatti si comprime si, ma anche si distorce, perché se l'ampiezza dei segnali non è trascurabile rispetto alla curvatura del tratto di curva caratteristica utilizzata tale curvatura produce delle inevitabili distorsioni.

Nello schema di figura 2 si evita questo fastidioso effetto utilizzando due FET collegati a un amplificatore operazionale in una configurazione particolare che

collegati a un amplificatore operazionale in una configurazione particolare che riduce notevolmente l'escursione dei segnali tra drain e source e che provvede a compensare la nonlinearità della curva caratteristica.




Scrivendo le equazioni dell'operazionale, ricordando le caratteristiche dei FET utilizzati come resistori variabili, applicando inoltre il quarto principio della termodinamica e la legge di Archimede Pitagorico, non è difficile rendersi conto che il guadagno in tensione del circuito tra l'ingresso e l'uscita vale

$$A = -\frac{R_2}{R_1} \cdot \frac{V_{GS}}{V_P}$$

ove  $V_{GS}$  è la tensione tra gate e source del FET e  $V_P$  è la tensione di interdizione, purché sia  $R_1\!\gg\!r_{on}$ , cioè la resistenza del FET per polarizzazione zero.

#### Raffinato filtro passa-banda

Nel campo dei filtri passabanda attivi RC vari schemi sono già stati presentati su queste pagine, molti dei quali basati sull'impiego di un solo operazionale. Il filtro di figura 3 è piuttosto raffinato e trova applicazione in impieghi professionali: ha il vantaggio di poter operare a frequenze più elevate rispetto agli altri schemi, con valori più elevati di Q e con migliore stabilità delle sue caratteristiche rispetto agli effetti delle variazioni di Q.



La funzione di trasferimento del filtro, come d'altronde per tutti i filtri passabanda del secondo ordine, è data dalla espressione

$$W (j\omega) = \frac{V_o (j\omega)}{V_{in} (j\omega)} = \frac{j\omega \frac{k\omega_o}{Q}}{(j\omega)^2 + j\omega \frac{\omega_o}{Q} + \omega_o^2}$$

in cui  $\omega_o=2\,\pi\,f_o$  è la pulsazione di risonanza, Q il fattore di merito e k il guadagno alla risonanza.

Vi sono nove incognite a tre dati, cioè  $\omega_{o}$ , Q, k.

Si può allora fissare qualche componente assegnando dei valori ragionevoli, come ad esempio:

$$R_4 = 1 \text{ k}\Omega$$
  
 $R_2 = R_3 = 10 \text{ k}\Omega$   
 $C_1 = C_2 = 10 \text{ nF}$ 

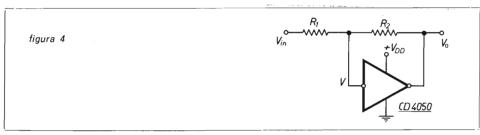
e calcolare gli altri in conseguenza

$$\begin{split} R_7 &= \frac{1}{\omega_o \, C} \, \sqrt{R_2/R_3} \\ R_1 &= \frac{Q}{k} \, \sqrt{R_2 \, R_3} \\ R_5 &= R_4 \, [Q \, \sqrt{R_3/R_2} \, \left(1 + \frac{R_2}{R_1} + \frac{R_2}{R_3}\right) - 1] \\ R_6 &= R_7 \, \frac{C_2}{C_1}. \end{split}$$

Se  $R_5$  salta fuori negativo, si può aumentare  $R_3$  e diminuire  $R_2$ ; così pure si possono modificare le scelte iniziale per  $C_1$  e  $C_2$  in modo che tutti i valori di resistenze siano ragionevoli.

Le buone prestazioni di questo schema sono legate anche all'impiego di tre operazionali. Con le tendenze attuali dei prezzi, aumento dei componenti passivi e diminuzione di quelli attivi, l'impiego di tre operazionali è meno spendereccio di quel che sembra.

Inoltre la possibilità di modificare separatamente il guadagno, la banda passante; e la frequenza di risonanza, agendo sui vari componenti senza un eccessivo grado di interazione tra essi, è molto utile in pratica.


#### Trigger di Schmitt a COSMOS

Il trigger di Schmitt è uno dei circuiti più utili e versatili: trasforma un generatore sinusoidale in un generatore di onde quadre, trasforma in un impulso un segnale lentamente variabile, eccetera eccetera.

Nel lavoro originale di O.M. Schmitt, pubblicato nel 1938, si utilizzavano due complicati e ingombranti oggetti detti allora « triodi » (\*).

<sup>(\*)</sup> Il triodo è un tubo elettronico con tre terminali più i collegamenti per la stufa catodica. Recenti scoperte archeologiche indicano la possibilità che esistessero anche i pentodi munit di cinque terminali.

Il circuito di Schmitt si può realizzare con due transistori, ma lo schema di figura 4 è ancora più semplice: richiede solo un circuito integrato e due resistori.



Il circuito integrato è un « buffer » ossia separatore, della famiglia CMOS. Tale famiglia logica impiega transistori MOS di ambedue le polarità in modo da ridurre quasi a zero il consumo di potenza quando il circuito è in condizioni di riposo, ciò che è molto utile nelle applicazioni spaziali.

L'uscita del buffer è pari all'alimentazione  $V_{\rm DD}/2$ ; nel caso contrario è zero. Il buffer presenta dunque un certo guadagno positivo, e la configurazione complessiva di figura è a reazione positiva; proprio quello che ci vuole per lo Schmitt.

Sia ora l'ingresso pari a zero, tale sarà evidentemente l'uscita.

Se poi l'ingresso sale pian piano l'uscita resta a zero finché la tensione V di comando del buffer resta inferiore a  $V_{\rm DD}/2$ .

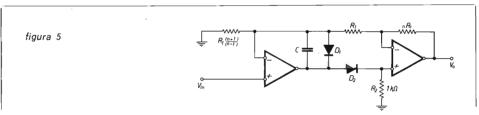
Quando  $V = V_{DD}/2$ , cioè quando

$$V_{in} = V_{T}^{+} = V_{DD} \frac{R_1 + R_2}{2 R_2}$$

l'uscita scatta al valore  $V_{\text{DD}}$  e ivi permane finché l'entrata non ridiscende fino al valore

$$V_{in} = V_T = V_{DD} (1 - \frac{R_1 + R_2}{2 R_2})$$

in corrispondenza del quale l'uscita torna a zero di scatto.


In base ai valori  $V_T$  e  $V_{T}^+$  delle due soglie di scatto, la differenza tra le quali non è altro che l'isteresi, la progettazione di questo semplice circuito è immediata.

#### Rettificatore di precisione a onda intera

I rettificatori di precisione a onda intera non servono a trarre il massimo profitto da tutte le semionde della rete, ma a misurare con precisione un segnale calcolandone il modulo.

Ciò è utile all'ingresso di un voltmetro in c.c. a valor medio per trasformarlo in un voltmetro in c.a., all'ingresso di un convertitore analogico—>digitale, per consentire la conversione di segnali sia positivi che negativi, e in molte altre applicazioni dalle quali è bene escludere la demodulazione di onde radio, almeno allo stato attuale della tecnologia.

Il circuito a valore assoluto di figura 5 è molto meno complesso di altri già noti al pubblico, ma il suo funzionamento è tutt'altro che banale.



Se il segnale d'ingresso è positivo, il diodo  $D_1$  si apre e  $D_2$  si chiude creando un sistema con un guadagno complessivo positivo di valore pari a « n ».

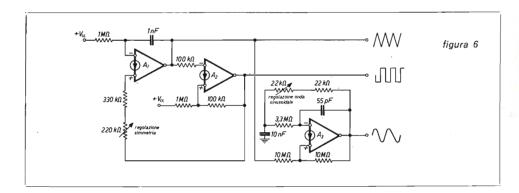
Se invece l'ingresso è negativo,  $D_1$  si chiude e  $D_2$  si apre; l'amplificatore  $A_1$  continua a dare un guadagno positivo, ma questa volta l'uscita di  $A_1$  va a comandare l'ingresso inverting di  $A_2$  tramite  $R_1$  e quindi il guadagno complessivo è negativo, sempre di valore pari a « n ».

Anche in questo caso, dunque, l'uscita è positiva.

La capacità C serve a compensare gli sfasamenti, cioè a evitare l'oscillazione, nel ciclo di reazione positiva che si crea per ingressi positivi.

Le prestazioni del circuito sono legate soprattutto alla qualità dei tre resistori che definiscono il quadagno e alle tensioni di fuorizero degli operazionali.

E' bene prima aggiustare  $R_1$  per ottenere il guadagno desiderato per segnali negativi e poi aggiustare  $R_1$  (n+1)/(n-1) in modo da ottenere lo stesso guadagno per segnali positivi.


Ma prima ancora va regolato il fuorizero di  $A_1$  per eliminare la presenza di un tratto di caratteristica in cui l'uscita non risponde (ciò accade per segnali di piccola ampiezza), e quindi il fuorizero di  $A_2$  per eliminare il fuorizero in ingresso.

#### Generatore di funzioni

I generatori di funzioni sono una classe di strumenti che si è molto diffusa negli ultimi anni. Si tratta di oscillatori che forniscono in uscita contemporaneamente onde sinusoidali quadre e triangolari, la cui generazione è ottenuta con tecniche non risonanti.

Ciò spiega perché molti generatori di funzioni commerciali consentono di generare segnali da un limite inferiore di frequenza di 0,001 Hz fino a 1 MHz.

In attesa di racimolare il gruzzoletto necessario all'acquisto di un generatore di funzioni commerciale si può provare a realizzare il circuito di figura 6, che è appunto lo schema di un semplice generatore di onde quadre, sinusoidali e triangolari. Si tratta anzi di un generatore a circuiti integrati perché utilizza tre dei quattro amplificatori di Norton che costituiscono l'integrato LM3900 della National Semiconductor.



Il cuore del circuito è costituito dal gruppo  $A_1$ - $A_2$  in cui  $A_1$  funziona da integratore generando in uscita una rampa in salita o in discesa a seconda dello stato di  $A_2$  che funziona a sua volta da trigger di Schmitt.

Cambiando il condensatore d'integrazione si passa dalla frequenza di 700 Hz, che si ottiene coi valori indicati in figura, a valori che possono essere anche estremamente bassi e cioè fino a un centesimo o un millesimo di hertz.

Il circuito di A<sub>3</sub> costituisce un oscillatore a rilassamento, la cui forma d'onda è pressoché sinusoidale, che viene sincronizzato dall'oscillatore principale.

\*\*\*\*\*

#### figura 2

## Un ricetrasmettitore FM per i due metri

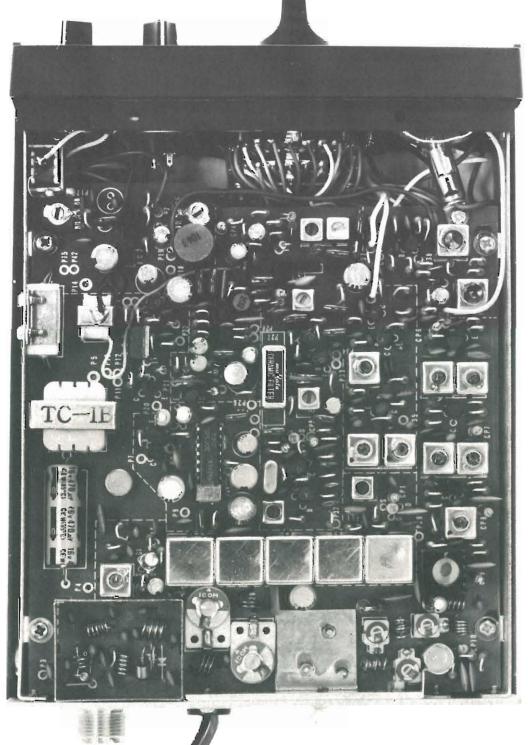
IW2AIU, dottor Alberto D'Altan




figura 1

I due metri in FM costituiscono oggi un interessante campo operativo ed è per questo che ho ritenuto utile provare un apparecchio abilitato a tale gamma.

Marcucci mi ha prestato un ICOM IC-22, e io vi racconto cosa ne penso.


Nel provare l'IC-22 della ICOM (figura 1) a poche settimane dalle prove sull'IC-225 (cq 1/75) è inevitabile pensare a un confronto con il più prestigioso apparecchio della linea ICOM.

E' però un atteggiamento sbagliato in partenza: come per tutte le realizzazioni industriali anche per i due apparecchi della ICOM vale il discorso del rapporto tra prezzo e prestazioni e, sotto questo punto di vista, l'IC225, che offre ottanta canali, fa largamente uso di circuiti piuttosto sofisticati, è dotato di protezioni di tutti i generi ed è costruito come è costruito, è veramente attraente. Si impone tuttavia l'altra considerazione: ed è quella del costo iniziale, in valore assoluto, dell'apparecchio.

Ovviamente, anche se un'analisi del rapporto prezzo/prestazioni porterebbe probabilmente a concludere in favore dell'IC-225, l'argomento del costo iniziale può essere decisivo per molti di noi. Semmai acquista valore, in tal caso, il confronto tra l'IC-22 e altri apparecchi appartenenti alla stessa categoria.

La tecnica di costruzione dell'IC-22 è quella convenzionale su una unica piastra stampata (figura 2).

\_\_ cq - 5/75 \_\_\_



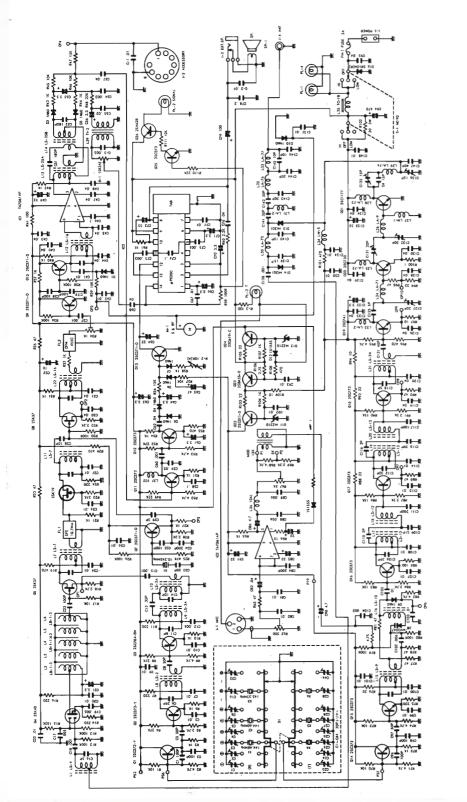



figura 3

Togliendo il fondo si accede alla guarziera e relativi trimmer scoprendo una porzione considerevole del lato rame del circuito stampato, cosa che può essere comoda per eventuali piccoli interventi di manutenzione. Nella guarziera possono essere inserite fino a ventidue coppie di quarzi corrispondenti ad altrettanti canali. Ovviamente, se qualcuno volesse equipaggiare l'IC-22 fin dall'inizio con tutti i canali, farebbe bene a rivolgere un pensierino all'IC-225. Comunque, anche partendo con pochi canali per i soliti problemi di portafoglio la possibilità che offre l'IC-22 di aumentare il loro numero fino a ventidue rimane un motivo di indubbio interesse. Infatti con ventidue canali si copre praticamente tutta la gamma « locale » secondo la suddivisione IARU, in particolare se si tiene conto del fatto che le frequenze assegnate ai dieci ripetitori si « mangiano » venti canali.

Alcune delle soluzioni circuitali della parte ricevente dell'IC-22 (figura 3) sono comuni al-I'IC-225.

In primo luogo il gruppo RF, estremamente interessante, ispirato com'è al duplice principio: primo, di amplificare moderatamente il segnale RF a monte del primo mixer per diminuire il rischio di distorsione da intermodulazione nel mixer stesso e, secondo, di limitare la banda passante a RF con un filtro efficiente com'è il filtro elicoidale. Indubbiamente il disporre di un filtro a banda stretta a RF può rappresentare, per un ricevitore, un fattore decisivo dal punto di vista della qualità. Il discorso è rivolto soprattutto a chi vuole fare dei QSO, in simplex ovviamente, di una certa serietà, magari da un QTH circondato da ripetitori rai e da OM che operano con un chilowatt in SSB! Uguale discorso vale per il secondo mixer che è anch'esso a FET. Lo stadio FI a 10.7 MHz, intermedio tra i due mixer, comprende un solo filtro ceramico invece di due come nell'IC225, però tale stadio è anch'esso a FET.

Il fatto che originalmente venisse usato un transistor bipolare (2SC371), sostituito nella recente versione appunto da un FET (2SK19), non può che essere indice del desiderio dei progettisti di ridurre ulteriormente l'attinenza alla intermodulazione. La cosa è spiegabile in quanto il filtro ceramico a 10,7 MHz che precede tale stadio non può certo avere selettività sufficiente da impedire la presenza contemporanea di eventuali forti segnali all'ingresso dello stadio stesso.

La FI a 455 kHz, che con il suo filtro ceramico all'ingresso conferisce la desiderata selettività al ricevitore, è solo nei primi due stadi simile a quella dell'IC-225.

La selettività complessiva, però, è un po' inferiore, per l'assenza di un secondo filtro ceramico a 10,7 MHz, a quella dell'IC-225.

Nell'IC-22 gli stadi limitatori sono costituiti da un unico circuito integrato che alimenta il radiodetector. Lo S-meter, ovviamente, va a prendere il segnale prima della limitazione.

La parte trasmittente procede secondo la consueta catena di moltiplicatori. L'oscillatore di trasmissione viene moltiplicato per otto, fattore sufficiente per ottenere una modulazione con bassa distorsione data la piccola deviazione oggi richiesta e la buona linearità del modulatore di fase.

Fra gli accessori utili segnalo la presa per uno strumento esterno indicatore di zero. Esso è comodo per varie operazioni: taratura del discriminatore e dei quarzi in ricezione. Inoltre permette una taratura dei quarzi di trasmissione che possa esserci richiesta « in aria » da qualche amico per il suo TX. \*\*\*

#### CARATTERISTICHE PRINCIPALI

#### GENERALITA'

antenna 50  $\Omega$  tensione di alimentazione assorbimento di corrente max dimensioni 050  $\times$  13.5  $\times$  20  $\times$  10  $\times$  17 kg meso 1.7 kg 1.7

SEZIONE TRASMITTENTE

#### SEZIONE RICEVENTE

circuito sensibilità immagini e spurie banda passante doppia super: 1<sup>2</sup> FI: 10.7 MHz
2<sup>3</sup> FI: 455 kHz
0.4 μV per 20 dB di silenziamento
1 μV per 30 dB di (S+N)/N
-60 dB
± 15 kHz a — 6 dB
± 25 kHz a — 50 dB
1 W su 8 Ω

potenza d'uscita BF

## Criteri di valutazione per una nuova famiglia di integrati: i COSMOS

ing! CARLO PEDEVILLANO

(terza parte - segue dai numeri 3 e 4/75)

### **APPLICAZIONI**

#### Generalità

Nei due mesi precedenti sono state valutate le specifiche della famiglia COSMOS paragonandole spesso con le corrispondenti della TTL, le particolari caratteristiche dei COSMOS li rendono ideali in una serie di applicazioni di cui tentiamo di dare una classificazione:

#### IMPIEGHI CONSUMER

Si prevede che i COSMOS rivoluzioneranno l'industria degli orologi elettrici; in un prossimo futuro tutti gli orologi monteranno integrati di questo tipo che offrono particolari vantaggi in caso di utilizzazione di displais a cristalli liquidi. Nelle calcolatrici portatili impieganti tale tipo di displais verranno utilizzati i COSMOS. Data l'alta immunità al rumore i COSMOS sono inoltre particolarmente adatti ad essere montati su autoveicoli.

#### IMPIEGHI INDUSTRIALI

I COSMOS verranno impiegati nei controlli industriali e di processo nonchè nell'elettronica medica e nei sistemi di allarme e di sicurezza in genere.

#### CALCOLATORI

Data la velocità relativamente bassa i COSMOS possono trovare applicazione solo nelle unità periferiche.

#### TELECOMUNICAZIONI

I COSMOS vengono applicati per i controlli a distanza, telemetrie, sintetizzatori, ecc.

3),'5

Scopo delle prossime pagine è quello di illustrare i criteri generali di impiego della famiglia e di esaminare alcune applicazioni, come ad esempio quelle relative ai displais, con maggior dettaglio, presentando anche degli schemi di apparecchiature o di blocchi di esse. Non è ovviamente possibile esaminare tutte le applicazioni citate nella classificazione precedente. Il nostro discorso si concluderà esaminando i problemi di interfacciamento (connessione) della COSMOS con la TTL e dando dei consigli sulle modalità di assemblaggio di questi nuovi dispositivi.

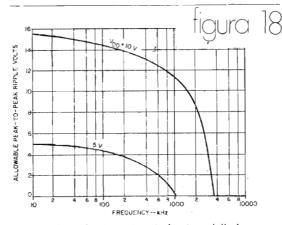
#### Norme per un corretto impiego dei COSMOS

Premesso che i COSMOS non sono in generale direttamente sostituibili (pin to pin) con gli elementi della TTL a causa del maggiore numero di funzioni concentrate in ogni dispositivo, si riportano qui di seguito alcuni criteri per una corretta utilizzazione della famiglia:

Tensione di ingresso: come specificato nel paragrafo « protezione dei dispositivi » (vedi seguito) sugli ingressi di ogni integrato vi è un circuito di protezione a diodi in cui non deve circolare corrente, condizione necessaria perché ciò avvenga è che: posto  $V_{\rm IN}=$  tensione di ingresso, si abbia:

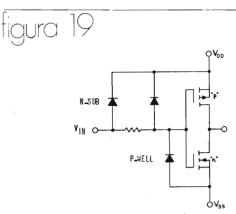
 $V_{ss}\!<\!V_{\text{in}}\!<\!V_{\text{dd}}$ 

La condizione può non essere verificata, ad esempio, se si spegne prima la  $V_{\text{DD}}$  e poi la  $V_{\text{IN}}$ , oppure in circuiti accoppiati mediante condensatori (oscillatori).


**Uscita**: se la corrente di uscita di una porta è insufficiente per gli scopi prefissati, è possibile mettere in parallelo gli ingressi e le uscite di più porte. Essendo l'uscita COSMOS simmetrica  $(I_{OH} = I_{OL})$  non è possibile mettere in parallelo le sole uscite (collegamento: WIRED - OR).

Il collegamento WIRED-OR è possibile con uscita del tipo open-drain (4007), così come è possibile

con le uscite open-collector della TTL.


Per quanto riguarda il fan-out ricordiamo che, come visto nel precedente articolo, in continua esso è praticamente illimitato, in alternata esso è determinato in base alla velocità del circuito, in pratica il valore max è fissato in 50 (corrispondente a una capacità di carico di 250 pF). Le caratteristiche elettriche dinamiche riportate sui cataloghi sono riferite in genere a un fan-out 3.

Alimentazione: i COSMOS lavorano con tensioni di alimentazione comprese tra 3 e 15 V, gli alimentatori possono essere pertanto poco filtrati e stabilizzati, nella maggior parte dei casi basterà un diodo zener. Il ripple limita la frequenza di lavoro secondo il grafico riportato in figura 18.



Tensione di ripple picco picco in funzione della frequenza.

Protezione dei dispositivi: i COSMOS a causa della loro altissima impedenza di ingresso (dell'ordine di  $10^{12}\Omega$ ) vengono danneggiati da cariche elettriche statiche tali da determinare un potenziale di circa 100 V sul gate. Allo scopo di evitare ciò i costruttori incorporano nei dispositivi un circuito di protezione del tipo indicato in figura 19.

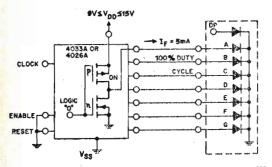


Circuito di protezione dell'ingresso dei COSMOS.

Nonostante questo circuito è necessario prendere queste precauzioni:

- Cortocircuitare tutti i piedini dei dispositivi con materiale conduttore che prevenga il formarsi di cariche statiche. Allo scopo i dispositivi vengono generalmente forniti con gli elettrodi inseriti su di una spugna conduttrice.
- Connettere a massa le punte dei saldatori, nonché tutte le parti metalliche che venissero a contatto durante le lavorazioni.
- Non rimuovere gli integrati dai circuiti prima di aver staccato l'alimentazione: i transitorii possono danneggiarli.
- Non applicare segnali quando l'alimentazione è staccata (vedere il comma: tensione di ingresso).
- 5) Connettere tutti gli ingressi non usati a  $V_{\text{DD}}$  o a  $V_{\text{SS}}$  a seconda della logica.

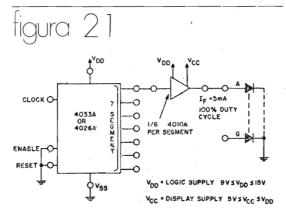
I lettori sono vivamente pregati di nan lasciarsi impensierire troppo da queste precauzioni in quanto trattasi delle norme che dovrebbero essere rispettate nel montaggio di qualsiasi dispositivo MOS. Un'ultima raccomandazione è quella di eseguire prima le saldature relative alle connessioni a  $V_{\text{DD}}$  e poi quelle relative alle connessioni a  $V_{\text{SS}}$ .


#### Applicazioni ai displais

Consideriamo il caso dei displais a LED.

Le decadi di conteggio della famiglia COSMOS hanno la sigla 4026 (decade con uscita decodificata per sette segmenti a comando: « display enable ») e 4033 (decade con uscita decodificata per sette segmenti a cancellazione degli zeri non significativi).

I displais a LED funzionano generalmente con una corrente compresa tra 5 e 15 mA, in corrispondenza di questa corrente si ha una tensione di 1,7 V. E' possibile collegare direttamente le uscite del 4026 o 4033 ai LED in quanto con alimentazione a 9 V l'integrato è in grado di fornire una corrente di 5 mA. Con questo sistema (figura 20) viene richiesta all'alimentatore una potenza di 45 mW (9 V x 5 mA) per segmento.


figura 20

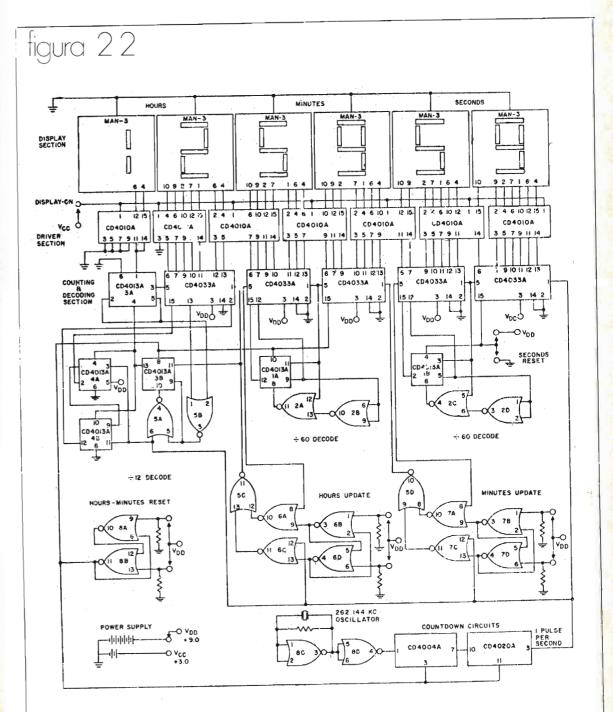


Connessione diretta tra gli integrati 4033 o 4026 e i LED.

Per risparmiare potenza conviene usare il sestuplo buffer 4010 A come interfaccia. In questo caso può essere scissa l'alimentazione per la logica  $(V_{DD})$ , scegliendo per essa il valore più opportuno, da quella dei displais  $(V_{CC})$ .

Scegliendo per  $V_{cc}$  una tensione di 5 V la potenza richiesta all'alimentatore scende a  $5 \times 5 \, \text{mA} = 25 \, \text{mW}$ . In figura 21 è riportato lo schema di connessione con interposto buffer.




Connessione tra gli integrati 4033 o 4026 e i LED per interposto buffer.

In figura 22 riporto lo schema completo di un orologio digitale utilizzante i displais MAN 3 della Monsanto. La connessione tra le decadi 4033 e i displais è eseguita, come si vede dallo schema, interponendo i buffer 4010. Il sistema prevede due alimentazioni: la prima a 9 V per la logica che consuma 9 mA (il 90 % di questo consumo è determinato dall'oscillatore a 262.144 kHz).



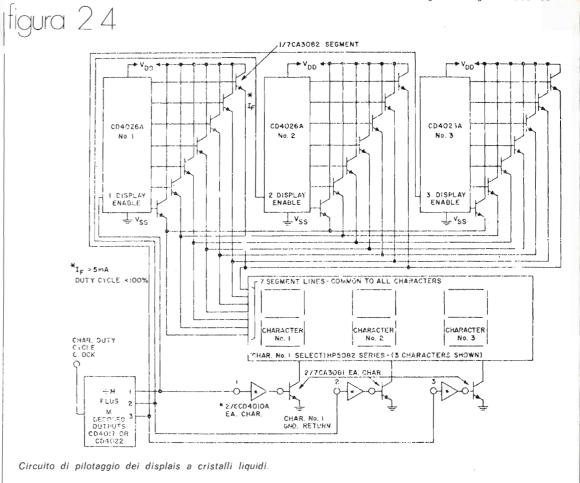
I displais MAN 3 sono alimentati da due batterie da 1,5 V in serie. Alla separazione delle due alimentazioni provvedono i 4010; quando i displais funzionano si ha un consumo massimo di circa 120 mA.

Un più basso consumo può ottenersi multiplexando le cifre, accendendole cioè una per volta in rapida sequenza, e abbassando la tensione di alimentazione.



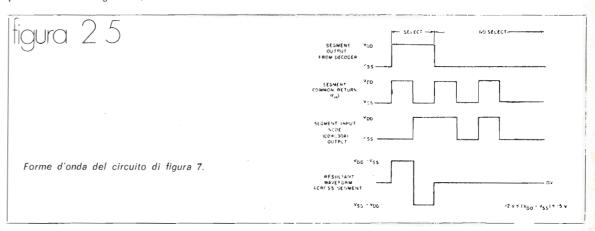
Schema di prototipo (RCA) di orologio digitale a batteria impiegante i COSMOS.

In questo caso occorre interfacciare con transistore NPN. La figura 23 riporta lo schema di un visualizzatore usante i displais della serie HP 5082 multiplexati. Il multiplex si realizza struttando gli ingressi « display enable » dei 4026, questi ingressi vengono abilitati da un divisore per M (se M sono i caratteri) con M uscite decodificate (vedere in basso a destra nella figura 23). Il contatore con le uscite decodificate comanda oltre gli ingressi « display enable » dei 4026, anche dei transistori che provvedono ad accendere un display alla volta. Il contatore avrà naturalmente un ingresso per gli impulsi che regolano il tempo di accensione di ogni carattere (l'ingresso è indicato in figura con la dizione CHAR. DUTY CYCLE CLOCK).


I COSMOS sono ideali per pilotare displais a cristalli liquidi; infatti il vantaggio dei COSMOS di richiedere una potenza bassissima dall'alimentazione viene limitato quando si usano displais a LED i quali richiedono notevoli potenze (per questo spesso è necessario fare il multiplexing delle alimentazioni).

I cristalli liquidi, invece, richiedono potenze insignificanti e sono pertanto i dispositivi ideali per essere pilotati dai COSMOS. Per problemi inerenti alla durata di vita i cristalli liquidi vanno alimentati con tensioni alternate (onde quadre) dell'ordine dei 10÷15 V.

Nel pilotaggio occorre interporre tra le uscite dei contatori e i displais degli OR esclusivi secondo lo schema di figura 24.


figura 23 4026A OR 4033A 4030A QUAD EX. CR CLOCK O (DECADE COUNTER + 7 SEGMENT OUTPUT TYPES) SEGMENT DECADE 7-SEGMENT DECODER DEC. POINT DEC. POINT O5 CARRY OUT (TO NEXT DECADE) LOGIC APPLIES T TO SEGMENT ON SELECTION AND I TO SEG-COUNTER / DECODE 4026A OR 4033A / CHARACTER LIQUID CRYSTAL DRIVER-2- 4030A / CHAR

Ccmando multiplexato dei displais della serie HP5082.

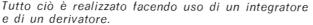


Sul comune dei caratteri (COMMON RETURN sullo schema) si avrà l'onda quadra di alimentazione. All'ingresso dei segmenti si avrà la forma d'onda rappresentata nella figura 25, la forma d'onda risultante

ai capi del segmento è rappresentata in basso nella stessa figura. L'ampiezza dell'onda quadra di pilotaggio è il doppio dell'ampiezza dell'onda quadra di alimentazione,



おおおおおおお (segue al prossimo numero) おおおおおおおお


# Demodulazione di frequenza mediante due amplificatori operazionali

Leandro Panzieri

Quando in ingresso è presente un segnale di frequenza  $f_0=1/2\,\pi RC$ , all'uscita del demodulatore non c'è alcuna tensione; quando invece il segnale di ingresso ha frequenza f, in uscita c'è un segnale la cui ampiezza è proporzionale a  $\Delta f=f-f_0$ .

In molte applicazioni  $\Delta f$  non è più grande dell'un per cento di  $f_0$ .

Il principio di funzionamento è questo: il segnale entra in due blocchi i quali danno la stessa uscita in valore assoluto ma di segno opposto. Ognuno di questi blocchi funziona, per così dire, in modo inverso rispetto all'altro, cioè se l'uscita di uno aumenta all'aumentare della frequenza, l'uscita dell'altro diminuisce così che il segnale somma è proporzionale allo scarto  $\Delta f$ .



Il segnale di ingresso sia

$$e_i = E \ sen \ 2\pi ft$$

all'uscita del derivatore si ha allora

$$e_a = RC 2\pi t E \cos 2\pi t t$$

che, rettificata da  $D_a$  e filtrata dalla cella passa-basso  $R_L \cdot C_L$  diventa

$$E_a = \eta RC 2 \pi fE$$

dove  $\eta$  è il rendimento di rettificazione. All'uscita dell'integratore si ha

$$e_b = \frac{E}{2 \pi f R C} \cos 2 \pi f t$$

che raddrizzata e filtrata diventa

$$E_b = -\eta \frac{E}{2 \pi f R C}.$$

L'uscita è

$$e_0 = E_a + E_b = \eta E \left[ 2 \pi f R C - \frac{1}{2 \pi f RC} \right].$$



$$f_0=rac{1}{2\,\pi\,R\,C}$$
 e che  $f=f_0+\Delta f$  si ha $e_0=\eta\,E\,[rac{f}{f_0}-rac{f_0}{f}]=\eta\,E\,[rac{f_0+\Delta f}{f_0}-rac{f_0}{f_0+\Delta f}]$ 

Sviluppando opportunamente si può scrivere

$$e_0 = \eta E \left[1 + \frac{\Delta f}{f_0} - 1 + \frac{\Delta f}{f_0} - \frac{(\Delta f)^2}{f_0} + \ldots\right].$$

In questa relazione, se  $\Delta f \ll f_0$ , i termini di ordine superiore al primo possono essere trascurati, per cui si ha

$$e_{\theta} = \eta \, E \, \frac{2 \, \Delta f}{f_{\theta}}$$

Questo demodulatore può essere sintonizzato entro un vasto di campo di frequenze semplicemente variando la costante di tempo RC. Ciò può essere ad esempio ottenuto impiegando diodi varactor al silicio.

Sono stati realizzati due esemplari di questo circuito, uno impiegando componenti discreti e uno facendo uso di integrati commerciali ottenendo un'ottima

risposta fino a 10,7 MHz e 4,5 MHz rispettivamente.

Non è necessario che gli amplificatori rispondano fino alla continua, anzi è bene evitare ciò per non avere problemi di deriva. A tal fine l'integratore deve essere accoppiato in alternata mediante una capacità molto più grande di C, e C a sua volta deve essere shuntata da una resistenza molto maggiore di R; il derivatore deve avere una resistenza molto più piccola di R in serie a C, e R deve essere shuntata da un condensatore molto più piccolo di C. \* \* \* \* \* \* \*



Un hobby intelligente?

## diventa radioamatore

o, per cominciare, stazione d'ascolto con nominativo ufficiale.

#### Iscriviti all'A.R.I.

filiazione della "International Amateur Radio Union" in più riceverai tutti i mesi

## radio rivista

organo ufficiale dell'associazione.
Richiedi l'opuscolo informativo
allegando L. 200 in francobolli per rim

allegando L. 200 in francobolli per rimborso spese di spedizione a:

ASSOCIAZIONE RADIOTECNICA ITALIANA Via D. Scarlatti, 31 - 20124 Milano



tra Alvise Canal, sfidante e Sergio Cattò, detentore del progetto

Non so se quanto vi sto presentando sia mai stato stampato su una rivista

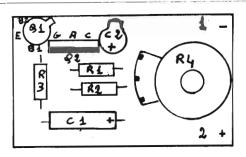
Si tratta della soluzione di un problema vista da due angolazioni diverse; nel caso in esame la mia e quella di **Alvise Canal** (via Cologna 20, 34126 Trieste) un simpatico amico che attende, purtroppo, da molto tempo di veder pubblicata la sua realizzazione.

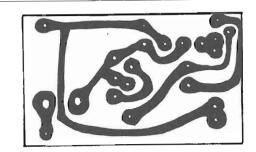
Il problema riguarda ancora i temporizzatori per tergicristalli, argomento trattato molte altre volte ma che sembra suscitare sempre l'interesse del

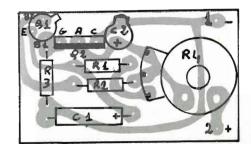
Dato che sono prepotente per natura ho deciso di parlare prima del mio semplice ma « raffinato » circuito.

#### CARATTERISTICHE GENERALI

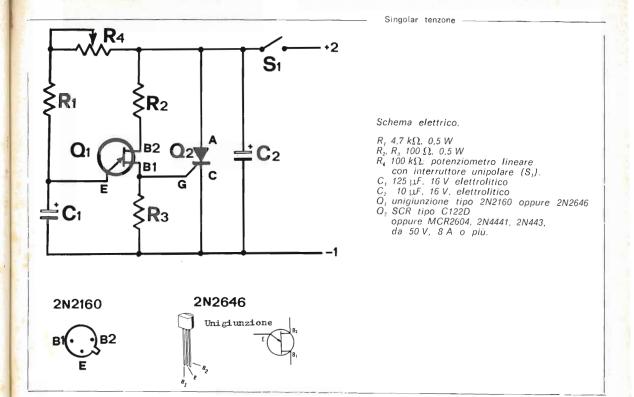
- massima corrente pilotabile
- massima tensione di esercizio
- intervallo di regolazione
- durata della battuta


8 A 20 V


da 2 a 30 sec


autoadattante a ogni velocità del motore del tergicristallo

Ho usato solamente otto componenti, veramente pochi, e la cosa non vi nascondo mi ha esaltato.


Con poche parole voglio ora spiegare il funzionamento.



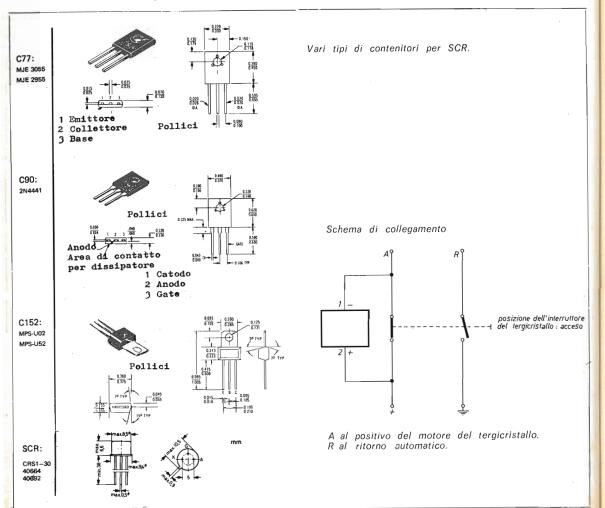




Circuito stampato del temporizzatore. Scala 1:1.



Chiuso  $S_1$ ,  $R_4$  e  $R_1$  stabiliscono il tempo necessario affinché  $C_1$  arrivi ad avere una determinata tensione ai suoi capi. Passata questa tensione, questa soglia,  $Q_1$  genera un impulso che va al gate di  $Q_2$  portando in conduzione il diodo controllato o SCR; una volta eccitato, esso rimane in conduzione fino a che non si vengono a verificare una delle seguenti due condizioni:


- a) La corrente che scorre attraverso il diodo scende sotto un valore caratteristico, detta corrente minima di automantenimento.
- b) La tensione ai capi di Q₂ va a zero.

Nel nostro caso, una volta eccitato il diodo, il motorino del tergicristallo parte e richiede una certa corrente per funzionare; quando ritorna nella posizione iniziale non c'è più richiesta di corrente (usiamo infatti il dispositivo di ritorno automatico già presente nell'autovettura) e il diodo si spegne.

Con questo sistema c'è autoadattamento del temporizzatore ai tempi del circuito dell'autovettura: i circuiti che usano relè necessitano di determinare quanto devono rimanere chiusi i contatti, cioè quanto è lunga una battuta, battuta che ha durata variabile in quanto influenzata in manicra considerevole dalla quantità di acqua presente sul parabrezza.

I prototipi sono stati realizzati sulle solite basette già forate e ramate a dischetti; considero questo sistema molto comodo, comunque coloro che desiderassero una esecuzione più professionale o che hanno paura di errori di cablaggio potranno realizzare il circuito stampato seguendo i disegni e le fotografie che ritengo più che esaurienti.

I componenti sono normali e non ci sono problemi di reperibilità; inoltre ho riportato una serie di disegni di contenitori o « case » di SCR per facilitarvi l'identificazione dei terminali: siccome presenta qualche problema per me, ho pensato che simili problemi potreste averli anche voi.



Il diodo controllato è bene sia munito di una aletta di raffreddamento: attenzione agli SCR in contenitore piatto, poiché il piccolo dissipatore che contengono è collegato elettricamente all'anodo.

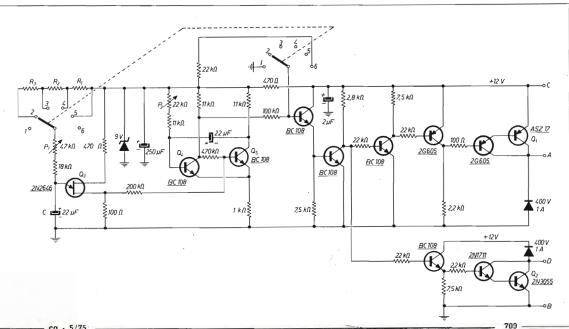
L'anodo fa capo a una tensione positiva e quindi attenzione se montate il circuito privo di contenitore di protezione: l'aletta in nessun caso deve toccare parti metalliche dell'autovettura.

Si potrebbe mettere un fusibile rapido come protezione, ma ritengo la cosa superflua e in ogni caso semplicissima la sua eventuale aggiunta. Possiamo montare il temporizzatore in plancia servendoci del dado del potenziometro come supporto del circuito stampato oppure mettere il circuito in una scatoletta, in posizione riparata, e il potenziometro in una a voi comoda.

Se il montaggio sarà stato realizzato correttamente non ci dovrebbero essere inconvenienti di sorta.

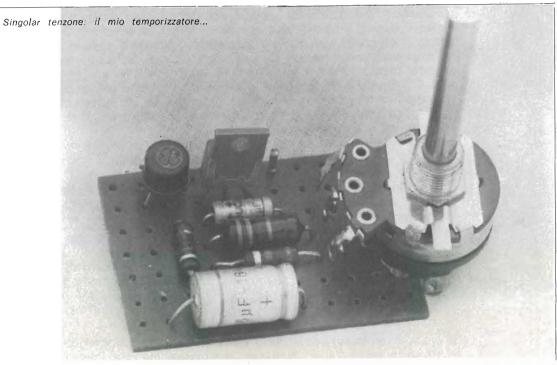
Bisogna ora identificare i terminali o i fili ai quali collegare il temporizzatore. Se la vostra autovettura ha un tergicristallo a due velocità usate quella più bassa.

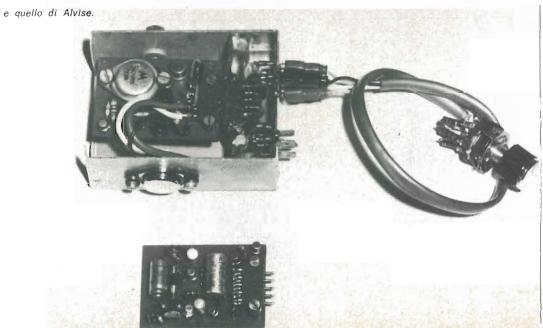
Generalmente il circuito si presenta come quello schizzato nello « schema di collegamento » qui a lato: consiste in due interruttori nello stesso involucro, al quale giungono quattro conduttori.


Nella posizione spento un interruttore è chiuso permettendo il ritorno automatico, mentre l'altro, quello del circuito per il funzionamento normale, è aperto. In posizione acceso il primo interruttore si apre disattivando il dispositivo di ritorno automatico mentre il secondo si chiude. Il temporizzatore funziona solo se l'interruttore del tergicristallo è in posizione spento. Quando lo si porta in posizione acceso, per il particolare tipo di circuito adottato (vedi condizioni di mantenimento dello SCR) interrompe la temporizzazione. In questo caso sarebbe buona norma aprire S<sub>1</sub> in modo da isolare completamente il circuito, in ogni caso non si presentano inconvenienti di sorta.

lo ho finito e passo la penna ad ALVISE che invece pensa alla risoluzione del problema con un circuito sofisticatissimo.

Il circuito di temporizzatore per tergicristallo presenta alcuni vantaggi rispetto a quelli commerciali o che ho visto pubblicato su varie riviste. I vantaggi più rilevanti sono i seguenti:


- 1) Il circuito è costituito da semiconduttori e non vi sono ne relé ne altri componenti elettromeccanici.
- 2) L'installazione del temporizzatore non implica l'apporto di alcuna modifica, neppure minima, all'impianto esistente nell'automobile.
- 3) Un solo commutatore è sufficiente a controllare tutte le funzioni richieste al temporizzatore: tergicristallo fermo, funzionamento intermittente, funzionamento continuo.


Il clock o orologio è costituito da un transistor unigiunzione il quale fa scattare un monostabile. A sua volta quest'ultimo circuito pilota la sezione commutatrice in tempi e per durate opportune.



I transistor  $Q_1$  e  $Q_2$  sono di polarità opposta a causa delle particolari caratteristiche dei carichi da commutare.

La sezione temporizzatrice  $(Q_3, Q_4, Q_5)$  può sembrare troppo complessa e ricercata per tale impiego, ma questa soluzione circuitale ha permesso di impiegare capacità relativamente piccole e quindi di ottenere una buona stabilità e precisione alle variazioni di temperatura e di alimentazione.





Soluzione ideale sarebbe un multivibratore a FET. Se qualche lettore interessato al circuito mi volesse comunicare i suoi risultati riguardo a tale modifica gliene sarei molto grato.

Il potenziometro  $P_i$  serve per stabilire il minimo tempo di riposo del tergicristallo tra una battuta e un'altra (posizione 5 del commutatore).

 $P_2$  va regolato in modo che il circuito motore (del tergicristallo) resti inserito per il maggior tempo possibile durante ogni battuta e in modo che il circuito frenante (ritorno automatico) entri in funzione quando le spazzole sono quasi ritornate nella posizione di riposo, ciò affinché il motorino del tergicristallo non sia sottoposto a sovraccarico, specie se gli intervalli di tempo tra una battuta e un'altra sono brevi  $(1,5 \div 3 \text{ sec})$ .

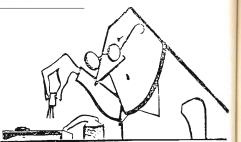
Il commutatore da me impiegato è a due vie sei posizioni. La prima è utilizzata per mantenere aperto il circuito motore e chiuso quello frenante. Le quattro successive per altrettanti determinati periodi di riposo tra una battuta e un'altra. La sesta per mantenere chiuso il circuito motore e aperto quello frenante. Nella mia realizzazione ho collocato il commutatore al di sopra, al posto di quello a levetta montato di serie sulla vettura (che diventa inutile con il temporizzatore).



I valori delle resistenze  $R_1$ ,  $R_2$ ,  $R_3$  determinano la durata degli intervalli di tempo durante i quali il tergicristallo rimane fermo.

Tali valori dipendono dalla tolleranza del condensatore C.

Nel mio prototipo  $R_1$  vale 56  $k\Omega$  per un intervallo di 4 sec con il commutatore in posizione 4;  $R_2$  vale 82  $k\Omega$  per un intervallo di 8 sec con il commutatore in posizione 3;  $R_3$  vale 120  $k\Omega$  per un intervallo di 15 sec con il commutatore nella posizione 2.


Attualmente questo dispositivo funziona sulla mia « 500 ».

Ritengo possa pilotare qualsiasi tergicristallo del tipo descritto nell'articolo del signor Aldo Pozzo pubblicato sul numero 12/1971 di  $\mathbf{cq}$ . In particolare facendo riferimento allo schema di pagina 1268 ( $\mathbf{cq}$  12/1971)  $Q_2$  sostituisce  $S_1$  e  $Q_1$  sostituisce  $S_2$ . Nella mia realizzazione i fili dell'impianto dell'automobile sono stati collegati nel seguente modo: filo nero al punto B, filo blu al punto A, filo blu-nero al punto C, filo blu-bianco al punto D.

## sperimentare<sup>©</sup>

circuiti da provare, modificare, perfezionare presentati dai Lettori e coordinati da

> Antonio Ugliano, I1-10947 corso Vittorio Emanuele 242 80053 CASTELLAMMARE DI STABIA

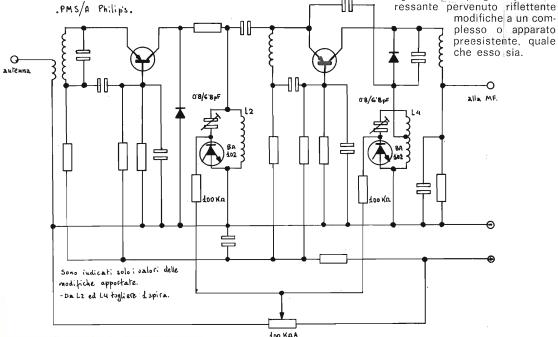


© copyright cq elettronica 1975

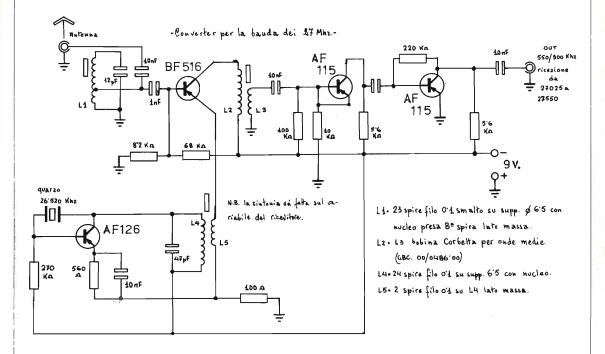
Ritorna più giovane che mai **sperimentare.** Il vecchio spiritaccio non è cambiato, ma i risultati delle vostre folli pensate sono presentati in modo nuovo; senza tanti preamboli veniamo subito al dunque, e diteci senza pietà se la faccenda vi va o no.

#### Il progetto del mese

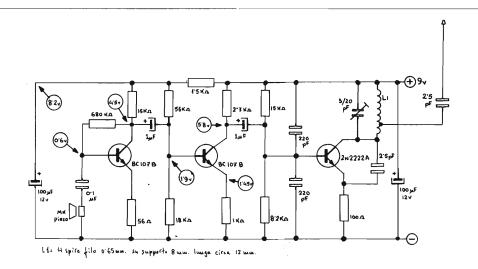
Penso che, allorché la Philips realizzò le sue sezioni premontate per un ricevitore AM/FM, fosse molto lontana a supporre che questi gruppi avrebbero fatto la gioia di molti sperimentatori nell'intento di modificarli e renderli atti a coprire la gamma dei 144 MHz.


In ordine di tempo, l'ultimo seviziatore che và annoverato è **Massimo Centini,** via Tonello 18, Torino.

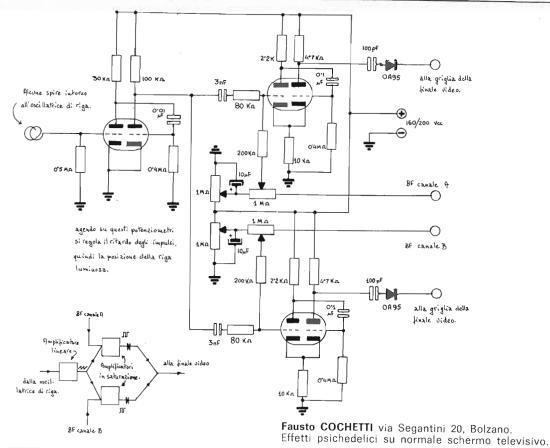
Sulle orme dei suoi predecessori, si veda in proposito il n. 1/73 di **cq elettronica** in cui sono descritte le modifiche da cui prende spunto il presente articolo, le modifiche che vi ha apportato sono servite essenzialmente all'eliminazione del grosso e ingombrante variabile sostituendolo con due diodi varicap BA102 e, logicamente, adoperando per la sintonia un potenziometro da 100 k $\Omega$  lineare.

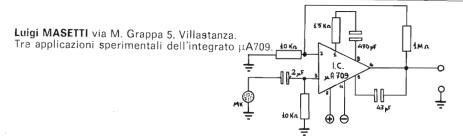

Mi permetto aggiungere agli interessati a questa modifica che nello scegliere il potenziometro per questo progetto facciano attenzione che esso sia il più preciso possibile nei contatti striscianti e non adoperino tipi economici o addirittura trimmer pena paurosi salti di sintonia.

Dallo schema, in cui sono riportati solo i valori interessanti questa modifica (rimando gli interessati per gli ulteriori valori al già citato n. 1/73) si nota che, in serie ai diodi varicap, vi scno due compensatori che sono gli stessi del tipo « a barattolo » già montati nel gruppo e che debbono essere ritarati dopo la modifica attuale. Fuò comunque avvenire che con la loro completa rotazione, date eventuali differenze elettriche dei diodi, non si riesca a portare in passo il gruppo; in tal caso bisognerà operare sostituendo con valori maggiori o minori o comunque per tentativi, le due resistenze fisse da 100 k $\Omega$ .

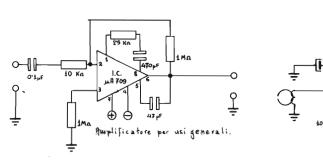

All'autore và il regalo extra di questo mese: una confezione assortita di ben 100 (cento) componenti tra cui integrati, transistori, diodi e triac, logicamente nuovi. Questo premio sarà attribuito egni mese al progetto più inte-

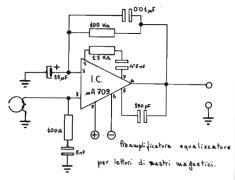


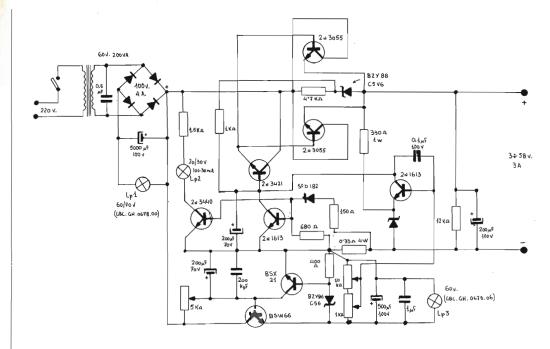

#### Progettisti allo sbaraglio




Franco MELLACQUA piazza Garibaldi 67, Bari. Convertitore da collegare a un RX per onde medie per poter ricevere la banda dei 27 MHz.





**Aldo FERRARO** (che dimentica l'indirizzo) di Milano. Radiomicrofono gamma 104 MHz.






Preauplificatore microfonico.







Angelo NEVE via Grossi 29, Lecce.

Alimentatore stabilizzato autoprotetto con tensione variabile da 3 a 58 V.

Ad ogni impavido progettista sbaragliato, andrà in premio una confezione di venticinque componenti assortiti tra cui integrati, transistori, diodi, ecc.

#### L'angolo della papocchia

Si sà, ognuno ha una mania.

Quale che sia, anche se celata nell'inconscio, deve esistere. Visibile o invisibile una pro-

pensione a questo o a quell'altro alberga in ogni essere.

Nell'albergo inconscio di Pasquale trovava posto una mania per la miniaturizzazione. Era perennemente a caccia dei più piccoli componenti che potessero essere buttati sul mercato e in realtà, benché non eccellesse in cognizioni tecnico-elettroniche, sfornava a getto continuo piccoli ricevitori che trovavano posto negli oggetti più disparati: un piccolo ricevitore a tre transistori, i famosi BC146, il variabile, tutti i componenti e una batteria da 1,5 V trovarono posto nell'involucro di una noce! Fuoriusciva unicamente dal fondo, miniatura pure lui, il jack dell'auricolare.

Tanto per dimostrarvi la sua pazienza certosina.

Era l'epoca in cui si cominciava a parlare dei primi circuiti integrati e, sulle prime, non si riusciva a capire come in un così piccolo involucro potessero trovare alloggio decine di resistenze, di diodi, di transistori ma poi, conosciuta la tecnica costruttiva, il fatto fu chiaro.

Ma non per tutti.

cq · 5/75

Sempre per le infinite, oscure vie della provvidenza, venni in possesso di tre integrati dual in line. Dall'allegato foglio di montaggio, appresi che ognuno di essi conteneva la bellezza di quattro flip-flop con annessi e connessi, il tutto ammassato in pochi millimetri quadrati.

Nella mattutina domenicale passeggiata sul lungomare incontrai il mio amico Pasquale e per stuzzicare le sue velleità miniaturistiche gli mostrai un integrato e il relativo

schema elettrico chiedendogli se lui poteva fare altrettanto.

Vi lascio immaginare la faccia di Pasquale man mano che leggeva e che si rendeva conto che realmente tutta quella paccottiglia era stata intrufolata in quel piccolo contenitore, non mi abbandonò per tutta la mattinata, divenne il mio angelo custode, infine saputo che di quei così ne avevo tre, fece la faccia tosta e me ne chiese uno.

Avutolo, non finiva di ammirarlo, di rigirarselo tra le mani, mentre nelle sue meningi prendeva sempre più corpo una ideuzza sinistra.

Pensava: quante cose potrei realizzare con i 28 transistori, 37 resistenze, 12 diodi e tre zener che stanno in questo coso e che debbono essere realmente piccoli per entrarci! Dovrei lavorare addirittura con la lente d'ingrandimento.

Così, appena a casa, diede corpo a questo conciliabolo pensando a come aprire l'involucro di plastica senza danneggiarne il contenuto, per ricavarne i pezzi miniaturizzati. Prese in considerazione (e logicamente scartò) martelli scalpelli e seghe: furono altresi scartati sistemi a caldo e immersioni in diluente; alla fine di approfondite analisi decise che la parte superiore dell'involucro poteva essere limata.

Per tener fermo l'integrato dovè costruire un apposito alloggio in legno per non danneggiare la plastica e il tutto fu chiuso nelle morse, quindi attaccò di lima.

Non fu facile.

La plastica affogava tra i solchi della lima e non veniva via.

Fu veramente un lavoraccio.

Dopo che la lima gli aveva fatto un callo nel palmo della mano, si accorse che finalmente cominciava ad apparire un po' di vuoto sulla superficie che stava grattando, ringalluzzito da ciò diede maggiore lena al lavoro e il coperchio saltò via.

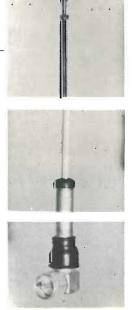
Se non si mise a piangere dalla rabbia, mancò poco. Nell'involucro non c'era niente: anzi, no, qualcosa c'era. C'erano i terminali dei 16 piedini e al centro uno spezzettino che, anziché essere di liquerizia era di ferro e riluceva, ma quanto a minitransistori. minidiodi, miniresistenze e altri mini, zero assoluto.

Sul principio pensò a uno scherzo. Turpi pensieri di vendetta si ammassavano nella sua mente. Avrebbe voluto farmi fuori e già pensava al metodo: stricnina, ddt. sedia elettrica o anonima omicidi ma poi, considerando il carcere, la moglie e i figli, decise che la migliore vendetta è il perdono, e mi tolse il saluto.

Tempo dopo venne a trovarmi un amico e scompisciandosi dalle risa a slogamandibole, mi raccontò l'accaduto. Il quaio fu che non lo raccontò soltanto a me e il fatto divenne di dominio pubblico: ora Pasquale, per rifarsi dalla brutta figura, stà cercando di trovare il sistema di come ricavare la microlampadina rossa contenuta in un led che gli hanno regalato.

## **NUOVA SIGMA PT 27**

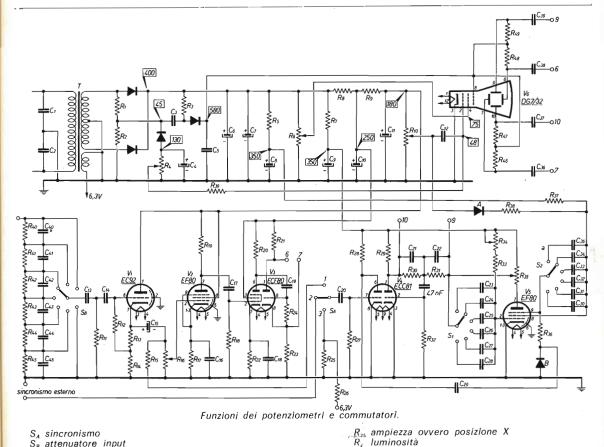
Antenna da fissare direttamente al ricetrasmettitore


Antenna munita di un supplemento del piano di terra, coassiale con lo stilo, che assicura un valore di ROS più basso e maggiore stabilità dell'SWR durante l'uso del ricetrasmettitore.

Stilo di 1/4 d'onda con bobina di carico (Brev. SIGMA n. 151950) verso l'alto per ridurre al minimo le perdite. Frequenza 27 MHz (28 MHz) Impedenza 50-52  $\Omega$ SWR regolabile all'estremità dello stilo. Lunghezza complessiva mt 1.10 ÷ Peso Kg 0.170

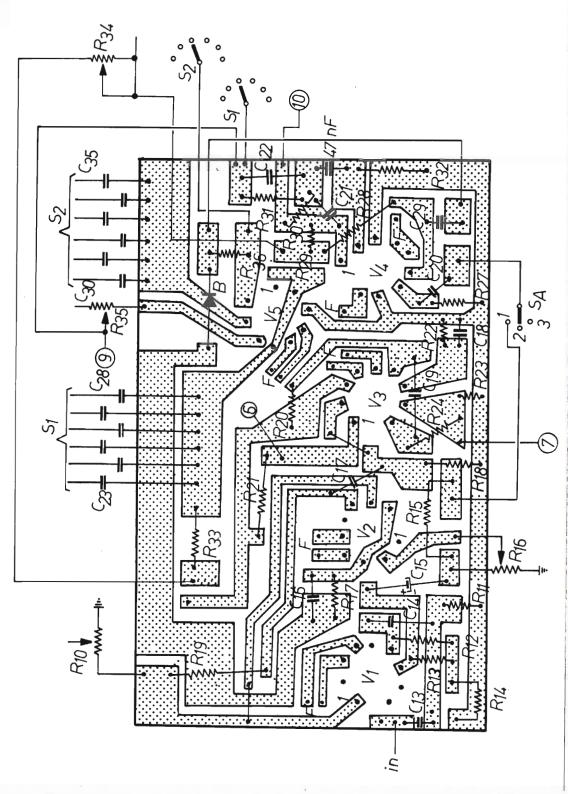
In vendita nei migliori negozi. CATALOGO GENERALE inviando L. 250 in francobolli.

SIGMA Antenne - E. FERRARI - 46100 Mantova c.so Garibaldi - Tel. 0376/23657






a proposito dell' oscilloscopio Michele Formigoni


Sembra che questo progetto abbia interessato abbastanza, visto la marea di lettere che mi son piovute un po' dappertutto; e così ecco due righe per chiarire alcuni dubbi e domande:

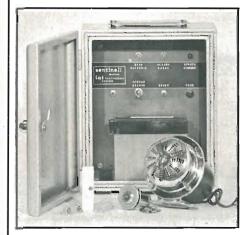
a) c'è chi mi ha chiesto le tensioni di lavoro; ripubblico lo schema con l'indicazione delle medesime;



- S. sincronismo
- S<sub>B</sub> attenuatore input
- S,/S, scelta frequenza R<sub>16</sub> ampiezza input
- R<sub>34</sub> regola l'escursione della frequenza, nella gamma scelta da S<sub>1</sub>, S<sub>2</sub>

- R<sub>c</sub> fuoco
- $R_{10}$  posizione Y, potenziometro 100 k $\Omega$  + 50 k $\Omega$ , 6- 10 W a filo (vedere punto e e seguenti)




- b) c'è chi vuole anche la vista lato componenti del circuito stampato: eccoli accontentati (pagina a fianco);
- c) c'è chi si lagna dicendo che  $R_{10}$  scalda; consiglio di diminuire il valore ohmico di  $R_{10}$  a 100 k $\Omega$  e mettere in serie dal lato caldo una resistenza da 50 k $\Omega$  6÷10 W;
- d) c'è chi vuol sapere le posizioni del commutatore  $S_{\scriptscriptstyle B}$  di sincronismo, bene eccole:
  - 1) sincronismo interno
  - 2) sincronismo esterno
  - 3) sincronismo a 50 Hz
- e) c'è chi vuol sapere a quali gamme corrispondono le varie sezioni del commutatore  $S_1/S_2$ ; bene, la gamma più bassa è quella corrispondente al contatto (a) di figura;
- f) la valvola V<sub>1</sub> conviene munirla di schermo;
- g) il tubo RC è sostituibile con il 3AMP1A.

Arrivederci!

\*\*\*\*\*\*\*\*\*\*\*\*\*

## IAT ELETTRONICA

Casella Postale 10090 CASCINE VICA (TO)



#### ALLARMI - FURTO - FUOCO - GAS

CENTRALINO SENTINEL-Reinserimento automatico e memoria.

sima affidabilità. Ricevitore + trasmettitore .... L. 138.000

DEVIATORE RAGGI - Con specchio orientabile . L. 19.500

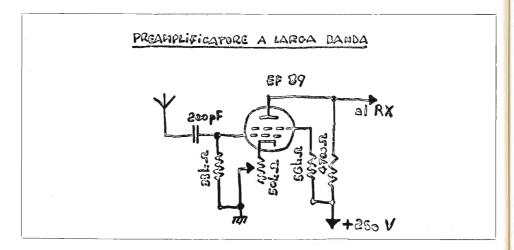
Apparecchi e componenti per ogni esigenza: ultrasuoni, microonde, telecamere, rivelatori di fumo fuo co e gas, centralini chiamata soccorso, batterie ermetiche, sirene elettroniche e di potenza, etc. . Preventivi e consulenza tecnica a richiesta. Pagamento anticipato o contrassegno + spese postali.

DIFENDETE I VOSTRI BENI CON APPARECCHI DI ASSOLUTO AFFIDAMENTO FACILITA' D'INSTALLAZIONE-ASSISTENZA-GARANZIA

CERCASI RIVENDITORI PER ZONE LIBERE

by il PPS

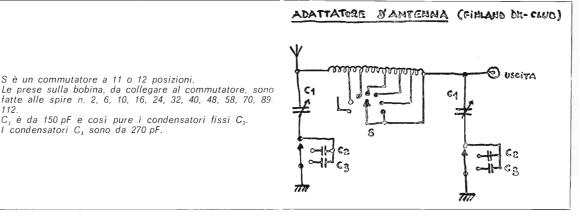
# Progetti per sanfilisti


arch. GIANCARLO BUZIO IW2ADH

il « sanfilista »

G. Buzio via D'Alviano 53 20146 MILANO

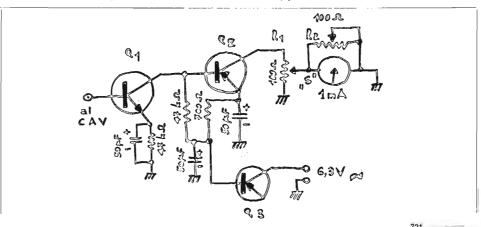
#### Preamplificatore e adattatore d'antenna


Fabio Scaramella di BERGAMO, mi invia questo preamplificatore a larga banda, che impiega « davanti a un casalingo » con ottimi risultati.



Il preamplificatore mi sembra migliorabile. Innanzitutto io userei una 6AK5 o una 6CB6, poi collegherei due condensatori da 0,05 µF tra il catodo e la massa e tra la griglia schermo e la massa.

Al posto della resistenza da 4700  $\Omega$  userei un'impedenza alta freguenza da 1 mH. Altro condensatore da 0,05 μF tra l'alimentazione + 250 V e la massa; condensatore da 1000 pF in uscita, per evitare scosse e corti circuiti. Non solo: per accordare almeno approssimativamente l'entrata, evitando di amplificare tutto quello che arriva, anche i disturbi, farei precedere il preamplificatore dall'accordatore d'antenna inviatomi da Mauro Baudino di PINEROLO, derivato dalla pubblicazione « ATTENTION B » del FINLAND DX CLUB, P.O. Box 10214 HELSINKI 10 (Finland).


La bobina ha un diametro di 4,5 cm ed è lunga 11 cm. Mauro ha però collegato i condensatori in parallelo anziché in serie al variabile, e dice che l'adattatore funziona solo così



Come collegare uno S-meter transistorizzato a un RX a valvole

Per Roberto Vitali di SANNAZZARO B. e per i molti lettori che mi chiedono continuamente progetti di « S »-meters, ho sperimentato un circuito molto semplice: il milliamperometro « S » inserito nel circuito di collettore di Q2 indica le variazioni della tensione CAV applicate all'ingresso di Q<sub>1</sub> e successivamente amplificate.

Il circuito può essere realizzato utilizzando qualsiasi tipo di transistori purché della polarità indicata: NPN per Q<sub>1</sub> e PNP per Q<sub>2</sub>. Ricordo che i transistori PNP sono riconoscibili perché, applicando il puntale positivo alla loro base, si hanno delle letture di resistenza verso emettitore e collettore. Non si ha invece nessuna lettura invertendo i puntali del tester, a meno che il transistor sia difettoso. I transistori NPN sono riconoscibili perché presentano il fenomeno opposto.



S è un commutatore a 11 o 12 posizioni.

I condensatori C, sono da 270 pF.

C, è da 150 pF e così pure i condensatori fissi C2.

Il circuito, realizzato su una basetta qualsiasi, può essere poi montato all'interno del ricevitore, derivando la tensione di alimentazione dalla tensione alternata dei filamenti, che è infatti raddrizzata da  $Q_3$ , che può essere un diodo raddrizzatore o addirittura un transistor PNP bruciato o di scarto, purché presenti intatta la giunzione base-collettore.

L'ingresso del circuito va collegato alla linea CAV del ricevitore, facilmente identificabile perché parte dal lato massa dell'ultimo trasformatore a media frequenza: sintonizzando il ricevitore su un'emittente forte, si dovranno misurare fra la linea CAV e la massa 2÷10 V.

 $R_1$  e  $R_2$  sono due trimmer da 100  $\Omega$ , che costano poche centinaia di lire: vanno regolati in modo da avere la lancetta dello strumento a zero in assenza di segnale e al massimo in presenza di segnali forti.

#### Antenna multibanda

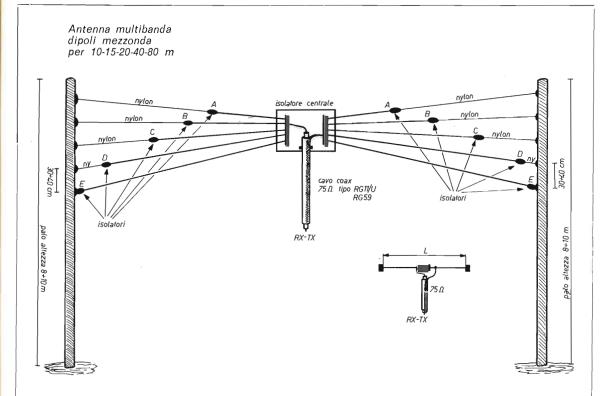
Incominciamo con la fatica di **Fiorenzo Repetto**, I1-14007, via Riborgo Superiore 32/1, 2019-809110, 17040 SANTUARIO, 7 km a nord di Savona, nella vallata del Letimbro, in mezzo alle colline.

Nella foto si vede l'interno del « santuario »: appesi alle pareti gi ex-voto e le grazie, pardon, le QSL ricevute.





L'amico Fiorenzo Repetto nella sua fornitissima stazione che ho ripreso da due angolazioni perché meritevole d'effetto stereo.


Sui ripiani e sul tavolo, un vasto ecumenismo di ricevitori e strumenti, da smentire per sempre i nostrani pallidi àuguri e stolte cassandre che parlano di crisi economiche.

Fiorenzo, vendi tutto e coi soldi fatti una crociera, prima che venga Mao e ti confiischi tutta quella proprietà privata: registratore Geloso G65L; ricevitore per i 144 MHz; rotore d'antenna; BC603; Hammarlund HO120X; decodificatore RTTY RME6-900; converter a MOSFET 144 MHz, e gli altri apparati innominati, mentre SSTV e facsimile sono in arrivo!

Fiorenzo mi manda un progetto d'antenna: i pali alti 8 ÷ 10 m sono molto pratici perché richiedono soltanto quanto segue:

- acquisto di un appezzamento di terreno per piantarceli;
- richiesta di licenza edilizia, con visto Sovrintendenza Belle Arti;

- denunzia al Genio Civile;
- collaudo statico finale fatto da Ingegnere o Architetto iscritto all'Albo.



caratteristiche dei dipoli

| dipolo | lunghezza <b>L</b><br>in metri | lunghezza d'onda<br>servita (m) | gamma<br>(MHz) |  |  |
|--------|--------------------------------|---------------------------------|----------------|--|--|
| A      | 5                              | 10                              | 28,5           |  |  |
| B*     | 6,72                           | 15                              | 21,2           |  |  |
| С      | 10,07                          | 20                              | 14,15          |  |  |
| D      | 20,07                          | 40                              | 7,1            |  |  |
| E      | 39                             | 80                              | 3,65           |  |  |

<sup>\*</sup> Per i 15 m va pure bene il dipolo D

Usare filo di rame  $\varnothing$  2÷3 mm; tiranti in nylon  $\varnothing$  2÷3 mm; lasciare tra dipolo e dipolo circa 30÷40 cm.

Purtroppo la maggior parte degli italiani non ha che una ringhiera del balcone a cui avvitare fruste nere o di colori più allegri... altro che pali da dieci metri!

## Amplificatori finali di potenza con transistori in "Darlington"

### dottor Renato Borromei


Il continuo sviluppo dell'elettronica nel campo industriale, e specie in quello adibito alla progettazione di nuovi semiconduttori, ha permesso di risolvere facilmente i problemi inerenti alla costruzione di amplificatori finali di potenza per BF dalle elevate caratteristiche.

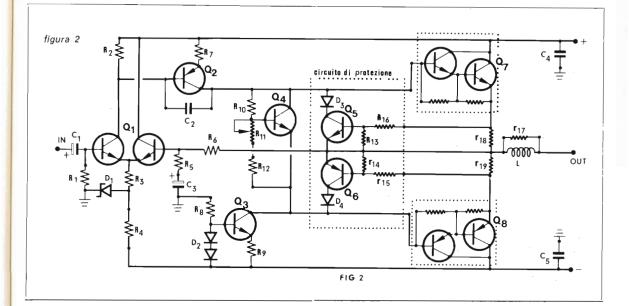
Alcuni anni fa nello stadio finale dell'amplificatore di potenza si usava prevalentemente la « configurazione quasi complementare », in cui i due transistori finali avevano la stessa polarità ed erano pilotati da coppie di transistori complementari.

In seguito furono immesse sul mercato delle coppie complementari di transistori di potenza (vedere **cq** 5/1974), permettendo di usare la « configurazione completamente complementare », e risolvendo quasi interamente i problemi inerenti alla distorsione di crossover.

Oggi si è potuto fare un notevole passo avanti in seguito alla messa a punto di nuovi finali di potenza di tipo « Darlington ».

Come vedesi in figura 1, essi sono costituiti dal transistor finale di potenza preceduto da quello pilota e da due resistori, rispettivamente quello di base e quello di emettitore, il tutto disposto su un'unica piastrina di silicio in forma integrata.




In questo modo si ottengono alcuni vantaggi.

- 1) Elevata stabilità di funzionamento.
- 2) Maggiore linearità dell'andamento del fattore di amplificazione di corrente in funzione della corrente di collettore.
- 3) L'amplificazione complessiva di corrente risulta più elevata. E' a tutti noto il basso guadagno di un normale transistor finale di potenza. Con l'ausilio dei Darlington si ottiene invece un fattore di amplificazione pari a 1000, potendo così pilotare tali transistori con segnali a basso livello (per esempio da circuiti integrati lineari).
- 4) Minor ingombro e maggiore facilità di messa a punto.

E' grazie alla Motorola che ho potuto, tramite una sua « Application Note » usare semiconduttori per la costruzione di una serie di amplificatori finali la cui potenza può variare da 15 a 60 W<sub>RMS</sub>, variando opportunamente i valori di alcuni componenti e l'alimentazione.

#### Schema elettrico

In figura 2 è rappresentato lo schema elettrico dell'amplificatore usante come transistori finali di potenza quelli « Darlington ».



L'alimentazione è doppia in modo da eliminare il condensatore d'uscita; all'ingresso vi è un amplificatore differenziale  $Q_1$  costituito da due transistori a basso rumore disposti nello stesso involucro. Il guadagno del circuito ad anello chiuso in alternata è dato dal rapporto delle resistenze  $R_6/R_5$ .

Il differenziale di ingresso è seguito da un primo stadio costituito da Q<sub>2</sub> montato a emettitore comune.

Il condensatore da 50 pF inserito tra la base e il collettore serve per limitare la banda passante alle frequenze udibili e per evitare possibili inneschi ad alta frequenza.

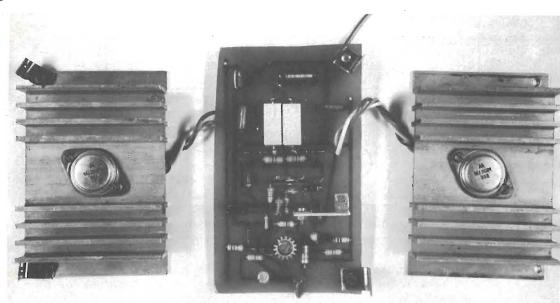
Il transistor  $Q_4$  serve per la polarizzazione dei due transistori finali e per la regolazione della loro corrente di riposo per mezzo del partitore resistivo costituito da  $R_{10}$ ,  $R_{12}$  e  $R_{11}$  che è un trimmer da 1 k $\Omega$  lineare.

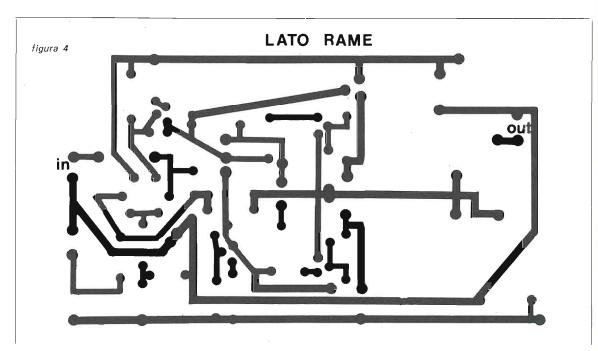
In questo modo si può regolare la corrente di riposo attorno al valore di 20 mA, valore più che sufficiente per minimizzare la distorsione di crossover

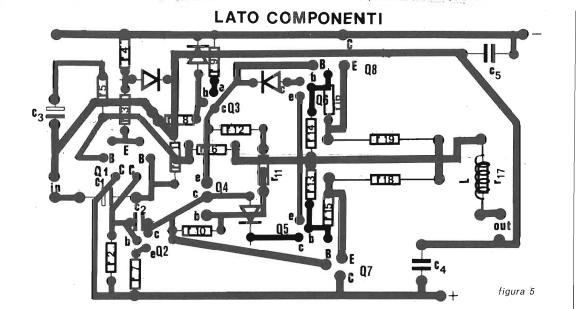
Alla base di  $Q_8$  è collegata una sorgente di corrente costante costituita dal transistor  $Q_3$  e dal diodo  $D_2$ . Nella parte tratteggiata dello schema è rappresentato il circuito di protezione che salvaguarda i transistori finali da eventuali cortocircuiti all'uscita.

I resistori  $R_{I3}$  e  $R_{I6}$  formano un partitore di tensione che determina la corrente che deve passare tra il transistore finale  $Q_7$  e  $R_{I8}$ .

Questo partitore fa condurre  $Q_5$  quando la corrente di uscita supera il valore predeterminato.


Analogamente accade per Q6.


La conduzione di  $Q_5$  e  $Q_6$  limita pertanto l'intensità della corrente di uscita sui finali.


#### Realizzazione pratica

Il prototipo da me realizzato è mostrato in figura 3; ho scelto i valori dei componenti in modo da ottenere un finale di potenza da 60  $W_{RMS}$ . In figura 4 è riportato il circuito stampato lato rame e in figura 5 il lato componenti.



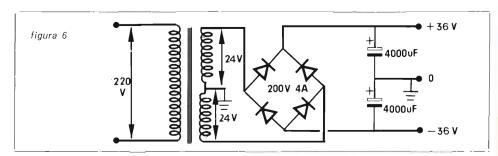






Nella tabella riporto invece tutti i valori dei componenti con le varianti necessarie in modo da ottenere potenze comprese tra 15 e 60 W<sub>RMS</sub>.

| potenza<br>in W <sub>RMS</sub>           | 1       | 5       | 2       | <u>?</u> 0 | 25      |         | 35     |        | 50     |          | 60     |          |
|------------------------------------------|---------|---------|---------|------------|---------|---------|--------|--------|--------|----------|--------|----------|
| impedenza<br>del carico                  | 4       | 8       | 4       | 8          | 4       | 8       | 4      | 8      | 4      | 8        | 4      | 8        |
| V <sub>cc</sub> (V)                      | ± 16    | ±19     | ±18     | ±23        | ± 19    | ±24     | ±22    | ±28    | ± 25   | $\pm 33$ | ±28    | $\pm 36$ |
| R₄ (kΩ)                                  | 3,9     | 4,7     | 4,3     | 5,6        | 4,7     | 5,6     | 5,6    | 6,8    | 5,6    | 8,2      | 6,8    | 8,2      |
| $R_s(\Omega)$                            | 1,2 kΩ  | 820     | 1,0 kΩ  | 750        | 1,0 kΩ  | 680     | 820    | 560    | 680    | 470      | 620    | 430      |
| R <sub>s</sub> (kΩ)                      | 15      | 18      | 18      | 22         | 18      | 22      | 22     | 27     | 22     | 33       | 27     | 33       |
| R <sub>15</sub> e<br>R <sub>16</sub> (Ω) | 330     | 150     | 470     | 180        | 510     | 220     | 750    | 390    | 910    | 560      | 1,0 kΩ | 620      |
| <b>Q</b> 1                               | MD8001  | MD8001  | MD8001  | MD8001     | MD8001  | MD8001  | MD8001 | MD8001 | MD8001 | MD8002   | MD8001 | MD8002   |
| Q <sub>2</sub>                           | MPSA55  | MPSA55  | MPSA55  | MPSA55     | MPSA55  | MPSA55  | MPSA55 | MPSA56 | MPSA55 | MPSA56   | MPSA56 | MPSA56   |
| Q <sub>3</sub>                           | MPSA05  | MPSA05  | MPSA05  | MPSA05     | MPSA05  | MPSA05  | MPSA05 | MPSA06 | MPSA05 | MPSA06   | MPSA06 | MPSA06   |
| Q₄                                       | MPSU01  | MPSU01  | MPSU01  | MPSU01     | MPSU01  | MPSU01  | MJE520 | MPSU01 | MJE520 | MJE520   | MJE520 | MJE520   |
| Q <sub>7</sub>                           | MJE1100 | MJE1100 | MJE1100 | MJE1100    | MJE1102 | MJE1100 | MJ3000 | MJ1001 | MJ3000 | MJ3001   | MJ3001 | MJ3001   |
| Qs                                       | MJE1090 | MJE1090 | MJE1090 | MJE1090    | MJE1092 | MJE1090 | MJ2500 | MJ901  | MJ2500 | MJ2501   | MJ2501 | MJ2501   |


Caratteristiche dei radiatori per i finali 9,5 °C/W 7,0 °C/W 5,0 °C/W 6,0 °C/W 5,5 °C/W 4,0 °C/W 3,0 °C/W a temperatura di 55 °C

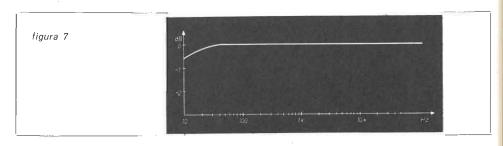
| Q₅ MPSA20                     | $    R, 5,1 k\Omega$                          |
|-------------------------------|-----------------------------------------------|
| Q <sub>6</sub> MPSA70         | $R_{\epsilon} = 10 \text{ k}\Omega$           |
| $D_{1} MZ92-10 (10 V, 0.5 W)$ | $R_{2}^{\circ}$ 10 $\Omega$                   |
| D <sub>2</sub> MZ2361         | $R_o$ 120 $\Omega$                            |
| D₃, D₄ MSS1000                | $R_{in} = 2.7 k\Omega$                        |
| $R_{i} = 10 \ k\Omega$        | $R_{ii}$ 1 k $\Omega$ lieare                  |
| $R_z$ 680 $\Omega$            | $R_{12}^{\prime\prime} = 1.2 \text{ k}\Omega$ |

 $R_{11} = 1 k\Omega$  lieare  $R_{12} = 1.2 k\Omega$ 

 $R_{13}$  470  $\Omega$   $R_{14}$  470  $\Omega$   $R_{17}$  10  $\Omega$ , 2 W  $R_{18}$  0,39  $\Omega$ , 5 W  $R_{19}$  0,39  $\Omega$ , 5 WResistenze tutte da 0,5 W salvo diversa indicazione C<sub>1</sub> 10 μF. 6 V C<sub>2</sub> 50 pF C<sub>3</sub> 50 μF, 6 V C<sub>4</sub> 100 nF C<sub>5</sub> 100 nF L vedi testo

In figura 6 è riportato lo schema elettrico dell'alimentatore.




Nulla vieta di usarne un altro, specie se stabilizzato, purché sia ben calibrato soprattutto nel caso di potenze elevate.

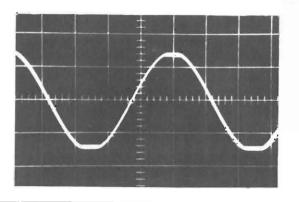
Per i collegamenti tra l'alimentatore e l'amplificatore consiglio di usare dei fili di rame isolati aventi una grossa sezione (almeno 2 mm di diametro) e il più corti possibile.

Per finire riporto qui di sotto le caratteristiche del prototipo da me ricavate sperimentalmente tranne che per i valori della distorsione armonica totale e quella di intermodulazione che sono quelli ottenuti dalla Motorola stessa.

#### 1) Risposta in frequenza

Come mostra la figura 7, a una potenza pari a —3 dB rispetto alla massima ottenibile, la risposta in frequenza è compresa tra 10 Hz e 50 kHz entro —0,6 dB.




- 2) Impedenza di ingresso 10  $k\Omega$ .
- 3) Sensibilità 1 $V_{\it effic}$  per 60W.
- 4) Distorsione armonica totale inferiore allo 0,1 % a ogni frequenza compresa tra 20 Hz e 20 kHz e ad ogni potenza tra 100 mW e 60 W.
- 5) Distorsione di intermodulazione inferiore allo 0,1 % alla massima potenza di uscita (con frequenze 60 Hz e 7 kHz nel rapporto 4/1).
- 6) Rapporto S/N non ponderato e in condizioni di ingresso non in corto circuito 95 dB.
- 7) Fattore di smorzamento 30.
- 8) Potenza efficace su un carico di  $10 \Omega$  misurata al clipping (figura 8):

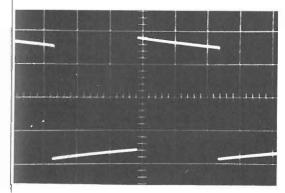
$$W = \frac{V^2}{R} = \frac{(60/2,82)^2}{10} = 45 W_{RMS}$$

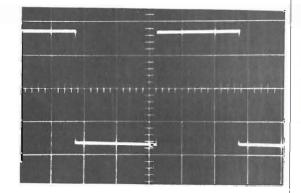
Con un carico reattivo costituito da un resistore da 10  $\Omega$  in parallelo a un condensatore da 2,2  $\mu F$  la potenza massima si dimezza.

figura 8

Onda sinusoidale al « clipping » 20 V/cm.




8) Risposta all'onda quadra: vedere le figure 9, 10, 11, 12.


figura 9

Risposta onda quadra a 100 Hz 10 V/cm.

figura 10

Risposta onda quadra a 1000 Hz 10 V/cm.





#### figura 11

Risposta onda quadra a 10 kHz 10 V/cm.

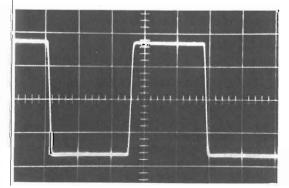
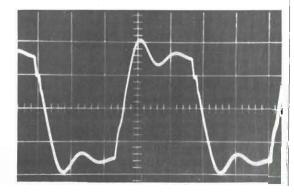




figura 12

Risposta onda quadra a 10 kHz con carico reattivo 5 V/cm 10  $\Omega$  in parallelo a 2,2  $\Omega$ F.



Il tempo di salita e di discesa è di 2,4 usec, come vedesi nelle figure 13 e 14 e si discosta da tale valore al variare del valore dell'induttanza L.

figura 13

Tempo di salita a 10 kHz 1 µs/cm.

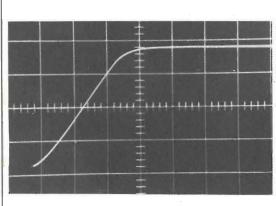
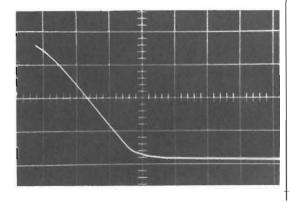




figura 14 Tempo di discesa a 10 kHz 1 us/cm.



Durante le prove fatte nel prototipo ho notato che l'optimum lo si ottiene usando una induttanza con una impedenza pari a 3 µH e cioè avvolgendo sulla resistenza R<sub>17</sub> 25 spire di filo Ø 0,8 mm. \* \* \* \* \* \* \* \* \* \*

## KIT-COMPEL - via Torino 17 - 40068 S. LAZZARO DI SAVENA (BO)



#### ARIES

Scatola di montaggio ORGANO ELETTRONICO semiprofessionale - 4 ottave - 3 registri - Amplificazione 10 W - in 4 kit fornibili anche separa-

ARIES A: Organo con tastiera

ARIES B: Mobile con leggio

ARIES C: Gambi con accessori

ARIES D: Pedale di espressione

Dimensioni (senza gambi): 90 x 35 x 15 cm Manuale con 11 pag. e 7 tav. sc. 1:1

#### **TAURUS**

Scatola di montaggio riverbero amplificato - ingressi ad alta e bassa impedenza - uscita a bassa impedenza -- controlli di livello ed effetto eco - in unico kit:

TAURUS: Unità di riverbero completa di mobiletto: Dimensioni: 30 x 20 x 11 cm.

Manuale con 8 pag. e 1 tav. sc. 1:.



#### DATI TECNICI DETTAGLIATI ED ELENCO DISTRIBUTORI A RICHIESTA

## Conversione dell'AN/URC - 4



ricetrasmettitore per i 144

La reperibilità dell'AN/URC-4 sul mercato surplus è buona ed è destinata ad aumentare nei prossimi mesi per l'immissione di molti esemplari che verranno posti in vendita nelle aste militari sia in Italia che in Germania.

### !1BIN, Umberto Bianchi

U. Bianchi corso Cosenza, 81 TORINO

L'AN/URC-4 è un ricetrasmettitore alimentato a batterie e destinato in origine al servizio « cielo-mare », come il suo predecessore, il CRC-7, che però è sempre risultato difficilmente reperibile sul mercato surplus italiano.

L'AN/URC-4 viceversa è apparso e continua ad apparire con una certa freguenza a prezzi che a volte risultano assai interessanti.

A differenza del CRC-7, l'URC-4 utilizza in maggiore quantità circuiti e componenti sofisticati e una costruzione più compatta.

Risulta inoltre predisposto per funzionare su due frequenze: 121,5 e 243 MHz.

Per rendere l'URC-4 operante a 144 MHz si rende necessario riavvolgere alcune bobine, sostituire il guarzo e connettere il tutto alle adatte

L'URC-4, prima della conversione, viene mostrato nelle figure 1 e 2.

figura 2





L'URC-4 impiega otto valvole del tipo subminiatura, ad eccezione della valvola amplificatrice audio.

Un'antenna adatta alle due frequenze è insenita all'interno del contenitore.

Estraendo l'antenna telescopica vengono automaticamente cortocircuitate le induttanze di carico per la banda VHF e si predispone l'antenna a funzionare su 243 MHz.

Dopo la conversione sui 144 MHz, la parte di circuito relativa alla sezione UHF e le valvole relative rimangono inutilizzate.

Il circuito completo dell'URC-4 è mostrato nello schema di figura 3. Dall'osservazione del medesimo si può vedere come si utilizzino due rivelatori sepa rati, uno per la banda VHF e l'altro per quella UHF. Ciascun rivelatore del tipo superrigenerativo utilizza un triodo del tipo 6050 ad alto µ (qualche modello

di URC-4 impiega invece una valvola tipo 5676). Il commutatore S1 accende i filamenti delle valvole in circuito. Il circuito di uscita del rivelatore audio risulta una vera novità in quanto incorpora un filtro del tipo « ponte a T » sintonizzato per estinguere la frequenza di superrigenerazione.

Un controllo variabile per lo spegnimento non è così più richiesto e si realizza un circuito con un miglior responso audio.

Il rivelatore VHF (V5) è accordato solo per i 144 MHz e per operare su questa frequenza deve essere modificato.

La sezione trasmittente utilizza un quarzo del tipo CR34-U tagliato per i 10,12 MHz.

Questo quarzo opera in terza armonica con l'oscillatore 6050 (V1) e produce una frequenza di 30,375 MHz.

Questa valvola pilota una seconda 6050 con funzioni di duplicatrice a 60,75 MHz. Un pentodo a fascio (tipo 5851) viene usato come duplicatore a 121,5 MHz

Per operare in VHF i segnali vengono prelevati con un link da questa valvola. Una seconda valvola tipo 5851 lavora in duplicazione a 243 MHz per il servizio in UHF e risulta attivata dal commutatore UHF/VHF (S1).

Quest'ultima valvola può essere rimossa e tenuta come scorta.

La sezione audio risulta formata da una 2E32, preamplificatrice BF e pilota della finale BF del tipo 3Q4. Quando si è in trasmissione la 3Q4 serve come modulatrice.

Nel circuito audio è incorporato un sistema di concontroreazione per modulare in trasmissione; interviene agendo su S2A.

#### La conversione sui 144 MHz

Per prima cosa è necessario controllare che l'URC-4 funzioni regolarmente sulla frequenza originale di 121,5 MHz.

Qualora non risulti agevole procurarsi le batterie originali, queste possono essere sostituite con altre che forniscano una tensione di 1,4 e  $90~\rm V$ .

Il cavo della batteria è normalmente fornito con l'apparecchiatura surplus. Connettere la batteria come indicato nello schema della figura 3, al bocchettone J1.

Pigiando il bottone di nicezione si dovrà sentire un leggero fruscio nella combinazione microfono-altoparlante.

Pigiando il bottone di trasmissione si potrà controllare l'emissione della radio frequenza con un comune misuratore di campo.

A scanso di spiacevo'ii conseguenze di carattere penale, rammentatevi di non tenere pigiato il bottone di trasmissione che per pochi secondi quando l'apparato opera a 121 MHz, dato che questa frequenza è utilizzata per comunicazioni militari.

Il primo passo da compiere per la conversione è quello di modificare il circuito oscillante.

Occorre rimuovere pertanto il telaio dal contenitore, allentando le viti di fissaggio.

Eliminare la rivelatrice UHF (V6, tipo 6050) allocata sotto il telaio. Conservare la valvola come ricambio. Rimuovete la valvola amplificatrice UHF (V4, tipo 5851) e conservatela come scorta.

La bobina L3 del secondo stadio duplicatore (V3) potrà essere accordata a 144 MHz senza essere riavvolta.

Occorre ora, per incrementare l'indice di modulazione, rimuovere la copertura impermeabile in neoprene posta sopra il microfono-altoparlante.

Localizzare il capo della bobina L1 che è connesso al piedino 1 dello zoccolo V1 (6050 oscillatrice).

Dissaldare ora la fine dell'avvolgimento, spingerlo fuori dall'occhiello del supporto della bobina e svolgere tre spire.

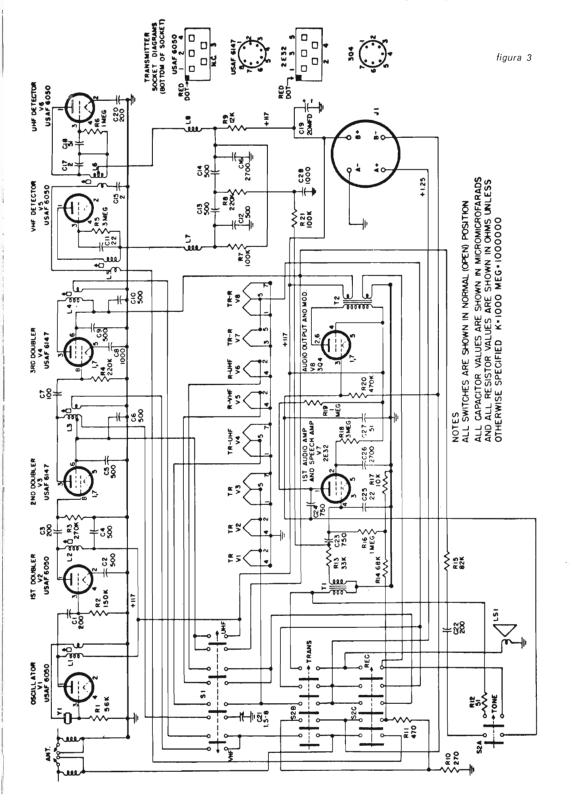
Effettuata questa operazione, rimettete il filo nell'occhiello e saldatelo nuovamente al piedino 1 dello zoccolo V1, dopo aver tagliato via il filo in eccesso.

Occorre ora localizzare il capo dell'avvolgimento L2 che è connesso al piedino 1 dello zoccolo V2 (6050 duplicatrice).

Con la stessa procedura prima descritta sconnettere l'avvolgimento, svolgere due spire e risaldarlo. La bobina L3 non richiede invece delle modifiche.

La bobina L4 deve essere rimossa in quanto non viene più usata.

Per il servizio nella banda dei 144 MHz occorre usare, per la trasmissione, un quarzo compreso tra i 36 e i 36,5 MHz.


Reperirne uno del tipo CR-24/U può risultare costoso e si raccomanda l'impiego di uno del tipo FM-1, di costo più r.idotto.

Questo quarzo può essere reperito presso le numerose ditte italiane produttrici di quarzi oppure presso l'International Crystal Mfg., 18 Nord Lee St., Oklahoma City, Oklahoma.

Il nuovo quarzo FM-1 può essere fissato sollevando la vecchia molla di pressione e inserendo il nuovo quarzo in sito.

Saldare poi i due fili del quarzo ai terminali previsti per il quarzo originale. Controllare che il nuovo quarzo risulti ben fissato per evitare che si fratturi per bruschi movimenti o per caduta dell'apparato.

Con ciò si completa la modifica alla sezione trasmittente dell'URC-4.



cq - 5/75

#### Modifica della sezione ricevente per i 144 MHz

Identificare il filo posto fra l'avvolgimento L5 e il commutatore S2 (trasmissione-ricezione).

Dissaldare questo filo dal lato del commutatore, tirarlo indietro fino all'avvolgimento e svolgere una spira della bobina, lasciando in totale sulla bobina una spira e un sesto.

Rimettere il filo fino al commutatore e dopo averlo introdotto in un tubetto isolante, risaldarlo al terminale originale.

Occorre ora identificare il filo posto tra la bobina L5 e il piedino 1 dello zoccolo della rivelatrice V5. Occorre sconnettere questo filo dallo zoccolo e, come fatto prima, svolgere una spira da L5 e riconnettere infine il filo allo zoccolo della V5.

Con questo sono terminate le modifiche al ricevitore.

#### Modifica all'antenna per i 144 MHz

Per operare a 121,5 MHz, il sistema d'antenna a dipolo utilizza due induttanze di carico.

Per avere una resa ottimale su 144 MHz, queste induttanze devono essere ribobinate. Estrarre completamente l'antenna sulla posizione VHF.

Notare come una delle bacchette che costituiscono il supporto verticale della struttura dell'antenna sia collegata a massa mentre l'altra scorre all'interno di un isolatore nel contenitore.

Segnare vicino alle bobine relative (sulla calotta) la lettera « A » (antenna) e « G » (ground o terra). Svitare la bacchetta verticale vicino alla calotta con una chiave a rullino di piccole dimensioni.

Saldare una spira di filo di circa 2,5 cm attraverso i due contatti vicino al centro della calotta dell'antenna.

Togliere le due bobine e rimuovere una spira circa dalla bobina marcata « G ».

Rimuovere successivamente due spire dalla bobina contrassegnata « A ».

Ripristinare le due bobine in circuito.

Inserire ora la bobina di un grid dip nella spira di filo prima realizzata. Assicurarsi che l'antenna sia completamente estratta ed evitare la vicinanza di oggetti metallici.

Verificare la frequenza di risonanza dell'antenna che deve essere fissata a 145 MHz.

Se ciò non avviene, regolare la bobina « A » espandendo o comprimendo gli avvolgimenti fino a che la frequenza di risonanza non sia quella desiderata. Ripristinare ora l'assemblaggio dell'antenna.

#### Controlli finali

Inserire il quarzo FM-1 e controllare le batterie. Pigiare il bottone « trasmissione » e ricevere la portante emessa su di un ricevitore posto nelle vicinanze. Qualora non si oda alcun segnale sulla frequenza prestabilita, ruotare lentamente il nucleo della bobina L1 fino a quando l'oscillatore inizia a funzionare.

Agire sulle bobine L1, L2, L3 fino a che non si abbia il massimo del segnale sul ricevitore, beninteso con l'antenna dell'URC-4 completamente estratta. Per accordare il ricevitore, pigiare il bottone « ricezione » e regolare il nucleo di L5 fino a che non si riceva un segnale di una stazione locale sui 144 MHz.

Il nucleo dovrà essere quasi completamente introdotto nel supporto della bobina.

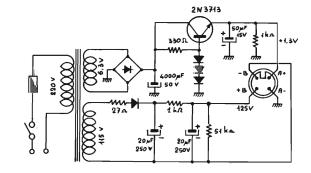
Rimettendo il coperchio all'URC-4 si dissintonizzerà nuovamente il circuito: occorrerà così fare un piccolo foro nel punto appropriato del coperchio e la regolazione finale andrà eseguita con il coperchio posizionato.

In normali condizioni, il ricetrasmettitore è in grado di assicurare collegamenti su distanze superiori ai 50 km.

La potenza del trasmettitore e la sensibilità del ricevitore risultano proporzionali tra loro e si dovrebbe sempre essere in grado di collegare chi si riesce ad ascoltare.

#### Alimentatore per il ricetrasmettitore

Può essere utile munire l'URC-4 di un alimentatore da rete e questo per vari motivi.


Anzitutto le batterie anodiche costano abbastanza care e non sempre è possibile reperirle, inoltre l'URC-4 può venire usato in una installazione fissa e quindi risulta comodo ed economico allacciarsi alla rete

Le tensioni richieste dal ricetrasmettitore sono: 1,3  $V_{\rm cc}$  per l'accensione dei filamenti delle valvole subminiatura e circa 125  $V_{\rm cc}$  per l'anodica.

Queste tensioni possono venire ricavate facilmente da due sezioni di alimentazione separate e racchiuse in un unico contenitore.

Lo schema di uno dei possibili alimentatori è mostrato in figura 4.

figura 4

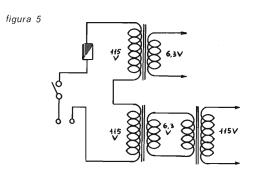


L'alta tensione di circa 125  $V_{\rm cc}$  è fornita da un rettificatore al silicio tipo 1N4004 di basso costo e ridotte dimensioni.

Due condensatori da 20  $\mu F$  e una resistenza da 1000  $\Omega$  servono come rete di filtro mentre una resistenza da 51 k $\Omega$  in parallelo all'uscita fornisce un carico costante quando i tasti di trasmissione e ricezione non sono pigiati. Occorre rilevare, in questa sezione di alimentazione, come il circuito sia isolato da massa.

Per la sezione a bassa tensione viene impiegato un ponte di quattro diodi tipo 1N1695 o similari a cui viene applicata la tensione di  $6.3~V_{\rm ca}$ .

La tensione rettificata viene filtrata da un condensatcre di  $4000~\mu F$  e regolata da un transistore NPN tipo 2N3713~o~similare.


Tre diodi al silicio 1N254 posti in serie fra loro tra la base del transistore e la massa limitano la tensione desiderata sotto carico.

Una resistenza da 1 k $\Omega$  è posta in parallelo al carico. Da notare che la vista frontale del bocchettone di alimentazione è mostrata nello schema elettrico dell'apparato e occorre fare gli opportuni cablaggi.

Nell'effettuare i collegamenti al bocchettone occorre prestare molta attenzione perché un errore di applicazione della tensione può costare molto caro in quanto i filamenti delle valvole si interromperebbero irrimediabilmente in una frazione di secondo.

A coloro poi che volessero risparmiare nell'acquisto dell'adattato trasformatore per la realizzazione dell'alimentatore, ricordo che sul mercato surplus sono facilmente reperibili trasformatori venduti a bassissimo prezzo a causa del primario a 117 V e con il secondario a 6.3 V.

Con tre di questi trasformatorini è possibile rimpiazzare egregiamente il trasformatore di alimentazione adottando la disposizione indicata in figura 5.



I due trasformatori con primario in serie devono essere uguali fra loro per evitare squilibri. Qualora la tensione di rete disponibile sia di 120 V è sufficiente disporre i due primari in parallelo tra loro

※ ※ :

Termina qui la descrizione della modifica dell'AN//URC-4, però prima di concludere vorrei fare una breve chiacchierata con voi.

Vi ringrazio cordialmente per la simpatia che mostrate agli articoli inerenti il surplus. Però, c'è un però.

Con l'aumento dei lettori, in proporzione sono anche aumentati coloro che mi scrivono: alcuni con domande facili, altri con domande meno facili.

A qualche lettera si può rispondere con rapidità; per qualche altra è necessario interpellare i collaboratori specializzati che sono sparsi un po' do vunque in Italia.

Le lettere che mi arrivano direttamente o tramite la redazione, vengono lette e a volte smistate a coloro che si presume siano in grado di rispondere. Riprendono quindi il viaggio verso una destinazione che può essere Trieste dove abita l'amico Leandro, Firenze presso l'amico Evandro e altri, Roma, Palermo, ecc.

A volte succede che quel collaboratore mi rimandi indietro la lettera senza aver potuto rispondere.

A questo punto si tenta con qualche altro esperto, magari all'estero, magari via radio; se anche questa volta va buca ne cerco ancora qualche altro e ccsì via, prima di arrendermi.

Intanto però passano i giorni e il lettore attende. Bene, attenda fiducioso, la risposta ci sarà. Col tempo, ma ci sarà.

Alcuni lettori poi propongono nella medesima lettera problemi di natura diversa. Per esempio una riguardante l'installazione di antenne particolari e una riguardante il surplus.

Da oggi in poi, risponderò a una sola domanda per volta, cancellerò cioè l'altra o le altre perché, come ho già specificato, se la lettera viene successivamente inoltrata ad altri esperti, questi conoscono il loro settore e non desiderano invadere quello degli altri.

Ogni domanda quindi esige un foglio di carta: anche se la carta scarseggia.

**Scrittura:** alcuni lettori scrivono a macchina. Benissimo.

Altri a mano: andiamo meno bene ma riesco a cavarmela se la calligrafia è decifrabile.

Quando vi sono diverse lettere a cui rispondere, quelle scritte a mano con pessima grafia passano per ultime, per cui ecco un altro ritardo.

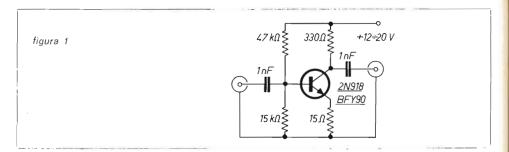
Chi scrive a mano è pregato di farlo in modo più chiaro possibile. Sempre che voglia una risposta.

Indirizzo: tutte le lettere devono avere il mittente: non è sufficiente quello sulla busta; occorre anche metterlo sulla lettera e sempre in stämpatello.

Formato e contenuto: se possibile limitare a una sola facciata lo scritto, tralasciando, quando non ci stanno, tutte le frasi di prammatica e di cortesia, limitandolo alla sola richiesta dello schema e dell'informazione.

Scrivere poi possibilmente su un foglio formato UNI A 4 (210 x 297 mm) per ragioni di archiviazione; per intenderci quello normale da macchina da scrivere.

L'unica eccezione la concedo all'amico Vincenzo Masini di Minerbio e alle sue care e simpatiche lettere di dodici o sedici pagine, piene di tanto calore umano.

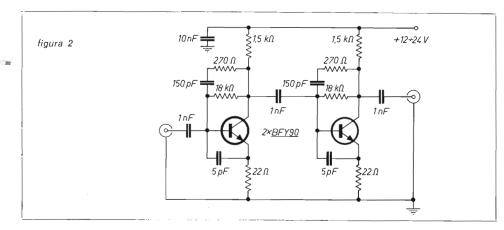

Per questo mese vi saluto e vi do appuntamento fra sessanta giorni. 卷卷卷卷卷卷卷卷卷卷卷卷卷卷

## di Giuseppe Beltrami, Luciano Manicardi, Valentino Barbi

Come già avevamo promesso ai lettori di « cq elettronica » alcuni mesi fa, in occasione della pubblicazione del nostro articolo riguardante un trigger e un prescaler per frequenzimetri digitali, riprendiamo l'argomento con l'intenzione di descrivere alcuni circuiti atti a migliorare notevolmente le prestazioni dell'integrato 95H90 impiegato, appunto, neilo scaler citato.

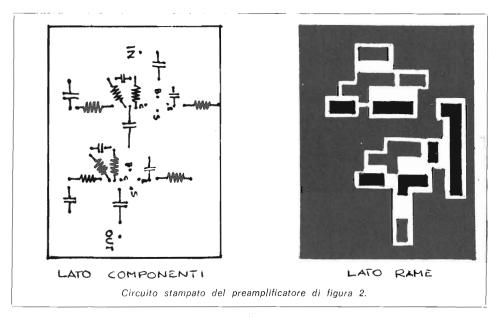
Come tutti coloro che hanno costruito tale circuito avranno potuto constatare, mentre le caratteristiche di frequenza del 95H90 sono veramente molto buone, tenuto conto anche del suo prezzo relativamente basso, non altrettanto si può dire della sensibilità del dispositivo che, pur essendo più che soddisfacente per numerose applicazioni, non è certamente esuberante. Dato che, come è noto, l'appetito vien mangiando, siamo certi che tutti coloro che hanno costruito lo scaler cercheranno il modo di migliorarlo: lo scopo di questo articolo è, appunto, quello di aiutarli a spremere dal dispositivo tutto quello che esso può dare, senza naturalmente pretendere cose impossibili, tipo quella di portare a 500 MHz il limite superiore di frequenza come a qualcuno è venuto in mente di domandare. Descriviamo quindi qui di seguito alcuni dei preamplificatori da noi sperimentati, presentandoli in ordine crescente per quanto riquarda le prestazioni e, purtroppo, anche il costo.

Il più semplice preamplificatore che può venire in mente di realizzare, e che anche noi abbiamo provato, è quello presentato in figura 1.

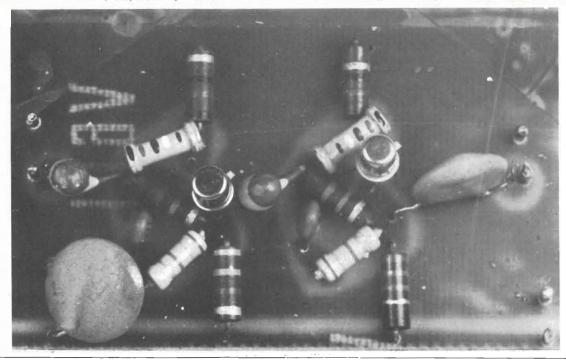



Si tratta di un semplicissimo amplificatore costituito da un solo transistor, e precisamente un BFY90 oppure, con risultati lievemente inferiori, da un 2N918. Su questo circuito non c'è gran che da dire: il costo è veramente irrisorio, praticamente si riduce a quello del solo transistor, perché chiunque avrà in casa le quattro resistenze e i due condensatori (di valore nient'affatto critico, questi ultimi) che occorrono. L'alimentazione può andare da 12 a 20 V, con preferenza per le tensioni più elevate, in quanto tanto il BFY90 quanto il suo collega esprimono il maggior guadagno con  $V_{\it CE}$  e corrente di collettore abbastanza elevate (intorno ai 10 V e 6 mA rispettivamente).

Due parole sulle prestazioni: beh, certamente non si possono attendere miracoli da questo circuito così scarno, ma il miglioramento della sensibilità dello scaler è certamente evidente, almeno fino a 70 ÷ 90 MHz. Al di sopra di questa freguenza il quadagno del preamplificatore scende al di sotto dei 6 dB e quindi il suo contributo diventa piuttosto scarso.

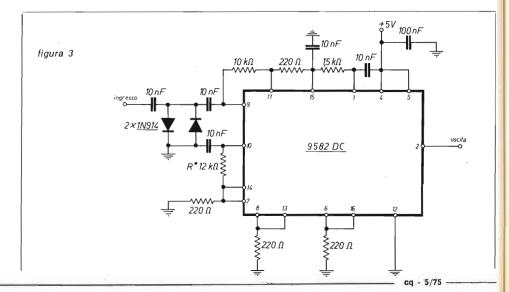

Alcuni preamplificatori per scaler

Il passo successivo è rappresentato dal circuito più elaborato di figura 2.




Si tratta di un amplificatore di antenna a larga banda derivato dalla letteratura tecnica Siemens e lievemente modificato, in grado di quadagnare circa 16 dB da quaranta fino a parecchie centinaia di megahertz.

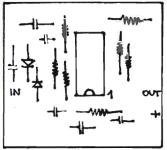
Questa volta, a causa della maggiore amplificazione e più alta frequenza di taglio in gioco, è necessario spendere due parole in più perché il circuito, pur non essendo particolarmente critico, necessita tuttavia di una attenzione particolare nel montaggio onde evitare l'insorgere di autooscillazioni a freguenza relativamente bassa, causate dall'aumento notevole del guadagno dei due transistor al diminuire della frequenza. E' quindi caldamente consigliabile l'impiego del circuito stampato, di cui riportiamo il disegno in scala 1:1 relativo a quello dei tre prototipi costruiti che ha dato i migliori risultati, e che non corrisponde all'esemplare della fotografia di pagina sequente il quale, pur funzionando ottimamente, tendeva ad autooscillare con tensioni di alimentazione superiori ai 15 V.



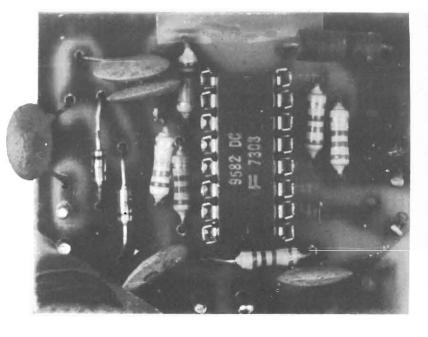

Quanto ai transistori da usare. anche qui, dalle prove fatte, i migliori sono risultati i BFY90, seguiti abbastanza da vicino dai 2N918. Non hanno invece dato risultati molto lusinghieri i vari BF200, BF181, BF180, per cui ne sconsigliamo senz'altro l'impiego.



In ogni caso, qualunque sia il transistor che si utilizza, vale sempre la raccomandazione di tosare quasi a zero i piedini, se si vuole raggiungere la massima frequenza possibile e annullare qualunque tendenza all'autooscillazione. Anche qui la tensione di alimentazione può andare da 12 a 24 V, e anche qui il quadagno aumenta all'aumentare della tensione. Tale quadagno è praticamente costante da 40 MHz fino alla massima freguenza di impiego del 95H90, per cui questo secondo preamplificatore è indubbiamente più versatile e, quindi, più utile di quello presentato in precedenza. L'unico difetto è, purtroppo, quello della tensione di alimentazione, che non è compatibile con la alimentazione degli integrati TTL e ECL, e che deve quindi essere ottenuta con un alimentatore separato.


Questo difetto viene eliminato nel circuito di figura 3 che è senz'altro il migliore sotto tutti i punti di vista fra quelli presentati.




E' desunto dalle applicazioni tecniche Fairchild, e apparso con lievi modifiche su alcune riviste estere fra le quali VHF Communications, dalla quale abbiamo desunto il tracciato del circuito stampato, che riportiamo.



LATO RAME



LATO COMPONENTI



Circuito stampato del preamplicatore di figura 3.

Questo preamplificatore è costituito dall'integrato 9582DC, che racchiude nel suo interno tre amplificatori differenziali in grado di funzionare fino a freguenze intorno ai 300 MHz (280 nel nostro prototipo). I tre amplicatori differenziali sono connessi in cascata, e in tal modo si riesce a ottenere una sensibilità veramente notevole, che va da circa  $5 \div 10$  mV nella gamma delle onde corte, fino a  $60 \div 70$  mV verso il limite superiore. L'integrato in oggetto è un ECL, e quindi la compatibilità con il 95H90 è totale, compresa la tensione di alimentazione che è di 5 V.

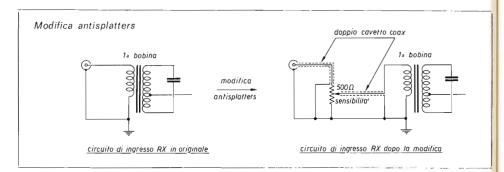
A questo proposito occorre dire che un difetto, sotto certi punti di vista, degli ECL, è rappresentato dall'elevato consumo di corrente. Bisogna quindi fare attenzione a questo assorbimento supplementare, perchè non sempre l'alimentatore contenuto nel frequenzimetro riesce a sopportare questo ulteriore onere, quindi si mette a « sedere » o, peggio, salta e allora possiamo dare l'addio al nostro frequenzimetro.

Attnzione quindi a non sovracaricare l'alimentatore: al limite conviene utilizzare un integrato del tipo dei vari L005 o LM309K per alimentare il solo prescaler, cioè gli integrati 9582 e 95H90. Data l'elevata amplificazione in gioco nel 9582, si è constatato che, talvolta, l'integrato tende ad autooscillare. In tal caso il rimedio consiste nel variare sperimentalmente il resistore di controreazione da 12 k $\Omega$ indicato con R\*: tra i valori da 8,2 a 22 k $\Omega$  si troverà senz'altro quello che permetterà di sistemare l'inconveniente. 常常常常常常常常常常常常常常常常

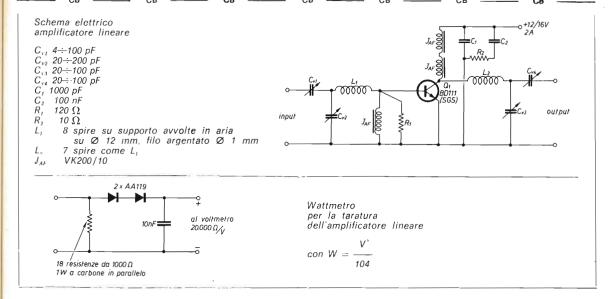
## CB a Santiago 9 🕂 🤇

© copyright cq elettronica 1975

a cura di Can Barbone 1°


dal suo laboratorio radiotecnico di via Andrea Costa 43 47038 SANTARCANGELO DI ROMAGNA (FO)

#### (ventisettesimo squillo)


Come vi avevo promesso nella puntata precedente, dedico questo ventisettesimo squillo interamente all'autocostruzione. Il materiale (grazie a voi) non manca, non mi rimane quindi che l'imbarazzo della scelta miscelando progettini e progettoni nella speranza di accontentare un po' tutti, prima però voglio confessarvi una mia debolezza; mi piace collezionare tessere di Radio Clubs CB, oltre alle vostre cartoline QSL, non pretendo di essere eletto socio onorario, mi accontenterei di riceverle semplicemente in bianco, in cambio potrei pubblicare le testate più simpatiche (ma sono sicuro che sono tutte simpatiche).

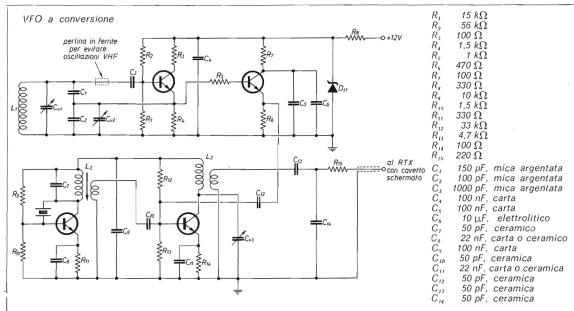


Inizia la sequenza autocostruttoria l'amico **Walter Torroni** sito in quel di Terni nell'abituro al 27 di via Luigi Galvani (quello che faceva i galvanometri con le rane! Non Walter, Luigi s'intende!). Il nostro Walter si limita a fare lo studente d'ingegneria al secondo anno e a farsi chiamare in aria *Quarzo blu*, nonché a presentarvi un paio di progettini, il primo dei quali consiste in una **modifica antisplatters**, altri non è che un controllo di sensibilità (attenuatore passivo) posto all'ingresso del ricevitore.



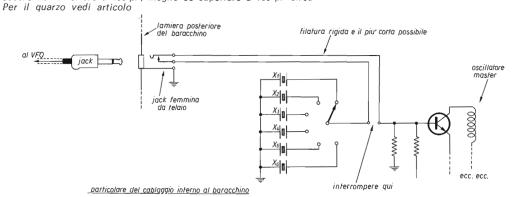
Il potenziometro possibilmente dovrebbe trovare alloggio sul pannello frontale. ma per non compromettere orribilmente l'estetica del baracchino deprezzandolo dal punto di vista commerciale, si può usare il potenziometro dello squelch, anche se di valore più alto, avendo cura di spostare i fili dello squelch su un trimmer dello stesso valore posto all'interno del baracco e regolato sempre al massimo. In tal modo si sacrifica l'uso dello squelch, ma vi garantisco che è l'unico modo per far QSO in città, non desensibilizza l'apparecchio, quando è regolato per il minimo di attenuazione, e funziona su tutti gli RX se montato correttamente. I collegamenti vanno fatti con due cavetti schermati (non uno con due fili, occhio!) poi bisogna regolare il nucleo di L, per la massima sensibilità, in quanto la capacità del cavetto influisce un po' sulla taratura, anche se in teoria non dovrebbe. Una ventina di apparecchi modificati testimoniano l'efficenza del sistema. L'unica difficoltà può essere rappresentata nel rintracciare la bobina L. la quale di regola è sempre montata in prossimità del relè d'antenna, le cose sono più facili se si è in possesso dello schema elettrico e meccanico dell'apparato da violentare. Il secondo progetto parla di un povero transistore costretto a far da amplificatore lineare squazzante tra i 12 e i 20 W. Prima di accingervi al montaggio siano ben chiari i canoni del buon costume, vale a dire, che la potenza, la qualità della modulazione e il rendimento dipendono soprattutto dalla realizzazione meccanica e dalla taratura

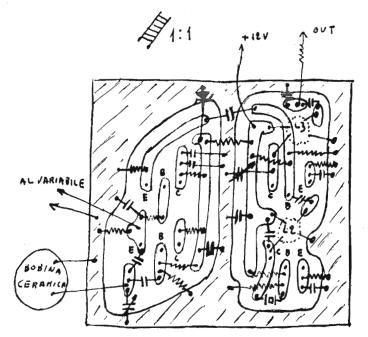



In primis, a freddo, regolare  $C_{v1}$  per il minimo di capacità,  $C_{v2}$  per il massimo,  $C_{v3}$ e C<sub>v4</sub> a metà corsa. Collegare il wattmetro all'uscita e dare tensione ed eccitazione all'ingresso. Regolare alternativamente **prima**  $C_{v3}$  **poi**  $C_{v4}$  per la massima uscita, alternativamente fino a ottenere l'optimum, proseguire poi la taratura dell'ingresso aumentando la capacità di  $C_{v1}$  e giocando un po' su  $C_{v2}$  tenendo presente che la miglior taratura, nel caso si avesse la stessa uscita con valori diversi di  $C_{v1}$  e  $C_{v2}$ , è sempre quella con  $C_{v1}$  a capacità minima, dopo aver quindi raggiunto il massimo con tutti i compensatori, sarà opportuno diminuire l'uscita di un watt o due ritoccando C, al fine di ottenere una resa quantitativamente inferiore ma qualitativamente superiore, in ogni caso sotto i picchi di modulazione il wattmetro dovrà sempre indicare un incremento positivo. Grossomodo con circa 3 W input e 15 V di alimentazione si devono ottenere almeno 15 W in uscita. Non siate tentati di sostituire il BD111 con un BD111A, non è la stessa cosa, e decisamente non va troppo bene. Si può tentare con il BD113, ma a volte qualche esemplare fa i capricci e non va molto bene. Volendo sostituire il BD111 con un PT4445/A si possono ottenere potenze sull'ordine dei 40 W col rischio di farvi piangere il salvadanaio in quanto per il solo PT4 ecc. ecc. si possono liquefare dalle 15 alle 25 kilolire, a seconda del commerciante che ve lo può fornire, ad ogni modo in tutti i casì il risultato è più che garantito da diversi esemplari costruiti per gli amici del mio QTH. Ah! Dimenticavo, state attenti che non rientri RF nel tester, vi può dare letture false, muovendo i fili dei puntali la lettura non deve cambiare, chiaro?

\* \* \*

Ed ecco farsi largo tra la folla una vecchia conoscenza, alias *Paperino*, alias **Alfredo Bernardi** detto il « Barnard » del baracchino, che ci propone un trapianto di un VFO al posto dei sei miserabili quarzi del sintetizzatore di frequenza di qualsiasi baracchino che viaggi con questo usualissimo sistema. Il tutto sempre all'insegna dello « spender poco ». Egli afferma che la cosa è molto semplice, infatti basta guardare lo schema di un qualsiasi 23 canali sintetizzato per renrendersi conto che se al posto dell'oscillatore master (quello che ha un gruppo di sei cristalli) noi mettiamo un VFO abbiamo la possibilità di esplorare terre incognite, come tutti i canali intermedi (nei primi 23 ce ne sono ben sette!) oppure a partire dal 23 in su, e tutto questo senza bisogno di relè o commutazioni varie.


Lo schema dell'oscillatore libero è tratto dal « The Radio Amateur's Handbook » edito dalla ARRL USA, rivisto e adattato alla miscelazione di una frequenza fissa generata a cristallo.


Il VFO è tutto a transistors economici e reperibilissimi ovunque, sono tutti 2N708, ad ogni modo possono andar bene tutti i transistori NPN al silicio caratterizzati da una freguenza di taglio superiore ai 50 MHz e con un buon coefficiente di amplificazione (h<sub>fe</sub>, beta); tutt'al più si possono variare un tantino le polarizzazioni. I supporti e i nuclei delle bobine, salvo L<sub>1</sub>, si possono ricavare da vecchie medie frequenze per TV reperibili gratis o quasi gratis presso un qualsiasi riparatore TV. Anche il quarzo non dovrebbe presentare difficoltà nella reperibilità in quanto la frequenza di 29.700 kHz (tale è la frequenza del quarzo da usarsi sull'oscillatore fisso) è stata usata spesso su quei microscopici RTX giocattolo da 50 mW, ad ogni modo non è critica in quanto si può giocare sulla taratura dell'oscillatore libero per ottenere la frequenza voluta. Il VFO può essere inserito o disinserito a piacere facendo uso di spine jack maschio/femmina. La femmina ovviamente sarà alloggiata sul retro del baracchino previo buco con trapano molto delicato!



- 40 spire filo rame smaltato Ø 0,5 mm avvolte su supporto ceramico Ø 1 cm (reperibile da ex-candeletta per
- 11 spire filo rame smaltato Ø 0,35 mm avvolte su supporto di polisitrolo Ø 1 cm con nucleo regolabile come L<sub>2</sub>, ma con tre spire in meno e senza nucleo
- Tutti i links sono di due spire avvolte a fianco di L, e L, stesso filo, e lato freddo
- I transistori sono tutti 2N708 oppure 2N2369 oppure BSX20, il diodo zener è da 9 V, 1/2 W
- C<sub>v1</sub> e C<sub>v3</sub> sono compensatori da 60 pF max, 5 pF min

C<sub>v2</sub> deve essere di ottima qualità, possibilmente doppiamente supportato in ceramica, con demoltiplica a ingranaggi compensati o demoltiplica di tipo epicicloidale (demoltipliche reperibili presso sedi GBC), la capacità dovrà essere non inferiore a 100 pF, meglio se superiore a 150 pF circa





Circuito stampato del VFO a conversione.

I componenti possono essere montati in verticale o in orizzontale a piacere e a seconda dello spazio disponibile.

Note particolari.

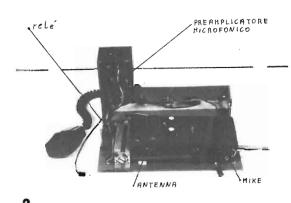
Nel prototipo originale L, oscilla a 8200 kHz a variabile tutto chiuso. L, deve essere accordata a 29.700 kHz (se si usa un quarzo di tale valore). L, senza nucleo, quindi con Q più basso, deve risuonare (accordandola col compensatore C<sub>v3</sub>) su 37.900 kHz al limite inferiore e 38.150 al limite superiore, quindi si può accordare a

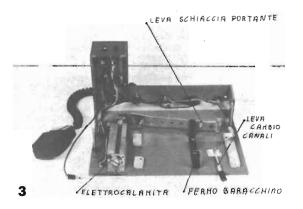
uscita pressoché costante sui 23 canali overplus. Il discorso è valido per i baracchini che usano frequenze masters da 37.600 a 38.850 kHz.

centro banda su 38.025 per avere una

Per quelli che usano frequenze masters da 33.000 a 33.250 è necessario aumentare il numero di spire di L, e L, di una spira e al posto del quarzo da 29.700 si userà un quarzo da 29.100 kHz.

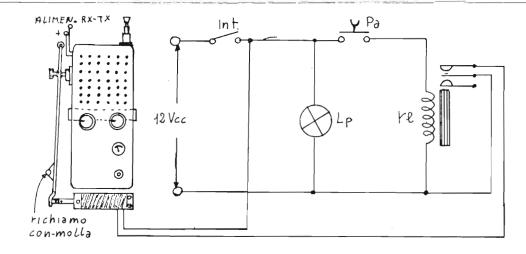
Si raccomanda vivamente l'uso di un buon grid-dip-meter, al fine di evitare errori di taratura, e per non passare oltre al canale 46, perché si rischia di trasmettere sui 28 MHz e gli OM, giustamente, non lo gradirebbero affatto! Il commutatore dei canali, quando si fa uso del VFO, è bene rimanga inserito sempre sul canale 1, giacché spostando quest'ultimo va a pallino la taratura della scala del VFO, la quale andrà tarata punto punto con l'ausilio di un baracchino che abbia i 23 canali overplus (dal 24 al 46 per intenderci).


Come sempre, oltre ai componenti, è indispensabile pazienza e un buon « manico », si sconsiglia pertanto la costruzione dell'apparato ai nevrastenici e ai pierini!


> Per la filatura interna vedasi schema allegato. Ora la commutazione RX/TX avviene automaticamente e si è sempre in isofreguenza con la stazione sintonizzata dal variabile del VFO.

Non è finita, non è finita, non è finita!

Vi piazzo l'ultimo progetto e poi me la batto. Questa volta si tratta più di un lavoro meccanico che di un trabaco elettronico, e ve lo presenta l'amico Zener, Mario Vandi, via Roma 43 di Carpegna (PS).


Chiedo scusa ai lettori per questa mia parentesi, ma sono 25 anni che passo le mie ferie a Carpegna e per me è come un secondo QTH, ebbene, Mario, ti dispiacerebbe salutarmi Nando e l'Adalcisa, quelli della drogheria poco distante da casa tua? Grazie. Ma passiamo subito al progetto che l'amico Zener ha battezzato « schiacciaportanti » e che può essere molto utile a parecchi CB che possiedono solo un mattoncino e che desiderino utilizzarlo come stazione fissa. Questo sistema è valido per qualsiasi mattoncino a cui si voglia applicare il microfono esterno, magari seguito da un preamplificatore microfonico. Per usare un microfono esterno occorre però schiacciare sempre il pulsante di trasmissione, ed è assai antipatico, si può pertanto eliminare l'inghippo facendo compiere questo lavoro da una elettrocalamita. Una soluzione più elegante potrebbe essere quella di sostituire il commutatore rice/tras con un relè, ma questo ridurrebbe le prestazioni dell'apparato quando lo si voglia usare in portatile in quanto il relè non trova facile alloggiamento dentro al mattoncino e, col suo consumo, diminuisce l'autonomia delle batterie.





- 1) Lavoro ultimato.
- 2) Vista all'interno.
- 3) Vista all'interno senza mattoncino.

Passando a dettagli pratici, vi invito a dare un'occhiata a ciò che io battezzo schema « elettro/meccanico ».



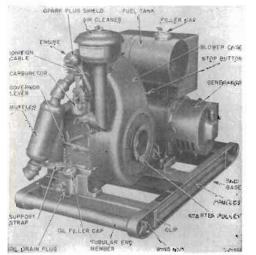
int = interruttore a levetta

 $P_a = pulsante del microfono$ 

 $L_n = lampadina da 12 V$ 

ri = relé uno scambio 12 V, contatti per 2 A

 $E_L = elettrocalamita 12 V (vedi testo)$ 


In base allo schema si vede che quando si preme il pulsante Pa viene a eccitarsi il relè che a sua volta pilota l'elettrocalamita, la quale attira la leva che preme il pulsante rice/tras. Per realizzare questo è bene fare uso di una robusta elettrocalamita, sì da attirare la leva con facilità. Inoltre quando si passa in ricezione è meglio che la leva sia richiamata da una molla o da un elastico al fine di aiutare più sollecitamente il ritorno. Il sistema funziona benissimo: Zener vi assicura di avere fatto degli ottimi QSO in pieno relax. Per poter cambiare agevolmente i canali (il mattoncino ne ha tre) Zener ha aggiunto un'altra piccola levetta come da foto n. 3.

E bravo il nostro Zener, accipicchia che fantasia, e poi c'è chi dice che i CB non hanno speranza di migliorarsi perché trovano tutto già fatto nelle apparecchiature commerciali!

Siamo così giunti al commiato, che tristezza! Due lacrime mi rigano il muso: è l'angoscia che mi annienta.

Aspettate un momento che qualcuno suona il campanello ... era il postino, con le vostre lettere, do' un'occhiata randagia alle missive e mi soffermo su una busta che reca impresso l'omino della rubrica sperimentare, ma sì, è lui, il re degli sperimentatori, Antonio Ugliano, conosciuto in gamma CB con lo pseudonimo di *Pastasciutta*.

Non credo ai miei occhi, infatti mi chiede umilmente di poter comparire in CB a Santiago 9+ con una antenna di sua progettazione che, manco a dirlo, lui battezza « Antenna Pastasciutta ». Beh, sapete che faccio? Nel prossimo numero gliela pubblico. Dove eravamo rimasti? Ah già, al commiato, e va bene, allora ciao a tutti e a presto. 常常常常常常常常常常常常常常常常常



Interpellateci a mezzo telefono:

cq - 5/75

non disponiamo di listini o depliants.

### GRUPPO ELETTROGENO PE 75 AE/220:

**NUOVO** nell'imballo originale (contenitore stagno e cassone oltremare)

- Alternatore: monofase, autoregolato. 220 Vac 3 kW servizio continuo
- Motore: Brigg & Stratton tipo ZZ 6 CV 1800 rpm, benzina (normale) petrolio (cherosene) ricambi reperibili in Italia
- Dimensioni: 92 x 50 x 61 Peso Kg. 120

Apparecchiatura totalmente schermata e filtrata per alimentare qualsiasi equipaggiamento elettronico o elettrico.

#### pronti a magazzeno:

Ricevitori professionali a copertura continua, oscilloscopi, telescriventi. generatori di segnali, ricetrasmettitori, nuovi o ricondizionati. amplificatori VHF TEMPO made USA

KFZ ELETTRONICA - via Avogadro, 15 - 12100 CUNEO - tel. (0171) 33.77

## **Effemeridi**

## a cura del prof. Walter Medri

| EFFE                               | MERIDI                                                         | NODALI più                                         | favorevo                                                             | oli per l'Itali                                    | a e re                     | lative ai                                                      | satelliti OS                                                                                    | CAR sot                                                              | o indicati                                         | T    |
|------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|------|
| 15 maggio<br>/ 15 giugno           |                                                                | frequenza (ve<br>periodo or                        | rbitale 115'<br>one 101.6°<br>gitudinale 28                          | 1. <b>7</b> 5°                                     |                            | i                                                              | OSCAR frequenza (vedi n periodo orbitale inclinazione 1 incremento longitue (tezza media orbita | ota sotto)<br>114,95'<br>01,74°<br>dinale 28.7°                      |                                                    |      |
| giorno                             | ora GMT                                                        | longitud. ovest<br>orbita nord-sud                 | ora GMT                                                              | longitud. ovest<br>orbita sud-nord                 | modo                       | ora GMT                                                        | longitud, ovest<br>orbita nord-sud                                                              | ora GMT                                                              | longitud. ovest<br>orbita sud-nord                 | 1    |
| 15/5<br>16<br>17<br>18<br>19<br>20 | 8,45,46<br>7,45,42<br>8,40,39<br>7,40,34<br>8,35,30<br>7,35,26 | 181.8<br>166.8<br>180.6<br>165.6<br>179.3<br>164.3 | 18.20,44<br>19.15,40<br>18.15,36<br>19.10,32<br>18.10,28<br>19.05,24 | 325,6<br>339,3<br>324,3<br>338,0<br>323,0<br>335,8 | A<br>B<br>A<br>B<br>A<br>B | 7,41,30<br>8,35,48<br>7,35,08<br>8,29,25<br>7,28,45<br>8,23,03 | 164,9<br>178,4<br>103,3<br>176,8<br>161,7<br>175,2                                              | 19,11,11<br>18,10,31<br>19,04,09<br>18,04,09<br>18,58,26<br>19,52,43 | 337,3<br>322,1<br>335,7<br>320,5<br>334,1<br>347,7 |      |
| 21<br>22<br>23<br>24<br>25         | 8,30,21<br>7,30,17<br>8,25,13<br>7,25,09<br>8,20,05<br>9,15,01 | 178.0<br>163.0<br>176.7<br>161.7<br>175.5          | 18,05,20<br>19,00,16<br>18,00,12<br>18,55,07<br>19,50,03             | 321,8<br>335,5<br>320,5<br>334,2<br>348,0          | X<br>B<br>A<br>B           | 7,22,23<br>8,16,40<br>9,10,57<br>8,10,18<br>9,04,35            | 160.1<br>173.6<br>187.2<br>172.0<br>185.6                                                       | 18,52,03<br>19,46,20<br>18,45,41<br>19,33,58<br>18,39,18             | 332,5<br>346,1<br>330,9<br>344,5<br>323,3          | 1    |
| 26<br>27<br>28<br>29<br>30<br>31   | 8,14,57<br>9,09,53<br>0,09,49<br>9,04,44<br>8,04,41            | 189,2<br>174,2<br>177,9<br>172,9<br>186,7<br>171,6 | 18.49,54<br>17.49,55<br>18.44,41<br>17,44,47<br>18,39,43<br>19,34,39 | 332.9<br>317.9<br>331.7<br>316.7<br>330.4<br>344.1 | B<br>A<br>X<br>A<br>B      | 8,03,55<br>8,58,12<br>7,57,33<br>8,51,50<br>7,51,10<br>8,45,27 | 170,4<br>184,0<br>168,8<br>182,4<br>167,2<br>180,8                                              | 19,33,35<br>18,32,56<br>17,32,16<br>18,26,33<br>19,20,50<br>18,20,11 | 342,9<br>327,7<br>312,5<br>326,1<br>339,7<br>324,5 |      |
| 1/6<br>2<br>3<br>4<br>5            | 8,59,36<br>7,59,32<br>8,54,28<br>7,54,24<br>8,49,20            | 185.4<br>170.0<br>184.1<br>169.1<br>182.8          | 18.34,35<br>19.29,30<br>18.29,26<br>19.24,22<br>18.24,18             | 329.1<br>342.9<br>327.8<br>341.6<br>323.6          | B<br>A<br>B<br>X<br>B      | 7,44,48<br>8,39,05<br>7,38,25<br>8,32,42<br>7,32,03            | 165.6<br>179.2<br>164.0<br>177.6<br>162,4                                                       | 19,14,28<br>18,13,48<br>19,08,05<br>18,07,25<br>19,01,43             | 338,1<br>322,9<br>336,5<br>321,3<br>334,9          |      |
| 6<br>7<br>8<br>9<br>10             | 7,49,16<br>8,44,12<br>7,44,08<br>8,39,04<br>7,39,00            | 167,8<br>181,6<br>166,5<br>160,3<br>165,3          | 19,19,14<br>10,19,10<br>19,14,06<br>18,14,02<br>19,08,58             | 340.3<br>325.3<br>339.0<br>324.0<br>337.8          | A<br>B<br>A<br>B           | 8,25,20<br>9,20,37<br>8,19,57<br>9,14,14<br>8,13,35            | 176,0<br>189,6<br>174,4<br>188,0<br>172,8                                                       | 18.01,03<br>18.55,20<br>17.54,41<br>18,48,58<br>19,43,15             | 319.7<br>333.3<br>318.1<br>331.7<br>345.2          | 2000 |
| 11<br>12<br>13<br>14<br>15         | 8,33,55<br>7,33,51<br>8,28,47<br>7,28,43<br>8,23,39            | 179.0<br>164.0<br>177.7<br>162.7<br>176,5          | 18,08,54<br>19,03,50<br>18,03,46<br>18,58,41<br>19,53,37             | 322,7<br>336,5<br>321,5<br>335,2<br>348,9          | X<br>A<br>B<br>A           | 9.07,52<br>8.07,12<br>9.01,29<br>8.00,50<br>8,55,07            | 186,4<br>171,2<br>184,8<br>196,6<br>183,2                                                       | 18,42,35<br>19,36,52<br>18,36,13<br>19,30,30<br>18,29,50             | 330,1<br>343,6<br>328.5<br>342.0<br>326.9          |      |

#### EFFEMERIDI NODALI più favorevoli per l'ITALIA e relative ai satelliti APT sotto indicati

| 15 maggio<br>/ 15 giugno | freque<br>period<br>incli<br>incremento             | ESSA 8<br>enza 137.62 MHz<br>o orbitale 114.6'<br>nazione 101.5°<br>o longitudinale 28.6°<br>a media 1440 km |                                                     | NOAA 3 frequenza 137,5 MHz periodo robitale 116,11' inclinazione 102° increniento longitudinale 29,1° altezza media 1508 km |                                                          |                                      |                                                     | NOAA 4 frequenza 137,5 MHz periodo orbitale 115,0' inclinazione 101,7º incremento longitudinale 28,7º altezza media 1450 km |                                                          |                                      |  |
|--------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--|
| giorno                   | ora GMT                                             | longitudine ovest<br>orbita nord-sud                                                                         | ora GMT                                             | longitudine ovest<br>orbita nord-sud                                                                                        | ora GMT                                                  | longitudine est<br>orbita sud-nord   | ora GMT                                             | longitudine ovest<br>orbita nord-sud                                                                                        | ora GMT                                                  | longitudine est<br>orbita sud-nord   |  |
| 15/5                     | 9.11,06                                             | 170,6                                                                                                        | 7.25,03                                             | 162,7                                                                                                                       | 19,01,46                                                 | 23,3                                 | 7,54,43                                             | 168.3                                                                                                                       | 19,24,43                                                 | 19.5                                 |  |
| 16                       | 8.07,32                                             | 154,7                                                                                                        | 6,39,21                                             | 151,3                                                                                                                       | 18,16,01                                                 | 34.7                                 | 6,54,44                                             | 153.4                                                                                                                       | 18,24,44                                                 | 34.4                                 |  |
| 17                       | 8.50.40                                             | 167,5                                                                                                        | 7,49,48                                             | 168,9                                                                                                                       | 19,26,28                                                 | 17.7                                 | 7,49,46                                             | 167.1                                                                                                                       | 19,19,46                                                 | 20.7                                 |  |
| 18                       | 7,55,07                                             | 151,6                                                                                                        | 7,04,03                                             | 157,5                                                                                                                       | 18,40,43                                                 | 28.5                                 | 6,49,47                                             | 152.1                                                                                                                       | 18,19,47                                                 | 35.7                                 |  |
| 19                       | 8,46,15                                             | 164,4                                                                                                        | 8,14,30                                             | 175,1                                                                                                                       | 20,31,10                                                 | 10.9                                 | 7,44,48                                             | 165.9                                                                                                                       | 19,14,48                                                 | 22.1                                 |  |
| 20                       | 7,42,42                                             | 148,5                                                                                                        | 7,28,45                                             | 163,6                                                                                                                       | 19,05,25                                                 | 22,4                                 | 6,44,49                                             | 150.9                                                                                                                       | 18,14,49                                                 | 36.9                                 |  |
| 21                       | 8,33,50                                             | 161,3                                                                                                        | 6,43,00                                             | 152,2                                                                                                                       | 18,19,40                                                 | 33,8                                 | 7,39,51                                             | 164,6                                                                                                                       | 19,09,51                                                 | 23.2                                 |  |
| 22                       | 9,24,59                                             | 174,1                                                                                                        | 7,53,26                                             | 169,8                                                                                                                       | 19,30,06                                                 | 16,2                                 | 6,39,52                                             | 149,6                                                                                                                       | 18,09,52                                                 | 38.2                                 |  |
| 23                       | 8,21,25                                             | 158,2                                                                                                        | 7,07,42                                             | 158,4                                                                                                                       | 18,44,22                                                 | 27,6                                 | 7,34,53                                             | 163,4                                                                                                                       | 19,04,53                                                 | 24.4                                 |  |
| 24                       | 9,12,33                                             | 171,0                                                                                                        | 8,18,08                                             | 176,0                                                                                                                       | 19,54,43                                                 | 10.0                                 | 6,34,54                                             | 148,4                                                                                                                       | 18,04,54                                                 | 39.4                                 |  |
| 25                       | 8,09,00                                             | 155,2                                                                                                        | 7,32,23                                             | 164,6                                                                                                                       | 19,09,03                                                 | 21,4                                 | 7,29,56                                             | 162,1                                                                                                                       | 18,39,56                                                 | 26,7                                 |  |
| 26                       | 9.00.08                                             | 168.0                                                                                                        | 6.46,39                                             | 153,1                                                                                                                       | 18,23,19                                                 | 32.9                                 | 8.24,57                                             | 175,9                                                                                                                       | 19,54,57                                                 | 11.9                                 |  |
| 27                       | 7,56,34                                             | 152.1                                                                                                        | 7,57,05                                             | 170,8                                                                                                                       | 19,33,45                                                 | 15,2                                 | 7,24,58                                             | 160,9                                                                                                                       | 19,54,57                                                 | 26.9                                 |  |
| 28                       | 8,47,43                                             | 164.9                                                                                                        | 7,11,20                                             | 759,3                                                                                                                       | 18,49,00                                                 | 26.7                                 | 8,20,00                                             | 174,6                                                                                                                       | 18,54,58                                                 | 23.2                                 |  |
| 29                       | 7,44,09                                             | 149.0                                                                                                        | 8,21,47                                             | 176,9                                                                                                                       | 19,58,27                                                 | 09.1                                 | 7,20,01                                             | 159,6                                                                                                                       | 18,5010,                                                 | 28.2                                 |  |
| 30                       | 8,35,18                                             | 161,8                                                                                                        | 7,36,02                                             | 165,5                                                                                                                       | 19,12,42                                                 | 20.5                                 | 8,15,02                                             | 173,4                                                                                                                       | 19,45,02                                                 | 14.4                                 |  |
| 31                       | 9,26,26                                             | 174.6                                                                                                        | 6,50,17                                             | 154,1                                                                                                                       | 18,26,57                                                 | 31,9                                 | 7,15,03                                             | 158,4                                                                                                                       | 18,45,03                                                 | 29.4                                 |  |
| 1/6                      | 8,22,52                                             | 168.7                                                                                                        | 8,00.43                                             | 171.7                                                                                                                       | 19,37,23                                                 | 14.3                                 | 8,10,04                                             | 172,3                                                                                                                       | 19,40,04                                                 | 15,6                                 |  |
| 2                        | 9,14,00                                             | 171.5                                                                                                        | 7,14,58                                             | 160,3                                                                                                                       | 18,51,38                                                 | 25.7                                 | 7,10,05                                             | 157,2                                                                                                                       | 18,40,05                                                 | 30,6                                 |  |
| 3                        | 8,10,27                                             | 155.6                                                                                                        | 6,29,13                                             | 148,8                                                                                                                       | 18,05,53                                                 | 37.2                                 | 8,05,06                                             | 170,9                                                                                                                       | 19,35,05                                                 | 16,9                                 |  |
| 4                        | 9,01,35                                             | 168.4                                                                                                        | 7,39,40                                             | 166.4                                                                                                                       | 19,16,20                                                 | 19.6                                 | 7,05,07                                             | 155,9                                                                                                                       | 18,35,07                                                 | 31,9                                 |  |
| 5                        | 7,58,01                                             | 152.5                                                                                                        | 6,53,55                                             | 155.0                                                                                                                       | 18,30,35                                                 | 31.0                                 | 8,00,09                                             | 169,7                                                                                                                       | 19,30,09                                                 | 18,1                                 |  |
| 7<br>8<br>9<br>10        | 8,49,10<br>7,45,36<br>8,36,45<br>9,27,53<br>8,24,19 | 165,3<br>149,4<br>162,2<br>175,0<br>159,1                                                                    | 8,04,21<br>7,18,37<br>6,32,52<br>7,43,18<br>6,57,33 | 172.6<br>161,2<br>149.7<br>167,4<br>155,9                                                                                   | 19,41,01<br>18,55,23<br>19,09,32<br>19,19,58<br>18,34,13 | 13.4<br>24.8<br>36.3<br>18.6<br>30,1 | 7,00,10<br>7,55,11<br>6,55,12<br>7,50,14<br>6,50,15 | 154,7<br>168,4<br>153,4<br>167,2<br>152,2                                                                                   | 18,30,10<br>19,25,11<br>18,25,12<br>19,20,14<br>18,20,15 | 33.1<br>19.4<br>34.4<br>20.6<br>35.6 |  |
| 11                       | 9,15,28                                             | 171,9                                                                                                        | 8,08,00                                             | 173.5                                                                                                                       | 19,44,40                                                 | 12,5                                 | 7,45,16                                             | 150,9                                                                                                                       | 19.15,16                                                 | 21,9                                 |  |
| 12                       | 8,11,54                                             | 156,1                                                                                                        | 7,22,16                                             | 162,1                                                                                                                       | 18,58,55                                                 | 23,9                                 | 6,45,17                                             | 165,9                                                                                                                       | 18,15,17                                                 | 36,9                                 |  |
| 13                       | 9,03,03                                             | 168,9                                                                                                        | 6,36,30                                             | 150,7                                                                                                                       | 18,13,10                                                 | 35,3                                 | 7,40,19                                             | 164,7                                                                                                                       | 19,10,19                                                 | 23,1                                 |  |
| 14                       | 7,59,29                                             | 153,0                                                                                                        | 7,46,57                                             | 168.3                                                                                                                       | 19,23,37                                                 | 17,7                                 | 6,40,20                                             | 149,7                                                                                                                       | 18,10,20                                                 | 38,1                                 |  |
| 15                       | 8,50,38                                             | 165,8                                                                                                        | 7,01,12                                             | 156,9                                                                                                                       | 18,37,52                                                 | 29,1                                 | 7,35,21                                             | 163,5                                                                                                                       | 19,05,21                                                 | 24,3                                 |  |

L'ora espressa in ore, minuti e secondi GMT si riferisce al momento in cui il satellite incrocia la verticale sulla linea dell'equatore durante

L'ora espressa in ore, minuti e secondi divil si riferisce al mullento in dall'accidente di publica della nostra area di ascolto.

La tabella comprende anche la longitudine in gradi (e decimi) sulla quale il satellite incrocia l'equatore durante quel passaggio.

La longitudine serve per impostare sulla mappa polare la traiettoria oraria del satellite onde ricavare con facilità l'ora e la longitudine alle quali il satellite incrocia la latitudine alla quale è posta la propria stazione ricevente APT.

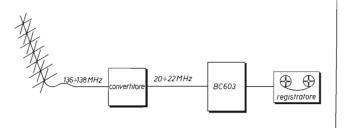
Per una corretta interpretazione e uso delle effemeridi nodali vedi cq 5/71, 6/71, 7/71, 2/75, 4/75.
Chi è in possesso del materiale tracking del Reparto del Servizio Meteorologico dell'Aeronautica Militare impieghi per il NOAA 3 e il NOAA 4 le due traiettorie orarie e la tabella di conversione degli angoli geocentrici in angoli di elevazione previste per l'ESSA 8 Per trovare l'ora locale Italiana in cui il satellite incrocia la propria stazione basta avvalersi di uno dei metodi grafici Tracking pubblicati su cq 2/75, 4/75 e prossimamente sul n. 6/75 e sommare un'ora a quella così ricavata

## De motu

## ovvero istoria e dimostrazioni intorno al captatore sidereo

## IØNAA, Mario A. Natali

Da un po' di tempo l'interesse per la ricezione dei satelliti meteorologici sembra un po' sopito, ho pensato quindi di illustrare come mi sono attrezzato io a questo scopo, sperando di contagiare qualcuno con il « virus metorologicus ».

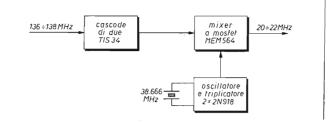

Vi assicuro che l'emozione del primo « piripiripiri » proveniente dal « Bernacca » dello spazio sarà senz'altro paragonabile all'emozione del primo QSO!

Tratterò in particolare in questo articolo la costruzione meccanica del dispositivo per orientare l'antenna per seguire perfettamente il satellite durante la sua orbita.

Lo schema a blocchi della stazione ricevente che al momento utilizzo è riportato in figura 1; niente di nuovo, vero?

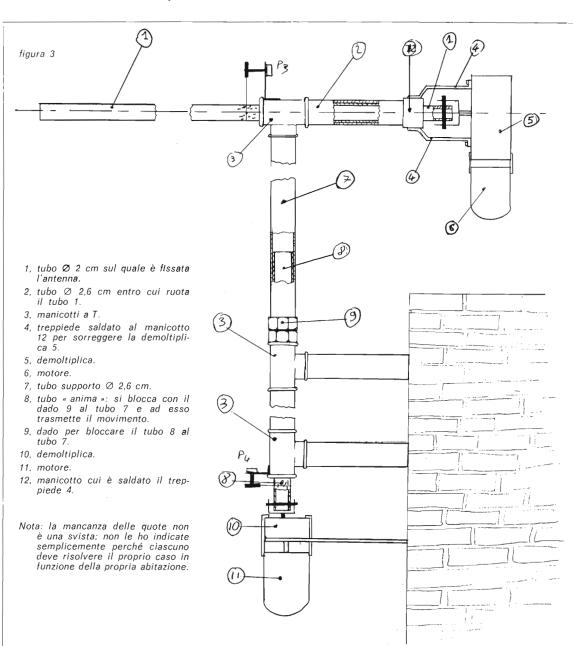
#### figura 1

Schema a blocchi della stazione ricevente.




Comunque se state attenti potete vedere come manchi l'amplificatore d'antenna e dire che passiamo attraverso 30 (trenta!) metri di linea di discesa, ma vi posso assicurare che i risultati sono equalmente ottimi, merito soprattutto dell'ottimo converter tratto da « VHF Communications », la versione in lingua inglese della più nota « UKW Berichte ».

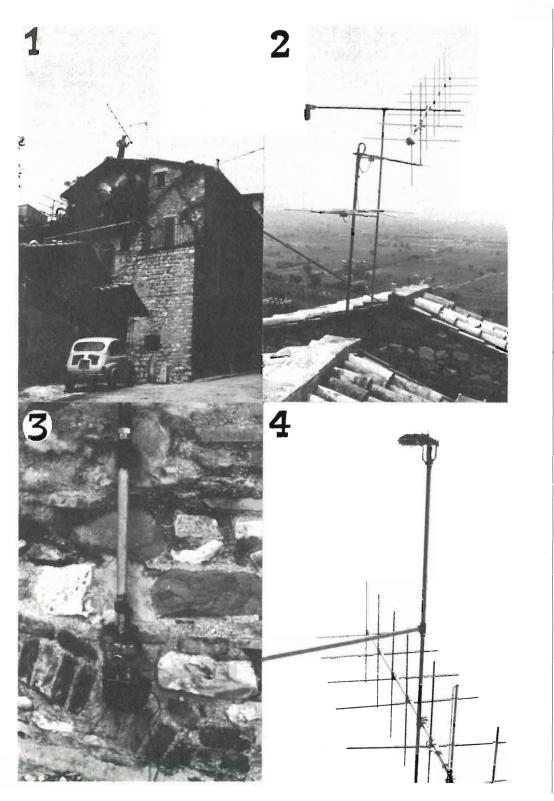
Come si può notare, la banda satelliti è convertita nel segmento 20÷22 MHz e ciò perché è usato un quarzo normalmente impiegato per la conversione dai 144 ai 28 MHz e ciò non è affatto disprezzabile visto che un quarzo del genere sarà nel cassetto di molti di noi.


#### figura 2

Schema a blocchi del converter dal quale sono riuscito a ottenere un guadagno di ben 25 dB.



Ma l'articolo verte sull'antenna e sul sistema di puntamento, e di questo vi parlo: l'antenna è una 7+7 elementi a dipoli incrociati della Lert, semplice no? Ma il problema è come farla ruotare, beh, direte voi, basta comperarsi due rotori e... voilà!!


E l'austerity, dico io, dove la mettiamo?



- 1 L'antenna montata sul tetto: mio fratello vicino ad essa serve a dare un po' l'idea delle dimensioni.
- 2 Come si vede bene in questa foto il motore per l'elevazione è montato molto in fuori per questioni di equilibrio.
- 3 Particolare della parte di appoggio: si notano i due dadi che fungono da cuscinetti e il motore per l'orientamento orizzontale con la relativa demoltiplica.

  4 - Particolare del motore per l'elevazione con il relativo treppiede.

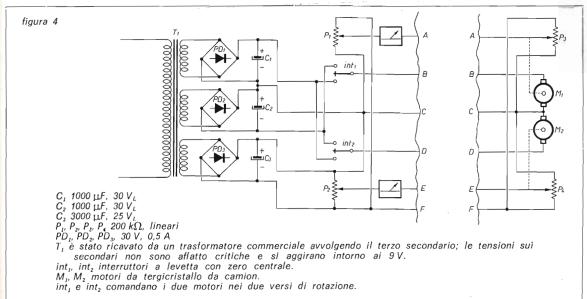






5 - \* Base Station \*:
da sinistra a destra
si notano:
control box,
alimentatore con sopra
il converter,
voltmetro elettronico,
tester,
frequenzimetro digitale
(ci sta bene!)
e BC603.




6 - Vista d'assieme di tutta la stazione.

A parte gli schemi, la spesa necessaria all'acquisto dei due rotori è senz'altro inutile e quindi ho pensato bene di realizzare i movimenti necessari con parti di facile reperibilità (idraulico, sfasciacarrozze) e di basso costo. Il pregio, se così si può dire, del marchingegno sta nel fatto che il tutto, compresa l'antenna, è smontabile completamente in un quarto d'ora e nel fatto che non vengono usati cuscinetti a sfere (orrore!). Ciò può sembrarvi un po' barbaro, ma vi assicuro che in pratica risulta molto comodo. Il problema cuscinetti e relativi portacuscinetti è stato aggirato usando dei tubi di ferro zincato reperibili da qualunque idraulico, del diametro di 2 cm e di 2,6 cm rispettivamente e tali da infiarsi perfettamente l'uno nell'altro senza giochi: un po' di grasso e il giuoco è fatto. Sul come in pratica è costruito il tutto penso che più di ogni discorso possano essere chiari le foto e il disegno (sono ovviamente QRV per ogni chiarimento). I motorini usati sono quelli per tergicristallo del tipo da camion, sono

robusti e molto potenti. Come demoltiplica per l'elevazione ho usato un pezzo trovato sul mercato surplus ma una vite senza fine e un ingranaggio risolvono egualmente il problema. La demoltiplica usata invece per la rotazione orizzontale dell'antenna è costituita da... quella di un altro motorino per tergicristallo.

Gli accoppiamenti demoltipliche-assi movimento sono stati realizzati molto semplicemente con delle « U » in ferro e dei perni, così che vengono compensati anche eventuali disassamenti (quasi quasi li chiamerei « snodi cardanici », ma non vorrei sollevare scandali!).

Per controllare l'orientamento della antenna ho montato due potenziometri accoppiati agli assi con del « cordino » vulgaris (a proposito visto che c'è di mezzo il grasso, per evitare che il filo slitti rendete ruvido il tubo con martello e scalpello).



E veniamo al « control box » (già sento gli insulti: un trasformatore, due potenziometri, qualche altra minutaglia, e lo chiama « control box »...): è semplicissimo anche questo, basta usare un trasformatore qualsiasi, riavvolgerlo un po' (anche a occhio va bene: i valori non sono critici, ovviamente!) e anche stavolta il giuoco è fatto!

Il funzionamento è elementare: una volta orientata l'antenna nella posizione che vogliamo essere quella di riferimento (nel mio caso  $0^{\circ}$  in elevazione e indirizzata a Sud) bilanciamo i due ponti di Wheatstone, tramite  $P_1$  e  $P_2$  che sono sul pannello del « control box », in altre parole portiamo sullo zero i due motorini e siamo già pronti per avvolgere strettamente i cavi intorno all'antenna.

Sarà bene controllare i versi di rotazione dei due motori per evitare « intorcinamenti »! Come potete vedere dalle foto, io uso come strumenti per il controllo un voltmetro elettronico (già sento le grida della folla che mi vuole linciare), e il tester. Chiaro che avremo a disposizione 180° di rotazione solamente su ognuno dei due piani, ma ciò è perfettamente sufficiente per esplorare l'intera volta celeste.

Sto attualmente studiando un sistema automatico per il puntamento e non appena sarà a punto ve lo descriverò.

Sono anche in fase di sperimentazione un decoder per le foto IR e un ricevitore semplicissimo a integrati che dovrà sostituire il BC603.

Questo è tutto, vi auguro buon lavoro sperando di essere stato chiaro, sottolineando che risponderò comunque a tutti quanti avranno da sottopormi domande o chiedermi spiegazioni.

Ciao a tutti e 73 de IONAA. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Giant RTTY Flash Contest**

professor Franco Fanti, I4LCF

Non è facile trovare in un Contest come il 7º GIANT qualche cosa che non è stato detto precedentemente.

Si dovrebbe ancora dire che la propagazione è pessima che il numero dei partecipanti è stato ancora una volta notevole ma che i logs inviati sono ancora proporzionalmente pochi, ecc. ecc.

Quindi come fanno certi critici teatrali potrei dire sinteticamente: bravo Tizio, ottimi Caio e Sempronio. bene tutti ali altri.

Ma è evidente che non me la posso cavare così per cui vedrò, nonostante le sucdette difficoltà, di trovare qualche spunto.

Meritatissimo vincitore della settima edizione del GIANT è Edward Bruns (W3EKT). I suoi 151 QSO con 71 paesi rappresentano un notevole lavoro.

C'è da aggiungere che W3EKT ha compiuto in questi ultimi tempi un notevole lavoro con due primi e due secondi posti (DARC 2°, CARTG 1°, VOLTA 2°, GIANT 1°) che gh permettono di aggiudicarsi meritatamente il Campionato del Mondo RTTY.

Si sono poi invertite le posizioni del 10° Volta, infatti secondo classificato del GIANT è Michael Sims (K4GMH), anch'egli sempre nei primi posti di ogni Contest svoltosi nell'ultimo anno.

Fra il secondo e i seguenti c'è un salto nel punteggio ottenuto e quì mi pare di sentire le solite accuse alla tabella

Si tratta però di osservare come tale risultato si è verificato. Escludiamo ad esempio i punti della tabella e vedremo che il numero dei QSO cala di un terzo mentre per il terzo classificato è addirittura di un terzo (WA3JTC/ ZP5 regge però molto bene avvalendosi di un numero molto elevato di paesi lavorati, avvalendosi anche del fatto che il suo prefisso ZP5 era abbastanza interessantel. Come ho già detto altre volte, la tabella rende l'andamento dello « score » un poco logaritmico ma non falsa i risultati e a mio avviso l'elemento distanza ha ancora valore nella valutazione di un collegamento.

Certo che, in questo ordine di idee, sarebbe più valido il sistema usato per i contests su 144 MHz in cui il punteggio è valutato sulla effettiva distanza delle due stazioni in OSO.

Chi fa il controllo di questi punti si avvale di un calcolatore che tiene conto anche della curvatura terrestre. Ora questo si potrebbe fare anche per i contests che usano la tabella ma non so se sarebbe altrettanto facile per i collegamenti a livello monciale.

E' da rilevare anche che il numero dei QSO introduce una ottima compensazione ai punti della tabella. Vedasi ad esempio CE3MA che in passato con il suo notevole punteggio non si sarebbe certo trovato al 12º posto.

Poi vorrei ricordare un particolare. Questo anno si è celebrato il primo decennio del Volta. Bene, in dieci edizioni vi sono stati cinque vincitori europei e cinque vincitor

Per cui, a mio avviso, quando l'operatore è valido, tabella o meno, europeo o extraeuropeo, il migliore vince. Poi per gli italiani il comportamento è ancora una volta

molto buono con quattro italiani tra i primi dieci. Ottimo il quarto posto di Rosario Pentimalli (IBAA), sempre validissimi Ina Garibaldi (IIYTL) 4º, Giovanni Corti-

glioni (I6NO) 7°, e Gustavo Pellegrini (I5WT) 9°. E ora gualche osservazione sull'handicap. Ho intenzional mente mantenuto le percentuali abbastanza basse nella

nrima prova. In pratica esse si sono dimostrate eccessivamente basse per cui nella prossima edizione non solo verrà conservato l'handicap ma verrà incrementato per dare maggiore competitività alla gara.

Questa nuova regola ha sollevato talune perplessità quando è apparso il regolamento. Poi, a un più approfon-dito esame (una rivista americana l'ha considerato un buon incentivo) ha suscitato molto interesse e ora so che taluni Contest Managers stanno studiando di introdurla nei loro regolamenti.

Si sta ripetendo quanto già avvenuto con le norme che ho introdotto precedentemente nei contests che organizzo.

Quali conclusioni trarre dopo questo contest?

Anzitutto si può osservare che la formula è ancora valida,

anche se può essere migliorata. Non credo ai cambiamenti radicali ma a un continuo provare e riprovare scartando ciò che non si è dimostrato valido e accettando quanto di positivo si è accertato in

Vi è ancora un poco di tempo prima della preparazione del nuovo regolamento per cui se vi fossero, e questo l'ho già detto tante altre volte, delle idee valide a incrementare l'interesse della gara il Comitato organizzatore ringrazia anticipatamente quanti volessero collaborare a mi-

gliorare la prossima edizione. À tutti i partecipanti grazie e arrivederci all'8º Giant RTTY Flash Contest!

| 0M       |                   | punti x      | moltipli | c x QSO .        | = risultato — handicap             | = TOTAL           |
|----------|-------------------|--------------|----------|------------------|------------------------------------|-------------------|
|          | W3EKT             | 1.725        | 71       | 151              | 18.493.725 (-4%)                   | 17.753.976        |
| 2)       | K4GMH             | 1.653        | 83       | 41               | 14.798.152 (—2%)                   | 14.798.152        |
|          | WA3JTC/ZP5        | 1.876        | 63       | 145              | 6 400 500 ( 20/.)                  | 6.348.028         |
| 4)       | I8AA              | 1.075<br>953 | 52<br>57 | 115<br>100       | 6.428.500 (2%)<br>5.432.100 (2%)   | 5.343.458         |
| 5)<br>6} | I1YTL<br>W3CRG    | 1.000        | 51       | 96               | 4.896.000 (-2%)                    | 4.798.080         |
| 7)       | 16NO              | 832          | 55       | 102              | 4 667 520 (-4%)                    | 4.480.820         |
| 8)       | DLØTD             | 729          | 46       | 91               | 4.667.520 (—4%)<br>3.051.594 (—2%) | 2.990.563         |
| 91       | I5WT              | 712          | 49       | 85               | 2.965.480 (-2%)                    | 2.906.17          |
|          | K6WZ              | 697          | 41       | 86               | 2.457.622 (-2%)                    | 2.408.470         |
|          | HA5KBM            | 641          | 36       | 100              |                                    | 2.307.600         |
| 12)      | CE3MA             | 1.413        | 31       | 51               |                                    | 2.189.27          |
| 13)      | DL1VR             | 592          | 43       | 84               | 2.138.304 (-4%)                    | 2.052.772         |
|          | K4GJW             | 536          | 43       | 72               |                                    | 1.659.456         |
| 5)       | K7'8V             | 471          | 45       | 75<br>64         |                                    | 1.589.625         |
| 16)      |                   | 617<br>429   | 31<br>38 | 70               |                                    | 1.141.14          |
|          | F6ALL             | 581          | 30       | 62               |                                    | 1.080.660         |
|          | XE1AFU<br>IVØZAN  | 421          | 30       | 58               |                                    | 732.54            |
|          | HB9AVK            | 365          | 30       | 61               |                                    | 667.950           |
|          | WØHAH             | 303          | 34       | 51               |                                    | 535.809           |
|          | OK3ØBJT           | 235          | 27       | 67               |                                    | 425.11            |
|          | SL5AR             | 249          | 27       | 62               |                                    | 416.826           |
|          | OK3ØBFS           | 233          | 29       | 61               |                                    | 412.17            |
| 25)      | окзомр            | 245          | 27       | 61               |                                    | 403.51            |
| 26)      | SM5BKA            | 274          | 26       | 51               |                                    | 363.324           |
|          | W73CT             | 360          | 24       | 41               |                                    | 354.24            |
|          | VK3KF             | 809          | 13       | 30<br>49         |                                    | 315.510<br>279.88 |
|          | SM6ASD            | 238          | 24<br>25 | 36               |                                    | 270.90            |
|          | W4JNY<br>CMEEUC   | 301<br>261   | 22       | 46               |                                    | 264.13            |
|          | SM5FUG<br>HB9HK   | 264          | 24       | 40               |                                    | 253.44            |
|          | PAØRZ             | 175          | 24       | 42               |                                    | 176.400           |
|          | VE3BMP            | 267          | 20       | 32               |                                    | 170.88            |
|          | WAMPFP            | 211          | 20       | 32               |                                    | 135.04            |
| 36)      | SMØ0S             | 176          | 17       | 42               |                                    | 125.66            |
|          | 11PXC             | 175          | 19       | 32               |                                    | 106.40            |
| 38)      | Edgar Gareau      | 185          | 18       | 30               |                                    | 99.90<br>85.68    |
|          | LA2IJ             | 140          | 17       | 36               |                                    | 72.95             |
|          | W2DUS             | 244          | 13       | 2 <b>3</b><br>21 |                                    | 59.51             |
|          | DL8PQ             | 218<br>306   | 13<br>9  | 20               |                                    | 55.08             |
|          | PY1DCB            | 156          | 14       | 22               |                                    | 48.04             |
|          | ON6HF<br>GW3IGG   | 87           | 13       | 28               |                                    | 31.66             |
|          | CE3EX             | 326          | 8        | 12               |                                    | 31.29             |
|          | PY2CYK            | 221          | 9        | 15               |                                    | 29.83             |
|          | 12MHH             | 161          | 10       | 18               |                                    | 28.98             |
|          | VK3RY             | 288          | 6        | 10               |                                    | 17.28             |
|          | K1YGF             | 168          | 4        | 15               |                                    | 10.08<br>9.24     |
|          | DK2XV             | 77           | 10       | 12               |                                    | 8.36              |
|          | SM6EZD            | 41           | 12       | 17               |                                    | 7.92              |
|          | W8CAT             | 90           | 8        | 11<br>13         |                                    | 7.17              |
|          | ) W6AEE           | 92<br>70     | 8        | 12               |                                    | 6.72              |
|          | VO1EE             | 57           | - 6      | 17               |                                    | 5.81              |
|          | ) LA7V<br>) UA9PP | 104          | 5        | 9                |                                    | 4.68              |
|          | ) G3RDG           | 59           |          | 13               |                                    | 4.60              |
|          | W8TCO             | 23           | 5        | 5                |                                    | 57                |
|          | ) 18AMP           | 33           | 2        | 3                |                                    | 19                |
|          | ) SM6ANW          | 8            | 2        | 3                |                                    | L                 |
|          | ) JA1DI           | 20           | 1        | 1                |                                    | 2                 |
|          | ) Control Log     |              |          |                  |                                    |                   |
|          | ON5WG             |              |          |                  |                                    |                   |
|          | ZS1FD             |              |          |                  |                                    |                   |
|          | 12KD              |              |          |                  |                                    |                   |
|          |                   |              |          |                  | 2                                  |                   |

|                                                                                                                                                                                                |                                                               |                                                    |                                                       | <u> </u>                                                                                                                                         |                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| SWL                                                                                                                                                                                            |                                                               |                                                    |                                                       |                                                                                                                                                  |                                                                                                            |
| 1) Paul Menadier . 2) John Whymark 3) Horst Ballenberger 4) Roberto Giarnello 5) Wolfgang Geller 6) Mario Tosolini 7) Alberto Marchesini 8) Felice Vitale 9) Alberto Casula 10) Mauro Amoretti | 1.010<br>573<br>535<br>577<br>514<br>500<br>418<br>204<br>127 | 51<br>43<br>45<br>41<br>40<br>37<br>35<br>23<br>15 | 100<br>102<br>104<br>84<br>76<br>71<br>68<br>29<br>13 | 5.151.000 (-4%)<br>2.513.178 (-2%)<br>2.503.800 (-2%)<br>1.987.188 (-2%)<br>1.562.560 (-2%)<br>1.313.500 (-2%)<br>994.840 (-2%)<br>136.068 (-2%) | 4.944.960<br>2.513.178<br>2.453.724<br>1.947.445<br>1.531.309<br>1.287.230<br>974.944<br>133.347<br>24.765 |

richieste offerte e

Coloro che desiderano effettuare una inserzione utilizzino il modulo apposito



© copyright cq elettronica 1975

#### offerte OM/SWL

BELLISSIMO RICEVITORE AR.88.D della RCA 0,5-32 MHz vendo guagliando. Ivan Ducci - 51022 Bardalone (PT).

CAMBIO con RX decametriche o VHF seguente materiale: tra-sformatori P220 / S 6.3 S A + 200 V / 300 mA P220 / S2 2 A + 185 V · 170 mA e altri a richlesta. Tutti i trasformatori provengono da apparati RAI demoliti. Transistors tipo 2N3055 ecc. Radio microfono LX7 - Aero modelli da costruire. Blocco riviste elettronica (regalo). Supertigre nouvo S cc RC e 2,8 cc +banco prova, Incaradio a tamburo con alimentatore da ripa

rare. Ampl. 30 W EL 65 ecc. ecc. Stefano Mariani - via De Cosmi 51 - 90143 Palermo.

VENDO al migliore offerente annate Radiorivista come nuove. VENDU al migliore ofterente annate Radiorivista come nuove, 1989-70-17-27-34 e altre Nuova Elettronica, cq. radiopratica, ecc. TX 144 MHz autoc. OOE03/12 in finale funzionante 100% in AM e relativo materiale per modifica FM + converter Labes CAF-2, usclta 26-28 MHz. Errico Pinna - via Dante 20 - 20010 S. Giorgio su Legnano (MI) - ★ 0331-545446.

CEDO 8C603, funzionante, ritarato, completo di alimentatore 220 V ac. T.M. e preamplificatore d'antenna. Occasione vende-si a L. 23.000. Alessandro Vettori - corso Roma 105 - 51016 Montecatini Ter-

OSCILLOSCOPIO 5" Unahom tipo G54, 5 MHz revisionato UNA L. 120,000. Generatore EPST L. 40,000. Oscilloscopio 3" Unahom tipo G14-A. BF L. 90,000 Seminuovo. Generatore Sweep mar-ker con alimentazione stabiliz. Amtron UK4705 - UK450S. Mon-

tati, la coppia L. 40.000 nuovi. I1-12152 Giuseppe Castelli - via Bergamo 5 - Milano - 🕿 02-592183 (ore pasti).

VENDO 8C348, filtro a quarzo, alimentazione 220 V, perfettamente funzionante. AM - CW - SSB. Assolutamente originale mente funzionante. AWI - CWI - SSB. Assolutamente originale non manomesso. Prezzo richiesto L. 90.000 per contanti. Piero Briatore - via Cavasola - 17024 Finale Ligure (SV) - 2019-62543 (ore pasti).

VENDO TX COLLINS tipo: Col 52245, frequenza: 1500-12000 Kc senza valvole. Garantisco risposta a tutti. Dario Pausin - S. Croce 472 - 34010 Trieste.

OFFRO TRANSCEIVER MK - 4 type 19, surplus propagandato orrivo Transectina mx. 4 type 15 surjuis propaganions or qui novembre '74, viene ceduto completo di alimentazione se-parata 220 V microfono e in più offro anche adattatore d'im-pedenza; frequenza continua da 1.5 Mc a 10 Mc. II tutto in cam-bio RX - TX 144 MHz AM-FM massimo 10 W. Giuseppe Lombardo - viale Regina Elena 125 - Messina.

QSL ESEGUO per SWL e CB, anche in grossi quantitativi. Reception report in 4 lingue schematizzati. Rispondo a tutti. Realizzo anche OSL speciali fotografiche a colori. Giuseppe Vigliar - via Barbarulo 98 - 84014 Nocera Inf. (SA).

RTTY TELESCRIVENTE Olivetti T2 BCN e T2CN con tavolo silenriatore originale di linea moderna. Eventualmente anche per-foratore T2B-PF302 e trasmettitore automatico T2-TA16. Francesco Di Crescenzo · via Archimede 45 · 37100 Verona -

ZONA TORINO vendo o cambio con materiale fotografico: ricevitori plurigamma AR 8 20 klire e AR 18 30 klire.Ricevitore VHF 1004-156 MHz 30 klire: rrequenzimetro VHF stessa gamma 20 lire: BC221 con alimentazione 30 klire: Irrequenzimetro a cavità 1000-2000 MHz 30 klire: alimentatore professionale 12 V; 4 A alternata 320 V / 250 mA continua 30 klire: ricetra portatile 156-176 Siemens 40 klire: TX BC 458 040 W S.3-7 MHz 30 klire.

\_\_\_\_\_

VENDO RICEVITORE SURPLUS BC652 da 2 a 6 MHz in 2 gamme in ottime condizioni con alimentatore interno a 200 Vac, non originale. Altoparlante nuovo, perfettamente funzionante, rice-ve AM-CW-SSB L. 35,000.
Pierluigi Chiatti - via Napoli 9 - 40139 Bologna - 😭 051-460250.

VENDO OSCILLOSCOPIO S.R.E. perfetto 2 mesi di vita L. 50.000 Televisore sperimentale S.R.E. da abbinare all'oscilloscopio perfetto L. 3000. Tutti e due L. 75.000. Frequenzimetro a lettura diretta da 0-100 kHz in 4 gamma L. 15.000. Orologio da uto elettrico 6 V L. 7.000. VFO x 27 MHz, tarato L. 8.000. moauto elettrico 5 V L. 7.000. VPO X 27 MIRX, tarato L. 6.000, IND-bile In accialo per montaggi vari TX RX ecc. Misure 30 x 22 x x 33 cm L. 10.000. Claudio Segatori - via delle Robinie 78 - 00172 Roma -

VENDO RICEVITORE R392URR 0.5-32 Mc 32 bande con alimentatore, manuale perfettamente funzionante L. 370.000. Generatore di segnali 1/208 1-9-45 19-45 Mc modulate con strumento misura % modulazione e uscita 0.1 100.000 microV nuovo spettacoloso con manuale L. 150.000. Alimentatore autocostruito per TX DRAKE SWAN funzionante L. 20.000. BC596A BC458A BC459A originali senza tubi L. 15.000 cadauno.
Max Ghirardi - via Padova 95 - 20127 Milano - ☎ 2855249.

AMPIFICATORE LINEARE per i 27+30 Mz. Lavoro in classe B 55 W RF. Amplificatore per i 144 MHz. Lavoro in classe C 45 W RF. Entrambe completamente a transistors. Alimentazione 12,6 V consumo: da 3.5 a 6.5 A. Costruzione professionale. Cecro relé ceramici Allude control, relé Magneraf, tubo RC 3BPI, base dell'antenna 1/4 d'onda 144 MHz tipo Kathrein K 50542, cero sehema Dolby, Rispondo a tutti. IWSABD Riccardo Bozzi - via D. Bosco 175 - Vlareggio - 50120

DISPONGO di valvole per trasmissione Philips OB3/300, po tenza di uscita 375 W, seminuove ottime, L. 30.000 cadauna. Giovanni Petracca - S. Polo 2468 - Venezia.

DICERVATO - -- -



## modulo per inserzione - offerte e richieste - □

i) Questo tagliando, opportunamente compilato, va inviato a: cq elettronica, via Boldrini 22, 40121 BOLOGNA.

La pubblicazione del testo di una offerta o richiesta è gratuita pertanto è destinata ai soli Lettori che effettuano inserzioni non a carattere commerciale.

● Le inserzioni a carattere commerciale sottostanno alle nostre tariffe pubblicitarie.

🐞 Scrivere a macchina o a stampatello; le prime due parole del testo saranno tutte in lettere MAIUSCOLE.

nserzioni aventi per indirizzo una casella postale sono cestinate.

● L'inserzionista è pregato anche di dare una votazione da 0 a 10 agli articoli elencati nella « pagella del mese »; non si accetteranno inserzioni se nella pagella non saranno votati almeno tre articoli; si prega di esprimere il proprio giudizio con sincerità: elogi o critiche non influenzeranno l'accettazione del modulo, ma serviranno a migliorare la vostra Rivista. Per esigenze tipografiche e organizzative preghiamo i Lettori di attenersi scrupolosamente alle norme sopra riportate.

Le inserzioni che vi si discosteranno saranno cestinate

|             |                                   | - KISEKVATO a cq electronica - |           |  |  |  |
|-------------|-----------------------------------|--------------------------------|-----------|--|--|--|
| maggio 1975 | ,                                 |                                |           |  |  |  |
|             | data di ricevimento del tagliando | osservazioni                   | controllo |  |  |  |
|             |                                   | COMPILA                        | ADE .     |  |  |  |
|             |                                   |                                |           |  |  |  |
|             | ·····                             |                                |           |  |  |  |
|             |                                   |                                |           |  |  |  |
| •           |                                   |                                |           |  |  |  |
|             |                                   |                                |           |  |  |  |
|             |                                   |                                |           |  |  |  |
|             |                                   |                                |           |  |  |  |
|             |                                   |                                |           |  |  |  |
|             |                                   |                                | VOLTABE   |  |  |  |

cq - 5/75

YULTARE

VENDESI RX Lafayette HA 600 A 0,15-30 MHz L, 70,000; beracchino Comstat 25, B (nuovo) 23 canali 5 W F G.P. L, 130,000; KS Surplus AM/GRR-5/URR Motorola 1,5-18 MHz L, 140,000; BC221/M + alimentatore 220 V Serafino Salerino - 3" Palazzo Filice - 87030 Surdo (CS)

2 0984-30935 (ore pasti e di sera).

R19 MK3 alimentazione in alternata, armadio metallico 125 x x 60 x 35 ex CTRS3 eventualmente qualche pannello interno muo prezzo a convenirsi o cambio con G228 oppure altro analogo apparato non funzionante alluvionato, ma completo delle parti vitali. Preferirei trattare di persona. Giovanni Minieri - via Anger 15/A - 39042 Bressanone (BZ)

SURPLUS VENDOI!! BC357H, BC1206, R81 RC8. BLoud BC1335, BC820, ed altri. Surplus italiano: RXTX 110-140 MHz funzionante, trasmetitiore Marconi; trasmetitiore tedesco completo di strumenti e valvole RL12935; vari altri componenti, valvole, trasformatori, anche parti di aeero. Ricevitore Ducati senza mobile, tre gamme di onde corte, fino a 30 MHz. Tutto è funzionante: cambio con radio '20-40.
Alessandro Belmonte presso Monduzio - via Mussi 5 - Roma.

VENDO TRASMETTITORI 144-146 MHz con OOE03/12 modulat AM a Xtal, alimentazione, facile modifica per; L. 30.000 cadau no. Registratore alta fedeltà Revox S-D36 Spez. Studer Zurich mono, alimentazione universale, 3 motori, 4 testine, 10 valvole nuove, audizione diretta registrazione o come amplificatore altoparlante e prese supplementari, 2 velocità, 2 entrate, requ Jazione toni, L. 45.000, n. 8 magnifiche pellicole 3 colori, 5 BN Super8; 60 metri cadauna, blocco L. 50.000, ISPȚR Antonio Petruzzi - corso G. Salvemini 19/10 - 10137

AFFARONE VENDO TX autocostruito con VFO Geloso 4/102 V per CW e AM con una 807 - RX 80-453-A da 190 a 550 Kc. 13 m cavo RG8 con due bocchettoni. Antenna 144 MHz Swiss-Quoad · De Luxe · Tutto a L. 50.000, oppure cambio con ricevitore a copertura continua tipo R107 - HRO - 0C11 - AR18 - A7 AI-locchio Bacchini e similari. Vendo o cambio anche altri componenti interessanti. Risporta paramitia a utti. ponenti interessanti. Risposta garantita a tutti. Sergio Pandolfi - via Valentini 52 - 61100 Pesaro.

BC348 NUOVO funzionante 220 V e originale in ogni sua parte Trattasi del modello più recente, costruito per l'esercito fran-cese nel 19581 Vendon minimo 120000 o cambio con oscilio-scopio 5" minimo 7 MHz, escludo autocostruiti e scuole varie. Considererò offerte p. es. TES-0-372; CT436 ecc. ecc. Even-tuale conquagiro per vere occasioni. I1XGB, Bruno Grassi - via Sapri 77 - 19100 La Spezia.

VENDO RX-TX serie completa telaietti STE completamente montati in contenitore metallico per 144-146 MHz 2 S-meter sul pannello frontale, commutatore trasmissione/ricezione FM-AM-CW pulsante chiamata ripetitori squelch - noise limit ter - RF gain, Possibilità di alta e bassa potenza. Non quar zato, Tarato e funzionante. Escluso micro per 250 kL. Coroc liciato. Pannello frontale alluminio spazzolato con scritt Linea altamente professionale. Arnaldo Paggetti - via Tempio pal. A - 09025 Oristano.

VENDO RX AR18 non manomesso, copertura da 200 Kc a 22 Mc Silvano Buzzi - via Orbetello 3 - Milano - ☎ 2562233

Al retro ho compilato una

Vi prego di pubblicarla.

Dichiaro di avere preso visione del

riquadro « LEGGERE » e di assumermi

a termini di legge ogni responsabilità

(firma dell'inserzionista)

inerente il testo della inserzione.

RICHIESTA

TELESCRIVENTE OLIVETTI T2BCN completa di tavolo silenziato. eventuali accessori a richiesta, perfetta, vendo. Emilio Cavalcoli - via M. Calderara 5 - 37100 Verona.

VENDESI TRASFORMATORI di potenza da 350, a 500 W ten-ระการ เกลรายเหมายนาย เขายะควิช ฉช 350, 8 500 W ten-sioni sec. 5 V - 6,3 V - 650 V e altre per i tipi da 500 W circa. Le tensioni sono le seg. 5 V - 6,3 V - 800 V circa. 12-53424, Andrea Casoni - via N. Sauro 12 - 46026 Ouistello (MN) - 富 0376-618114.

ATTENZIONE VENDO scatola di montaggio Tx7 per i 144 MHz 1 W di N.E. L. 9000; Tester elettronico S.R.E. (unzionante, con dispense, sonda RF e puntale alta tensione L. 25.000 trattabili; transverter autocostruito perfetamente funzionante 5 W alimentazione autonoma il tutto inscatolato (35 x 16 x 25) con misuratore mA placca finale e misuratore d'uscita, aspetto professionale: cedesi al miglior offerente. Raffaello Fedeli - 52034 Le Ville (AR).

OCCASIONISSIMA VENDESI linea Geloso composta da RX G208, TX G222 in perfetto stato, come nuovo per bande 10--11-15-20-40-80 m. AM 60 W + convertitore G2618-A + anten-a ground-plane e 30 m RG59 oppure 25 m RG8. Il tutto a a L 330 000 trattabili (ma non troppo). Stefano Blonksteiner - via Ricasoli 7 - 00185 Roma - ☎ 7314073 (ore 19.30 in poi).

LINEA GELOSO RX G4/216 in ottime condizioni non manomes so: TX autocostruito con pezzi originali Geloso, esecuzione professionale. 40 W input AM (10, 11, 15, 20, 40, 80 metri) + ground plane + 30 m RG58 + ROS della E.R.E. il tutto per 1 200 n010.

Giampaolo Ferretti - via del Casaletto 161 - 00151 Roma ₱ 530466 ore pasti.

VENDO TELESCRIVENTE TG7 demodulatore con indicatore a croce; oscillatore AFSK entrocontenuto. Costruzione professionale. Lettore di nastro perforato a una e a tre bande. Pietro Zanni - via G. Marconi 19 - 43017 S. Secondo (PR).

ATTENZIONE VENDESI: frequenzimetro portatile FG3A in due gamme 0-50 MHz e 0-250 MHz con pile al nickel cadmic e alimentatore originale a L. 180 000; ricetrasmettilore 144 MHz con telaietti STE perfettamente inscatolati con VFO esterno ER.E. possibilità funzionamento in FM con piccola aggiunta al VFO a L. 120 000; lineare AM-FM-SSB ingresso 1+2 W. userita 25 WL II S 0000. uscita 25 W L. 85.000.
Enzo Zucchi - via Marchetti 25 - 00199 Roma - 🙊 uff. 686825.

RICEVITORE 144/146 MHz: AM-NBFM/SBB CW montato in contenitore Ganzerli - composto da telai S.TE. R10 - AC2 - AD4 - AM1 - Smeter - alimentatore incorporato - Demoltiplica per sintonia fine - Squelch - RF Gain - Scala illuminata - Prese per ant. e alt esterno - Perfettamente funzionante L. 80.000. Marco Calzolari - via S. Muzzl 2 - Bologna - 🚖 343894.

VENDO RADIORICEVITORE Sony Mod. CRF 150 13 gamme onde corte (1 MHz - 26,1 MHz) 1 = FM predisposto ricezione stereo - 1 = OL doppia conversione sensibilità FM = 1  $\mu$ V adatto per la ricezione di radioamatori e comunicazioni marine. Alimenta zione 220 V - 125 ca 9 V cc. Nuovo imballato vendo a L. 160.000 (listino L. 280.000)

(listino L. 280.000). G. Franco Canepuccia - viale C. Casella 55 - 00056 Ostia Lido

VENDO Tokai 5024 nuqvo 3 mesi di vita con dipolo tarato IW5AJS Leo Orsi - via Lungomare Marconi 107 - 57025 Piom-

LINEARE 144 per FM-AM-SSB con 829B allo stadio finale, commutazione elettronica RX-TX L. 160.000, alimentatore 12 V 10 A Amtron L. 40.000, alimentatore per Drake DC3 per alimenta-zione 12 V L. 75.000. Lista di altro materiale Amtron a richlesta. 11TTK, G.Franco Torta - via Conte Verde 130 - Asti.

ATTENZIONE VENDO Lafayette HE:20T con VFO a L. 100.000 oppure cambio con BC603 et 604 funzionanti, compreso micro-fono. Tratto preferibilmente con provincia Pavia, max. Milano. Oreste Albini - 27030 Zinasco Nuovo (PV).

RICEVITORE SOMMERKAMP FR50B vendo a L. 100.000 nuovo usato poche ore, I1OCP Ciro Perrone - Passo Viole 3/23 - 16035 Rapallo (GE).

VENDO RX Hallicrafters « SX117) complete di altoparlante originale e 4 quarzi aux. come nuovo. Trasmettitore 144 » XT150 » AM-FM con 06/40 in finale di costruzione - ERE - usato po-

chissimo. IW5AHH Adelio Beneforti - Indicatore 44D - Arezzo - 🕿 29208 (dopo le ore 20).

VENDO O CAMBIO RX TX Wireless 19 MK II alimentazione 12 Vcc. BC603 12 Vcc o cambio con RX HRO/R106 BC312 BC348 OC11.

Lorenzo Rizzi - via Gazzo 9 - 37100 Avesa (VR).

ATTENZIONE VENDO . Liniversal Avometer model 8 . tester ATTENZIONE VENUO - Oniversia Avometer model 6 - Lester professionale della Avo Ltd. England L. 45.000. Fornisco schemi e dettagli di molti apparati surplus dietro modico compenso. Elenco schemi a richiesta. Relays superminiatura per circuito stampato, monoscambio, vendo L. 1000 cad. Ricevitore 100 ± 150 MHz superreattivo a valvole con cascode, vendo L. 20,000. Temporizzatore a transistors da 1 a 30 minuti variabile con regolazione L. 15,000.

Alberto Cicognani - via U. Foscolo 24 F - 20063 Cernusco

BARLOW XCR-30 copertura continua 0.5 a 30 MHz lettura kilociclo, vendo. + Convertitore R. S. E. che copre la gamma 60-100 MHz ed esce sui 27 MHz.
Alberto Risico - via Rosta 8/4 - Torino - ☎ 751442.

VENDO RX G4/216 75.000 Lire; stock di 8 Xtal serie FT KC3655, 7070, 7090, 7100, 7120, 7130, 14110, 36.000 a L. 13.000 le sequenti pubblicazioni: Applied Electronics - T. Gray M.S. Press Mass. (U.S.A.) L. 4.500; - Radio Handbook - Ed. C.E.L.I. Bologna 1958 L. 5.500; - New Sldeband Handbook - Ed. C.E.L.I. Bologna 1958 L. 5.500; - New Sldeband Handbook - 1958 L. 1.500; - The Radio Amateur's Handbook - 1958 L. 3.500. Luciano Benedetti: - via Lecco 73 - 20052 Monza (Mf).

SONO PAZZO vendo fotocopia schema originale del BC312 (idem per 342)/314 (idem per 344)/604 a sole L. 600 ciascuno + fotocopia schema BC603/348B (idem 324B) e del XT600B Francesco Langella - via A. del Baglivo n. XI - 84100 Salerno.

## pagella del mese

(votazione necessaria per inserzionisti, aperta a tutti i lettori)

| pagina | articolo / rubrica / servizio                                      | voto da 0 a 10 per |
|--------|--------------------------------------------------------------------|--------------------|
|        |                                                                    | interesse utilità  |
| 658    | progetto 144                                                       |                    |
| 670    | Hi-Fi analog switch                                                |                    |
| 672    | Contro-controelenco delle VT                                       |                    |
| 676    | Un interessante monitor per SSTV                                   |                    |
| 684    | CB-DX si tira un filo e l'antenna è fatta                          |                    |
| 685    | Digitalizzatore filosofo                                           |                    |
| 688    | La pagina dei pierini                                              |                    |
| 689    | 5 circuiti 5 utili a tutti                                         |                    |
| 694    | Un ricetrasmettitore FM per i due metri .                          |                    |
| 698    | Una nuova famiglia di integrati: i COSMOS .                        |                    |
| 704    | Demodulazione di frequenza mediante due amplificatori operazionali |                    |
| 706    | Singolar tenzone                                                   |                    |
| 712    | sperimentare                                                       |                    |
| 717    | A proposito dell'oscilloscopio BF                                  |                    |
| 720    | Progetti per sanfilisti                                            |                    |
| 724    | Amplificatori finali di potenza con transistori                    |                    |
| 731    | in "Darlington" Conversione dell'AN/URC-4 in un ricetrasmet-       |                    |
| 736    | titore per i 144                                                   |                    |
| 740    | Alcuni preamplificatori per scaler                                 |                    |
| 746    | CB a Santiago 9+                                                   |                    |
| 747    | Effemeridi                                                         |                    |
| 752    | Dischart Ge Ofers DTTV Flort O                                     |                    |
| 132    | Risultati 7º Giant RTTY Flash Contest                              |                    |
|        |                                                                    |                    |

## CHIUSURA LABORATORIO

#### OSCILLOSCOPI:

Portatili Solid State a Plug-in

#### FAIRCHILD/DUMONT:

tipo 765 M e 765 MH/F (100 Mhz) Verticale: 76-02A doppia traccia 25 MHz Base tempi: 74-13A con delay 765 M 900.000 765 MH/F L. 1.100.000

#### **HEWELET-PAKARD:**

tipo 185 Sampling da 800 MHz doppia traccia 700.000

#### PLUG-IN:

Fairchild 76-02A Verticale doppia traccia 25 MHz Solid State L. 150.000 Nelson-Ross PSA 311 Analizzatore di Spettro, Solid State, per TV Cavo-1-300 MHz per Tektronix (531,541,545, ecc.)

950.000

#### **GENERATORI:**

HP-204c 5 Hz a 1,2 MHz sinusoidale, Solid State 150.000 HP-608A 10 - 400 MHz (rottame incompleto) 25.000

HP-460 AR - Wide - Band-Amplifier

25.000

3.000

GR 670 F Decade Resistenze 20.000 (da riparare)

NDL Attenuatore 600 Ohm da 0 a 110 dB 15.000

#### KITLEY:

501 Megaohmetro elettronico (1010 Ohm) 150.000 L.

#### **BRANSON:**

Vasca lavaggio a ultrasuoni, Solid State 250.000

Tubi Catodici 5" recupero (5MP1)

Tubi Catodici 3" per Tektronix 310 5.000

Strumenti da pannello Weston 0-15 V.

(bobina mobile) 2.500 Strumenti da pannello Gruen 0-30 V

(bobina mobile) 2.500 VIDEO REGISTRATORE Editing 1/2" Studio

L. 1.000,000 Manuali militari di apparati (in blocco)

Altro materiale minuto vario/Si fanno blocchi anche parziali del materiale.

Per informazioni, solo a mezzo posta o telefono. Ditta Artigiana

## CARONI

via Tito Omboni, 21 - 00147 ROMA Tel. (06) 5133162

## indice degli inserzionisti

nominativo

di guesto numero

pagina

**ACCU ITALIA** 644-645-646-647 A.C.E.I. **ALPHA ELETTRONICA** 779 AMTRON 767 ARI (MILANO) 705 647 ARI (TERNI) 636-637 AZ BBE 640 CALETTI 633 755 CARONI 629 CASSINELLI 669 C.E.P. 760 C.T.E. 759 **DE CAROLIS** 635 **DERICA ELETTRONICA** 630 DIGITRONIC 628 **ELCO ELETTRONICA** 687 **ELECTROMEC** 631 ELETTROMECC. RICCI 782-783 **ELETTRONICA CORNO ELETTRO NORD ITALIA** 648 **ELETTRONUCLEONICA** 649-653 766 **ELETTR. SHOP CENTER** 634 EL.RE 642 **ELT ELETTRONICA** 638 EMC 643-652 **ESCO** 756-769 **EURASIATICA** 776-777-778 **FANTINI FOSCHINI** 758 4ª copertina G.B.C. 632 G.B.C. IAT ELETTRONICA 719 761 KIT COLOR 745 **KFZ ELETTRONICA** 730 KIT COMPEL 781 LARIR 780-781 LEM **MARCUCCI** 762-763 1<sup>a</sup> copertina **MELCHIONI** MELCHIONI 655 784 **MESA** 770 **MOELLER** 773-774-775 **MONTAGNANI** 758 NOVA **NOV.EL** 3ª copertina **NOV.EL** 625 **P.G. ELECTRONICS** 639 **PHILIPS** 675 641 QUECK RADIOSURPLUS ELETTR. 764 757 REAL KIT 765 SHF ELTRONIK 716 **SIGMA** 2a copertina SIRTEL STE 651 **TESAK** 626 650 **VARIAN VECCHIETTI** 656 772 WILBIKIT

**OFFERTA** 

**ZETA ELETTRONICA** 

ZETAGI

654

768



### SIGMA 5/8 Model AV-170

RICHIEDETE I CATALOGHI

#### Caratteristiche

: 5.14 dB sull'isotropica Guadagno

: 4.17 dB sul Ground Plane  $(\frac{1}{4}\lambda)$ 

: 3.00 dB sul dipolo ( $\frac{1}{4}\lambda$ )

ROS : 1 ÷ 1,3 o meno

#### Fattore di moltiplicazione

in potenza : 3.2

Impedenza : **50-52** Ω

Altezza : mt 6.70

Radiali : mt 2.74 : Kg 4,082 Peso

MENO RUMORE CON PIU' POTENZA

**FACILMENTE SOPPORTA 1000 W** 

**BASSISSIMO VALORE DI SWR** 

Concessionaria per l'Italia



#### Soc. Comm. Ind, Eurasiatica

Roma

- via Spalato, 11 int. 2

tel. (06) 837.477

Genova - p.za Campetto, 10/21

tel. (010) 280.717

## i migliori Kit nei migliori negozi



La REAL KIT è presente anche in: FRANCIA · BELGIO · OLANDA · LUSSEMBURGO · SPAGNA · GERMANIA

VENDO MANUALI, originali e completi, RX Collins 390A/URR L. 25,000 cadauno. Disponibilità limitata. Disponesi inoltre fo-tocopie manuali SSB converter. TNC-CV9914 - RX Hammarlund SP600 JX. Prezzo a richiesta. Spedizione contrassegno. HGTE Marco Giunta - via Montello 19/39 - 16137 Genova.

VENDO VALVOLE: 4 6JE6C (6LQ6) e 3 6KD6 acquístate per VENUU VALVULE: 4 QLESC (ELUS) e 3 6KD6 acquistate per errore. Ottime per lineari di potenza, L. 2000 l'una + s.p. Cedo inoltre un duplicatore di tensione su c.s. adatto per uscita fino a 1000 V.c. 0.5.A per IX valvolari e Lineari, L. 5000 + s.p. IWIADH, Pino Sala - via Torino 76 - 28069 Trecate (NO) - \$\frac{\text{Treat}}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2

VENDO SPR-4 DRAKE come nuovo L. 400.000. Dispongo di quarzi originali per tutte le gamme.
Bruno Peticone - corso Elnaudi 63 - 10129 Torino - ☎ 504435.

VENDO RX/TX Sommerkamp FTDx505, mai usato causa lavoro all'estero ed ancora in imballaggio originale, al prezzo di L. 600.000 non trattabili. Nicola Peretti · via Ambrosetti 29 - 23017 Morbegno (SO).

VENDO LAFAYETTE HA 600 A RX 0.150-30 MHz L. 90.000. RX AN-GRRS kHz. 1,5-18 (surplus) L. 140.000. TX CB Lafayette Comstat 25 B. L. 120.000 (nxuovo) + GP in fibra di vetro. Serafino Salerno- via Garibaldi - 87030 Surdo (CS) - ♀ (1984) 3093 (ore 14-16 o di sera).

MOBIL FIVE usato pochissimo, come nuovo, completo di mi-crofono e staffa auto, vendo o cambio conguagliando con rice-vitore sintonia continua o frequenzimetro digitale. Lucio Bertoluzzi - via Panizza 3 - Millano - ☆ 487312.

RTX 8C 654/A (3.8÷5.8 MHz AM 20 W CW 30) nuovo e fun-zionante completo di micro T-17, tasto telegrafico, antenna stilo acciaio MT.7 tutto materiale originale americano cedo L. 80.000 o cambio con RTX 27 MHz 3-5 canali 2+5 W funzionante. Schemi di alimentatori stabilizzati, preamplificatori mi-crofonici, amplificatori lineari RF, amplificatori BF, etc. a

iso Roffi - via Orfeo 36 - 40124 Bologna - 🕿 051-

DRAKE R4B ricevitore nuovo perfetto garantito massima se-DRAKE MB ricevitore nuovo perfetto garantito massima se-rietà L. 400.000, Ricevitore Geldeso perfezionato esteticamente ed elettronicamente con banda cittadino montaggio a rack L. 100.000 Teclerasmetitore Comstat 28 B 96 canali 20 W in CB L. 150.000 Speciale Ground Plane per CB con efficentis-simo piano riflettente di 8 radiali L. 2500 alimentatore con simo piano riflettente di 8 radiali L. 2500 alimentatore con consensa del consensa del consensa del consensa del con-taggio del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consensa del consensa del consensa del con-censa del consensa del consens

SWAN 270 B SPECIAL Transceiver decametriche, Nuovo per SWAN 270 B SPECIAL Transceiver decametriche. Nuovo persettot, solo provato, vendo per passaggio a magg, potenza 490 KL. Intrattabill + spese sped. Provavalvole CGE 10 KL + S.S. Valigetta portatile. Modulo TX-144 AM-FM 2,5 W III. antenna. 2 relè e circuito di preampil. Ridottissime dimensioni 6 posti quarzo a 72 MHz. V overtone L. 25 KL + S.S. F. Deiraghi · via De Angell 58 · 29026 Omegna (NO) · ☎ (0323) 61110 (pre lavoro).

LINEA GELOSO RX G4/216 Mk III, TX G4/225 SSB con alimentatore G4/226 vendo L. 300.000 non trattabili, contanti Stefano Porta - via Bagaini 6 - Varese.

#### offerte CB

QUARANTASEI CANALI quarzati! Midland 13871 23 canali + altri 23 canali dal 24 al 46 + attacco per VFO, vendo a L. 150.000, VFO L. 25.000. Vendo inoltre Wattmetro UK395 L. 20.000. SWR Amtron UK590 L. 10.000. Analizzatore per Transistor UK590 L. 25.000. Amplificatore lineare UK370 Lire 45.000 - Vox Amtron UK 390 L. 12.000. Tutti gli apparecchi sono montati e perfettamente funzionanti. Spese postali comprese prese. Mario Musmeci Leotta - via P. Vasta 32 - Acireale (CT)

CAUSA CAMBIO frequenza vendo: Sommerkamp TS 624 S 10 W L. 100.000, alimentatore UK675W 12V 10 A L. 50.000, preamplificatore di antenna ZG P 27 L. 10.000, amplificatore lineare mod. GLV 40/3 40 W alim. 12V, L. 50.000; Matchbox Johnson L. 15.000: ROSmetro Lafavette mod. 99-25835 L. 20.000 Tutto il materiale che ha pochi mesi di vita è garantito come

Mario Satta - via Cavour 63 - Vimercate (MI) - 🕿 (ore di cena) 039-667459.

CAUSA SBARACCAMENTO stazione permuto RX Amtron CAUSA SBARACCAMENTO stazione permuto RX Amtron UXSS5, 6 mes, ottime conditioni completo di BF 2 W + alto-pariante in custodia + VFO 27 ELT da 26+28 MHz nuovo funcionante 100 % + mike preampillicato 20 di B+ trasmetittore CB 1,8 W + modulatore + trast 3,5 m indulazione + doppio altimentatore. Il primo 1+18 V 2,5 M II secondo 12 V 500 mA + + trast, per detti + stadio di M.F. Philips per 144 MHz + varionateriale eletti + 28DIII + L. 15000 con Tenco Kris 23 o 46

Mauro Grando - via Grimani 34 - 30030 Martellago (VE).

ALIMENTATORE 12,5 V 3 A ottimo per alimentare baracchini da L. 10.000 + spese postali.

Alberto Panicieri - via Zarotto 48 - 43100 Parma.

VENDO STAZIONE CB Tenko 6 ch 5 W mobile o fiss o+ antenna Ground-Plane (GBC) + 18 m dl RG58 + alimentatore sta-bilizzato (GBC) + preamplificatore microfonico. Il tutto 7 mesi di vita L. 70.000. Enrico Peli - via N. Sauro 14 - Bagnacavallo (RA) - 🕿 61246.

CAMBIO avendone un secondo RX-TX TE624S funzionante ga-rantito con motociclo o moto in genere pagando eventuale differenza di valore. Mauro Degasperi - via Fornasin 1 - 40128 Bologna - 🕿 352194.

VENDO BARACCHINO Pony CB75, 5 W, 23 canali perfettamente funzionante con imballo originale + ROSmetro a L. 110,000. Invio caratteristiche a richiesta. Marco Magnano - via R. Sanzio 34 - 95128 Catania.

COPPIA TX-RX canalizzati CB vendo - Sono 2 x TX6 dl N.E. per L. 10.000 cad. + 2 x RX28P Labes nuovi completi per L. 12.000 cad. Vendo anche i pezzi singoli o tutto assieme a L. 40,000. Massima garazila e seriela Timer per camera oscura (100.0 amatori) da l. a 60 sec. + 10 sec. a 5 minuti per L. 10,000 (1 kW max). Cerco antenna CB anche autocostruita. IW3EFF. Giovanni Sartori-Borotto - via Garibaldi 8 - 35042 Este (PD).

MIDLAND PORTATILE 13-770, uitimo modello, acquistato in no-MIDLAND PORTATILE 13-770, ultimo modello, acquistato in novembre "74 per ragioni sportive di cui un apparescchio, mai
usato, 5 W - 6 canali, vendo a L. 65,000 (un apparescchio). Tutte
le possibilità di prese esterne (antenna -5-meter - microfono
- ricarica batterie etc.) portata variabile da 10 a 20 km con
antenna incorporata: oltre 160 km con antenna such tetto. Tratto
con residenti in Milano o vicinanze.

Gabriele Chiorboli - via Mantova 3 - 20135 Milano - 2 5482917

5 W 12 canali tutti quarzati. Microfono dinamico preamplificato, predisposizione chiamata selettiva e sonora. Limitatore di disturbi, staffa per barra/M, ottimo stato, mai manomesso 2 me sturio, statia per para/xia, fotumo stato, mai manonesso 2 insi di vita. In garanzia. In più regalo alimentatore stabilizzato 12 Vcc 2 A adetto allo stesso apparato. Perfettamente funzionante. Regalo inoitre un baracchino CB 2 W 3 ch SBE. Portatile, funzionante, vendo il tutto a L. 100.000. Telefonare dalle 21 in poi a 375307 di Napoli.

VENDO RICETRASMETTITORE Pony seminuovo 5 W 6 canali quaratti nel suo imballo originale con schema e staffa auto a L. 50.000 comprese spese spedizione.
Mario Maffei - via Resia 98 - 39100 Bolzano.

VENDO O CAMBIO RTX 27 MHz Courler Classic II nuovo commpleto di ANL Delta tune squelch strumento e spia di modulazione, alimentazione 220/12 V S W 23 ch per L. 120,000 o cambio con telescrivente tipo TG7/78 in ottime condizioni di funzionamento massima serietà. Paolo Giannasi - via Lepido 5415 - 40132 Bologna.

ATTENZIONE CB: vendo RX-TX 2 canali (1 con quarzi), 1 W AF squelch, nota chiamata, custodia similpelle nuovo imballo ori-ginale, vendo al miglior offerente min. L. 35.000. Vendo anche stabilissimo calibratore a quarzo 100 kHz.

Mario Rotigni - via L. Lotto 17 - 24100 Bergamo.

OCCASIONE VENDESI Sommerkamp 5 W 6 ch, soli 3 mesi di

Vita (causa rinnovo stazione CB) completamente quarzato in RX-TX per i canali 79-11-14-19-23 a sole L. 48.000 + spesa spedizione a carico dell'acquirente. Il tutto da richiedere in contrassegno.

Davide Bazzani - via Gustavo Bianchi 7 - 44100 Ferrara.

VENDO per cambio apparecchiatura ricetrasmettitore 2 W 2 ch (7-71-14 di marca Sommerkamp modello TS 510 G, usato circa 2 mesi, in perfette condizioni dentro e fuori a 40.000 lire. Invio eventuali descrizioni più dettagliate a richiesta. Michele Militella - via Milano 22/A - 19036 S. Terenzo.

LAFAYETTE HB-52SF 5 W 23 ch vendo per cessata attività perfetto in ogni particolare. Scrivetemi, rispondo a tutti! Damiano Cogni - via Montorfano 4 - 20077 Melegnano (MI).

VENDO MATTONE ricetrasmettitore Lafayette Dynacom 23 A 24 canali 5 W L. 100.000. Trattabilissime. Pietro Girolami - 06032 Picciche di Trevi (PG).

VENDO BARACCHINO Zodiac 85024 (mod. da tavolo) mlc. preampl. In dotazione orologio digitale e ROSmetro ancora in garanzia, sensib, in ricez, con lineare 180 W In antenna Emilio Cravera - via Carlo Alberto - 14049 Nizza M. (AT).

## QUARZI

per tutti i ponti dal RØ al R9 e isofrequenze 145.500. - .525 - .550 per gli apparati 144 Mc.:

- SOMMERKAMP: ic20, ic21, ic22, TS 145 xt

- TRIO KENWOOD: TR 2200. TR 2200/g. TR 7200 - FDK: Multi 8, Multi 8 DX, Multi 7

- Standard: serie SRC 826 - 816 - 806, SRC 145, SRC 146/A, SRC 140

- Beitek

inoltre sono disponibili quarzi per le apparecchiature decametriche:

- DRAKE - SOMMERKAMP - YAESU MUSEN - TRIO KENWOOD -

## NOVA apparecchiature elettroniche per radioamatori

Per ulteriori informazioni scriveteci o telefonateci. Per listino prezzi allegare Lit. 150. = in francobolli.



## NOVA di i2YO

20071 CASALPUSTERLENGO (MI)

via Marsala, 7 - Tel. (0377) 84520 Casella Postale 040

Orario negozio:

9 - 12.30 15 - 19.30 lunedi pomeriggio e festivi: chiuso

VENDO STAZIONE completa composta da RX-TX Tenko Jacki 23 AM-SSB Ilineare Palomar 60 W AM 130 SSB. Alimentatore stabilizato 6-20 V con strumento microfono GBC preamplificato modello 1115 antenna GP Nato il tutto L. 300.000 trattabili. Megalmo Prati: - via Monfalcone 16 - 47037 Rimini.

CEDO CB PORTATILE Midland 13-774 5 W 6 ch CB portatile Hitachi da 1 W 2 ch ottimo. Resa superiore alle aspettative

Mario Cardinale - via Canova 11 - Milano - 🛜 343282.

VENDO HITACHI 5 W 24 ch ROSmeter Amtron. Alimantatore stabilizzato 3 A 25 V regolabili. Sigma PLC 27 MHz, ground plane 27 MHz in alluminio. Tutto perfetto. In blocco L. 120.000. Vendesi anche separatamente. Stefano Gaudenzi - C.S. Felice 220 - 36100 Vicenza.

MOBIL 5 VENDO non manomesso con traslazione 600 kHz pe ponti ripetitori. Completo di microfono originale americano ceramico Electro Voice 714. Antenna stilo e staffa per uso mobile. Tutto garantito come nuovo a L. 150.000.

I4ERS, Ercole Rossi - via Giovanni XXIII, 5 Colorno (PR).

VENDO LINEARE 26÷30 Mc/s 60 W r.f. AM 120 W SSB Lire 80.000. Alimentatore stabilizzato di classe professionale 0/30 V 5 A max L. 55.000, scrivere o telefonare (ore 14,30-15 o 19.30-20) per ulteriori specificazioni e accordi. Tratto prefe ibilmente di persona e con Italia centrale

Marco Bagaglia - via U. Bassi 4 - 06100 Perugia - 🕿 38106. PREAMPLIFICATORE MICROFONICO vendo 40 dB di quadagno

autocostruito, L. 8.000.
Marco Palocci - via Casalbertone 113 - 00169 Roma 20 06-4383256.

OFFRO L. 30.000+amplificatore da 12 W marca « FBT » per ricetrasmettitore 5 W 6 o più canali, funzionante. Giuseppe Calabrese - piazzetta De Martini 10 - 82100 Bene-

PREAMPLIFICATORE D'ANTENNA CB a FET, impedenza 52 Ω. guadagno 18 dB (3 punti S!) completo di protezione elettro-nica e montato su vetronite. Vendesi contrassegno L. 10,000 Riviste Nuova Elettronica buono stato dal 19 al 36 vendesi

useppe Piccitto - via Amm. Gravina 2 A - Palermo - 🕾 191.

VENDO ZODIAC M5026 24 ch 5 W 10 mesi di vita L. 110.000: Midland 6 ch 5 W 3 quarzati (3-9-16) L. 40.000; antenna diret-tiva 5 elem. per CB L. 50.000 perfetta: BC312N alimentazione 110 Vcc incorporata con 2 altoparlanti e cuffia L. 70.000; piastr registratore stereo a cassette tlpo Sony TC-121 nuovo lir 100.000. Rispondo a tutti anche per maggiori spiegazioni. Marco Nardi - via di Montenero 360 - 57100 Livorno.

ZODIAC M.5026 8 W 24 ch. Finale 2SC756 del NASA 46 GT Sensiblissim 0,3 µV per 10 dB S/D. Preamplificate incorpora-to per modulazione 100 % L. 100.000. Filtro passa banda 27 MHz. anti TVI pot. max 100 W della Prestel, come nuovo L. 10.000. Telefonare ore serali a 0547-24666 per accordi. Marino Morelli - via delle Magnolle 143 - Cesena (FO).

ATTENZIONE VENDO urgentemente baracchino 1,5 W 1+2 ch, RTX15, N.E., perfettamente funzionante, ricevitore sensibilissimo, completo di misuratore RF e Smitter, spia TX e RX, presa mike, volume, squelch, il tutto in elegante contenitore metalco, perfettamente funzionante e completo di alimentatore L. 38.000; alimentatore variabile da 0,7÷25 V 3 A ideale baracchini L. 16,000, oppure vendo il tutto a sole L. 70,000 trattabili. In questo caso regalo numerosi schemi di lineari, baracchini alimentatori, e di altre attrezzature C8.
Claudio Scheggi · via Serraglio 4 · 50055 Lastra a Signa (FI).

ATTENZIONE VENDO RX-TX Midland 13-855 5 W 6 ch (nuovo) Marco Bacis - via Pomponazzi 6 - Milano.

OFFRO TREMILA lire più progetto facile autocostruzione anten-

UP-RO IREMILA lire più progetto facile autocostruzione anten-na Bird Cage direzionale 27 MHz, guadagno 8 dB. angolo irra-diazione 15 gradi, vera bomba: più progetto semplice rotatore a chi mi spedirà schema elettrico o copia libretto Tokal TC-3008S - 15 transistor 3 W - 6 canali. Luigi Nicotera - villaggio ENEL 5/A - 85040 Castelluccio Infer. (PZ).

VENDESI RX-TX CB in ottime condizioni tipo INNO-HIT CB292 5 W 23 canali più antenna Ground-Plane VRM Sigma e 35 metri cavo coassiale RG8/U con PL239 II Lutto a L. 100.000. Maurizio Rivarola - via S. Colombano 5 - 16133 Genova.

RADIOTELEFONO MIDLAND Mod. 13700 1 W 2 ch (7 e 11), squelch, presa antona esterna vendo: nuovo, in imballaggio originale, completo ogni accssorio e schemi. Vendo inoltre L. 1530 cad. quarzi miniatura canale 1 ricezione e canale 7 trasmissione. Antenna frusta nera 27 MHz, carica in alto, oliimo rendimento L 4000, priva di morsetto d'attacco alla /m SWL Marco Lisi · via Norcia 9 - 00181 Roma.

#### **FOSCHINI AUGUSTO**

via Vizzani, 68/d - 🕿 34.14.57 ab. 27.60.40 40138 BOLOGNA

CINEMO-DERIVOMETRO pantografo ottico-meccanico per rilevamento, montato originariamente su aerei. Completo di cassetta contenitrice, manuale per l'uso. Contiene innumerevoli componenti ottici di altissima qualità come oculare, obiettivo acromatico, specchi piani alluminati. Sino ad esaurimento L. 20.000 cad.

Ricevitori BC312 - BC348 - BC603 - BC683 ARR15 - R748A (100/156 MC) - AN-GRR5 ARN6 complete di loop e control box. Voltmetr elettronici TS-505/U - Generatori B.F. TS-382 F/U - Frequenzimetri BC221 - Frequenzimetri FR-6/U (100-500 Mc) - Provavalvole 1-177-B completi di cassetta aggiuntiva. Tubi 6032 convertitori di immagini per Infrarosso - Filtri infrarosso Ø 6''.

PER IMPROVVISA partenza per il servizio militare, vendo rice casmetutore CB nuovissimo tipo Universe 747, 23 canali, 5 W rosmettione de novissimo tipo différer 44, 22 canali. 3 vi noise limiter, delta tuning spia di trasmissione, perfetto, anco-ra in imballo originale, per L. 115000 trattabili. A.U.C. MEC. Pietro Pacciani, 5' Cp. Mareth Caserma F. Orsi

CAUSA ABBANDONO 27 MHz vendo vera frusta nera con stub a L.10.000 e antennia Lafayette (lunga cm 30 peso gr. 430) con stub da applicare dietro RTX L. 5000.

Francesco Langella - via A. del Baglivo n. XI - 84100 Salerno.

VENDO LINEARE 27 MHz Jumbo Aristocrat 300 W AM - 600 W VENDU LINEARE 27 MHZ JUMBO Aristocrat 300 M AM - 600 W SSB con preamplificatore d'antenna incorporato usato pochis-simo a L. 200.003 intrattabili. RTX Tokai PW 5024 a L. 140.000 (nuovo) RTX Tokai con SSB a L. 240.000 (nuovo) tratto solo personalmente. Enrico Spelta · via Confalonieri 3 · 29100 Piacenza.

VENDO ANTENNA Sigma 5/8 « Avantl » usata pochissimo. Tratto solo con zona di Genova. Telefonare al 302001, Danilo, Genova.

#### offerte SUONO

AMPLIFICATORI VENDO: Hirtel C240/S come nuovo. Nikko RM500 e TRM600 nuovi imballati L. 130.000, 140.000 e 160.000 Adriano Cagnolati - via Ferrarese 115/5 - 40128 Bologna.

#### offerte VARIE

REGISTRATORE TELEFUNKEN stereo due tracce Ø 18 cm tre velocità 4,75 - 9,5 - 19 cm/sec (4+4) W, effettivi, cedesi a L. 110.030 (listino 190.000) + Hallicrafters S-120 A 053 0 MHz, sintonia continua ottimo BCL 35.000 + Philips RL114 + Sony 14 transistor 1IC il tutto come nuovo. io Maraspin - via G. Pallavicino 9/3 - 30175 Marghera (VE) - @ 041-922571

10 000 TELAIETTI PHILIPS AF e MF + 1 amplific. BF con TAASI1/8 il telaietto AF già modificato e tarato come da cq 1/73. Il resto acquistato e mai usato. Spese postali a mio carico. Cerco BC454 solo se Integro e funzionante e se a basso prezzo (non sup. 10 kL.). Roberto Mazzoleni - via Locchi, 2 - Treviso.

OLIVETTI ELEA 6001 - Vendo tutto, schede, alimentatori, regi-Stratori Ampex 7 piste ecc. Motori, ventole ecc. Cinepresa Pathé DS8-BTL, obb. Angenieux 8-84 - 1: 1,9. Moto Kawasaki 500 Mk III, Altro materiale vario: calcolatrici nuove, semplici con percento e radice e logaritmi da 45.000 a 90.000 lire. Giorgio Servadei - via P. Ginnasi 40 - Forli - 🕿 64904.

VENDO laboratorio linguistico elettronico originale Anglotutor VENDO Jaboratorio linguistico elettronico originale Angloturo in perfette condizioni (registratore con micro e cuffia, 12 cassette, 8 volumi, 1 dizionario); giradischi Lesaphon mono-stereo con cambiadischi automatico: microregistratore Grundig: antenne CB Super Range Boost e Boomerang, alimentatore stabilizzato 2 A 12 V; microspia non autocostruita in FM. Roberto Menga · via Bisceglie 130 - Trani (BA).

HAM RADIO, annata 1974 completa, vendo a L. 6000 o cambio con annate precedenti di Ham Radio. Spese postali a 1/2 mio

Lauro Bandera - via Padana 6 - 25030 Urago d'Oglio (BS).

SVENDO MATERIALE elettronico nuovo e usato + riviste di elettronica e fotografia chiedere elenco unendo L. 100 in fran-cobolli. Cerco francobolli italiani e dell'est europeo o cambio con francobolli mondiali. Paolo Masala - via San Saturnino 103 - 09100 Cagliari

VENDO ROMANZI di fantascienza Urania, come nuovi e In perfetto stato di conservazione. Rispondo a tutti. Mario Berghini - via 1º Maggio 14/6 - 30038 Spinea (VE).

DIAPROIETTORE 6 x 6 cm vera occasione cedo. Trattasi di DIAPROTETTORE 6x6 cm vera occasione cedo. Prattasi di Raymatic 66/NJ Malinverno, obiettivo P.M. Sixtor 1:2.8 f=120 mm - T -: dotato di ventilatore, cavo allimentazione, interruttore. Perfettamente funzionante, esteticamente ottimo. come nuovo. Completo: lampada alogena 24 V / 150 W e ca ricatore esclusi L. 50.000 trattabili. Sergio Boni - via Mendola 5 - 39100 Bolzano - 🕿 0471-38600:

A.A.A. VENDO a prezzi contenuti francobolli Italia - S. Marino di tutto il mondo; laboratorio di chimica con vetreria, elementi e composti vari; riviste di Motocicilsmo e Automobilismo: vendo e cambio materiale elettronico. Prezzi assai contenuti Mario Cerutti - via Ceriolo 3 - 18032 Bussana (IM). HEATKIT OROLOGIO SVEGLIA digitale da sballare vendesi sconto 40 % su listino.

TV COLORE VENDO: 25" 90" Minerva valvolare vendo al miglior offerente; prezzo base L. 200.000 (funzionante) da farsi convergenza; vendo anche registratore Grundig 4 piste con micro a L. 35.000 anche questo funzionante entrambi non manomessi noltre vento TV completi e alcuni funzionanti a L. 8.030-10.000. Trasporto a carico del destinatario

ranco Gatti - viale D. Alighleri 64 - 13045 Gattinara (VC) -

VENDO OSCILLATORE modulato S.R.E., come nuovo, tarato, a L. 15.000. Giradischi portatile stereo » Selezione » vendo a L. 15.000 completo di altoparlanti. Cerco oscilloscopio SRE a prezzo modico. Tratto di preferenza con zona Torino e din-

Flavio Golzio - via Dupré 14 - 10154 Torino - 🕾 854239

OCCASIONE VENDO venti riviste anno 1974 di Electronics in OCCASIONE VENDU venti riviste anno 1974 di Electronics international a l. 14,000 in blocco. qui electronica: n. 11/64 - n. 8+11-12/72 - n. 1-24-8-5-78/73, vendo a l. 500 c.d. + spese postali. Vendo distorsori per chitarra a l. 10,000 c.d. Accensione elettronica a scarica capacitiva, L. 20,000, limers da i a 15 minuti o da i a 30 minuti i. 10,000 c.d. Fornisco schemi e dettagli apparati surplus. Alberto Cicognani - via Ugo Foscolo 24 F - 20063 Cernusco

VENDO OTTIMO MICROSCOPIO due oculari, quattro obiettivi 909 Ingrandimenti, con illuminazione elettrica incorporata Per fetta la meccanica. Completo di attrezzatura per confezionare nuovi vetrini L. 14.000. Per altre L. 3.000 fornisco (anche da sole) 6 scatole di vetrini già preparati (non da me) per un totale di 72 vetrini (insetti, vegetali, spore, microorganismi,

Carlo Cassutti - via Minturno 9 - Milano - 2573689

COSTRUISCO SINTETIZZATORI PAIA, campane elettroniche e batterie elettroniche, nonché altri modelli da me progettati, se volete avere informazioni più dettagliate scrivetemi. I prezzi sono accettabilissimi più, ovviamente, il mio modico comper

Giordano Am<u>brosetti - via F. Bellotti 7 - 20129 Milano.</u>

OROLOGIO DIGITALE UK 820 minicalcolatore logico binario UK 867 - Dimostratore logico UK 837 - Dimostratore binario UK 842, tutti della Amtron perfettamente funzionanti, nuovi, vendo sconto venti per cento sul costo scatole di montaggio oppure cambio con strumenti da laboratorio. Fare offerte Renato Follo : wio Garibaldi 16 - 19080 Condelo : 20 015-53346.

CEDO in cambio di una ricetrasmittente 144 MHz o 27 MHz non autocostrulta corso completo di elettronica corredato d un multitester.

Mario Sansone - viale Strasburgo 40 - Palermo - 2 091-514315.

### T. DE CAROLIS - via Torre Alessandrina, 1 - 00054 FIUMICINO (Roma)

| 1           | [RASF | ORMATORI E      | I ALIMENTAZION      | NE  | Ξ      | 90 W     |       | 0-19-25-33  |                 |      | L.   | 5.300  |
|-------------|-------|-----------------|---------------------|-----|--------|----------|-------|-------------|-----------------|------|------|--------|
|             |       | serie E         | XPORT               |     |        | 110 W    |       | 0-19-25-33  |                 |      | L.   | 5.760  |
|             |       |                 |                     |     |        | 130 W    |       | 0-19-25-33  |                 |      | L.   |        |
| 4 W         |       | 0-6-7,5-9 V     |                     |     | 1.400  | 160 W    |       | 0-19-25-33  |                 |      | L.   |        |
| 4 W         |       | 0-6-9-12 V      | _                   |     |        | 200 W    |       | 0-19-25-33  |                 |      | ·L.  |        |
| 7 W         |       | 0-6-7,5-9 V     | L.                  |     | 1.800  | 250 W    |       | 0-19-25-33  |                 |      | L.   |        |
| 7 W         |       | 0-6-9-12 V      | L                   |     | 1.800  | 300 W    |       | 0-19-25-33  |                 |      |      | 12.000 |
| 10 W        |       | 0-6-7,5-9 V     | L.                  |     | 2.200  | 400 W    |       | 0-19-25-33  |                 |      |      | 14.700 |
| 10 W        |       | 0-6-9-12 V      | L.                  |     | 2.200  | 50 W     |       | 0-24-30-40  |                 |      | L.   |        |
| 15 <b>W</b> |       | 0-6-9-12-24 V   | L.                  |     | 2.500  | 70 W     |       | 0-24-30-40  |                 |      | L.   |        |
| 20 W        |       | 0-6-9-12-24 V   | L.                  |     | 2.700  | 90 W     |       | 0-24-30-40  |                 |      | L.   |        |
| 30 W        |       | 0-6-9-12-24 V   | L.                  |     | 3.300  | 110 W    |       | 0-24-30-40  |                 |      | L.   |        |
| 40 W        |       | 0-6-9-12-24 V   | L.                  |     | 3.900  | 130 W    |       | 0-24-30-40  |                 |      | L.   |        |
| 50 W        |       | 0-6-12-24-36 V  |                     |     | 4.400  | 160 W    |       | 0-24-30-40  |                 |      |      | 7.400  |
| 70 W        |       | 0-6-12-24-36-41 |                     |     | 4.800  | 200 W    |       | 0-24-30-40- |                 |      |      | 8.100  |
| 90 W        |       | 0-6-12-24-36-41 |                     |     | 5.300  | 250 W    |       | 0-24-30-40  |                 |      |      | 9.800  |
| 110 W       |       | 0-6-12-24-36-41 |                     |     | 5.700  | 300 W    |       | 0-24-30-40- |                 |      |      | 12.000 |
| 130 W       |       | 0-6-12-24-36-41 |                     |     | 6.600  | 400 W    | 220 V | 0-24-30-40- | 48-60 V         |      | L.   | 14.700 |
| 160 W       |       | 0-6-12-24-36-41 |                     |     | 7.400  |          |       | AUTOTRA     | ASFORMATORI     |      |      |        |
| 200 W       |       | 0-6-12-24-36-41 |                     |     | 8.100  |          |       |             |                 |      |      |        |
| 250 W       |       | 0-6-12-24-36-41 |                     |     | 9.800  | 1000 W   |       |             | 0-260-280 V     |      |      | 14.900 |
| 300 W       |       | 0-6-12-24-36-41 |                     |     | 12.000 | 800 W    |       |             | 0-260-280 V     |      |      | 12.200 |
| 400 W       | 220 V | 0-6-12-24-36-41 | -50-60 V <b>L</b> . | . 1 | 14.700 | 550 W    |       |             | 0-260-280 V     |      |      | 10.000 |
|             |       | serie           | MEC                 |     |        | 400 W    |       |             | 0-260-280 V     |      |      | 8.300  |
|             |       |                 |                     |     |        | 300 W    |       |             | 0-260-280 V     |      |      | 7.600  |
| 50 W        |       | 0-12-15-20-24-3 |                     |     | 4.400  | 200 W    |       |             | 0-260-280 V     |      |      | 5.900  |
| 70 W        |       | 0-12-15-20-24-3 |                     |     | 4.800  | 150 W    |       | -160-220 V  |                 |      | L.   | 5.000  |
| 90 W        |       | 0-12-15-20-24-3 |                     |     | 5.300  | 100 W    | 0-125 | -160-220 V  |                 |      | L.   | 4.600  |
| 110 W       |       | 0-12-15-20-24-3 |                     |     | 5.700  | TR       | ASEOF | MATORI      | SEPARATORI      | ו ומ | DET  | E      |
| 130 W       |       | 0-12-15-20-24-3 |                     |     | 6.600  |          |       |             | OLF ARATORI     |      |      |        |
| 160 W       |       | 0-12-15-20-24-3 |                     |     | 7.400  | 300 W    |       | - 220 V     |                 |      |      | 12.000 |
| 200 W       |       | 0-12-15-20-24-3 |                     |     | 8.100  | 400 W    |       | - 220 V     |                 |      |      | 14.700 |
| 250 W       |       | 0-12-15-20-24-3 |                     |     | 9.800  | 1000 W   | 220 V | - 220 V     |                 |      | L. 2 | 27.000 |
| 300 W       |       | 0-12-15-20-24-3 |                     |     | 2.000  |          |       | AUTOTRA     | SFORMATORI      |      |      |        |
| 400 W       |       | 0-12-15-20-24-3 |                     |     | 4.700  | 2000 111 |       |             | OI OILIIAI OILI |      |      |        |
| 50 W        |       | 0-19-25-33-40-5 | - ·                 |     | 4.400  | 3000 W   |       |             |                 |      |      | 25.000 |
| 70 W        | 220 V | 0-19-25-33-40-5 | DV L.               |     | 4.800  | 3000 W   | 0-125 | -220 V      |                 |      | L. 2 | 25.000 |

#### Serie GOLD

Primario 220 V Secondario con o senza zero centrale

6-0-6; 0-6; 12-0-12; 0-12; 15-0-15; 0-15; 18-0-18; 0-18; 20-0-20; 0-20; 24-0-24; 0-24; 25-0-25 0-25; 28-0-28; 0-28; 30-0-30; 0-30; 32-0-32; 0-32; 35-0-35; 0-35; 38-0-38; 0-38; 40-0-40: 0-40 45-0-45; 0-45; 50-0-50; 0-50; 55-0-55; 0-55; 60-0-60; 0-60; 70-0-70; 0-70; 80-0-80; 0-80

| 20W<br>30W<br>40W | L. 2.700<br>L. 3.300<br>L. 3.900 | 90W<br>110W<br>130W | L. 5.300<br>L. 5.700<br>L. 6.600 | <br>L. 9.800<br>L. 12.000<br>L. 14.700 |
|-------------------|----------------------------------|---------------------|----------------------------------|----------------------------------------|
| 50 <b>W</b>       | L. 4.400                         | 160W                | L. 7.400                         |                                        |
| 70 <b>W</b>       | L. 4.800                         | 200W                | L. 8.100                         |                                        |

#### RIVENDITORI

ROMA - DERICA Elettronica - via Tuscolana, 285/b OSTIA LIDO - GI-PI Elettronica - via A. Bertolini, 8/c

Tariffe postali in vigore dal 25 MARZO 1975.

TERRACINA - Golfieri Giovanni - piazza B. Buozzi, 3 TRIESTRE - Radio Kalika - via Cicerone, 2

A richiesta si esegue qualsiasi tipo di trasformatori di alimentazione (anche un solo modello). Preventivi allegare L. 100 in francobolli.

Pacchi postali fino a 1 Kg. L. 460 - da 1 a 3 Kg. L. 580 - da 3 a 5 Kg. L. 700 - da 5 a 10 Kg. L. 1.300 - da 10 a 15 Kg. L. 1.600 - da 15 a 20 Kg. L. 2.000 più diritto postale di contrassegno L. 300.

Spedizioni ovunque - Pagamento in contrassegno - SPESE POSTALI A CARICO DELL'ACQUIRENTE.

## RICEVITORE VHF-UHF

A 5 bande CON SINTONIA A led

il primo con la banda 50-80MHz



#### Ricevitore Supereterodina

Sensibilità: 0,5 microvolt.

Alimentazione: AC 220V - DC 6V

AM = 504 - 1600 KHz = STAZIONI DAL MONDO FM = 88 - 108MHz = PROGRAMMI ITALIANI

TV1= 50 - 80MHz = 1 CANALE TV - VIGILI - AMBULANZE - POLIZIA

AIR= 108 - 176 MHz = AEREI - RADIOAMATORI - PONTI RADIO

TV2= 176 - 220MHz = 2 CANALE TV - RADIOAMATORI

## C T F Int

### International s.n.c.

via Valli, 16-42011 BAGNOLO IN PIANO (RE)-tel. 0522-61397

## JIXI

## Color

forte dei successi ottenuti prosegue nella vendita della



Mod. Selektron TVC SM7201

### SCATOLA DI MONTAGGIO PER TELEVISORE A COLORI DA 26"

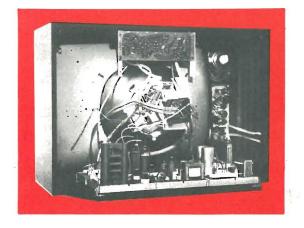
**KIT COMPLETO TVC SM7201** 

L. 312.000

SENZA MOBILE E CINESCOPIO

L. 168.000

(IVA e porto esclusi)


## ASSOLUTA SEMPLICITA' DI MONTAGGIO

- I circuiti che richiedono speciali strumenti per la taratura sono premontati ed allineati.
- La messa a punto di tutti gli altri circuiti si effettua con un comune analizzatore.
- Un dettagliato manuale di istruzioni allegato fornisce tutte le indispensabili specifiche per il montaggio e la messa a punto.
- Il nostro Laboratorio Assistenza Clienti è a disposizione per qualsiasi Vostra esigenza.

Per ulteriori informazioni richiedere, con tagliando a lato, opuscolo illustrativo alla:

### KIT COLOR

VIA CORNO DI CAVENTO, 17 20148 MILANO



|   | <b>*</b>                                                                                                                                                                     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Spett. KIT COLOR                                                                                                                                                             |
|   | Vogliate inviarmi, senza alcun impegno da parte mia,<br>n. 1 opuscolo illustrativo della scatola di montaggio<br>SM 7201.<br>Allego L. 100 in francobolli per spese postali. |
|   | Cognome                                                                                                                                                                      |
|   | Nome                                                                                                                                                                         |
|   | Via                                                                                                                                                                          |

\_\_\_\_\_

cq - 5/75 -

761

## Duetto Lafayette



HB 525-HB 700 i due potenti ricetrasmettitori per i vostri mezzi mobili, con componenti allo stato solido

#### HB 525

23 canali quarzati, con un sistema di allarme antifu una linea più moderna, squelch variabile, noise limi grande altoparlante e strumentazione automatica,

#### HB 700

23 canali + 1 CANALE METEREOLOGICO +
1 CANALE VHF Un apparecchio professionale e
divertente per l'ascolto di certe particolari frequenze
con una struttura robustissima e in materiale
anticorrosivo e antiruggine ideale per imbarcazioni
jacks a due vie per antenne VHF e CB alimentazion
12 V. grande strumento misuratore S/PRF.

## Lafayette



via F.Ili Bronzetti 37 20129 Milano tel. (02) 7386051

## **VIDEON**

**GENOVA** - via Armenia, 15 tel. (010) 363607 - 318011

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Elettrodomestici



### M.M.P ELECTRONICS

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Componenti elettronici



Distributore Roma città

**ROMA** - Corso d'Italia, 34/B - C tel. (06) 857941/2

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Componenti elettronici

## MAINARDI

**VENEZIA** - Campo dei Frati, 3014 tel. (041) 222338

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Componenti elettronici

## **RADIOTUTTO**

di Casini

TRIESTE - Galleria Fenice 8/10 tel. (040) 69455

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Componenti elettronici



Distributore per il Lazio

**ROMA** - via F.A. Gualtiero, 99 tel. (06) 8103228-8104339

Distribuzione ed esclusive



**BOLOGNA** - via L. Battistelli, 6/C - tel. (051)

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Componenti elettronici

## **ALLEGRO**

**TORINO** - C.so Re Umberto, 31 tel. (011) 510442

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Componenti elettronici

### BERNASCONI & C.

NAPOLI - via G. Ferraris, 66/C tel. (081) 335281

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Materiale elettrico Componenti elettronici



**BOLZANO** - v.le Drusa, 313 zona Artigianale tel. (0471) 37400 - 37406

Radiotelefoni - Apparecchiature per Radioamatori - HI-FI - Radio - TV -Registratori - Componenti elettronici

## RADIOSURPLUS ELETTRONICA

via Jussi 120 - c.a.p. 40068 S. Lazzaro di Savena (BO) tel. 46.22.01

Migliaia di emittenti possono essere captate in AM-CW-SSB con i più famosi ricevitori americani il

## BC 312 e BC 348

Perfettamente funzionanti e con schemi

Nuovo catalogo materiale disponibile L. 500

#### OFFERTA SPECIALE:

TX Collins ART-13 da 2÷18 Mc con sintonia automatica a L. 50.000 completo di schemi.

TX Collins GRC19 da 1,5 ÷ 20 Mc con sintonia automatica digitale completo di schemi.

#### **NOVITA' DEL MESE:**

Trasformatori con entrata da 95 a 250 Vac uscita 115 Vca/cc stabilizzati.

Relay ceramici 12 Vcc.

Ricevitori AN/GRR-5, da 1500 Kc a 18 Mc in 4 gamme, calibratore incorporato con battimento ogni 200 Kc - AM - CW -SSB. Alimentazione 6-12-24 Vcc e 115 Vac con schemi.

### VISITATECI - INTERPELLATECI

orario al pubblico dalle 9 alle 12.30 dalle 15 alle 19 sabato compreso

E' al servizio del pubblico: vasto parcheggio.



COSTRUZIONI APPARECCHIATURE ELETTRONICHE

via Francesco Costa 1 - 3 ☎ (0175) 42797 - 12037 SALUZZO (CN)



AMPLIFICATORE RF 26 ÷ 30 MHz

INPUT 1 ÷ 5 W - OUTPUT 40 W RF ALIMENTAZIONE 12.5 Vcc

Per funzionamento in c.a. richiedere alimentatore VASPRO 5



#### TRASFORMATORI DI ALIMENTAZIONE

primario 220 V c.a, 50 Hz

|   | R/004V06 secon<br>R/004V07 secon |             |         |              | 99 <b>0</b><br>990 | TR/060V06 secondario 6,0 V 10,0 A L. TR/060V12 secondario 12,0 V 5,0 A L. | 4.950<br>5.060 |
|---|----------------------------------|-------------|---------|--------------|--------------------|---------------------------------------------------------------------------|----------------|
|   | R/004V09 secon                   |             |         |              | 990                |                                                                           | 5.225          |
|   | R/004V12 secon                   |             |         |              | 1.100              | TR/060V24 secondario 24,0 V 2,5 A L.                                      | 5.390          |
| T | R/004V18 seco                    | ndario 18,0 | V 0,2   | A L.         | 1.150              |                                                                           | 5.610          |
| T | <b>R/004V24</b> secoi            | ndario 24,0 | V 0,15  | A L.         | 1.210              | TR/090V12 secondario 12.0 V 7.0 A L.                                      | 6.765          |
| T | R/040V06 secon                   | ndario 6,0  | V 5,0   | A L.         | 3.465              |                                                                           | 6.985          |
| Т | <b>R/040V07</b> secoi            | ndario 7,5  | V 4,5   | A L.         | 3.520              | TR/090V24 secondario 24,0 V 4,0 A L.                                      | 7.200          |
|   | <b>R/040V09</b> secoi            |             |         |              |                    | TR/090V48 secondario 48,0 V 2,0 A L.                                      | 7.645          |
|   | <b>R/040V12 s</b> eco            |             |         |              | 3.850              | TR/090V64 secondario 64,0 V 1,5 A L.                                      | 8.085          |
|   | R/040V18 seco                    |             |         |              | 4.015              | TR/300V12 secondario 12,0 V 10,0 A L.                                     | 20.900         |
|   | R/040V24 seco                    |             |         |              | 4.235              |                                                                           | 21.450         |
| T | <b>R/040V48</b> secoi            | ndario 48,0 | 8,0 V 0 | A <b>L</b> . | 4.345              |                                                                           | 22.000         |
|   |                                  | 0.000       |         |              |                    |                                                                           | 25.300         |
|   | AMPER                            | OMETRI E    | LETTRO  | MAGNETICI    |                    | TR/300V64 secondario 64,0 V 3,5 A L.                                      | 27.500         |
|   |                                  |             |         |              |                    |                                                                           |                |

#### AMPEROMETRI ELETTROMAGNETIC

| AS20         | 2 A f.s. scala rettang. cm 5,5 x 5      | L. | 4.400 |
|--------------|-----------------------------------------|----|-------|
| AS50         | 5 A f.s. scala rettang. cm 5,5 x 5      | L. | 4.400 |
| AS100        | 10 A f.s. scala rettang. cm 5,5 x 5     | L. | 4.180 |
|              |                                         |    | 4.180 |
| <b>1S/20</b> | isolatore in mica per TO-3 con rondelle | in | fibra |
| e viti       |                                         | L. | 275   |

#### VOLTMETRI ELETTROMAGNETICI

| OLIMEINI ELLIMONIA                           |    |       |
|----------------------------------------------|----|-------|
| SC15 15 V f.s. scala rettangolare cm 5,5 x 5 | L. | 4.400 |
| SC20 20 V f.s. scala rettangolare cm 5,5 x 5 | L. | 4.950 |
| SC40 40 V f.s. scala rettangolare cm 5,5 x 5 | L. | 5.500 |
| SC80 80 V f.s. scala rettangolare cm 5.5 x 5 | L. | 6.600 |

#### ALIMENTATORI STABILIZZATI VARPRO 2 A

Ingresso: 220 V 50 z Uscita: da 0 a 15 V cc

Stabilità: 2% dal minimo al max carico

Ripple: inferiore a 1 mV

#### VARPRO 3 A

Caratteristiche simili al VARPRO 2 ma con max corrente erogabile di 3 A VARPRO 5 A

Caratteristiche simili ai precedenti ma con max corrente erogabile di 5 A

VARPRO 10 A Caratteristiche simili ai VARPRO 2 A / 3 A / 5 A

ma con max corrente erogabile di 10 A ALIMENTATORE STABILIZZATO

MICRO 1.5

Tensione fissa 12,5 V carico max 1,5 A

Tutti i modelli sono autoprotetti con apposito circuito a limitazione di corrente.





#### Rivenditori:

ALBA : SANTUCCI - via V. Emanuele 30 TORINO: CRTV - c.so Re Umberto, 31 M. CUZZONI - c.so Francia, 91 SAVONA: D.S.C. elettronica - via Foscolo, 18

ELCO - p.zza Remondini, 5a

GENOVA: E.L.I. - via Cecchi, 105 R

VIDEON - via Armenia 15 PALERMO: TELEAUDIO di Faulisi

via Garzilli, 19 - via Galilei. 34

CANICATTI': E.R.P.D. - via Milano, 286

CERCASI CONCESSIONARI PER ZONE LIBERE

CONDIZIONI DI VENDITA: PORTO: assegnato, importo come da tariffa postale. - PAGAMENTO: anticipato sconto 3 %, contrassegno netto. - CONSEGNA: entro 15 giorni.



## console II°

Ricetrasmettitore SBE in am e ssb-stazione base-23 canali in am e 46 in ssb, con segnale luminoso di trasmissione.

I professionisti dell'etere

## electronic shop center





## MONTARE UN KIT AMTRON E' TANTO FACILE



## **QUANTO** RITAGLIARE **QUESTO TAGLIANDO**

il catalogo vi offre la possibilità di scegliere fra più di 200 kits.

Gli appassionati di autocostruzioni elettroniche preferiscono i kits AMTRON per la qualità superiore, la certezza di costruire apparecchi di sicuro funzionamento e la soddisfazione di imparare l'elettronica divertendosi.

#### Per radioamatori e CB

Convertitori - Filtri - Miscelatori e amplificatori RF - Vox - Ricevitori CB Amplificatori lineari - Strumenti ecc.

Dispositivi didattici e di ogni genere Dimostratori logici - Minicalcolatore logico binario - Cercametalli - Luci psichedeliche - Trasmettitori FM ecc.

Accessori per strumenti musicali Preamplificatore per chitarra Distorsori - Tremolo ecc.

#### Apparecchiature domestiche utilissime

Amplificatore telefonico - Allarmi antifurto - Rivelatore di gas Ozonizzatore ecc.

#### Apparecchiature Hi-Fi

Amplificatori - Preamplificatori -Alimentatori - Miscelatori Filtri Cross-over ecc.

## Dispositivi per radiocomando Trasmettitori - Ricevitori -

Gruppi canali ecc.

#### Strumenti di misura

Generatori - Frequenzimetri Analizzatori - Tester - Wattmetro Box di condensatori e di resistori -Capacimetro ecc.

#### Alcune novità per l'automobile

Accensione elettronica a scarica capacitiva - Temporizzatore per tergicristallo - Allarme antifurto per

SCONTO EXTRA 10% solo fino al 31 Maggio per chi acquista 3 kits per volta presso tutte le sedi



Da spedire a GBC Italiana - Casella postale 3988 - 20100 Milano

☐ Desidero ricevere il nuovo catalogo AMTRON e allo scopo allego L. 200 in francobolli per le spese di spedizione

## S 9 + R 5? Qui c'è sotto qualcosa! CHIARO E' UN ZETAGI

ERTA di LANCIO-OFFERTA di LANCIO-OFFE
del NUOVO LINEARE a valvole mod. BV130



#### CARATTERISTICHE:

Alimentazione: 220V 50 Hz Potenza uscita: 80 W AM-150SSB

Potenza ingresso: 1-5 W USA DUE VALVOLE Frequenza: 26 ÷ 30 MHz L. 93-500 84.000 IVA inclusa
Prezzo speciale solo fino
al 31 maggio FATE PRESTO!!!



#### **NUOVO LINEARE**

CB da mobile AM-SSB Input: 0,5 ÷ 4 W Output: 25 ÷ 30 W

L. 45.000 IVA inclusa

#### AMPLIFICATORI LINEARI

| MOD.                   | F. MHz  | AL.<br>Volt | Ass.<br>Amp. | Input<br>Watt | Output<br>Watt | Modulaz.<br>Tipo | Prezzo |
|------------------------|---------|-------------|--------------|---------------|----------------|------------------|--------|
| B 12-144<br>Transistor | 140-170 | 12-15       | 1,5-2        | 0,5-1         | 10-12          | AM-FM<br>SSB     | 42.500 |
| B 40-144<br>Transistor | 140-170 | 12-15       | 5-6          | 8-10          | 35-45          | AM-FM<br>SSB     | 79.000 |
| B 50<br>Transistor     | 25-30   | 12-15       | 3-4          | 1-4           | 25-30          | AM-SSB           | 45.000 |
| B 100<br>Transistor    | 25-30   | 12-15       | 6-7          | 1-4           | 40-60          | AM-SSB           | 93.500 |
| BV 130<br>a Valvole    | 25-30   | 220         | -            | 1-6           | 70-100         | AM-SSB           | 93.500 |

Spedizioni ovunque in contrassegno. Per pagamento anticipato s. sp. a nostro carico.

Consultateci chiedendo il nostro catalogo generale inviando L. 200 in francobolli.

L. 93.500 IVA inclusa

#### LINEARE MOBILE B 100

60 W AM-- 100 SSB Comando alta e bassa potenza Frequenza: 26 ÷ 30 MHz

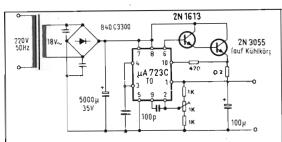


La **ZETAGI** ricorda anche la sua vasta gamma di alimentatori stabilizzati che possono soddisfare qualsiasi esigenza.



## ZETAGI

via E. Fermi, 8 - Tel. (039) 66.66.69 20059 VIMERCATE (MI)




23 CANALI CB +

2 CANALI IN SOLA RICEZIONE VHF QUARZATI CON BOLLETTINI METEOROLOGICI MARINA WX1 162550 WX2 162400

#### VI RICORDIAMO CHE DISPONIAMO

| pace 10/2<br>pace 100/                                                                 |                                                                                                                | <b>QUARZI</b><br>27 MHz tutti i canali dal 1° al 35° |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| pace 123/<br>pace 130<br>pace 2300<br>pace 130/<br>pace CB 7<br>pace SSBM<br>pace SSBM | 24 canali quarzati Motoro 24 canali*** the best 48 canali quarzati Motoro 65 Stazione base*** 69 canali mobile | 37550<br>37000                                       |



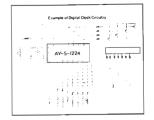
#### ALIMENTATORE PROFESSIONALE REGOLABILE

Da 9 a 18V 3A.

Kit completo di trasformatore e circuito stampato

L. 11.500 - Solo trasf. 18V 3A. L. 5.000

## 4-digit clock microcircuit. AY-5-1224


Features

16 lead DIL package – therefore inexpensive.

Hours and minutes display. ☐ 7 segment outputs with easy interface to all display types – for home and office clocks. BCD outputs for instrumentation

plications Reset facility—for process timers. Wide voltage range - allows use

of simple power supply 12/24 hour operation. ☐ 50/60 Hz clock



L. 5.750

cad. L. 900

cad. L. 1.350

L. 14.000

L. 58.000 L. 14.000 L. 17.000

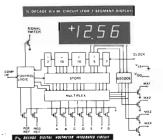
PANAPLEX PANEL DISPLAY Display multiplo a 10 digit, 7 segmenti a gas di uso universale.

TRIAC 400v. 7 A.

ICL 8038 INTERS!L

da 0,001 Hz a 1,5 MHz.

2N3055 orig. SOLITRON


Alimentazione 180V. Viene fornito completo di foglio di applicazione.

Fornito con schema di applicazione

L. 9.500

### **NOVITA'!**

DV5 · 8007



Digital voltmeter. Unico chip Mos. Integrazione a doppia rampa.

Pilota direttamente un display a 4 digit. 7 seamenti. Indicazione automatica di polarità e

OVERRANGE. Completo di data sheet. L. 9.800

MEM 780 MULTIFET L. 3.500

ITT 7120 clock gen. e P.S. L. 3.500

DIODI LED Ø 5 mm

L. 300 Rosso diffuso L. 400 L. 400 Giallo diffuso Verde diffuso

ZOCCOLI per IC L. 350 14 PIN L. 400 16 PIN

| CIRCUITI INT     | ΓEG | RATI   |
|------------------|-----|--------|
| 95H90            | L.  | 12.000 |
| NE556            | L.  | 2.300  |
| NE 555           | L.  | 1.200  |
| IL 74 optcoupler | L.  | 1.300  |
| :µA 723 TO-DIL   | L.  | 950    |
| µA 741 TO-DIL    | L.  | 800    |

| 000 | MM5314 orologio a 6 digit                 |
|-----|-------------------------------------------|
| 300 |                                           |
|     | ICM7045 cronometro digitale multifunzioni |
| 200 | C550 calcolatore a 8 digit                |
| 300 |                                           |
| 000 | MM50250 orologio con sveglia              |

ZN414 Ferranti, IC per RX 27 MHz etc. 2.950

CASIO fxII scientific calculator

Generatore di funzioni e VCO in unico chip 16 pin. Può generare contemporaneamente 3 forme d'onda,

**CIRCUITI INTEGRATI MOS** 

4 operazioni - più 8 funz. triaonom, piu pi-areco



#### L. 68.000

2SC1017 L. 2.000

|     | 2SC710           | L. | 250   | 2SC1018 | L. | 2.500 |
|-----|------------------|----|-------|---------|----|-------|
| ł   | 2SC712           | L. | 250   | 2SC1096 | L. | 1.800 |
| )   | 2SC774           | L. | 1.200 | 2SC1307 | L. | 7.800 |
|     | 2SC775           | L. | 1.800 | 2SC1591 | L. | 9.500 |
|     | 2SC778           | L. | 3.500 | 2SD235  | L. | 1.800 |
| : + | 2SC799           | L. | 3.000 | 2SK30   | L. | 950   |
| Ιl  | 2SC799<br>2SC839 | L. | 250   | 3SK40   | L. | 950   |

**JAPAN TRANSISTORS** 

2N3375 solo L. 4.500!

7-Seament

LM309k

SOLIDO DL 747 L. 3.950

per 6 pezzi

per 6 pezzi

L. 3.700 cad.

DL 707 L. 2.650

**Displays** 

DISPLAY A STATO

L. 2.400 cad.

altezza cifra 16 mm

altezza cifra 8 mm

OROLOGIO DIGITALE in kit di montaggio solo L. 36.000

Segna ore, minuti, secondi. impiega un MOS-LSI MM5314 protetto, e 6 digi a stato solido DL707.

Completo di circuito stampato e trasformatore.

Non si fanno spedizioni per ordini inferiori a L. 4.000 Spedizione contrassegno maggiorazione **L. 600**PREZZI SPECIALI PER INDUSTRIE, fare richieste specifiche.

VIA CASTELLINI 23 22100 COMO TEL. 031/278044

## **Batterie dryfit**





Le batterie dryfit sono accumulatori ermetici ricaricabili del tipo piombo - acido solforico che non necessitano di manutenzione.

Si distinguono per la loro grande stabilità con funzionamento a cicli. Sono la fonte ideale di energia per tutti gli apparecchi portatili indipendenti dalla rete e particolarmente indicate per un'utilizzazione stazionaria: la loro lunga durata le rende inoltre adatte all'alimentazione di soccorso in parallelo degli impianti elettrici.

**ACCU ITALIA SPA** Accumulatori Sonnenschein

Calderara di Reno (Bo) via Armaroli, 12 Tel. 72.25.02 - telex 51536

## INDUSTRIA Wilbikit ELETTRONICA

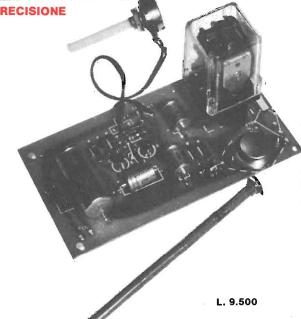
salita F.IIi Maruca - 88046 LAMEZIA TERME - tel. (0968) 23580

SCATOLE DI MONTAGGIO ELETTRONICHE

ECCEZIONALE TERMOSTATO DI ALTISSIMA PRECISIONE

**KIT N. 42** 

#### TERMOSTATO DI PRECISIONE AL 1/10 DI GRADO


Questa scatola di montaggio è un termostato sensibilissimo alle variazioni dei decimi dei gradi <sup>o</sup>C. Vi sono infatti molti casi in cui è necessaria una precisione assoluta di temperatura, come negli acquari dove esistono specie di pesci delicatissimi che risentono delle variazioni di temperatura, o nelle incubatrici di pollicultura, e passando nel campo fotografico nei bagni di sviluppo, dove si presenta sempre il problema di mantenere costante la temperatura specialmente per le fotografie a colori.

Lo stesso vale per i bagni chimici e galvanici, per i forni, per le stufe ecc. La **WILBIKIT** ha creato questa scatola di montaggio che mediante l'uso dei moderni componenti elettronici S.C.R., termistori ecc. presenta una precisione assoluta alle variazioni dei decimi di gradi <sup>o</sup>C di temperatura.

Protezione contro i corti circuiti di polarizzazione, con ricerca elettronica della polarità automatica.

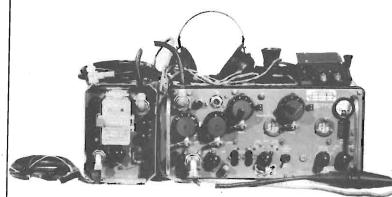
#### CARATTERISTICHE TECNICHE

Alimentazione 9-15 V ca
Precisione ± 1/10 °C
Max corrente di commutazione 5 A
Temperatura min. 5 °C
Temperatura max 120 °C
Assorbimento max 250 mA
Sonda in dotazione



| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kit N. 1 - Amplificatore 1.5 W Kit N. 2 - Amplificatore 6 W R.M.S. Kit N. 3 - Amplificatore 10 W R.M.S. Kit N. 3 - Amplificatore 15 W R.M.S. Kit N. 4 - Amplificatore 30 W R.M.S. Kit N. 5 - Amplificatore 30 W R.M.S. Kit N. 6 - Amplificatore 30 W R.M.S. Kit N. 6 - Amplificatore 50 W R.M.S. Kit N. 7 - Preamplificatore Hi-Fi alta impedenza Kit N. 8 - Alimentatore stabilizzato 800 mA 6 Vcc Kit N. 9 - Alimentatore stabilizzato 800 mA 7.5 Vcc Kit N. 10 - Alimentatore stabilizzato 800 mA 9 Vcc Kit N. 11 - Alimentatore stabilizzato 800 mA 15 Vcc Kit N. 12 - Alimentatore stabilizzato 800 mA 15 Vcc Kit N. 13 - Alimentatore stabilizzato 2A 6 Vcc Kit N. 14 - Alimentatore stabilizzato 2A 7.5 Vcc Kit N. 15 - Alimentatore stabilizzato 2A 12 Vcc Kit N. 16 - Alimentatore stabilizzato 2A 12 Vcc Kit N. 17 - Alimentatore stabilizzato 2A 15 Vcc Kit N. 18 - Riduttore di tensione per auto 800 mA 6 Vcc Kit N. 19 - Riduttore di tensione per auto 800 mA 7.5 Vcc Kit N. 20 - Riduttore di tensione per auto 800 mA 9 Vcc Kit N. 21 - Luci a frequenza variabile 2.000 W Kit N. 22 - Luci psichedeliche 2.000 W canali medi Kit N. 23 - Luci psichedeliche 2.000 W canali alti Kit N. 25 - Variatore di tensione alternata 2.000 W Kit N. 26 - Carica 'batteria automatico regolabile da | L. 3.500<br>L. 6.500<br>L. 8.500<br>L. 14.500<br>L. 14.500<br>L. 16.500<br>L. 3.850<br>L. 3.850<br>L. 3.850<br>L. 3.850<br>L. 3.850<br>L. 7.800<br>L. 7.800<br>L. 7.800<br>L. 7.800<br>L. 7.800<br>L. 7.800<br>L. 7.800<br>L. 2.500<br>L. 2.500<br>L. 2.500<br>L. 2.500<br>L. 2.500<br>L. 4.300<br>L. 6.500<br>L. 6.500<br>L. 4.300 | Kit N. 28 - Antifurto automatico per automobile Kit N. 29 - Variatore di tensione alternata 8000 W Kit N. 30 - Variatore di tensione alternata 20.000 W Kit N. 31 - Luci psichedeliche canale medi 8000 W Kit N. 32 - Luci psichedeliche canale alti 8000 W Kit N. 32 - Luci psichedeliche canale alti 8000 W Kit N. 33 - Luci psichedeliche canale bassi 8000 W Kit N. 34 - Alimentatore stabilizzato 22 V 1,5 A per Kit N. 35 - Alimentatore stabilizzato 33 V 1,5 A per Kit N. 35 - Alimentatore stabilizzato 55 V 1,5 A per Kit N. 36 - Alimentatore Hi-Fi bassa impedenza Kit N. 37 - Preamplificatore Hi-Fi bassa impedenza Kit N. 38 - Alim. stab. variabile 4-18 Vcc con prote- zione S.C.R. 3A Kit N. 39 - Alim. stab. variabile 4-18 Vcc con prote- zione S.C.R. 5A Kit N. 40 - Alim. stab. variabile 4-18 Vcc con prote- zione S.C.R. 8A Kit N. 41 - Temporizzatore da 0 a 60 secondi Kit N. 42 - Termostato di precisione al 1/10 di grado Kit N. 43 - Variatore crepuscolare in alternata con fo- fotocellula Kit N. 44 - Variatore crepuscolare in alternata con fo- fotocellula Kit N. 45 - Luci a frequenza variabile 8.000 W Kit N. 46 - Temporizzatore profess. da 0-45 secondi, 0-3 minuti, 0-30 minuti Kit N. 47 - Micro trasmettitore FM 1 W Kit N. 48 - Preamplificatore stereo per bassa o alta impedenza | L. 19.500<br>L. 9.600<br>L. 18.500<br>L. 12.500<br>L. 12.500<br>L. 5.500<br>L. 5.500<br>L. 7.500<br>L. 12.500<br>L. 15.500<br>L. 15.500<br>L. 15.500<br>L. 15.500<br>L. 15.500<br>L. 15.500<br>L. 17.500<br>L. 17.500<br>L. 17.500<br>L. 17.500 |
| 0,5A a 5A  Kit N. 27 Antifurto superautomatico professionale per casa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. 16.500<br>L. 28.000                                                                                                                                                                                                                                                                                                              | Kit N. 49 - Amplificatore 5 transistor 4 W Kit N. 50 - Amplificatore stereo 4+4 W KM N. 51 - Preamplificatore per luci psicadeliche L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L. 5.500<br>L. 9.800<br><b>7.500</b>                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |

Per le caratteristiche più dettagliate dei Kits vedere i numeri precedenti di questa Rivista.


I PREZZI SONO COMPRENSIVI DI I.V.A.

Assistenza tecnica per tutte le nostre scatole di montaggio. Già premontate 10% in più. Le ordinazioni possono essere fatte direttamente presso la nostra casa. Spedizioni contrassegno o per pagamento anticipato oppure sono reperibili nei migliori negozi di componenti elettronici. Cataloghi e informazioni a richiesta inviando 450 lire in francobolli.

## Signal di ANGELO MONTAGNANI

Aperto al pubblico tutti i giorni sabato compreso ore 9 - 12,30 15 - 19,30

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22 8238



#### TRANSCEIVER TYPE 19-MK-IV

Portata: In fonia 45 - Watt portata in grafia 90 - Watt. Ricetrasmettitore con copertura a frequenza continua da 1.6 - Mc, a 10-Mc.

Gamma: suddivisa in due settori: 1º Settore copertura di frequena da 1.6 - Mc. - fino a 4 - Mc. continui;

 $2^{\circ}$  Settore copertura di frequenza da 4 Mc. - fino a 10-Mc. continui.

Si possono effettuare anche delle trasmissioni fisse a cristallo sempre compreso la copertura dell'apparato e dietro richiesta cristalli. Il suddetto può operare separatamente in grafia ed fonia.

#### Valvole che impiega e che sono installate nel Transceiver:

VIENE FORNITO MANUALE TECNICO = ORIGINALE

| V 2<br>V 4<br>V 5<br>V 7 | - Valvola<br>- Valvola<br>- Valvola<br>- Valvola<br>- Valvola<br>- Valvola | termoionica<br>termoionica<br>termoionica<br>termoionica<br>termoionica<br>termoionica<br>termoionica | tipo<br>tipo<br>tipo<br>tipo<br>tipo<br>tipo | ECH81<br>EF92<br>EF92 | CV131<br>CV2128<br>CV131<br>CV131<br>CV452<br>CV136<br>CV2128<br>CV138 | 6CQ6<br>6CQ6<br>6AT6<br>6AM5 |
|--------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|------------------------------------------------------------------------|------------------------------|
|                          |                                                                            |                                                                                                       |                                              |                       |                                                                        |                              |

V 9 - Valvola termoionica tipo EF91 - CV138 - 6AM6
V 10 - Valvola termoionica tipo 5B/254M - CV428
V 11 - Valvola termoionica tipo ECC83 - CV492 - 12AX7
V 12 - Valvola termoionica tipo 5B/254M - CV428
V 13 - Valvola termoionica tipo 5B/254M - CV428
V 14 - Valvola termoionica tipo EF92 - CV131 - 6C06
V 15 - Valvola termoionica tipo EF92 - CV131 - 6C06
V 16 - Valvola termoionica tipo EF91 - CV136 - 6AM5
V 17 - Valvola termoionica tipo EF91 - CV136 - 6AM5
V 17 - Valvola termoionica tipo UD143 - CV2293

Corredato del suo alimentatore originale funzionante a 24-Vot. c.c. Ricezione: assorbimento - 5 A - trasmissione CW-7.3-a-fonia-9 A Variometro di antenna per adattare qualsiasi tipo di antenna: Cuffia dynamica - e microfano magnetico: tasto telegrafico: Venduto al prezzo di lire: **150.000** + **20.000** i.p.





#### RADIO RICEVENTE E TRASMITTENTE TIPO WIRELESS-SET-62 - 19-MK-II -

35 W fonia 70 W grafia.

Frequenza ricoperta da 1.6 Mc fino a 10 Mc a sintonia continua variabile suddivisa in 2 scale commutabili: da 1.6 a 4 Mc e da 4 a 10 Mc. Corredato di n. 11 valvole termioniche così denominate:

n. 5 valvole tipo ARP12

n. 2 valvole tipo CV-65

n. 1 valvola tipo ARP-35-EF50

n. 1 valvola tipo ARTH2-ECH35

n. 1 valvola tipo VT-510

n. 1 valvola tipo AR8

Corredato del suo alimentatore a 12 V D.C. incorporato e corredato di connettore spinotto cavo e morsetti a coccodrillo; Viene fornito dei seguenti accessori: tasto telegrafico, cordone e spina, cuffia microfono, cordone e spina; manuale tecnico ed istruzioni per l'uso e impiego: variometro di antenna per accordare qualsiasi tipo di antenna verticale, filari ecc. (compreso la nostra antenna da 6 metri). Viene venduto: **FUNZIONANTE PROVATO COL-LAUDATO, AL PREZZO DI L. 70.000** più L. 10.000

per imballo e porto (escluso antenna).

## Signal di ANGELO MONTAGNANI Aperto al pubblico tutti i giorni sabato compreso ore 9 · 12.30 15 · 19 30

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22/8238



CONTINUA LA VENDITA ANTENNA CB 27 come inserzione n. 10-1974 - Lire 6.500 + 1.500

#### RADIO RECEIVER TYPE R.390/URR

Super Ricevitore Professionale adatto per radioamatori e telescriventisti. Sintonia continua digitale da 0,5 Mc. fino a 32 Mc. in n. 32 gamme d'onda. Per la sua selettività impiega originariamente filtri meccanici 4.-Impiega n. 26 valvole elettroniche compreso la sua regolatrice di tensione. La sua alimentazione è di 115 volt oppure 230 A.C. 48-62 periodi; VIENE VENDUTO FUNZIONANTE, PROVATO, COLLAUDATO e corredato del materiale: Altoparlante in cassetta metallica, Cuffia, Manuale tecnico TM.11-856-A. AL PREZZO DI LIRE 750.000 più LIRE 12.500 lmb. Porto, per spedizione aerea Lire 25.000.-

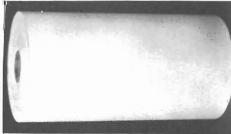


#### **RECEIVER RADIO R-392-URR DIGITAL**

RADIO RICEVENTE DIGITALE COPRE LA FREQUENZA DA 0,5 Mc fino a 32,0 Mc COPERTURA CONTINUA SUDDIVISA IN N. 32 GAMME D'ONDA CON RICERCA VARIABILE CORREDATO DEL SUO CONNETTORE DI ALIMENTAZIONE: ALIMENTAZIONE .C. 24 volt 5 ampere;

FUNZIONANTE PROVATO E CORREDATO DI MANUALE TECNICO **L.** 400.000 + 6.000 i.p.

ALIMENTATORE SEPARATO STABILIZZATO A 220 volt **L.** 65.000 + 6.000 i.p.


ALTOPARLANTE ORIGINALE 600 OHMS più CONNETTORE

t. 15.000  $\pm$  1.500 i.p.

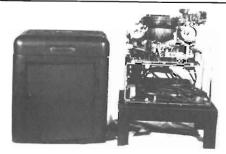
CUFFIA ORIGINALE 600 OHMS più JECK-CONN. L. 4.000 + 1.500 i.p. FUNZIONANTI PROVATI COLLAUDATI GARANTITI COME TUTTO IL MATERIALE VENDUTO



ROTOLI DI CARTA NASTRO ADATTI PER REPERFORATORS: ROTOLI DI CARTA NASTRO ADATTI PER TRASMETTITORI AUTOMATIC. ROTOLI DI CARTA NASTRO ADATTI PER TELEX: L. 2.000 PER OGNI ROTOLO + 1.500 i.p.

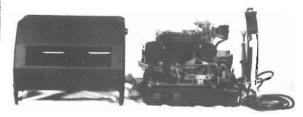


OTOLI DI CARTA BIANCA DA GR. 57 AL MQ PER TELESCRIVENTI E TELEX 210 mm Ø 110 mm NUOVI IMBALLATI 3.500 + 1.500 imb. e porto PER PIU' ROTOLI L'IMBALLO PORTO SARA' PARZIALE.


#### LISTINO GENERALE SURPLUS 1975 ILLUSTRATO

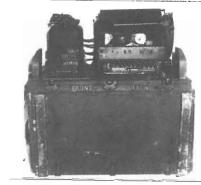
Costo L. 2.500 - compreso la sua spedizione: MEZZO STAMPE RACCOMANDATA. Ogni listino contiene un buono premio da L. 10.000 da spendere nei materiali riportati nel listino stesso. Potete inviare la cifra di L. 2.500 in francobolli o versamento sul conto corrente postale n. 22-8238 - 57100 LIVORNO

## Signal di ANGELO MONTAGNANI Aperto al pubblico tutti i giorni sabato compreso


ore 9 - 12,30

57100 LIVORNO - Via Mentana, 44 - Tel. 27.218 - Cas. Post. 655 - c/c P.T. 22 8238




TYPING AND NONTYPING REPERFORATOR TELETYPE MODEL 14-FPR23 CORREDATO DI COVER TYPE C.168 ALIMENTAZIONE: 115 volt - A.C. da 25 a 60 cycle ADATTO PER TELESCRIVENTI TG 7-A-B TT 7 e similari

L. 80.000 + 15.000 imb. e porto. FUNZIONANTE.



TYPING AND NONTYPING REPERFORATOR TELETYPE MODEL 14-FPR21 CORREDATO DI COVER ALIMENTAZIONE: 115 volt - A.C. da 25 a 60 cycle

L. 100.000 + 15.000 imb, e porto.

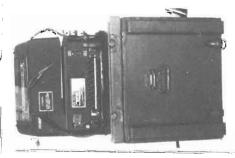


TYPING REPERFORATORS TRASMITTER DISTRIBUTOR TG 26A COMPOSTO DAI SEGUENTI MATERIALI CHE SOTTO VI ELENCHIAMO:

BASE OF CARRYING CHEST: Base in legno massiccio per supporto degli strumenti

FPR17 Typing reperforator unit con tastiera tipo TG 7 per scrivere il nastro. TRASMITTER DISTRIBUTOR per trasmettere il nastro perforato

abbinato TG 7


IL TUTTO RACCHIUSO IN CASSA DI LEGNO MASSICCIO ORI-GINALE CHE SERVE PER LA SUA PEDIZIONE IN TUTTE LE GINALE CHE SERVE PER LA SUA SPEDIZIONE IN TUTTE LE PARTI D'ITALIA

L. 225.000 + 25.000 imb. e porto.



RECEIVER TRASMITTER DISTRIBUTOR AUTOMATIC ALIMENTAZIONE 105-125 volt 25-60 cycle CORREDATO DI COFANO

L. 70.000 + 15.000 imb, e porto



TELESCRIVENTI TIPO TG 7-B ORIGINALI PROVATE COLLAUDATE A FOGLIO CORREDATE DI ROTOLO DI CARTA E RACCHIUSE IN ORIGINALE COFANO DI LEGNO

L. 150.000 + 12.500 imb, e porto

SPEDIZIONE VIA AEREA L. 25.000 TUTTA ITALIA

POSSIAMO FORNIRE A PARTE DEMODULATORI - CHIEDERE OFFERTA

cq - 5/75

## FANTIN

#### **ELETTRONICA**

SEDE: Via Fossolo, 38 c/d - 40138 BOLOGNA C. C. P. N. 8/2289 - Telefono 34.14.94

FILIALE: Via R. Fauro, 63 - Tel. 80.60.17 - ROMA

#### MATERIALE

| TRANSISTOR                                                                                                                                                             | FULSANTI normalmente aperti                                                                                                                                                  | L. 300                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2G398 L. 100   AD142 L. 650   BC302 L. 360                                                                                                                             | CAMBIOTENSIONI 220/120 V                                                                                                                                                     | L. 100                                   |
| 2N597 L. 100 AD161 L. 500 BC307A L. 200<br>2N711 L. 140 AF106 L. 200 BCY79 L. 250                                                                                      | INTERRUTTORI MAGNETICI 32 V / 40 A                                                                                                                                           | L. 800                                   |
| 2N1711 L. 300 AF124 L. 200 BD159 L. 580<br>2N3055 L. 850 AF126 L. 200 BD216 L. 800<br>2N3819 L. 600 AF202 L. 250 br194 L. 210<br>AC126 L. 200 ASZ11 L. 70 BF199 L. 250 | SIRENE ATECO — AD12: 12 V 11 A 132 W - 12100 giri/min 114 dl — ACB220: 220 Vca 0,8 A 165 W - 9.400 giri/min.                                                                 | L. 18.000                                |
| AC127 L 220 BC107 L 190 BF245 L 650<br>AC128 L 220 BC108 L 190 BFX17 L 950<br>AC180 L 80 BC109C L 210 BSX29 L 200                                                      | AMPLIFICATORE OLIVETTI 1,5 W - 8 $\Omega$ - 9 V - 70 x 23 x 15 mm                                                                                                            | L. 2.500                                 |
| AC138 L. 180 BC140 L. 330 BSX61A L. 190<br>AC188K L. 280 BC157 L. 200 OC80 L. 160<br>AC187K L. 280 BC158 L. 200 SFT226 L. 80<br>AC192 L. 150 BC178 L. 170 SF1227 L. 80 | ALTOP. T100 - 8 $\Omega$ / 4 W - Ø 100 per TVC ALTOP. 45 - 8 $\Omega$ - 0.1 - Ø 45 ALTOP. Philips ellitt. 70 x 155 - 8 $\Omega$ - 8 W ALTOP. PHILIPS bicono 8 $\Omega$ / 6 W | L. 700<br>L. 600<br>L. 1.800<br>L. 2.700 |
| AC180K - AC181K L. 500<br>AC141-AC142 in coppie selezionate L. 400                                                                                                     | FOTORESISTENZE PHILIPS B873107<br>RESISTENZE NTC 20 kΩ                                                                                                                       | L. 800<br>L. 150                         |
| OC72 in coppie selezionate la coppia L. 500                                                                                                                            | POTENZIOMETRI A GRAFITE                                                                                                                                                      | L. 150                                   |
| UNIGIUNZIONE 2N2646 L. 700<br>UNIGIUNZIONE 2N2647 L. 850                                                                                                               | <ul> <li>100 kB - 100 kC2 - 150 kA</li> <li>3+3 MA con int. a strappo - 1+1 MC con int</li> <li>10+10 MB - 2+2 MC - 200+200 kΩ Log</li> </ul>                                |                                          |
| PONTI RADDRIZZATORI E DIODI<br>B40C800 L. 350   1N4004 L. 145   EM513 L. 230<br>B40C2200 L. 600   1N4005 L. 160   BA181A L. 50                                         | COMMUTATORI ROTANTI 4 V - 3 pos. COMMUTATORE C.T.S. a 10 pos 2 settori, pern a comando indipendente (o unico). Alto isolament                                                | L. 500<br>i coassiali<br>o L. 700        |
| B80C2200 L. 800   1N4007 L. 200   1N5400 L. 250   1N20C4000 L. 1100   1N4148 L. 60   1N1199 (50 V/12 A)   1N4001 L. 100   OA95 L. 50   L. 603                          | SALDATORI A STILO PHILIPS per c.s. 220 V / 5 zione di attesa a basso consumo 25 W PUNTA DURATA                                                                               | 0 W. Posi-<br>A LUNGA<br><b>L. 5.500</b> |
| DIODI SIEMENS 400 V - 25 A su alette in alluminio pres-                                                                                                                | VALVOLE                                                                                                                                                                      |                                          |
| sofuso AUTODIODI IR 4AF2 e 4AF2R cad. L. 400 BULLONI DISSIPATORI per autodiodi e SCR L. 350                                                                            | QQC03/14 L 2.000 13CL6<br>5C110 L 2.000 17EM5<br>6FD5 L 600 19FD5                                                                                                            | L. 1.200<br>L. 800<br>L. 700             |
| DIODI LUMINESCENTI MV54 L. 550 DIODI LUMINESCENTI TELEFUNKEN con ghiera L. 600 DIODI LUMINESCENTI SENZA GHIERA L. 350                                                  | TRASMETTITORI DI MOTO SELSYN 115 V / 60 c/: — SYNCHRO type 23 CT6 a Galileo mm 100 x                                                                                         | s<br>50 Ø<br>a L. 18.000                 |
| PORTALAMPADE spia con lampada 12 V L. 450<br>PORTALAMPADA-SPIA, gemma quadra 24 V L. 400                                                                               | — MAGSLIP FERRANTI mm 145 x 85 Ø la coppi.  DINAMO TACHIMETRA GALILEO 40 V a 1000 gir mm 120 x 60 Ø                                                                          | a L. 22.000                              |
| LITRONIX DATA - LIT 33: 7 segmenti, 3 cifre L. 7.000                                                                                                                   | TRASFORMATORI alim. 125-160-220 V → 25 V - 1 A                                                                                                                               | L. 2.600                                 |
| NIXIE ITT5870S, verticali Ø 12 h 30 L. 2.600                                                                                                                           | TRASFORMATORI alim. 15 W - 220 V → 15 + 15 V<br>TRASFORMATORI alim. 25 W - 220 V → 15 + 15 V                                                                                 | L. 2.500<br>L. 3.000                     |
| QUARZI MINIATURA MISTRAL 27,120 MHz L. 1.000                                                                                                                           | TRASFORMATORI 125-220 - 25 V - 6 A TRASFORMATORI alim. 50 W - 220 V - 15 + 15 V/4 A                                                                                          | L. 6.000                                 |
| SN7400 L. 320   SN7525 L. 500   MC852P L. 400                                                                                                                          | TRASFORMATOR1 alim. 4 W 220 V → 6 + 6 V/400 m/                                                                                                                               | A L. 1.200                               |
| SN7475 L. 1050 μA709 L. 680 TAA621 L. 1200<br>SN7490 L. 950 μA723 L. 980 TBA810 L. 1600                                                                                | TRASFORMATORI alim. 5 W - Prim.: 125 e 220 V 15 V/250 mA e 170 V/8 mA                                                                                                        | - Second.:<br>L. 1.400                   |
| SN74141 L. 1150   µA741 L. 800   TAA611T L. 1000                                                                                                                       | VARIAC TRG102: Ingresso 220 V - Uscita 0÷20<br>0,2 KVA                                                                                                                       | 60 V 0,8 A<br>L. 13.000                  |
| ZOCCOLI per integrati per AF Texas, 14-16 piedini L. 350 ZOCCOLI in plastica per integrati                                                                             | ALIMENTATORI STABILIZZATI DA RETE 220 V                                                                                                                                      | 1 44 200                                 |
| - 7+7 piedini L. 200   - 7+7 pied. divaric. L. 250   - 8+8 pied. divaric. L. 300                                                                                       | 13 V / 1,5 A - non protetto<br>13 V / 2,5 A                                                                                                                                  | L. 11.200<br>L. 15.400                   |
| - 8+8 piedini L. 220   -8+8 pied. divaric. L. 300                                                                                                                      | 3.5÷15 V / 3 A, con Voltmetro e Amperometro<br>13 V / 5 A, con Amperometro                                                                                                   | L. 30.500<br>L. 31.000                   |
| DIODI CONTROLLATI AL SILICIO                                                                                                                                           | 4,5÷25 V / 5 A max con strumento AV                                                                                                                                          | L. 28.000                                |
| 100V 8A L. 700   300V 8 A L. 950   400V 3A L. 800<br>200V 8A L. 850   200 V 3 A L. 700   60V - 0.8A L. 450                                                             | RICETRASMETTITORI DUCATI per ponti radio,                                                                                                                                    | frequenza                                |
| TRIAC Q4004 (400 V - 4.5 A)  L. 1.200 L. 1.500                                                                                                                         | 150÷175 MHz - 12 W 6 canali - completi di<br>alimentatore da rete-luce e alimentatore elevate<br>storizzato a 12 Vcc                                                         | ore transi-<br>L. 126.000                |
| TRIAC Q4006 (400 V - 6,5 A) L. 1,500 TRIAC Q4010 (400 V / 10 A) L. 1,700 DIAC GT40 L. 300                                                                              | CONFEZIONE gr. 30 stagno al 60 % Ø 1,5                                                                                                                                       | L. 350                                   |
| FILTRI RETE ANTIDISTURBO ICAR 250 Vca - 0,6 A L. 500                                                                                                                   | STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 0,5<br>STAGNO al 60 % Ø 1 in rocchetti da Kg. 1                                                                                     | L. 3.000<br>L. 6.200                     |
| ZENER 400 mW - 3,3 V - 5,1 V - 6 V - 6,8 V - 7,5 V - 9 V -                                                                                                             | STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 3,5                                                                                                                                 | L. 19.000                                |
| 12 V - 20 V - 23 V - 28-V - 30 V L. 180<br>ZENER 1 W - 5 % - 4,7 V - 9 V - 11 V - 12 V - 15 V - 18 V L. 250                                                            | PACCO da 100 resistenze assortite da 100 condensatori assortiti da 100 ceramici assortiti                                                                                    | L. 900<br>L. 900<br>L. 900               |
| MICRODEVIATORI 1 via L. 800                                                                                                                                            | da 40 elettrolitici assortiti                                                                                                                                                | L. 1.200                                 |
| MICRODEVIATORI 2 vie L. 1.000 DEVIATORI UNIPOLARI L. 350                                                                                                               | CONTATTI REED in ampolla di vetro<br>— lunghezza mm 20 - Ø 3                                                                                                                 | L. 550                                   |
| COMMUTATORI a levetta a 2 pos. L. 400                                                                                                                                  | — lunghezza mm 28 - Ø 4                                                                                                                                                      | L. 300<br>L. 250                         |
| INTERRUTTORI a levetta 250 V - 2 A L. 260                                                                                                                              | — lunghezza mm 48 - Ø 6                                                                                                                                                      |                                          |
| Le spese di spedizione (sulla base delle vigenti tariffe postali) e<br>LE SPEDIZIONI VENGONO FATTE SOLO DALLA SEDE DI BOLOG                                            | e le spese di imballo, sono a totale carico dell'a<br>NA NON DISPONIAMO DI CATALOGO.                                                                                         | acquirente.                              |
| 255                                                                                                                                                                    |                                                                                                                                                                              |                                          |

| NUOVO                                                                                                                                                                                                                                                                                                                         |                              |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|
| NUUVU                                                                                                                                                                                                                                                                                                                         |                              |                                                                       |
| FULSANTI normalmente aperti                                                                                                                                                                                                                                                                                                   | L.                           | 300                                                                   |
| CAMBIOTENSIONI 220/120 V                                                                                                                                                                                                                                                                                                      | L.                           | 100                                                                   |
| INTERRUTTORI MAGNETICI 32 V / 40 A                                                                                                                                                                                                                                                                                            | L.                           | 800                                                                   |
| SIRENE ATECO  — AD12: 12 V 11 A 132 W - 12100 giri/min 114 dE  — ACB220: 220 Vca 0,8 A 165 W - 9.400 giri/min.                                                                                                                                                                                                                | - 11                         | 15.000<br>5 dB<br>18.000                                              |
| AMPLIFICATORE OLIVETTI 1,5 W - 8 Ω - 9 V - α<br>70 × 23 × 15 mm                                                                                                                                                                                                                                                               | limer<br>L.                  | 2.500                                                                 |
| ALTOP. T100 - 8 Ω / 4 W - Ø 100 per TVC                                                                                                                                                                                                                                                                                       | Ļ.                           | 700<br>600                                                            |
| ALTOP. $45 - 8\Omega = 0.1 - \emptyset - 45$<br>ALTOP. Philips ellitt. $70 \times 155 - 8\Omega - 8W$                                                                                                                                                                                                                         | L.<br>L.                     | 1.800                                                                 |
| ALTOP. PHILIPS bicono 8 12 / 6 W                                                                                                                                                                                                                                                                                              | - L.<br>-                    | 2.700                                                                 |
| FOTORESISTENZE PHILIPS B873107<br>RESISTENZE NTC 20 kΩ                                                                                                                                                                                                                                                                        | Ľ                            | 150                                                                   |
| POTENZIOMETRI A GRAFITE                                                                                                                                                                                                                                                                                                       |                              |                                                                       |
| 100 kB 100 kC2 - 150 kA                                                                                                                                                                                                                                                                                                       | L.                           | 150<br>250                                                            |
| - 3+3 MA con int. a strappo - 1+1 MC con int<br>- 10+10 MB - 2+2 MC - 200+200 kΩ Log                                                                                                                                                                                                                                          | Ľ.                           | 200                                                                   |
| COMMUTATORI POTANTI AV. 3 DOS                                                                                                                                                                                                                                                                                                 | L.                           | 500                                                                   |
| COMMUTATORE C.T.S. a 10 pos 2 settori, perni<br>a comando indipendente (o unico). Alto isolamento                                                                                                                                                                                                                             | coa                          | ssiali<br><b>700</b>                                                  |
| CALDATORI A STILO PHILIPS per CS 220 V / 5                                                                                                                                                                                                                                                                                    | W.                           | Posi-                                                                 |
| zione di attesa a basso consumo 25 W PUNTA                                                                                                                                                                                                                                                                                    | A للا<br>د.                  | JNGA<br>5.500                                                         |
| DURATA                                                                                                                                                                                                                                                                                                                        |                              | 3.300                                                                 |
| VALVOLE<br>QQC03/14 L 2.000   13CL6                                                                                                                                                                                                                                                                                           | L.                           | 1.200                                                                 |
| 5C110 L. 2.000 17EM5                                                                                                                                                                                                                                                                                                          | L.                           | 800<br>700                                                            |
| 6FD5 L. 600   19FD5  TRASMETTITORI DI MOTO SELSYN 115 V / 60 c/s                                                                                                                                                                                                                                                              | L.                           | 700                                                                   |
| SYNCHRO type 23 CT6 a Galileo mm 100 x la coppie  — MAGSLIP FERRANTI mm 145 x 85 Ø la coppie  DINAMO TACHIMETRA GALILEO 40 V a 1000 giri mm 120 x 60 Ø                                                                                                                                                                        | L. 2                         | เพ.บบบ.                                                               |
| TRASFORMATORI alim. 125-160-220 V→25 V - 1 A TRASFORMATORI alim. 15 W - 220 V→15+15 V TRASFORMATORI alim. 25 W - 220 V→15+15 V TRASFORMATORI 125-220→25 V - 6 A TRASFORMATORI alim. 50 W - 220 V→15+15 V/4 A TRASFORMATORI alim. 4 W 220 V→6+6 V/400 mA TRASFORMATORI alim. 5 W - Prim.: 125 e 220 V 15 V/250 mA e 170 V/8 mA |                              | 2.600<br>2.500<br>3.000<br>6.000<br>4.200<br>1.200<br>cond.:<br>1.400 |
| VARIAC TRG102: Ingresso 220 V - Uscita 0÷26<br>0,2 KVA                                                                                                                                                                                                                                                                        | 0 V<br>L. 1                  | 0.8 A<br>13.000                                                       |
| 150 - 175 MHz - 12 W 6 canali - completi di                                                                                                                                                                                                                                                                                   | L. 1<br>L. 3<br>L. 3<br>freq | 11.200<br>15.400<br>80.500<br>81.000<br>28.000<br>uenza<br>ofono,     |
|                                                                                                                                                                                                                                                                                                                               | L. 12                        | 26.000                                                                |
| storizzato a 12 Vcc                                                                                                                                                                                                                                                                                                           | L.                           | 350                                                                   |
| storizzato a 12 Vcc<br>CONFEZIONE gr. 30 stagno al 60 % Ø 1,5                                                                                                                                                                                                                                                                 | L.<br>L.                     | 3.000                                                                 |
| storizzato a 12 Vcc  CONFEZIONE gr. 30 stagno al 60 % Ø 1,5  STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 0,5  STAGNO al 60 % Ø 1 in rocchetti da Kg. 1                                                                                                                                                                           | L.<br>L.<br>L. 1             | 3.000<br>6.200<br>19.000                                              |
| alimentatore da rete-luce e alimentatore elevatorizzato a 12 Vcc  CONFEZIONE gr. 30 stagno al 60 % Ø 1.5  STAGNO al 60 % Ø 1.5 in rocchetti da Kg. 0.5  STAGNO al 60 % Ø 1 in rocchetti da Kg. 1  STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 3.5  PACCO da 100 resistenze assortite                                             | L.<br>L.<br>L. 1             | 3.000<br>6.200<br>19.000                                              |
| STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 0,5 STAGNO al 60 % Ø 1 in rocchetti da Kg. 1 STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 1 STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 3,5                                                                                                                                                 | L.<br>L.<br>L.<br>L.<br>L.   | 3.000<br>6.200<br>19.000<br>900<br>900                                |
| STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 0,5 STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 1 STAGNO al 60 % Ø 1 in rocchetti da Kg. 1 STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 1 STAGNO al 60 % Ø 1,5 in rocchetti da Kg. 3,5  PACCO da 100 resistenze assortite da 100 condensatori assortiti                                     | L.<br>L.<br>L. 1             | 3.000<br>6.200<br>19.000<br>900                                       |

6 Vcc - 2 sc L. 1.200 - 12 Vac - 2 sc 12 V / 3 sc. - 3 A - mm 21x31x40 calotta plastica 12 V / 3 sc. - 6 A - mm 29x32x44 a giorno RELAYS MINIATURA 600 Ω / 12 V - 1 sc. RELAYS A GIORNO 220 Vca - 2 sc. - 15 A RELAYS A GIORNO 220 Vca - 4 sc. - 15 A VENTOLA A CHIOCCIOLA 220 Vca Ø 85-75 h MOTORINO « AIRMAX » 28 V MOTORINO LESA per mangianastri 6 ÷ 12 Vcc MOIORINO LESA 220 V a induzione, per giradischi, ventole, MOTORINO LESA a induzione, 110 - 140 - 220 V più 250 V per anodica eventuale; più 6,3 V con presa centrale per fila-MOTORINO LESA 220 V a spazzole, per spazzola elettrica, con ventola centrifuga in plastica L. 1.500 MOTORINO LESA 220 V a spazzole per frullatore L. 1.300 MOTORINO LESA 125 V a spazzole, per macinacaffe L, 1,000 MOTORE LESA PER LUCIDATRICE 220 V/550 VA con ventola VENTOLE IN PLASTICA 4 pale con foro Ø 8.5 mm L. 400 CONTENITORE 16-15-8, mm 160x150x80 h, pannello anteriore CONTENITORE 16-15-19, mm 160x150x190 h pannello anteriore e posteriore in alluminio ANTENNA DIREZIONALE ROTATIVA a tre elementi ADR3 per 10-15-20 m completa di vernice e imballo ANTENNA VERTICALE AV1 per 10-15-20 m. completa di vernice e imballo ANTENNE per auto 27 MHz ANTENNE veicolari BOSCH per 144 MHz con base per il fissaggio, stilo in acciaio inox e con cavo di m 2 con connettori UHF. — KFA 582 in 5/8 λ - KEA 144/2 in  $\lambda/4$ ANTENNA GROUND-PLANE 27/28 MHz a 4 radiali L. 14.000 BALUN MOD. SA1: simmetrizzatore per antenne Yagi (ADR3) o dipoli a 1/2 onda — Ingresso 50  $\Omega$  sbilanciati - Uscita 50  $\Omega$  simmetrizzati — Campo di freq. 10÷30 MHz - Potenza max = 2000 W PEP CAVO COASSIALE RG8/U CAVO COASSIALE RG11 CAVO COASSIALE RG58/U CAVETTO SCHERMATO CPU1 per microfono, grigio, flessibile, plasticato RELAY ANTENNA Magnecraft 12 V - imp. ingr. e uscita 50 Ω RELAYS CERAMICI ALLIED CONTROL - 2 sc. - 12 V per commutazione d'antenna - Portata 10 A CONNETTORI COAX PL259 e SO239 RIDUTTORI per cavo RG58
DOPPIA FEMMINA VOLANTE PL258 CONNETTORI COASSIALI Ø 10 in coppia TIMER PER LAVATRICE con motorino 220 V 1,25 R.P.M. TRIMMER  $100 \Omega$  -  $300 \Omega$  -  $470 \Omega$  -  $1 k\Omega$  -  $2.2 k\Omega$  -  $5 k\Omega$  -22 k $\Omega$  - 47 k $\Omega$  - 100 k $\Omega$  - 220 k $\Omega$  - 470 k $\Omega$  - 1 Mohm L. 100 FUSIBILI della Littlefuse 0,25 A - Ø 6 mm. CUSTODIE in plastica antiurto per tester STRUMENTAZIONE AERONAUTICA DI BORDO - Termometro doppio 30÷150 °C con 2 sonde - Manometri per compressore 0,5 - 2kg/cm2 TRASFORMATORI E.A.T. STRUMENTI INDICATOR! MINIATURA a bobina mobile — 100 μA f.s. - scala da 0 a 10 lung. mm. 20 100 ILA f.s. - scala da 0 a 10 orizzontale STRUMENTI CHINAGLIA a.b.m. con 2 e 4 scale (dim. 80x90 - fore d'incasso Ø 48) con 2 deviatori incorporati, shunt a corredo - 2,5÷5 A/25÷50 V — 2.5÷5 A/15÷30 V AMPEROMETRI a ferro mobile 7,5 A f.s. oppure 90 A f.s.

MAGNETINI cilindrici per REED mm 20 x 4 Ø

RELAYS FINDER 6 A

L. 300

L. 1.000

L. 2.000

L. 2.000

L. 700

L. 1.000

L. 6.200

L 2 200

L. 2.200

L. 1.200

L. 1.400

L. 70.000

1 16 000

L. 8.500

L. 15.000

L. 12.000

L. 5.000

L. 3.000

L. 2 000

L. 300

L. 5 000

L. 1.500

L. 2.500

L. 1.900

L. 1.900

L 6,000

L. 6.000

L. 6.000

L. 1.800

600

200 L. 1.400

550

al metro L.

al metro L.

al metro L.

cad. L.

cad. L.

900

STRUMENTI A TERMOCOPPIA per radiofreguenza (15 MHz) - 8 A - Ø 65 mm ANALIZZATORE UNIVERSALE UNIMER 3, 20 kΩ/Vcc e 4 ksl/vca - con custodia. - tensioni continue: da 0,1 a 2000 V su 8 portate - correnti continue: da 50 uA a 5 A su 6 portate - tensioni alternate: da 2,5 a 1000 V su 5 portate - correnti alternate: da 250 μA a 2,5 A su 5 portate resistenze: da 1 Ω a 50 MΩ su 5 portate
 capacità: da 100 pF a 50 μF su 2 portate Dimensioni: mm 165 x 100 x 50 L. 15,000 PROVATRANSISTOR TST9: test per tutti i tipi di transistor PNP e NPN. Misura la Iceo, Ic su due livelli di polarizzazione di base e il β. Inoltre prova diodi SCR e TRIAC L. 13.800 CUFFIA STEREO TE-1035 / 8  $\Omega$  L. 8.000 CUFFIA STEREO SH-850 GX - 8  $\Omega$  / 0.2 W con potenziometri L. 8.000 a cursore per controllo volume L. 12.000 ATTACCO per batterie 9 V 50 SPINA SCHERMATA a 3 poli 150 SPINA SCHERMATA a 5 poli a 240° 200 PRESA BIPOLARE per allmentazione 150 SPINA BIPOLARE per alimentazione L. 200 PRESA PUNTO-LINEA L. 100 SPINA PUNTO-LINEA L. 120 BANANE rosse e nere L. 50 MORSETTI rossi e neri L. 300 SPINA JACK bipolare Ø 6.3 1 300 COPPIA PUNTALI per tester L. 800 MANOPOLE CON INDICE — Ø 23, colore marrone, per perni Ø 6 200 — Ø 13, colore avorio, per perni Ø 4 150 MANOPOLE PROFESSIONALI con indice, perno Ø 6 mm — G660NI - corpo nero - Ø 21 / h 15
 — H860 - corpo alluminio Ø 19 / h 17 280 — E415NI - corpo nero - Ø 23 / h 10 L. 320 340 - H840 - corpo alluminio - Ø 22 / h 16 — J300 - corpo alluminio - Ø 18 / h 23 440 — G630NI - corpo nero - Ø 21 / h 22 320 PIASTRE RAMATE PER CIRCUITI STAMPATI cartone bachelizzato mm 80 x 150 75 mm 232 x 45 230 L. L. mm 55 x 250 80 mm '85 x 165 700 450 mm 110 x 130 L. 100 mm 200 x 90 L. mm 100 x 200 120 mm 135 x 350 L. 1.100 vetronite dopplo rame mm 100 x 110 mm 140 x 185 L. 600 L. 1.150 mm 55 x 230 L. 140 mm 180 x 290 mm 110 x 145 160 mm 160 x 380 1.400 mm 180 x 135 250 mm 160 x 500 L. 1.800 VETRONITE modulare a bollini passo mm 5 - 180 x 120 L. 1.400 VETRONITE RAMATA mm 125 x 145 con foratura per connettore 17 poli L. 200 ALETTE per AC128 o simili 30 ALETTE per TO-5 in rame brunito 60 DISSIPATORI IN ALLUMINIO ANODIZZATO - per integrati dual-in-line 260 - per SCR e TRIAC plastici a stella per TO-5 150 - a ragno per TO-3 350 - a ragno per TO-66 350 DISSIPATORI ALETTATI IN ALLUMINIO — a doppio U con base piana cm 22 650 - a triplo U con base piana cm 37 L. 1.250 -- a quadruplo U con base piana cm 25 1.250 - con doppia alettatura liscio cm 22 L. 1.250 - con doppia alettatura zigrinata cm 17 L. 1.250 a grande superficie, alta dissipazione cm 13 L. 1.250 BATTERY TESTER RT967 L. 7,000 PULSANTIERE a 5 tasti collegati - 15 scambi ACCENSIONE ELETTRONICA Philips a scarica capacitiva L. 22,500 REGOLATORE ELETTRONICO per dinamo 12 V L. 5.000

## IN I ELETTRONICA

SEDE: Via Fossolo 38/c/d - 40138 BOLOGNA C. C. P. N. 8/2289 - Telefono 34.14.94

FILIALE: Via R. Fauro 63 - Tel. 80.60.17 - ROMA

- ca - 5/75

#### **SEGUE MATERIALE NUOVO**

| ELETTROLITICI                               | VALORE L                                    | IRE VALORE                                 | LIRE V           | /ALORE                        | LIRE   VALO        | RE LIRE                              |
|---------------------------------------------|---------------------------------------------|--------------------------------------------|------------------|-------------------------------|--------------------|--------------------------------------|
| VALORE LIRE                                 | 220 u.F / 16 V                              | 120 1000 µF / 25 V                         | <b>250</b> 50    | 00 μF / 50 V                  | <b>280</b> 16 μF   | / 250 V 170                          |
| 220 µF / 6.3 V 50                           |                                             | 170   2000 µF / 25 V                       |                  | 000 μF / 50 V                 |                    | / 250 V 190                          |
| 30 μF / 10 V 50                             | 2,2 μF / 16 V                               | 60 3000 μF / 25 V                          |                  | 000·μF / 50 V                 |                    | / 250 V 210                          |
| 1 μF / 12 V <b>50</b>                       | 10 μF / 16 V                                | 65 2 x 2000 μ / 2                          |                  | 000 μF / 50 V                 | <b>85</b> 0 150 μl | F / 250 V 380                        |
| 47 μF / 12 V <b>60</b>                      | 100 μF / 16 V                               | 85   32 μF / 30 V                          |                  | 000 μF / 50 V                 |                    | / 360 V 160                          |
| 100 μF / 12 V 90                            |                                             | 180 100 μF / 35 V                          |                  | 000 µF / 50 V                 |                    | / 350 V <b>200</b>                   |
| 150 μF / 12 V 100                           |                                             | 250 μF / 35 V                              |                  | ,5 μF / 70 V                  | <b>50</b> 32 μF    | / 350 V 240                          |
| 250 μF / 12 V 100<br>400 μF / 12 V 110      |                                             | 100   500 μF / 35 V<br>60   1000 μF / 35 V |                  | 2,5 μF / 70 V<br>50 μF / 70 V |                    | F / 350 V 600                        |
| 1500 µF / 12 V 140                          |                                             | 65 3 x 1000 μF / 33 V                      |                  | 000 μF / 70 V                 |                    | / 450 V 350<br>× 2/250 V 650         |
| 2500 µF / 12 V 250                          | 1.5 µF / 25 V                               | 60 3000 j.F / 35 V                         |                  | 600 µF / 100 V                |                    | / 500 V 250                          |
| 3000 µF / 12 V 270                          | 4.7 µF / 25 V                               | 70 6.8 µF / 40 V                           |                  | 000 µF / 100 V                | 1700 100 uF        | 7 350 V 350                          |
| 5000 μF / 12 V 430                          | 10 μF / 25 V                                | 70   0,47 μF / 50 V                        |                  | +47+47+100 μF                 | / 450 V            | 750                                  |
| 5 μF / 15 V 60                              |                                             | 40 10 μF / 50 V                            |                  | +100 μF / 350 \               |                    | 500                                  |
| 4000 μF / 12 V <b>350</b>                   |                                             | 90 5 μF / 50 V                             |                  | 4.100 + 60 ptF /              | 300 V              | L. 650                               |
| 5000 μF / 15 V 450  <br>10000 μF / 15 V 750 |                                             | 170   100 μF / 50 V<br>230 μF / 50 V       |                  | 20 μF / 500 V                 |                    | L. 350                               |
| 10000 μF / 15 V <b>750</b> j                | 500 μF / 25 V                               | 230   200 μF / 50 V                        | <b>220</b>   3 x | 50µF / 350 V                  |                    | L. 450                               |
| CONDENSATORI CERAMIC                        | CONDENSATO                                  | RI POLIESTERI                              | CONDENSATO       | DRI PASSANTI                  | 18-22-33-39-56-68  | 3 pF L. 80                           |
| 5,1 pF / 250 V L.                           | 15   2200 pF / 250                          |                                            | CONDENS. M       | OTORSTART 70                  | μF - 80 μF - 2     | 220 Vca L. 400                       |
|                                             | 20 4700 pF / 125 \                          |                                            | CONDENSATO       | ORI per Timer '               | 1000 µ / 70-80 V   | /cc L. 150                           |
|                                             | 20   6800 pF / 125 \<br>22   0.015 μF / 400 |                                            | COMPENSATO       | DRI AD ARIA F                 | HILIPS 3-30 pF     | L. 200                               |
|                                             | 22 0.013 µF / 1000                          |                                            |                  | ORI CERAMICI                  |                    |                                      |
|                                             | 22   0.068 μF / 400                         |                                            | COMPENSATO       | ORI CERAMICI                  | AD ARIA 50 cF      | , con manovella                      |
|                                             | 25 0.33 µF / 50 V                           | L. 100                                     | 001111 2110111   |                               | 12 Milh 00 pi      | L. 1.200                             |
|                                             | <b>28</b> 0,15 μF / 630 V                   |                                            |                  | D 4014 DUG44                  |                    |                                      |
|                                             | 30 0.22 µF / 125 \                          |                                            |                  | D ARIA DUCAT                  |                    |                                      |
|                                             | 45 0,27 μF / 630 \<br>80 0.47 μF / 250 \    |                                            | 2 x 440 dem.     | L. 250                        | 440 x 2+15 >       | k 2 dem. <b>L. 300</b>               |
|                                             | 20 0.47 µF / 250 V                          |                                            | VARIABILL DE     | ED TRACMICCIO                 | NE HAMMANIA        | IND - I - :                          |
|                                             | 52 0,82 μF / 160 V                          |                                            | lamento cera     | mico 100 pE /                 | 3000 V - dim       | JND ad aria, iso-<br>95 x 70 x 45 mm |
|                                             |                                             |                                            | Tamento cera     | 1111CO, 100 pt /              | 3000 V - UIIII.    | L. 4.200                             |
| CONDENSATORI CARTA-C                        | DLIO                                        | L. 300                                     |                  | 201 20110100                  |                    |                                      |
| — 2 μΓ - 400 Vca<br>— 3.15 μF - 400 Vca     |                                             | L. 350                                     |                  | DRI POLICARBO                 | NATO DUCATI        |                                      |
| 5 uF - 280 Vca                              |                                             | L. 400                                     | — 100 pF - 1     |                               |                    | L. 50                                |
| — 15 μF - 450 Vca                           |                                             | L. 1.000                                   | CONDENSATO       | ORI AL TANTAL                 | O 3,3 jtF - 35 \   | L. 120                               |
|                                             |                                             |                                            |                  |                               |                    |                                      |

#### MATERIALE IN SURPLUS

| SEMICONDUTTORI - OTTIMO SMONTAGG                                                                                                                                                                                                                                                                                                                                                       | 10                                        |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|
| 2N174 L. 400   AF144 L. 80   IW8907                                                                                                                                                                                                                                                                                                                                                    | L.                                        | . 50                                                                        |
| OC35 L. 300   ASZ11 L. 40   2015 (2N                                                                                                                                                                                                                                                                                                                                                   | 13055                                     | )                                                                           |
| 2N247 L. 80 2N1304 L. 50                                                                                                                                                                                                                                                                                                                                                               | L                                         | . 500                                                                       |
| ZENER 400 mW - 5,6 V                                                                                                                                                                                                                                                                                                                                                                   | L.                                        | 80                                                                          |
| ZENER 10 W - 5 % - 3,3 V                                                                                                                                                                                                                                                                                                                                                               | L.                                        | 250                                                                         |
| INTEGRATI TEXAS 204 - 1N8 - 3N3                                                                                                                                                                                                                                                                                                                                                        | L.                                        | 150                                                                         |
| POLIESTERI ARCO 0,1 µF / 250 Vca                                                                                                                                                                                                                                                                                                                                                       | L.                                        | 60                                                                          |
| AMPLIFICATORE DIFF. con schema VA711/C                                                                                                                                                                                                                                                                                                                                                 | L.                                        | 350                                                                         |
| MANOPOLE NERE per perni ∅ 6                                                                                                                                                                                                                                                                                                                                                            | _L                                        | 100                                                                         |
| PORTAFUSIBILI 6 x 30                                                                                                                                                                                                                                                                                                                                                                   | L.                                        | 100                                                                         |
| DEVIATORE DOPPIO a 2 tasti con mascherina                                                                                                                                                                                                                                                                                                                                              | illum                                     | ninata                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                  | L.                                        | 350                                                                         |
| TRASFORMATORI E e U per stadi finali da 300 r                                                                                                                                                                                                                                                                                                                                          | nW                                        |                                                                             |
| la coppia                                                                                                                                                                                                                                                                                                                                                                              | L.                                        | 500                                                                         |
| SOLENOIDI a rotazione 24 V                                                                                                                                                                                                                                                                                                                                                             | L.                                        | 2.000                                                                       |
| TRIMPOT 500 $\Omega$ - 50 $k\Omega$                                                                                                                                                                                                                                                                                                                                                    | L.                                        | 150                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 130                                                                         |
| CONNETTORI SOURIAU a elementi combinabili mi                                                                                                                                                                                                                                                                                                                                           | uniti                                     |                                                                             |
| spinotti da 25 A o 5 spinotti da 5 A numerati con                                                                                                                                                                                                                                                                                                                                      | att                                       | di 2<br>acchi                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                           | di 2                                                                        |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina.<br>TELERUTTORI KLOCKNER DIL-0 - 50/56                                                                                                                                                                                                                                                        | L.                                        | di 2<br>acchi<br>200<br>1.400                                               |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61                                                                                                                                                                                                                   | L.<br>L.                                  | di 2<br>acchi<br>200<br>1.400<br>1.500                                      |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina.<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61<br>BOBINE su polistirolo con schermo per TV e simil                                                                                                                                                              | L.<br>L.<br>L.                            | di 2<br>acchi<br>200<br>1.400<br>1.500                                      |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61                                                                                                                                                                                                                   | L.<br>L.                                  | di 2<br>acchi<br>200<br>1.400<br>1.500                                      |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina.<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61<br>BOBINE su polistirolo con schermo per TV e simil                                                                                                                                                              | L.<br>L.<br>L.                            | di 2<br>acchi<br>200<br>1.400<br>1.500<br>imen-<br>100                      |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61<br>BOBINE su polistirolo con schermo per TV e simil<br>sioni 20 x 20 x 50)<br>POTENZIOMETRI A GRAFITE lineari 100 kΩ<br>CONTACOLPI elettromeccanici 4 cifre - 12 V                                                | L.<br>L.<br>L.<br>i (di<br>L.<br>L.       | di 2<br>acchi<br>200<br>1.400<br>1.500<br>imen-<br>100<br>500               |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor<br>a saldare. Coppia maschio e femmina.<br>TELERUTTORI KLOCKNER DIL-0 - 50/56<br>TELERUTTORI KLOCKNER DIL-0 - 52/61<br>BOBINE su polistirolo con schermo per TV e simil<br>sioni 20 x 20 x 50)<br>POTENZIOMETRI A GRAFITE lineari 100 kΩ<br>CONTACOLPI elettromeccanici 4 cifre - 12 V<br>CONTACOLPI elettromeccanici 5 cifre - 24 V | L.<br>L.<br>i (di<br>L.<br>L.<br>L.       | di 2<br>acchi<br>200<br>1.400<br>1.500<br>imen-<br>100<br>500<br>500        |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor a saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER DIL-0 - 50/56 TELERUTTORI KLOCKNER DIL-0 - 52/61 BOBINE su polistirolo con schermo per TV e simil sioni $20 \times 20 \times 50$ ) POTENZIOMETRI A GRAFITE lineari $100 \text{ k}\Omega$ CONTACOLPI elettromeccanici 4 cifre - 12 V CONTACOLPI SODECO 4 cifre - 24 V       | i (di<br>L.<br>L.<br>L.<br>L.<br>L.<br>L. | di 2<br>acchi<br>200<br>1.400<br>1.500<br>imen-<br>100<br>500<br>500<br>800 |
| spinotti da 25 A o 5 spinotti da 5 A numerati cor a saldare. Coppia maschio e femmina. TELERUTTORI KLOCKNER DIL-0 - 50/56 TELERUTTORI KLOCKNER DIL-0 - 52/61 BOBINE su polistirolo con schermo per TV e simil sioni $20 \times 20 \times 50$ ) POTENZIOMETRI A GRAFITE lineari $100 \text{ k}\Omega$ CONTACOLPI elettromeccanici 4 cifre - 12 V CONTACOLPI SODECO 4 cifre - 24 V       | L.<br>L.<br>i (di<br>L.<br>L.<br>L.       | di 2<br>acchi<br>200<br>1.400<br>1.500<br>imen-<br>100<br>500<br>500<br>800 |

| VENTOLA DOPPIA CHIOCCIOLA 220 V<br>VENTOLA DOPPIA CHIOCCIOLA 115 V<br>MOTORINO con ventola 115 V<br>MOTORINO a spazzole 12 V o 24 V / 38 W - 9                                                                          | L.             | 5.500<br>2.500<br>r.p.m. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|
| CAPSULE TELEFONICHE a carbone AURICOLARI TELEFONICI AURICOLARI per cuffie U.S.A. 40 $\Omega$                                                                                                                            | L.<br>L.<br>L. | 250<br>200<br>300        |
| SCHEDA OLIVETTI con 2 x ASZ18 SCHEDA OLIVETTI con circa 80 transistor al SI diodi, resistenze, elettrolitici ecc. 20 SCHEDE OLIVETTI assortite 30 SCHEDE OLIVETTI assortite SCHEDA OLIVETTI per calcolatori elettronici | L.<br>L.       | 2.000<br>2.500<br>3.500  |
| STRUMENTI AERONAUTICI DI BORDO                                                                                                                                                                                          |                | _                        |
| <ul> <li>manometri</li> <li>indicatori carburante</li> <li>indicatori multipli</li> </ul>                                                                                                                               | L.             | 800<br>1.500<br>2.500    |
| REAY IBM, 1 sc 24 V, custodia metallica, zoccodini                                                                                                                                                                      | lo<br>L.       | 5 pie-                   |
| PACCO 3 kg di materiale elettronico assortito                                                                                                                                                                           | L.             | 3.000                    |
| CONNETTORI IN COPPIA 17 POLI tipo Olivetti                                                                                                                                                                              | L.             | 300                      |
| CONNETTORI AMPHENOL a 22 contatti per piastrine                                                                                                                                                                         | L.             | 150                      |
| INTERRUTTORI a mercurio                                                                                                                                                                                                 | L.             | 400                      |
| CONTAGIRI meccanici a 4 cifre                                                                                                                                                                                           | L.             | 500                      |
| CONDENSATORI         ELETTROLITICI           50 μF / 100 V         L.         50   90.000 μF / 20 V           5000 μF / 25 V         L.         350   160.000 μF / 10 V                                                 | L.<br>L.       | 900<br>900               |

## FANTINI ELETTRONICA

SEDE:

Via Fossolo 38/c/d - 40138 BOLOGNA C. C. P. N. 8/2289 - Telefono 34.14.94

FILIALE: Via R. Fauro 63 - Tel. 80.60.17 - ROMA

parma, via alessandria, 7 tel. 0521-34'758



#### AL 720

TENSIONE D'INGRESSO: 220 Vc.a. - 50 Hz. TENSIONE D'USCITA: 12,6 Vc.c. CORRENTE: 2A max. STABILITA': migliore del 2% in variazione di rete del 10% o del carico da 0 a 2A PROTEZIONE: elettronica a limitatore di corrente RIPPLE: 1 mV con carico 2A

#### AL 721

TENSIONE D'INGRESSO: 220 Vc.a. - 50 Hz. TENSIONE D'USCITA: regolaz. continua da 5 a 15 Vc.c. CORRENTE: 2,5A max. STABILITA': migliore del 2% in variazione di rete del 10% o del carico da 0 a 2,5A PROTEZIONE: elettronica a limitatore di corrente





RIPPLE: 1 mV con carico 2A

#### AL 721 - S

TENSIONE D'INGRESSO: 220 Vc.a. - 50 Hz. TENSIONE D'USCITA: regolaz, continua da 5 a 15 Vc.c. CORRENTE: 2,5A max. STABILITA': migliore del 2% in variazione di rete del 10% o del carico da 0 a 2.5A DA U a 2,5A
PROTEZIONE: elettronica a limitatore di corrente RIPPLE: 1 mV con carico 2A

#### AL 722

TENSIONE D'INGRESSO: 220 Vc.a. - 50 Hz. TENSIONE D'USCITA: regolazione continua da 8 a 30 Vc.c. CORRENTE: 5 A a 15 V. max. e 2,5 A a 30 V. max. STABILITA': migliore del 2% in variazione di rete del 10% o del carico da 0 al massimo PROTEZIONE: elettronica a limitatore di corrente

RIPPLE: 2 mV a pieno carico



#### AL 722 - S

TENSIONE D'INGRESSO: 220 Vc.a. - 50 Hz. TENSIONE D'USCITA: regolazione continua da 8 a 30 Vc.c. CORRENTE: 5 A a 15 V. max. e 2,5 A a 30 V. max. STABILITA': migliore del 2% in variazione di rete del 10% o del carico da 0 al max. PROTEZIONE: elettronica a limitatore di corrente RIPPLE: 2 mV a pieno carico



#### PUNTI DI VENDITA

CATANZARO CESENA CDSENZA FIRENZE GENOVA PALERMO PALERMO PIACENZA ROMA ROMA SALERNO SIRACUSA TARANTO TERNI TORINO

S.A.R.R.E. s.n.c. Bacchilega G. - via Ferrarese, 110 ELETTRONICA TERESA - via XX Settembre CASA DELL'AUTORADIO - v.le Marconi, 243 FRANCO ANGOTTI - via Alberto Serra, 19 S. GANZAROLI & FIGLI - via Giovanni Lanza, 45 b ROSSI OSVALDO - via Gramsci, 149 r TELEAUDIO FAULISI - via N. Garzilli, 19 TELEAUOID FAULISI - via G. Galilei, 34 E.R.C. - v.le Sant'Ambrogio, 35 BISCOSSI - via della Giuliana, 107 RABIO ARGENTINA - via Torre Argentina, 47 IPPOLITO FRANCESCO - piazza Amendola, 9 Moscussa Francesco - Corso Umberto I, 46 PACARO - via Pupino, 19 TELERADIO CENTRALE - via S. Antonio, 46 C.A.R.T.E.R. - via Savonarola, 6 RACCA GIANNI - Corso Adda, 7

via Digione 3 - 20144 MILANO - tel. (02) 468209 - 4984866

LIRE

90

100

80

160

160

60

80

100

90 70

90

300

450

80

100

130

400

600

100

120

145

600

850

120

200

120

130

160

140

150

180

130

140

190

260

220

220

TBA780

CONDENSATORI ELETTROLITICI

TIPO

1 mF 25 V 1 mF 50 V

2 mF 100 V

2,2 mF 16 V 2.2 mF 25 V 4.7 mF 12 V 4,7 mF 25 V 4.7 mF 50 V

5 mF 350 V

8 mF 350 V

10 mF 12 V

10 mF 25 V

10 mF 63 V

22 mF 16 V 22 mF 25 V

32 mF 50 V

32 mF 350 V

50 mF 12 V

50 mF 25 V

50 mF 50 V

50 mF 350 V

100 mF 16 V

100 mF 25 V

100 mF 50 V

200 mF 12 V

200 mF 25 V

200 mF 50 V

220 mF 12 V

250 mF 12 V

250 mF 25 V

300 mF 16 V

320 mF 16 V

400 mF 25 V

470 mF 16 V

500 mF 12 V

500 mF 25 V

500 mF 50 V

640 mF 25 V

1000 mF 16 V

1000 mF 25 V

100 mF 350 V

100 + 100 mF 350 V

50 + 50 mF 350 V

32 + 32 mF 350 V

|        | 11  |         |         | -           | 010   | _ |
|--------|-----|---------|---------|-------------|-------|---|
|        |     | VALV    | OLE     |             |       |   |
| DY802  | 750 | EL504   | 1.500   | PCL82       | 850   |   |
| EABC80 | 700 | EZ80    | 600     | PCL84       | 800   |   |
| EC86   | 850 | PABC80  | 700     | PCL805      | 950   |   |
| EC88   | 850 | PC86    | 850     | PCL86       | 850   |   |
| ECC82  | 650 | PC88    | 900     | PFL200      | 1.100 |   |
| ECC88  | 850 | PC92    | 620     | PL36        | 1.600 |   |
| ECC189 | 900 | PC900   | 900     | PL84        | 800   |   |
| ECL82  | 850 | PCC88   | 900     | PL504       | 1.500 |   |
| ECL86  | 900 | PCC189  | 900     | PY81        | 700   |   |
| EF80   | 650 | PCF80   |         | PY83        | 800   |   |
| EF183  | 650 | PCF82   |         | <b>PY88</b> | 800   |   |
| EF184  | 650 |         |         | UCL82       | 900   |   |
| EL84   | 750 | PCH200  | 900     | EM81/8      | 4 850 |   |
|        |     |         |         |             |       | _ |
|        |     |         |         |             |       |   |
|        |     | OFTION  |         |             |       |   |
|        | 717 | CEZION  | 21 97 F |             |       |   |
|        | IV  | IATERIA | LE N    | IUOVO       |       |   |
|        |     |         |         |             |       |   |

100 Condensatori pin up

200 Resistenze 1/4 - 1/2 - 1 - 2 - 3 - 5 - 7 W

- 3 Potenziometri normali
- 3 Potenziometri con interruttore
- 3 Potenziometri doppi
- 3 Potenziometri a filo
- 50 Condensatori polistirolo
- 10 Condensatori elett. 6-9-12 V
- 5 Autodiodi 12 A 50 V
- 5 Diodi 6 A 50 V
- 5 Diodi 40 A 50 V
- 5 Ponti B40/C2500

120 A 600 V 46.000 240 A 1000 V 64.000

340 A 400 V 54.000 340 A 600 V 65.000

ZENER

220

300

1.100

da 400 mW -

da 1 W

da 4 W

da 10 W

Tutto questo materiale GARANTITO all'eccezionale prezzo di L. 5.000 più spese di spedizione.

|             |        |                     | 1000 1111 25 4             | ****         |
|-------------|--------|---------------------|----------------------------|--------------|
|             | **     |                     | 1000 mF 50 V               | 400          |
|             |        | 70.40               | 1000 mF 70 V               | 400          |
| SCR         |        | TRIAC               | 1000 mF 100 V              | 7 <b>0</b> 0 |
| 1 A 100 V   | 500    | 1 A 400 V 800       | 2000 mF 16 V               | 350          |
| 1,5 A 100 V | 600    |                     | 2000 mF 25 V               | 400          |
| 1.5 A 200 V | 700    |                     | 2000 mF 50 V               | 700          |
| 2.2 A 200 V | 850    | 6,5 A 400 V 1.500   |                            |              |
| 3,3 A 400 V | 950    | 6 A 600 V 1.800     | 2000 mF 100 V              | 1.200        |
| 3 A 100 V   | 950    | 10 A 400 V 1.600    | B000 mF 16 V               | 400          |
| 3 A 200 V   | 1.050  | 10 A 500 V 1.800    | 3000 mF 25 V               | 500          |
| 3 A 300 V   | 1.200  | 10 A 600 V 2.200    | 3000 mF 50 V               | 800          |
| ,5 A 400 V  | 1.400  | 15 A 400 V 3.100    | 4000 mF 25 V               | 600          |
| 3 A 400 V   | 1.500  | 15 A 600 V 3.600    | 4000 mF 50 V               | 900          |
| 5,5 A 600 V | 1.600  | 25 A 400 V 14.000   |                            |              |
| 3 A 600 V   | 1.800  | 25 A 600 V 15.500   | 5000 mF 40 V               | 850          |
| 0 A 400 V   | 1.700  | 40 A 400 V 34.000   | 5000 mF 50 V               | 1.050        |
| 0 A 600 V   | 1.900  | .40 A 600 V 39.000  | 200 + 100 + 50 + 25 mF 300 | 1.100        |
| 0 A 800 V   | 2.500  | 100 A 600 V 55.000  |                            |              |
| 25 A 400 V  | 4.800  | 100 A 800 V 60.000  | 1                          |              |
| 25 A 600 V  | 6.300  | 100 A 1000 V 68.000 |                            |              |
| 85 A 600 V  | 7.000  | į.                  | 1                          |              |
| 50 A 500 V  | 9.000  |                     | IN AFRICA ZIONE            |              |
| 00 A 600 V  | 29.000 | TRASFORMATORI DI AI | LIMENTAZIONE               | 1 200        |

| TRASFORMATORI DI ALIMENTAZIONE<br>600 mA primario 220 V secondario 6 V<br>600 mA primario 220 V secondario 9 V<br>600 mA primario 220 V secondario 12 V | L. 1.200<br>L. 1.200<br>L. 1.200<br>L. 1.000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1 A primario 220 V secondario 9 e 13 V                                                                                                                  | / L. 1.600                                   |
| 1 A primario 220 V secondario 16 V                                                                                                                      | L. 1.600                                     |
| 2 A primario 220 V secondario 36 V                                                                                                                      | L. 3.000                                     |
| 3 A primario 220 V secondario 16 V                                                                                                                      | L. 3,000                                     |
| 3 A primario 220 V secondario 18 V                                                                                                                      | L. 3.000                                     |
| 3 A primario 220 V secondario 25 V                                                                                                                      | L. 3.000                                     |
| 4 A primario 220 V secondario 50 V                                                                                                                      | L. 5.500                                     |

|   | tel. (UZ           | 2) 46          | <u>8209 - 49848</u> | bb             |
|---|--------------------|----------------|---------------------|----------------|
|   |                    | INT            | EGRATI              |                |
|   | TIPO               | LIRE           | TIPO                | LIRE           |
|   | SN7472             | 500            | -                   | 1.800          |
|   | SN7473             | 1.100          | TBA800              | 1.800          |
|   | SN7475             | 1.100          |                     | 1.800          |
|   | SN7476             | 1.000          | CA3018              | 1.700          |
| ı | SN7490             | 1.000          | CA3045              | 1.500          |
|   | SN7492             | 1,200          |                     | 1.700          |
|   | SN7493<br>SN7494   | 1.300<br>1.300 |                     | 4.500          |
|   | SN7495             | 1.200          |                     | 4.500<br>3.200 |
| ı | SN7496             | 2.000          | CA3085<br>CA3090    | 3.500          |
|   | SN74141            | 1.200          |                     | 1.600          |
|   | SN74150            | 2.600          |                     | 1.600          |
|   | SN74154            | 2.200          | L131                | 1.600          |
|   | SN74181            | 2.500          | 111/2/02            | 1.400          |
|   | SN74191<br>SN74192 | 2.200<br>2.200 | mA703               | 850            |
| ı | SN74192<br>SN74193 | 2.400          | mA709<br>mA711      | 700<br>1.200   |
| ı | SN74544            | 2.100          | mA723               | 1.000          |
|   | SN76001            | 1.800          | mA741               | 850            |
| ĺ | SN76013            | 2.000          | mA747               | 2.000          |
|   | SN76533            | 2.000          |                     | 900            |
|   | SN166848           | 2.000          |                     | 1.000          |
|   | SN166861           | 2.000<br>2.000 | SN7400              | 320            |
|   | SN166862<br>TAA121 | 2.000          | SN74H00             | 600            |
| ľ | TAA310             | 2.000          |                     | 500<br>320     |
|   | TAA320             | 1.400          |                     | 600            |
| ĺ | TAA350             | 1.600          | SN7403              | 500            |
|   | TAA435             | 1.800          | SN7404              | 500            |
|   | TAA450             | 2.000          | SN7405              | 500            |
|   | TAA550             | 700<br>1.800   | 3147400             | 800            |
|   | TAA570<br>TAA611   | 1.000          | 3147407             | 800            |
|   | TAA611b            | 1.200          |                     | 500<br>320     |
| i | TAA611c            | 1.600          |                     | 800            |
|   | TAA621             | 1.600          | SN7415              | 500            |
|   | TAA630S            | 2.000          | SN7416              | 800            |
|   | TAA640             | 2.000          | 0117417             | 700            |
|   | TAA661a<br>TAA661b | 1.600<br>1.600 | 0147420             | 320            |
|   | TAA710             | 2.000          |                     | 500<br>320     |
|   | TAA861             | 2.000          | 0117400             | 1.400          |
|   | TB625A             | 1.600          | SN7432<br>SN7437    | 300            |
|   | TB625B             | 1,600          | SN7440              | 500            |
|   | TB625C             | 1.600          | SN7441              | 1.100          |
|   | TBA120             | 1.200<br>1.800 |                     | 2.400          |
|   | TBA231<br>TBA240   | 2.000          | SN7446              | 2.000          |
|   | TBA261             | 1.700          | SN/450              | 500            |
|   | TBA271             | 600            | 5147433             | 500<br>2.000   |
|   | TBA311             | 2.000          | SN7483              | 2.000          |
|   | TBA400             | 2.000          | CN7485              | 2.000          |
|   | TBA440             | 2.000          | SN7442              | 1.200          |
|   | TBA520<br>TBA530   | 2.000<br>2.000 | SN/443              | 1.500          |
|   | TBA540             | 2.000          | 5N/444              | 1.600          |
|   | TBA550             | 2.000          | 5N/44/              | 1.900          |
|   | TBA560             | 2.000          |                     | 1.900          |
|   | TBA641             | 2.000          | CN7454              | 600            |
|   | TBA720             | 2.000          | SN7460              | 600            |
| ı | TBA750             | 2.000          | SN7470              | 500            |
|   | I TBA780           | 1.600          |                     |                |

| CAR         | CABAT  | TERIA a  | utom. 1  | 2 V L.               | 6.000            |
|-------------|--------|----------|----------|----------------------|------------------|
| AMP<br>imp. |        | ORE ib   | rido 3 V | V 12 V<br><b>L</b> . | 2.500            |
| INTE        | RRUTTO | ORI a le | vetta 2  | A 250<br>L.          | V<br><b>20</b> 0 |
| DEVI        | ATORE  | 15 A 25  | o v      | L.                   | 300              |

GRUPPI VHF 36 MHz valvole

#### RADDRIZZATORI DI POTENZA

L. 5.000

40A 400V 40A 1000V 2.000 40A 600V 1.000 40A 1200V 2.500 Con polarità normale 40A 800V 1.500 o revers



via Digione 3 - 20144 MILANO - tel. (02) 468209 - 4984866

| BUSTA 100 resistenze miste L. 500 BUSTA 10 trymmer misti L. 600 BUSTA 100 condensatori PF L. 1.500 BUSTA 100 condensatori elettrolitici L. 2.500 Busta 50 condensatori elettrolitici L. 1.400 BUSTA 30 potenz. doppi, semplici e con inter L. 2.200 Busta 5 condensatori elettrolitici a vitone, baionetta 2 o 3 capacità L. 1.200 Potenziometri vari L. 150 Potenziometri con interruttori L. 220 | RADDRIZZATORI  TIPO LIRE TIPO LIRE B30 C250 220 B80 C7000/9000 1.800 B30 C300 240 B120 C7000 2.000 B30 C400 260 B400 C1500 650 B30 C750 350 B200 C2200 1.400 B30 C1200 450 B400 C2200 1.500 B40 C1000 400 B600 C2200 1.800 B80 C1000 450 B100 C5000 1.500 B80 C2200/3200 750 B200 C5000 1.500 B60 C7500 1.600 B100 C10000 2.800 B80 C2200/3200 900 B200 C20000 3.000 B120 C2200 1.000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFFERTA SPECIALE - Pacco così confezionato: (MATERIALE NUOVO)  1 VALVOLA ECF82 1 VALVOLA 8BZ7 1 VALVOLA PC86 1 VALVOLA 12AU6 1 VALVOLA DY86 1 VALVOLA ECH81 1 VALVOLA 6TP2 1 VALVOLA 12E4 1 VALVOLA 6TP8 1 TRANSISTOR 2N3055 1 TRANSISTOR BD142 2 Raddrizzatori 40 A 600 V polarità normale 2 Raddrizzatori 40 A 600 V polarità revers                                                             | PACCO 20 VALVOLE NUOVE per laboratori così confezioriato:  2 x PL504                                                                                                                                                                                                                                                                                                                  |

#### ATTENZIONE: la ditta « LEM » vende esclusivamente per corrispondenza.

2 x PCL82

a L. 16.000

Al fine di evitare disguidi nell'evasione degli ordini si prega di scrivere in stampatello nome ed indirizzo del committente città e C.A.P., in calce all'ordine.

Non si accettano ordinazioni inferiori a L. 4.000; escluse le spese di spedizione.

IL TUTTO A L. 7.500

Richiedere qualsiasi materiale elettronico, anche se non pubblicato nella presente pubblicazione PREZZI SPECIALI PER INDUSTRIE - Forniamo qualslasi preventivo, dietro versamento anticipato di L. 1.000 CONDIZIONI DI PAGAMENTO:

a) invio, anticipato a mezzo assegno circolare o vaglia postale dell'importo globale dell'ordine, maggiorato delle spese postali di un minimo di L. 450 per C.S.V. e L. 600/700, per pacchi postali.

b) contrassegno con le spese incluse nell'importo dell'ordine

### HEATHKIT 350 modelli in scatole di montaggio

#### Mod. HM-2103 WATTMETRO

2 scale; 50  $\Omega$  di carico non induttivo con un rapporto SWR inferiore a 2,1:1; raffreddamento ad aria.

Uno strumento preciso e fidato.



AGENTI GENERALI PER L'ITALIA 20129 MILANO - VIALE PREMUDA, 38/A TEL. 79.57.62 - 79.57.63 - 78.07.30

## ELETTRONICA CORNO

**20136 MILANO** 

Via C. di Lana, 8 - Tel. (02) 8.358.286

ALIMENTATORI STABILIZZATI A GIORNO

Alimentazione 130 Vac  $\pm$  15 % Uscita 5-7 Vcc stabilizz. Amp. 4 L. 10.000 Uscita 5-7 Vcc stabilizz, Amp. 8 L. 14.000 Uscita 5-7 Vcc stabilzz. Amp. 12 L. 18.000 Uscita 28-33 Vcc stabilizz. Amp. 7 L. 22.000



L. 8.000

L. 3.000

L. 3.000

L. 1.500

L. 2.000

L. 1.000

L. 1.500

900 RPM L. 6.000

150

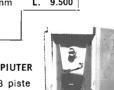
350

## VENTOLA FASCO CENTRIFUGA

115 oppure 220 V a richiesta. 75 W 140 x 160 mm L. 9.500 SYNCHRONOUS MOTOR AMPEX

MOTORIDUTTORE A SPAZZOLE

L. 25.000 48 Vcc 110/220 Vac 110 Vcc - 4,5 A MATERIALE SURPLUS


30 schede Olivetti assortite

Contaore elettrico da incasso 40 Vac

30 schede IBM assortite

Diodi 10 A 250 V

Diodi 25 A 250 V



APPARECCHIATURE COMPLETE REGISTRAZIONE NASTRO COMPIUTER

(Olivetti Elea) gruppo Ampex 8 piste di incisione



VENTOLA ROTRON SPIRAL leggera e molto silenziosal\_\_\_\_\_

220 V· 10 W L. 7.000 L. 7.000 115 V 14 W

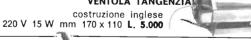




V1 115-230 15 % ± V2 118 L. 28,000 250 W

| MOTORI | MONOFASI | Δ | INDUZIONE | A             | GIORNO  |
|--------|----------|---|-----------|---------------|---------|
| MOTORI | MONOLASI | ~ | INDUZIONE | $\overline{}$ | dionito |

| 24 V  | 40 W        | 2800 RPM | L. | 4.000 |
|-------|-------------|----------|----|-------|
| 110 V | 35 W        | 2800 RPM | L. | 2.000 |
| 220 V | 35 <b>W</b> | 2800 RPM | L. | 2.500 |


#### TRASFORMATORI MONOFASI

| 10 W  | V1 110-120-220-240 | V2 12-13-14                | L. 1.500  |
|-------|--------------------|----------------------------|-----------|
| 35 W  | V1 220-230-245     | V2 8+8                     | L. 3.500  |
| 150 W | V1 200-220-245     | V2 25 A3 +<br>V2 110 A 0.7 | L. 4.500  |
| 500 W | V1 UNIVERSALE      | V2 37-40-43                | L. 15.000 |
|       | AUTOTRASFOR.       | V 117-220                  | L. 20.000 |

#### OFFERTA SPECIALE

Schede ex computer 4 schede mm 350 x 250 4 schede mm 250 x 160 10 schede assortite con montato una grande quantità di transistori al silicio, cond. elett., cond. tantalio, circuiti integrati, trasf. di impulsi, resistenze, ecc. L. 10.000

### VENTOLA TANGENZIAM



#### TERMOSTATO HONEYWELL

CON SONDA REG. 25°-95° comanda deviatore unipolare 15 A

L. 2.000



220 V 50 W lung. mm 280 x 140 L. 12.000



PICCOLO VC55

Ventilatore centrifugo 220 V 50 Hz - Pot. ass. 14 W

Port. m<sup>3</sup>/h 23 L. 6.200



#### MATERIALE MAGNETICO

Nuclei a C a grani orientati per trasformatori

tipo Q25 35 W 50/70 W L. 1.000 tipo T.32 150 W **L. 1.500** tipo V51



125/110 Vac - 4 RPM - A. 0,6

## L. 15.000

#### ALIMENTATORI STABILIZZATI OLIVETTI

Alimentazione 220 Vac Uscita 1/6 Vcc 2 A L. 15.000 Uscita 1/6 Vcc 5 A L. 22.000 Uscita 9/25 Vcc 3 A L. 35.000 idem se ventilato 5 A L. 35.000 Uscita 20/25 Vcc 5 A L. 30,000 Uscita 20/100 Vc 1 A L. 30.000

RELE' in miniatura S.T.C. Siemens/Varley 700 24 Vcc 4 Sc. 1.500 2500 48 Vcc 2 Sc. L. 1.500 Zoccoli per detti 200

#### **VENTOLA BLOWER**

200 240 Vac 10 W PRECISIONE GERMANICA motor. reversibile diamet. 120 mm fissaggio sul retro

con viti 4 MA L. 12.000



#### RADDRIZZ. A PONTE WESTINGHOUSE (selenio) L. 1.000 4 A 25 V

automatica.

Spedizioni non inferiori a L. 5.000.

Pagamento in contrassegno.

Spese trasporto (tariffe postali) e imballo a carico del destinatario. (Non disponiamo di catalogo).

N.B. - Per comunicazioni telefoniche dirette o ritiri materiale, il magazzino è a disposizione dal martedì al venerdì dalle ore 14,30 alle 17,30 e sabato dalle Nelle altre ore risponderà la segretaria telefonica

#### TURBO VENTILATORE ROTRON U.S.A.

Grande potenza in uscita con potente risucchio in aspirazione (Turbocompressore) Costruzione metallica Kg. 10

3 Fasi 220 V 0.73 A 50 Hz L. 42.000 2 Fasi 220 V 1,09 A 50 Hz cond. 8 MF L. 43.000



#### CIRCUITI MICROLOGICI TEXAS Tipo DTL plastici

ON 15830 Expandable Dual 4-Input 180 15836 Hex Inverter 180 ON 15846 Quad 2-Input 220 ON 15899 Dual Master Slave JK with common clock 300

#### MOTOROLA MECL II/1000/1200

| 111 - 1 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 |    |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| tipo E.C.L. plast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | ĺ   |
| MC 1004/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. | 450 |
| MC 1007/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. | 450 |
| MC 1010/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. | 450 |
| MC 1013/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. | 900 |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |

#### MANOPOLE PHILIPS PROFESSIONALI

| Fissaggio conico | con vite cent          | trale     |       |
|------------------|------------------------|-----------|-------|
| Foro Ø 6 senza   | indice Ø 30            | Grigio L. | 300   |
| Foro Ø 6 con fla | ngia Ø 30              | Grigio L. | 300   |
| Foro Ø 6 con inc | dice Ø 40              | Nere L.   | 350   |
| Foro ∅ 6 da sint | tonia Ø 40             | Nere L.   | 600   |
| Foro Ø 6 da sint | tonia Ø 60             | Nere L.   | 1.000 |
| Foro Ø 6 indice  | centrale Ø 60          | Nere L.   | 500   |
| Foro Ø 9 indice  |                        |           | 500   |
| Foro Ø 9 indice  | e flangi <b>a</b> Ø 80 | Nere L.   | 500   |
| CONDENSATOR      | ICI                    |           |       |

#### CONDENSATORI ELETTROLITICI MINIATURA 70°

250 mF 90 500 mF 6 V 110 1000 mF 6 V 140 2500 mF 6 V 150 2500 mF 6.4 V 150 4000 mF 6 V 140 10000 mF 6 V 200 250 mF 10 V 120 1000 mF 10 V 150 50 mF 15 V 80 250 mF 15 V 110 400 mF 15 V 110 500 mF 15 V 120 2500 mF 15 V 180 10 mF 25 V 50 25 mF 25 V 50 50 mF 25 V 80 2 mF 150 V 50 16 mF 300 V 130 5 mF 350 V 130 3 mF 500 V L. 130 1000 mF 25 V

## RIGIDO STAGNATO al m.

1000 mF 35 V

#### CONDENSATORI CARTA E OLIO ICAR/SIEMENS/DUCATI/ARCO

1.000 V cc L. 0,25 mF 220 V ca L. 0,5 mF 250 500 V cc L. mF 300 1,25 mF 450 V ca 350 mF 250 V cc L. 350 mF 600 V'cc L. 409 2,2 mF 400 V ca 400 2,5 mF 450 V ca 400 400 V ca mF 500 400 V ca 4,5 mF 600 250 V ca mF L. 350 mF 630 V cc L. 650 5.5 500 V ca L. mF 700 280 V ca L. mF 700

280 V ca L.

400 V ca L.

280 V ca L.

400 V ca L.

700

750

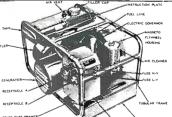
700

mF

mF

10

12,5 mF


L. 4.200

#### CONTATTI REED IN AMPOLLA

Lungh. mm 22 Ø 2.5 L. 400 10 pezzi L. 3.500 MAGNETI per detti

Lungh, mm 9 x 2.5 L. 200 10 pezzi L. 1.500

SCONTI PER QUANTITA



10 pz. L. 1.500

L. 60.000

L. 35.000

L. 200 cad.

GRUPPI ELETTROGENI DIESEL da 7 a 150 kW

#### CONVERTITORI DI FREQUENZA ROTANTI

da 50 a 60 Hz 2 kW 12 kW

PULSANTE PUSH-PULL

2 A 250 V 1 n.a. + 1 n.c.

#### REOSTATO A TOROIDE

L. 1.500 25 W 4700 Ω Ø 45 POTENZIOMETRO A FILO 15 W 17 kΩ Ø 50



100

70

50

70

60

70

100

50

50

150

50 75

100

55

55

130

180

60

100

25 V

25 V

35 V

**3**5 V

35 V

35 V

50 V

50 V

50 V

50 V

## **ELETTROLITIC!**

(circuito stamp. + verticali) CAPAC. 10 mF 3.15 V 1000 mF 3,15 V 33 mF 6.3 V 47 mF 6,3 V

#### 6,3 V 220 mF 470 mF 6.3 V 10 mF 10 V 10 V 47 mF

10 V 100 mF 330 mF 10 V 470 mF 10 V 1000 mF 10 V 10 mF 16 V

100 mF 16 V 470 mF 25 V 1 mF 22 mF 25 V 47 mF

100 mF

4,7 mF

10 mF

100 mF

220 mF

2.2 mF

4,7 mF

10 mF

47 mF

mmg. 0,10 L. 80 - 0.30 L. 130 -0,38 L. 150 - 0,75 L. 180. TRECCIOLA VETRO SILICONE al m. mmg. 0.30 L. 70.

TRECCIOLA SCHERMATA al m. mmq. 0,15 L, 50 - 0.30 L. 80.

GRUPPO ELETTROGENO

Generatore filtrato

Nuovo e completo di

INVERTER ROTANTI

Ingresso 24 Vcc Uscita 125 Vac

Ingresso 12 Vcc Uscita 125 Vac

FILO

mmq, 0,20 L. 5 - 0,63 L. 17 - 1 L. 25

mmq. 0.14- L. 8 - 0.22 L. 12 - 0.50

TRECCIOLA TEFLON (Argent.) al m.

TRECCIOLA STAGNATA al m.

L. 35 - 1,25 L. 45

CONDOR filtrato

150 W 50 Hz

80 W 50 Hz

2 L. 40

L. 110.000

7.5 Vcc 35 W

550 Vcc 110 W

A MISCELA

istruzioni

SCHERMATA E ISOLATA al m. mmg. 0.30 L. 100.

**SCONTI PER QUANTITATIVI** 









cq - 5/75 -



ML50

DOPO DI NOI TANTI....

MS1000C



LA SICUREZZA DI ESSERE PRIMO!

mesa elettronica GHEZZANO - PI -



#### CARATTERISTICHE

Frequenza 144-146 Mhz. -N. Canali 12 + 1 canale memoria (di cui 3 quarzati) Alimentazione 13,8 V.C.C. Consumo - Ricezione 0,6 A - Standby 0,2 A. - Trasmissione 2,5 A.

(Unico quarzo per trasmissione e ricezione con sgancio per ripetitori a 600 Khz.) Potenza uscita 10 Watt - Modulazione FM ( Dev. ± 5 KHz) - Spurie e armoniche - Almeno 50 dB. sotto la portante.

Sensibilità 0,4 µV. a 20 dB. segnale disturbo Sensibilità dello squelch 0,2 µV. Selettività Attenuazione del canale adiacente. almeno 60 dB Circuito Supereterodina a doppia conversione.

# Radiotelecomunicazioni

Ricetrasmettitore VHF-FM Standard-Nov. El. SR-C146A

Frequenza 144-146 Mhz. - N. Canali 5 (di cui 2 quarzati) Alimentazione 12,5 V.C.C. Consumo – Ricezione 100 mA. – Standbly 13 mA. – Trasmissione 450 mA.

#### TRASMETTITORE

Potenza uscita 2 Watt - Modulazione FM (dev. ± 5 KHz) Fattore moltiplicazione dei quarzi 12 volte Spurie e armoniche Almeno 50 dB. sotto la portante.

#### RICEVITORE

Sensibilità 0,4 µV. a 20 dB. segnale disturbo. Sensibilità dello squelch 0,2 µV. Selettività Attenuazione del canale adiacente, almeno 60 dB. Circuito Supereterodina a doppia conversione.

Via Cuneo, 3 - 20149 Milano Telefono 433817 - 4981022





