

Yaesu FT-727R ricetrasmettitore duobanda VHF/UHF per emissioni FM

La realizzazione più completa e complessa di un apparato portatile di piccole dimensioni che, oltre all'uso manuale convenzionale, può essere

gestito dal calcolatore di stazione. Il ricetrasmettitore eroga 5 W o 0,5 W di RF entro la banda dei 2 metri o dei 70 cm. Una tastiera frontale con 20 tasti con doppia funzione permette di impostare 40 comandi differenti al µP interno, componente principale nel complesso operativo, flessibilità operativa da 10 memorie, in cui è possibile registrarvi 4 frequenze per la ricetrasmissione con scostamenti particolari, oppure tanto ampi da operare su tutta la gamma. Memorie indipendenti per il visore e di richiamo sono state previste per ciascuna banda, mentre lo scostamento per l'accesso su un ripetitore può essere impostato a piacere anche durante il funzionamento su una qualsiasi frequenza precedentemente registrata o soltanto operativa. La presenza del µP permette inoltre funzioni già conosciute, quali la ricerca, programmata entro una certa parte dello spettro, oppure fra le sequenze registrate in memoria, il canale di chiamata o il canale prioritario.

CARATTERISTICHE TECNICHE GENERALI

Gamme operative: 144-146* MHz; 430-440 MHz.

*Estendibile a 10 MHz

Canalizzazione: 12.5/25 KHz.

Scostamenti normalizzati: 600 KHz; 1.6 MHz.

Tipo di emissione: F3 (F3E).

Antenna impiegata: elicoidale in gomma per 2 bande YHA-27.

Alimentazione richiesta: 6.5-15 V c.c.

Consumi: Rx silenziato: 50 mA; Rx funzionante: 150 mA; con il «P. Save»: 24

mA (1:2); 14 mA (1:18); Tx Hi: 1300 mA (*); Tx Low: 550 mA (*)

(*) In UHF l'assorbimento è maggiorato di 50 mA.

Dimensioni: 71 x 180,5 x 38 mm.

Peso: 0,616 Kg con il pacco batterie FNB-4A.

Configurazione: a doppia conversione.

Valori di media frequenza: 16.9 MHz, 455 KHz.

Sensibilità: 0.25 µV per 12 dB SINAD, 1 µV per 30 dB S+N/N.

Selettività: ± 7.5 KHz a -6 dB; ± 15 KHz a -60 dB.

Livello di uscita audio: 450 mW su 8 ohm con il 10% di distorsione armonica

TRASMETTITORE

Potenza all'ingresso del P.A. con pacco batterie FNB-4A: VHF 12 W; UHF 14 W;

Potenza RF: VHF/UHF 5 W max.

Deviazione: ± 5 KHz.

Soppressione spurie: 60 dB.

(2K ohm).

Nuovo Icom IC 761 - Ricetrasmettitore per le HF

Il base più completo

(Con accordatore di antenna incorporato)

Il ricetrasmettitore si distingue per comprendere l'alimentatore c.a., nonché un dispositivo automatizzato per l'accordo dell'antenna che, durante la ricezione, si predispone già secondo i parametri ottimali, in base alla frequenza impostata, mentre, durante la trasmissione, elaborando i dati concernenti la potenza incidente e riflessa, modifica l'adattamento, ottimizzando l'impedenza del TX al valore simile a quello presente sulla linea di trasmissione. L'apparato include inoltre i filtri stretti indispensabili per la ricezione in CW (RTTY-PACKET), il QSK con insita rapida commutazione come richiesto dal modo Packet, 32 memorie per impostarvi le frequenze di maggiore interesse. La presenza del µP permette la seguenza di ricerca entro dei limiti di banda, oppure entro le frequenze registrate in memoria con selezione del modo operativo. Possibilità inoltre di operare con diversificazione in frequenza (Split).

CARATTERISTICHE TECNICHE

GENERALI

Frequenze operative:

Ricevitore: 100 KHz — 30 MHz. Trasmettitore: 1.8-2; 3.45-4.1; 6.95-7.5; 9.95-10.5; 13.95-14.5; 17.95-18.5; 20.95-21.5; 24.45-25.1; 27.95-30 MHz.

Temperatura operativa: -10° C $\sim +60^{\circ}$ C. Stabilità in frequenza: $\pm\,100$ Hz entro i limiti specificati. Risoluzione in frequenza: AM-SSB-CW: 10 Hz, con commutazione automatica su 50 Hz a seconda della velocità della sintonia. 1 KHz selezionabile.

Valori di media frequenza: 70.45 MHz;

9.0100 MHz; 455 KHz.

Alimentazione: $220-240V \pm 10\%$. Dimensioni: 424 x 170 x 420 mm.

Peso: 17.5 Kg.

TRASMETTITORE

Potenza RF: regolabile in continuità da 10 W a 100 W.

Emissioni possibili: FM; RTTY, SSB, AM, CW.

Deviazione max: (in FM): 5 KHz. - (in F1): 170 Hz; 850 Hz. Soppressione di emissione spurie: 60 dB.

Soppressione della portante (in SSB): 40 dB.

Soppressione della banda laterale indesiderata: 55 dB.

Impedenza microfonica: 600 ohm

RICEVITORE

Emissione demodulabili: A1; A3; A3J; A3h; F1; F3.

Sensibilità: SSB/CW: 6 dBµ per 10 dB S/N FM: 10 dBµ per

12 dB SINAD

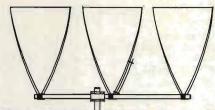
Sensibilità dello Squelch: 10 dBµ (soglia) 6 dBµ (spinta). Selettività: SSB: 2.4 KHz a -6 dB 3.8 KHz a -60 dB FM: 15 KHz a -6dB 30 KHz a -50 dB AM: 6 KHz a -6 dB 18 KHz a 50 dB.

Reiezione a spurie ed immagini: 80 dB. Reiezione di media frequenza: 70 dB. Escursione del RIT: ± 9.99 KHz. Livello di uscita audio: 2.6W su 8 ohm. Impedenza di uscita audio: 4 ~ 8 ohm

ACCORDATORE AUTOMATICO

Gamme operative: 1.8-2; 3.5-4; 7-7.3; 10-10.5; 14-14.5; 18-18.5; 21-21.5; 24.5-25; 28-30 MHz.

Impedenza di ingresso: 50 ohm. Impedenze accordabili con ROS max. di 3:


16.7-150 ohm.

marcuccis

ANTENNE C.B.

DELTA LOOP 27

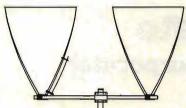
MATERIALE: ALLUMINIO ANTICORRODAL

DELTA LOOP 27

ART. 15

ART. 16

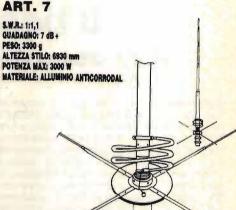
ELEMENTI: 4

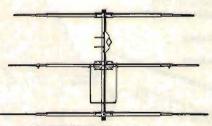

ROMA 1 5/8 - 27 HHz

ELEMENTI: 3 S.W.R.: 1:1,1 GUADAGNO: 11 dB IMPEDENZA: 52 Ohm LUNGHEZZA D'ONDA: 1 ALTEZZA: 3800 mm

S.W.R.: 1:1,1 QUADAQNO: 13.2 dB IMPEDENZA: 52 Ohm

LUNGHEZZA D'ONDA: 1 ALTEZZA: 3800 mm MATERIALE: ALLUMINIO ANTICORRODAL


OOP 27 **ART. 14**


ELEMENTI: 2 S.W.R.: 1:1,1 GUADAGNO: 9,8 dB IMPEDENZA: 52 Ohm LUNGHEZZA D'ONDA: 1 ALTEZZA: 3800 mm MATERIALE: ALLUMINIO ANTICORRODAL

ART. 2

S.W.R.: 1:1,1 POTENZA MAX: 1000 W MATERIALE: ALLUMINIO ANTICORRODAL ALTEZZA STILO: 2750 mm

DIRETTIVA YAGI 27

ART. 8

TIPO PESANTE

ELEMENTI: 3 QUADAGNO: 8,5 dB S.W.R.: 1:1.2 LARGHEZZA: 5500 mm BOOM: 2900 mm PESO: 3900 q

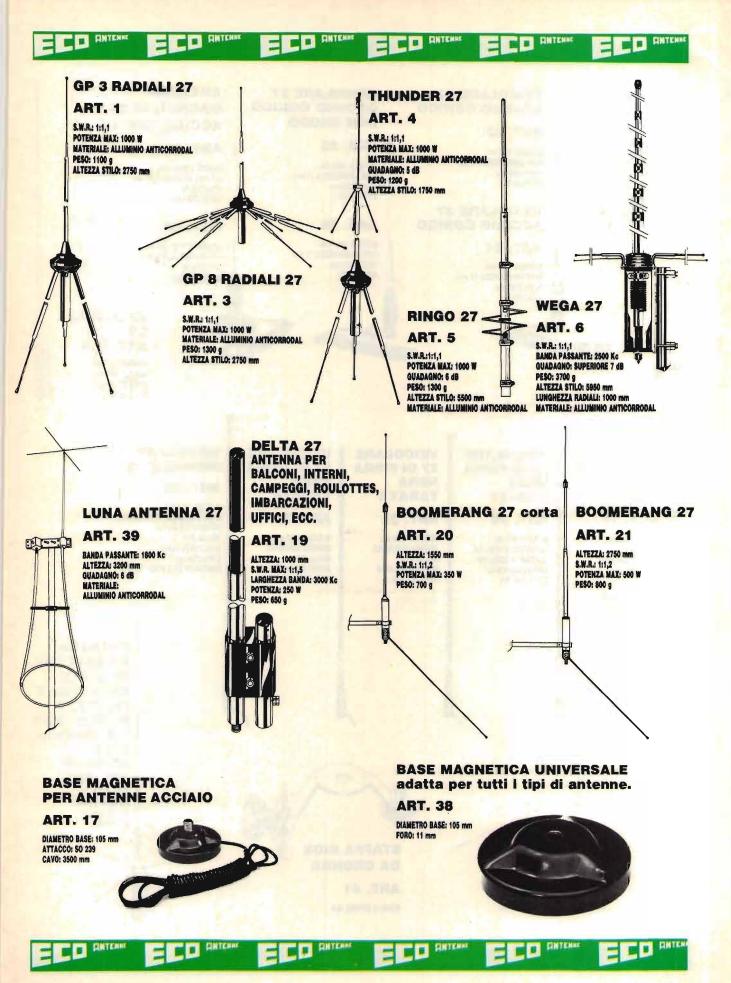
ART. 10 ELEMENTI: 3 PESO: 8500 g

MATERIALE: ALLUMINIO ANTICORRODAL

TIPO PESANTE

ELEMENTI: 4 **ART. 11** QUADAGNO: 10,5 dB ELEMENTI: 4 S.W.R.: 1:1,2 PESO: 8500 g LARGHEZZA: 5500 mm LUNGHEZZA BOOM: 3950 mm PESO: 5100 g MATERIALE: ALLUMINIO ANTICORRODAL

ELEMENTI: 4 QUADAGNO: 14,5 dB POLARIZZAZIONE: DOPPIA S.W.R.: 1:1,1 LARGHEZZA BANDA: 2000 Kc LARGHEZZA ELEMENTI: 5000 mm LUNGHEZZA BOOM: 4820 mm MATERIALE: ALLUMINIO ANTICORRODAL



PIPA 27 **ART. 22**

S.W.R.: 1:1,5 MAX POTENZA: 40 W ALTEZZA: 690 mm PESO: 80 g

ALTEZZA: 1320 mm FORO CARROZZERIA: 11 mm CAVO: 3500 mm ATTACCO: PL

VEICOLARE 27 ACCIAIO CONICO

ART. 24

ALTEZZA: 1620 mm FORO CARROZZERIA: 11 mm CAVO: 3500 mm ATTACCO: PL

ART. 25

ALTEZZA: 1320 mm FORO CARROZZERIA: 11 mm CAVO: 3500 mm ATTACCO: PL

ART. 26

ALTEZZA: 1620 mm FORO CARROZZERIA: 11 mm CAVO: 3500 mm ATTACCO: PL

ART. 28

DIAMETRO BASE: 105 mm ALTEZZA ANTENNA: 1320 mm ATTACCO: PL

ART. 29

DIAMETRO BASE: 105 mm ALTEZZA ANTENNA: 1620 mm ATTACCO: PL CAYO: 3500 mm

> VERTICALE CB. **ART. 199**

GUADAGNO: 5.8 dR. ALTEZZA: 5500 mm POTENZA: 400 W PESO: 2000 a

VEICOLARE **27 IN FIBRA** NERA **TARABILE**

ART. 29

ALTEZZA: 840 mm MOLLA: INOX SNODO: REGOLABILE CAVO: 3500 mm

ART. 31

ALTEZZA: 1340 mm MOLLA: INOX SNODO: REGOLABILE CAVO: 3500 mm

VEICOLARE **27 IN FIBRA** NERA TARATA

ART. 30

ALTEZZA: 950 mm LUNGHEZZA D'ONDA: 5/8 SISTEMA: TORCIGLIONE SNODO: REGOLABILE CAVO: 3500 mm

VEICOLARE **27 IN FIBRA** NERA **TARATA**

ART. 32

ALTEZZA: 1230 mm SISTEMA: FLICOIDALE MOLLA: INOX SNODO: REGOLABILE CAVO: 3500 mm

VEICOLARE **27 IN FIBRA** NERA TARATA

ART. 33

ALTEZZA: 1780 mm SISTEMA: ELICOIDALE MOLLA: INOX SNODO: REGOLABILE CAVO: 3500 mm

VEICOLARE **HERCULES 27**

ART. 34

ALTEZZA: 1780 mm STILO CONICO: Ø 10+5 mm FIBRA SISTEMA: ELICOIDALE MOLLA: INOX SNODO: REGOLABILE CAVO: 3500 mm FIBRA RICOPERTA NERA - TARATA

DIPOLO 27

ART. 43

FREQUENZA: 27 MHz LUNGHEZZA TOTALE: 5500 mm COMPLETO DI STAFFA E CENTRALE STAFFA INOX

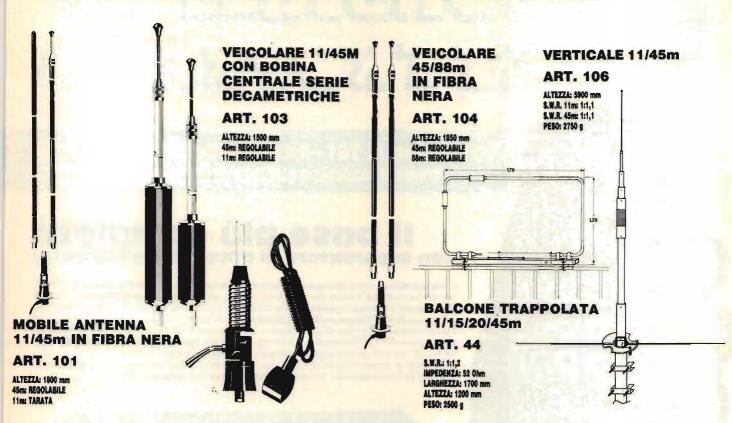
DA GRONDA

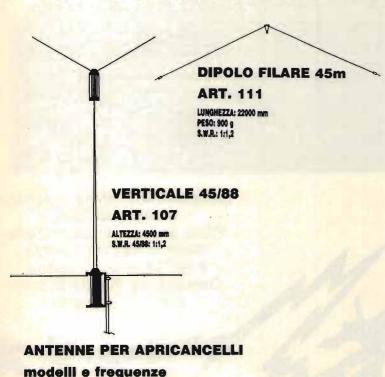
ART. 41

FORO: 11 OPPURE 15,5

ANTENNA DA BALCONE, NAUTICA, CAMPEGGI E DA TETTO **MEZZA ONDA** Non richlede plani riflettenti **ART. 200**

GUADAGNO: 5 dB ALTEZZA: 2200 mm POTENZA: 400 W PESO: 1900 g





ANTENNE PER 45 E 88 M.

secondo esigenze cliente

I.S.T. Il vostro futuro per corrispondenza

Signor Roberto Rossi Via Bellerio,45 20100 MILANO MI

Non aspettate che un lavoro più qualificato entri nel vostro futuro: preparatevi e cercatelo. L'I.S.T. vi aiuta, perché l'Istituto Svizzero di Tecnica in tutta Europa prepara migliaia di persone ad affrontare da protagonisti le professioni di domani: l'elettronica, l'elettrotecnica, l'informatica, il basic...

I.S.T. è la più qualificata scuola europea per corrispondenza che vi diploma con corsi facili e programmabili secondo i vostri impegni quotidiani.

pegni quotidiani. Scegliete il Corso I.S.T. che più vi interessa fra i seguenti:

- ELETTRONICA TELERADIO
- ELETTROTECNICA BASIC
- INFORMATICA DISEGNO TECNICO

VIA S. PIETRO 49 - 21016 LUINO (VA) - TEL. 0332/530469

TELERADIO

DISEGNO TECNICO

ISIC II

Sì, GRATIS e.. assolutamente senza impegno, desidero ricevere con invio postale RACCOMANDATO, a vostre spese, informazioni più precise sul vostro ISTITUTO e (indicare con

una crocetta) □ una dispensa in prova del corso che indico □ la documentazione completa del corso che indico. (Scelga un solo corso)

- ELETTRONICA (24 dispense con materiale sperimentale)
- TELERADIO (18 dispense con materiale sperimentale)
 - ELETTROTECNICA (26 dispense)
- BASIC
 - (14 dispense)
 - ☐ INFORMATICA (14 dispense)
 - ☐ DISEGNO TECNICO
 (18 dispense)

COGNOME E NOME

NDIRIZZO

PROV

Da ritagliare e spedire a: ISTITUTO SVIZZERO DI TECNICA VIA S. PIETRO 49 - 21016 LUINO (VA) - TEL. 0332/530469

GENERALITÀ

L'interfaccia telefonica DTMF/µPC è la naturale evoluzione dei modelli che l'hanno preceduta; essa si avvale della moderna tecnologia dei microprocessori che ne rende l'uso più affidabile e flessibile ed aumenta le possibilità operative.

FUNZIONI PRINCIPALI

- 1)- Codice di accesso a quattro o otto cifre;
- 2) Possibilità di funzionamento in SIMPLEX, HALF o FULL DUPLEX.
- 3) Ripetizione automatica dell'ultimo numero formato (max. 31 cifre);
- 4) Possibilità di rispondere alle chiamate telefoniche senza necessità di digitare il codice di accesso;
- 5) Funzione di interfono.

La DTMF/µPC dispone inoltre, della possibilità di future espansioni grazie ad uno zoccolo interno cui fanno capo i segnali del BUS del microprocessore che governa il funzionamento dell'interfaccia: le possibili applicazioni sono molteplici come per esempio, il controllo di dispositivi elettrici esterni.

Oltre ad espletare le funzioni dei modelli precedenti, la principale novità della DTMF/ μ PC consiste nel poter accettare codici d'accesso a 8 cifre (anche ripetute), rendendo il sistema estremamente affidabile dato l'enorme numero di combinazioni possibili (cento milioni).

Se tuttavia dovesse risultare scomodo ricordarsi le 8 cifre del codice, è prevista la possibilità del funzionamento a sole quattro cifre come nei modelli d'interfaccia precedenti.

Un'ulteriore novità consiste nella possibilità di rispondere alle chiamate telefoniche senza la necessità di formare il codice d'accesso (utile se lo si deve fare manualmente), mentre ciò è escludibile se si dispone di un dispositivo che genera automaticamente le cifre del codice (per esempio la nostra cornetta telefonica automatica) liberando l'utente da un compito talvolta impegnativo.

CORNETTA TELEFONICA AUTOMATICA

Questa cornetta telefonica, unica nel suo genere, è stata realizzata dalla Electronic System per facilitare l'uso dei sistemi telefonici via radio veicolari.

Le caratteristiche principali di questa cornetta

- -sedici codici programmabili a 4 o 8 cifre che vengono trasmessi automaticamente quando si solleva il microtelefono.
- codice di spegnimento automatico che viene trasmesso abbassando il microtelefono.
- possibilità di memorizzare fino a 16 numeri telefonici.
- chiamata selettiva per uso interfonico o telefonico.
- memoria di chiamata interfonica.

ES 104

Ufficio commerciale: V. dello Stadio ang. V.le G. Marconi 55100 Lucca Tel. 0583/955217 Ufficio tecnico Tel. 0583/953382 (risponde dopo le 18,30)

Una linea sobria ed elegante caratterizza questo amplificatore a larga banda transistorizzato ad alta linearità per frequenze comprese fra 3÷ 30 MHz. Questo amplificatore da' la possibilità di aumentare notevolmente le prestazioni del vostro apparato ricetrasmittente; ha il grande vantaggio di non avere alcun accordo in uscita per cui chiunque può utilizzarlo senza correre il rischio di bruciare gli stadi di uscita. A differenza degli amplificatori a valvole, il B 300 HUNTER transistorizzato permette l'uso immediato; anche se mantenuto acceso non consuma fin quando non va in trasmissione.

Se la potenza è eccessiva, può essere ridotta con un semplice comando posto sul pannello anteriore che riduce alla metà la potenza di uscita. Uno strumento indica la potenza relativa che esce dall'amplificatore. Il particolare progetto rende semplice l'uso anche a persone non vedenti.

B 300 "HUNTER" L'AMPLIFICATORE **DEGLI ANNI '90**

CARATTERISTICHE TECNICHE

Power output (high) 300 W max eff., 600 W max PeP in SSB Power output (low) 100 W max eff., 200 W max PeP in SSB Power input max 1 ÷ 10 W eff. AM - 1 ÷ 25 W PeP in SSB Alimentazione 220 V AC Gamma: 3 ÷ 30 MHz in AM-FM-USB-LSB-CW Classe di lavoro AB in PUSH-PULL

Reiezione armoniche 40 dB su 50 Ohm resistivi

II series: una nuova frontiera per i "compatti" RTX

SUPERSTAR 360 * 3 BANDE *

Rice-Trasmettitore che opera su tre gamme di frequenza. Dotato di CLARIFIER doppio comando: COARSE 10 KHz in TX e RX; FINE 1,8 KHz in RX. Permette di esplorare tutto il canale e di essere sempre centrati in frequenza. Preamplificatore selettivo a basso rumore per una ricezione più pulita e selettiva. OPTIONAL:

1) Frequenzimetro programmabile con lettura in RX e TX su bande 11, 40/45 e 80/88 metrl.
2) Amplificatore Lineare 2 ÷ 30 MHz 200 W eff.

26515 ÷ 27855 MHz 5815 ÷ 7155 MHz 2515 ÷ 3855 MHz Gamme di frequenza: 11 metri 40/45 metri 80/88 metri

7 watts eff. (AM) 15 watts eff. (FM) Potenza di uscita: 11 metri

36 watts PeP (SSB-CW) 10 watts eff. (AM-FM) 36 watts PeP (SSB-CW) 15 watts eff. (AM-FM) 50 watts PeP (SSB-CW) 40/45 metri

80/88 metri

PRESIDENT-JACKSON * 3 BANDE *

Rice-Trasmettitore che opera su tre gamme di frequenza. Dotato di CLARIFIER doppio comando: COARSE 10 KHz in TX e RX; FINE 1,8 KHz in RX. Permette di esplorare tutto il canale e di essere sempre centrati in frequenza. Preamplificatore selettivo a basso rumore per una ricezione più pulita e selettiva. OPTIONAL.

Frequenzimetro programmabile con lettura in RX e TX su bande 11, 40/45 e 80/88 metri.
 Amplificatore Lineare 2 ÷ 30 MHz 200 W eff.

26065 ÷ 28315 MHz 5365 ÷ 7615 MHz 2065 ÷ 4315 MHz Gamme di frequenza: 11 metri 40/45 metri 80/88 metri

10 watts eff. (AM-FM) 21 watts PeP (SSB-CW) Potenza di uscita: 11 metri

10 watts eff. (AM-FM) 36 watts PeP (SSB-CW) 15 watts eff. (AM-FM) 50 watts PeP (SSB-CW) 40/45 metri 80/88 metri

EDITORE edizioni CD s.n.c.

DIRETTORE RESPONSABILE Giorgio Totti

REDAZIONE, AMMINISTRAZIONE, ABBO-NAMENTI, PUBBLICITÀ 40131 Bologna - via Agucchi 104 Tel. (051) 388873-388845 Fax (051) 388845 Registrazione tribunale di Bologna n. 3330 del 4/3/1968. Diritti riproduzioni traduzioni riservati a termine di legge. Iseritta al Reg. Naz. Stampa di cui

RAX (031) 360043 Registrazione tribunale di Bologna n. 3330 del 4/3/1968. Diritti riproduzioni traduzioni riservati a termine di legge. Iseritta al Reg. Naz. Stampa di cui alla legge n. 416 art. 11 del 5/8/81 col n. 00653 vol. 7 foglio 417 in data 18/12/82. Spedizione in abbonamento postale - gruppo III Pubblicità inferiore al 70%

DISTRIBUZIONE PER L'ITALIA SODIP - 20125 Milano - via Zuretti 25 Tel. (02) 67709

DISTRIBUZIONE PER L'ESTERO Messaggerie Internazionali via Rogoredo 55 20138 Milano

ABBONAMENTO CQ elettronica Italia annuo L. 48.000 (nuovi) L. 46.000 (rinnovi)

ABBONAMENTO ESTERO L. 58.000 Mandat de Poste International Postanweisung für das Austand payable à / zahlbar an edizioni CD - 40131 Bologna via Agucchi 104 - Italia Cambio indirizzo L. 1.000 in francobolli

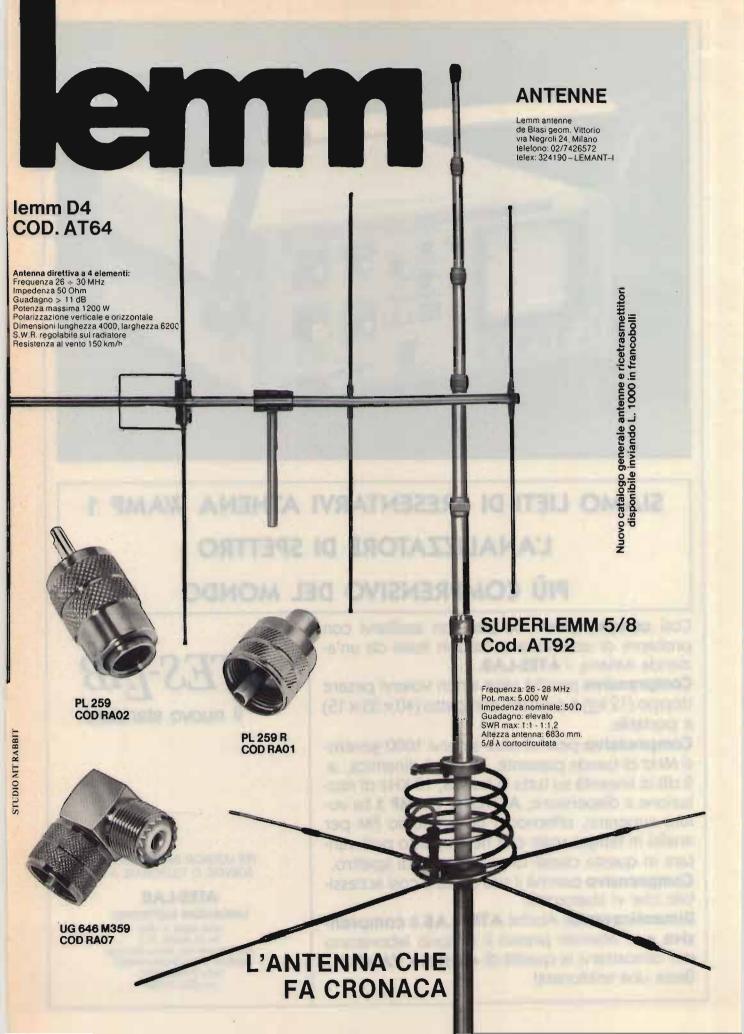
ARRETRATI L. 5.000 cadauno Raccoglitori per annate L. 8.000 (abbonati L. 7.200) + L. 2.000 spese spedizione.

MODALITÀ DI PAGAMENTO: assegni personali o circolari, vaglia postali, a mezzo conto corrente postale 343400. Per piccoli importi si possono inviare anche franco-

STAMPA ROTOWEB srl Industria Rotolitografica

bolli.

40013 Castelmaggiore (BO) via saliceto 22/F - Tel. (051) 701770 r.a. FOTOCOMPOSIZIONE HEAD-LINE Bologna - via Pablo Neruda 17 Tel. (051) 540021


Manoscritti, disegni, fotografie, anche se non pubblicati, non si restituiscono.

La Casa Editrice non è responsabile di quanto pubblicato su annunci pubblicitari a pagamento in quanto ogni inserzionista è chiamato a risponderne in proprio.

radioamatori hobbistica-CB elettronica

SOMMARIO gennaio 1	988			
Radiomania: Drago, ovvero un lineare 27 ÷ 30 MHz da barra mobile - R. Galletti	18			
Qui Computers - A. Ugliano	28			
Speciale Radioamatori: Kenwood TS-830 H.P P. Zàmboli e Donato	36			
Operazione Ascolto: Il "DX 10" - RX autocostruito per DX a sintonia continua - G. Zella	45			
Sperimentare: Preampli universale VHF - G. Pisano				
Tastiera esadecimale codificata - F. Fontana				
Indice Analitico 1987	61			
Modifichiamo il nostro RTX omologato, triplicandone i canali - C. Di Nuzzo	71			
Recuperiamo l'AN/ARN-6, RX surplus - G. Chelazzi	78			
Le mani in pasta: Modifiche e migliorie all'ICOM IC-R 71: la "PLAM Option" - F. Magrone	84			
Alimentatori elementari - I. Brugnera				
Bella Italia, amate sponde - L. Cobisi				
Radioriparazioni: Controllo dei tubi elettronici - C. Di Pietro	101			
Preamplificatore Broadband 3-30 MHz per antenne filari - M. Minotti	104			
Offerte e Richieste	110			
ELETTRONICA FRANCO 44 MELCHIONI	69			
ELETTROPRIMA 8 MOSTRA DI BOLOGNA	122			

INDICE DEGLI INSERZIONISTI:		ELETTRONICA FRANCO	44	MELCHIONI	69
		ELETTROPRIMA	8	MOSTRA DI BOLOGNA	122
ADB	55	ELLE ERRE	122	NEGRINI ELETTRONICA	58
A & A Telecomunicazioni	44	E L T ELETTRONICA	108-109	NO.VEL	76-77
ATES-LAB	14	EOS	114	NUOVA FONTE DEL SURPLUS	27
CEP	100	I.L. ELETTRONICA	120	RADIOCOMMUNICATION	35
CRESPI	109	I.S.T.	9	RADIOELETTRONICA	106-107
C.T.E. Internat.	1ª copertina-15	LARIR international	70	RAMPAZZO	1
DE PETRIS & CORBI	95	LEMM	13	SIRTEL	12
ECO ANTENNE	4-5-6-7	LINEAR	121-4ª copertina	SPARK	59
ELECTRONIC SYSTEM	10-11-113	MARCUCCI 2ª copertina	3-17-56-83-91-96	UNI-SET	11
ELETTRA	123	MAREL ELETTRONICA	90	VI-EL	120
ELETTRONICA ENNE	75	MAS-CAR	60	ZETAGI	124-12

SIAMO LIETI DI PRESENTARVI ATHENA WAMP 1 L'ANALIZZATORE DI SPETTRO PIÙ COMPRENSIVO DEL MONDO

Così **comprensivo** che per non assillarvi con problemi di assistenza è nato in Italia da un'azienda italiana, l'**ATES-LAB**.

Comprensivo perché oltre a non volervi pesare troppo (12 kg) è piccolo, compatto (40 × 35 × 15) e portatile.

Comprensivo perché oltre a darvi 1000 generosi MHz di banda passante, 70 dB di dinamica, ± 2 dB di linearità su tutta la banda, 10 KHz di risoluzione e dispersione, ATHENA WAMP 1 ha voluto superarsi, offrendovi un set-audio FM per analisi in tempo reale che nessun altro può vantare in questa classe di analizzatori di spettro.

Comprensivo perché il suo costo è così accessibile che vi sbalordirà!

Dimenticavamo! Anche **ATES-LAB** è **comprensiva** e vi attende presso il proprio laboratorio per dimostrarvi le qualità di **ATHENA VAMP 1**... Basta una telefonata!

ATES-LAB il nuovo standard.

PER ULTERIORI INFORMAZIONI SCRIVERE O TELEFONARE A:

ATES-LAB

LABORATORI ELETTRONICI

sede legale e uffici via 25 Aprile, 9-11 40050 Monte San Pietro (Bologna) telefono 051/6761695-6760227 telex 214825 I RISS fax (051) 751601

ALAN 34S - omologato - 34 canali CARATTERISTICHE TECNICHE: Codice C 030

CARATTERISTICHE TECNICHE:
Frequenza di funzionamento: 28,875+27,265 MHz • N. canali: 34 • Potenza max AM: 4,5 Watt
• Potenza max FM: 4,5 Watt • Tensione d'alimentazione: 13,8 Vcc.
Apparato di costruzione particolarmente compatta è l'ideale per l'utilizzazione su mezzi mobili. La sua accursta costruzione permette di avere une garanzia di funzionamento totale in tutte le condizioni di utilizzo. Utilizzabile di punti di omologazione 1-2-3-4-7-8 art. 334 CP.

ALAN 88S - omologato - 34 canali Codice C 025

CARATTERISTICHE TECNICHE:
Frequenza di funzionamento: 26,875+27,265 MHz • N. canali: 34 • Potenza max AM: 4,5 Watt
• Potenza max FM: 4,5 Watt • Tensione d'alimentazione: 13,8 Vcc.

L'ALAN 68/S è stato il primo apperato in AM/FM = 4,5 Watt omologato in ITALIA. È un apparato completo per il radioamatore veramente estigente, infatti, clire alla normale dotazione di un RTX, dispone di:
• MIC GAIN: Controllo di guadagno del microfono, per avere una modulazione sempre per letta • RF GAIN: Comando per variare a piacimento il guadagno del preamplificatore d'antenna • FIL: Comando per regolare l'intonazione del segnale ricevuto • ANL: Limitatore automatico di disturbi. Utilizzabile ai punti di omologazione 1-2-3-4-7-8 crt. 334 CP del 19/3/83.

ALAN 88S - omologato - 34 canali Codice C 178

CARATTERISTICHE TECNICHE:
Canali: 34 * Gamma di frequenza: 26,865+27,265 MHz * Tensione d'alimentazione: 12,6 Vcc
(11,3+13,8 Vcc).
STAZIONE TRASMITTENTE:
Modulazione: AM-FM-SSB * Potenza RF in AM: 2,5 W (12,6 Vcc) * FM: 2,5 W (12.6 Vcc)
* SSB: 4,8 W (12,6 Vcc).
STAZIONE RICEVENTE:
Sensibilità: 0,5 microvolts per una potenza d'uscita audio di 0,5 Watt * Risposta in frequenza audio: 300+3000 Hz * Distorsione: A 500 mV 10% * Potenza d'uscita audio: maggiore di 3
Watts su 8 Ohm. Watts su 8 Ohm.

77/800 - omologato - 40 canali Codice C 221
CARATTERISTICHE TECNICHE:
Ricetrasmetitiore fisso/portalie CB * Frequenza: 26,295+27,405 MHz * CH 40 - AM.
Batterie e antenna telescopica incorporata. È corredato di una comodissima borsa a tracolla, per il trasporto. Potrete utilizzarlo anche come apparato da mezzo mobile grazie alla presa

per antenna esterna ed alla presa di alimentazione tramite la batteria dell'auto. (Accendisi-garette dell'auto). Utilizzabile al punto di omologazione n° 8 art. 334 CP.

77/102 - omologato - 40 canali Codice 220

CARATTERISTICHE TECNICHE:
Frequenza di funzionamento: 26,965+27,405 MHz • N. canali: 40 • Potenza max AM: 4 Watt
a 13,8 Vcc.

Ricetrasmettitore compatto e di piccole dimensioni • Visualizzatore a Led della potenza d'u-

scita e del seguale di ricezione. Utilizzabile al punto di omologazione nº 8 art. 334 CP.

ALAN 92 - omologato - 40 canali Codice C 219

CARATTENISTICHE TECNICHE:
Frequenza di trasmissione: 26,965÷27,405 MHz • N. canali: 40 • Potenza massima: AM 4 Watt.
Ricetrasmetitiore AM estremamente compatto con tutti i comandi di funzione sul microtone cavo di connessione al trasmetitiore molto lungo • Visualizzatore dello strumento indicatore a Led del commutatore canali • Sistema UP-DOWN COUNTER CM 9 automatica • Microton parla resolte. iono parla-ascolta.

Utilizzabile al punto di omologazione nº 8 art. 334 CP.

ALAN 44 - omologato - 40 canali Codice C 218

CARATTERISTICHE TECNICHE
Frequenza di funzionamento: 26,965+27,405 MHz * N. canali: 40 * Potenza mex AM: 4,5 Watt
* Potenza mex FM: 4 Watt * Tensione d'alimentazione: 13,8 Vc.
Apparato di costruzione particolarmente compatta à l'ideale per l'utilizzazione su mezzi mobili. La sua accurata costruzione permette di avere una garanzia di funzionamento totale in tutte le condizioni di utilizzo. Utilizzabile al punto di omologazione n° 8 crt. 334 CP.

ALAN 48 - omologato - 40 canali Codice C 217

CARATTERISTICHE TECNICHE:
Frequenza di funzionamento: 26,965+27,405 MHz * N. canali: 40 * Potenza max AM: 4,5 Watt
* Potenza max FM: 4 Watt * Tensione d'alimentazione: 13,8 Vcc.
* MIC GAIN: Controllo di guadagno del microfono, per avere una modulazione sempre perfetta * RF GAIN: Comando per variare a piacimento il guadagno del preamplificatore d'antenna * FIL: Comando per regolare l'intonazione del segnale ricevuto * ANI: L'imitatore automatico di disturbi. Utilizzabile al punto di omologazione n° 8 art. 334 CP.

ICR-71

Versione migliorata dell'ormai noto R70. II segnale convertitore a 70 MHz elimina le frequenze immagini e spurie. Doppio VFO ad incrementi di 10 Hz oppure di 50 Hz con rotazione veloce del controllo di sintonia; si possono ottenere incrementi di 1 kHz. L'ICR-71 è collegabile al calcolatore. Un apposito telecomando a raggi infrarossi permette di comandare l'apparato a distanza.

NAUTICO omologato **UNIDEN MC 6700**

Ricetrasmettitore VHF nautico omologato; 55 canali; sintetizzato digitale; potenza out 25 W/1 W low; alimentazione 13,8 Vcc; fornito di cornetta parla/ascolta.

ALINCO ALR-22E

GOLDATEX SX 0012

Caratteristiche tecniche della base: frequenze Rx e Tx: 45/74 Mhz; potenza d'uscita: 5 Watt; modulazione: FM; alimentazione: 220 Vca.

Caratteristiche tecniche del portatile: frequenze Rx e Tx: 45/74 MHz; potenza d'uscita: 2 Watt; alimentazione: 4,8 V Ncd.

NAUTICO omologato ICOM IC M80

Ricetrasmettitore VHF nautico omologato; 55 canali sintetizzati; digitale; 10 canali meteo; 10 memorie; dual watch; potenza out 25 W/1 W; alimentazione 13,8 Vcc.

NOVITA' Frigorifero camper-camion alim. 12 V, 15 litri. Frigo > 0° - saldavivande 70°

INTERPELLATECI VI FACILITEREMO NELL SCELTA E NEL PREZZO

Rampazzo

CB Elettronica - PONTE S. NICOLO' (PD) via Monte Sabotino n. 1 - Tel. (049) 717334

CONNEX 3900

Frequenza: 25.615-28.305 + ALFA+BETA; potenza max: 12 W pep SSB; n. canali: 240 + 31 = 271; modulazione: AM / FM / SSB / CW; alimentazione: 13,8 Vcc.

Speciale tasto per sposamento di +10 KHz. Doppio clarifier inRX e TX separati. Rosmetro corporato e controlli vari.

LAFAYETTE "HURRICANE"

Apparato sintetizzato completo di tutti i modi operativi compatibile ad installazioni veicolari o in stazioni fisse. Frequenza operativa: da 25.615 a 28.305 MHz in 6 bande; tolleranza in frequenza: 0.005%; stabilità in frequenza: 0.001%; temperatura operativa: da —30 °C a +50 °C; microfono: dinamico; alimentazione: 13,8 Vcc; dimensioni: 60×200×235 mm. Non è previsto l'uso quale amplificatore di bassa frequenza.

NAUTICO omologato **ICOM ICM 55**

Ricetrasmettitore VHF nautico omologato; 55 canali; digitale sintetizzato; potenza out 25 W/1 W; 10 memorie; dual watch; alimentazione 13,8 Vcc.

NOVITA' TV 2 pollici a cristalli liquidi 9 Vdc. ali-

YAESU FT23

Caratteristiche salienti: gamma operativa: 144-148 MHz. 430-440 MHz; alimentazione: 6-15 V a seconda del pacco batterie impiegato; sensibilità del Rx: migliore di 0,25 μV per 12 dB SINAD; selettività sul canale adiacente: >60 dB; resistenza all'intermodulazione: >65 dB; livello di uscita audio: 0,4 W su 8Ω.

LAFAYETTE 009 - HOT LINE 007

Interfaccia telefonica

Parallelando questa ad una stazione veicolare o base ricetrasmittente, fra queste due, si possono fare e ricevere telefonate, sfruttando la portata delle stazioni ricetrasmittenti, sistema di comunicazione simplex, semiduplex, ful duplex (tipo di convers. secondo la vs. staz. ricetrasmittente).

ANTENNA DISCOS PER CARAVAN OFFERTA L. 120.000

ABBIAMO INOLTRE A DISPOSIZIONE DEL CLIENTE

KENWOOD - YAESU - ICOM - ANTENNE C.B.: VIMER - C.T.E. - SIGMA APPARATI C.B.: MIDLAND - MARCUCCI - C.T.E. - ZETAGI - POLMAR - COLT - HAM INTERNATIONAL - ZODIAC - MAJOR - PETRUSSE - INTEK - ELBEX - TURNER - STÖLLE - TRALICCI IN FERRO - ANTIFURTO AUTO - ACCESSORI IN GENERE - ecc.

PER RICHIESTA CATALOGHI INVIARE L. 2.000 IN FRANCOBOLLI PER SPESE POSTALI

Uno scanner da 25 a oltre 1300 MHz.

ICOM introduce il più moderno e avanzato scanner: copertura continua da 25 a 2000* MHz - 99 canali in memoria - accesso diretto alle frequenze mediante tastiera o con manopola di sintonia - FM/AM/SSB - scansione tra le memorie, tra due frequenze, e canali prioritari - velocità di scansione regolabile - tasto di selezione dei filtri largo/stretto - cinque velocità di sintonia: 0.1 KHz, 1.0 KHz, 5 KHz, 10 KHz, 12.5 KHz, 25 KHz - display digitale con regolazione di intensità luminosa a due colori, lettura dei canali in memoria, e modo operativo selezionato - DIAL LOCK - NOISE BLANKER - S. METER - GENERATORE DI FONEMI - ATTENUATORE.

*Le specifiche sono garantite da 25 a 1300 MHz, la ricezione sino ai 2 GHz è subordinata alla qualità dell'impianto d'antenna e di discesa.

CARATTERISTICHE TECNICHE

Gamma di frequenza: 25 - 1000 MHz - 1025 - 2000 MHz (garantito da 1260 a 1300 MHz) Impedenza d'antenna: 50 Ohm

Stabilità: ± 5 p.p.m. tra -10°C +60°C

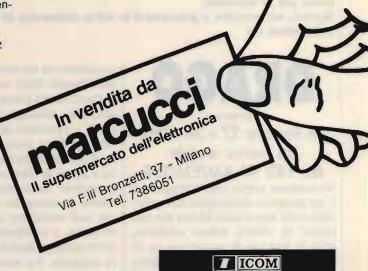
Tipi di scansione: Full-scan, Program-scan, Mode selected-scan, Selected-scan, Memory channel-scan,

Auto Write program-scan, Priority-scan

Risoluzione della frequenza: 100 Hz SSB 25 KHz FM/AM

Lettura della frequenza: mediante display a 7 cifre con una risoluzione di 100 Hz

Alimentazione richiesta: 13.8 V - 177/240 V - CA. Consumo: 1.4 A in stand by 1.7 A al massimo volume Dimensioni: 286x110x276


Peso: 7.5 Kg RICEVITORE

Modulazioni rilevabili: A3, A3j, F3
Sensibilità: FM (15 KHz) 12 dB
SINAD - 12 dBμ (0.25μV) ο meno
FM-Narrow (9 KHz) 20 dB NQL - 10 dBμ (0.3μV) ο meno AM
10 dB S/N - 0 dBμ (1.0μV) ο meno FM - Wide 20 dB NQL
0 dBμ SSB 10 dB S/N - 10 dBμ (0.3μV) ο meno

Sensibilità dello squelch: soglia in FM - 20 dB μ limite in FM - 100 dB μ

Selettività: FM 15.0 KHz o meglio a 6 dB FM-N, AM 9.0 KHz o meglio 6 dB FM-W 150.0 KHz o meglio 6 dB SSB 2.8 KHz o meglio 6 dB

Reiezioni a spurie e immagini: maggiori di 60 dB Livello audio: 2.5W su 8 Ohms 5.0W su 4 Ohms Impedenza altoparlante esterno: 4/8 Ohms Ricezione: FM, FM-N, AM, SSB: Tripla conversione FM-W: Doppia conversione

marcucci[§]

R 7000

• Roberto Galletti, IW0CDK •

Radiomani senza scampo, a voi tutti salute! Voilà, poesiola ad alto contenuto energetico, frutto delle nostre meditazioni natalizie:

Che ci porta l'ottantotto?

Porterà RADIOMANIA
una nota d'allegria?
e se poi si pensa al costo
metterà ogni cosa a posto?

Dopo i natalizi impulsi
a far doni scemi o insulsi,
riusciranno i nostri eroi
a farn'uno pure a noi?

Ma certo che riusciremo a farcelo! Volete forse che, dopo i fiumi di nobil filigrana profusi a piene mani in questo periodo di baldorie per elargire regali a destra e a manca (e che ci ha portati sull'orlo della bancarotta), almeno RADIOMANIA non ci regali qualcosa di importante per rimetterci in sesto e ritirarci su il morale?

E, anche per iniziare degnamente l'anno nuovo, — ...qua ha da esse robba forte, più forte de 'n botto, mejo de 'n leone, de più assai de 'na bomba ar prutonio! Ha da esse... un DRAGO!

E se Drago deve essere, Drago sia! Ma uno di quei draghi alla giapponese che, quando entra in funzione lui, fa terra bruciata intorno e tutti si azzittiscono per lo spavento!

Signori, mi arrischio a presentarvi la belva elettronica per eccellenza! ...Riflettori sul

DRAGO

un lineare 27 ÷ 30 MHz da barra mobile da 140 W AM/FM/SSB

Vi confesso subito che il Drago non è un progetto facilissimo da realizzare e che non è tutta farina del mio sacco: in effetti, tempo addietro, ebbi la fortuna di acquistare un lineare simile (scassato) proveniente dal celeberrimo mercato di Portaportese, a Roma. Anche se due

transistori su tre risultavano irrimediabilmente fuori uso, studiandone il circuito, mi piacque la soluzione circuitale adottata per "parallelizzare" i transistori di potenza dall'anonima Casa costruttrice americana (l'etichetta era del tutto cancellata) e decisi di rimettere in sesto l'apparecchio riprogettando pazientemente lo stampato e le induttanze che nell'esemplare erano del tutto rovinate, e sostituendo le capacità ritrovandone empiricamente il valore originale. Fu comunque un lavoro lungo e pieno di difficoltà che però, una volta superate, mi ripagò ampiamente del tanto tempo speso nella riprogettazione.

Naturalmente un apparecchio del genere, per poter fornire prestazioni di questo livello, ha bisogno di essere costruito con estrema cura, per cui sarà bene che seguiate le indicazioni che andrò via via a fornirvi con pazienza e precisione, poiché il risultato dipenderà in massima parte proprio dall'esecuzione materiale del progetto.

Vi dirò anche subito che, come sempre accade in questi casi, la reperibilità dei transistori di potenza VHF impiegati non è facilissima. Occorrerà quindi innanzi tutto cercare di procurarsi i transistori di potenza per VHF, i 2N5691 della TRW, utilizzati dal sottoscritto in questo circuito. Tali transistori non hanno, purtroppo, precisi corrispondenti di costruzione europea o similia. Tra l'altro, i 2N5691 esistono in due versioni: la prima, di tipo commerciale, li racchiude in contenitori standard di tipo "X27" (quelli, per intenederci, col gambo filettato che va reso solidale al dissipatore tramite il solito bulloncino), la seconda, di tipo industriale, racchiusi invece in contenitori di tipo "X29" (ovvero quelli senza gambo filettato ma con la superficie di raffreddamento più ampia e provvista di due fori per la connessione al dissipatore tramite normali viti).

Per questo progetto, dunque, ho personalmente optato per il secondo tipo di transistor, che risulta più semplice da montare e assicura nel contempo una estesa superficie di contatto con il generoso dissipato-

re. Ciò non toglie che si possa utilizzare anche il tipo standard, previa meticolosa foratura del dissipatore e altrettanto precisa posizionatura dello stampato.

In ogni caso, se non si riuscisse a reperire i 2N5691, nulla vieta di provare a inserire nel circuito transistori di caratteristiche simili (anche se non proprio identiche poiché, come detto, tali semiconduttori non hanno corrispondenti perfetti). Per questo vi riporto ora le caratteristiche essenziali dei succitati transistori:

tipo 2N5691							
VCBmax	VCEmax	VEBmax	ICmax				
50 V	30 V	4 V	5 A				
P. tot	FTmin	Cap. OB	Hfe				
88 W	300 MHz	160 pF	10 MN				

Come potete constatare, si tratta di un transistore realmente ecceziona-le anche se di costruzione non recentissima. Consultando le varie tabelle e i vari prontuari (che, chissà perché, non danno mai le stesse indicazioni per lo stesso tipo di semiconduttore), posso ipotizzare che, in sostituzione dei 2N5691, si possa utilmente provare a montare i più reperibili BLY89C, BLY90,

foto 1

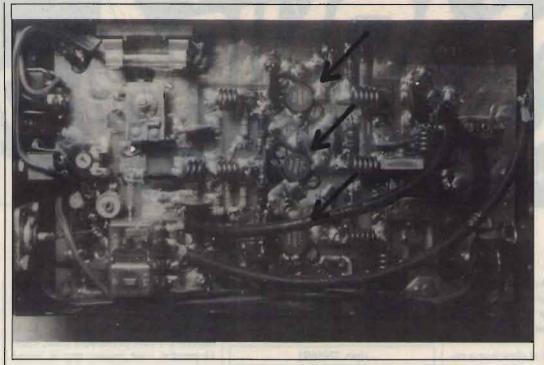


foto 2 I transistori di potenza sono in contenitore X29 e vanno addossati al dissipatore direttamente con un paio di viti Parker.

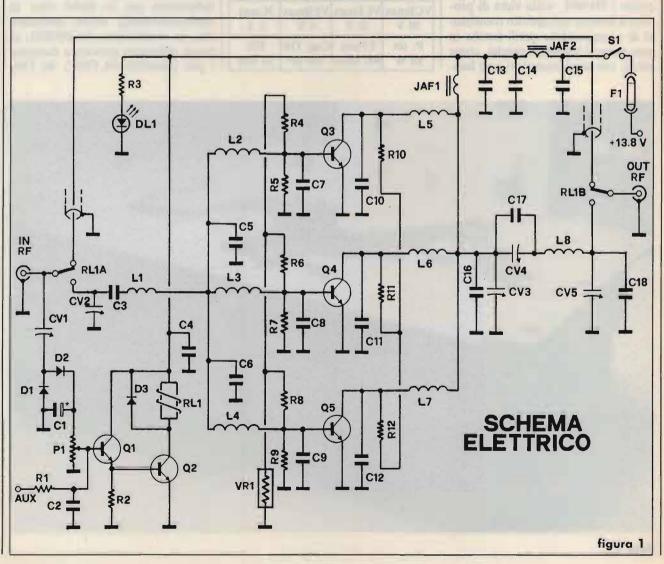


foto 3 Il lineare risulta compatto e ben dimensionato.

BLY93A o BLY94. Sarei anzi grato a chi, decidendo di tentare la sostituzione, me ne comunicasse l'esito. Ma vediamo ora meglio le caratteristiche generali del Drago così che possiate farne una valutazione più obiettiva:

GAMMA DI LAVORO

da 26,5 a 29,5 MHz (banda CB e amatoriale dei 10 m);

MODI DI FUNZIONAMENTO AM, FM e SSB;

POTENZA DI PILOTAGGIO

da 3 a 7 Weff. RF;

POTENZA DI USCITA

AM/FM = $60/10 \text{ W}_{\text{eff}}$. RF (a seconda della potenza di pilotaggio); SSB = max $140/160 \text{ W}_{\text{eff}}$. RF di picco (a seconda della potenza di pilotaggio);

ALIMENTAZIONE

12 ÷ 13,8 V continui;

ASSORBIMENTO

max 240 W = da 10 a 15 A (a seconda delle condizioni di pilotaggio e di alimentazione);

ASSORBIMENTO A VUOTO

15 mA circa;

R.O.S. INTRODOTTO

max 1:1,5;

VARIE

protezione a fusibile 20 A/30 V ritardato contro i sovraccarichi; possibilità di commutazione tramite AUX.

Niente male, no? Soprattutto se si considera che tali caratteristiche sono reali e misurate con strumenti di sicura affidabilità.

Ma iniziamo ad addentrarci nel vivo del progetto, considerando come sempre per prima cosa il circuito elettronico.

Già un primo sommario esame ci dimostra come i tre circuiti relativi agli amplificatori veri e propri, costituiti dai transistori Q₃, Q₄, Q₅ e annessi, siano tra loro perfettamente identici: in effetti questi amplificatori di potenza vengono fatti lavorare in parallelo tra loro tramite le due reti di "equalizzazione" costituite rispettivamente dai resistori R₄, R₆, R₈ e R₁₀, R₁₁, R₁₂. Se quindi analizzeremo il solo circuito relativo a Q₃, capiremo anche come funzionino quelli connessi a Q₄ e Q₅.

La RF proveniente dal RTX viene inviata, qualora S₁ risulti aperto, direttamente all'uscita tramite le due commutazioni (RL_{1A} e RL_{1B}) del relé RL₁ in quanto questo, non alimentato, permarrà in condizione di riposo. In questo caso il lineare risulta escluso.

Se però chiudessimo i contatti di S₁, la tensione positiva fornita dall'alimentatore potrà giungere al circuito e il Drago svolgerà la sua funzione di amplificatore. Infatti una piccola parte di RF erogata dal rice-trans passerà innazi tutto attraverso il compensatore C_{V1} e sarà poi rettificata dai diodi D₁ e D₂ trasformandosi in una tensione continua ai capi del condensatore di livellamento C₁. La stessa tensione è presente anche ai capi del trimmer P₁ e, opportunamente dosata dal cursore di quest'ultimo, sarà inviata alla base di Q₁. La tensione in uscita di emettitore da Q₁, amplificata in corrente, viene adesso inviata alla base di Q₂ e tale transistor, portandosi in conduzione, ecciterà il relè RL1 che provvederà a sua volta a eseguire le commutazioni necessarie al funzionamento dell'amplificatore. Naturalmente tutto ciò avviene in una

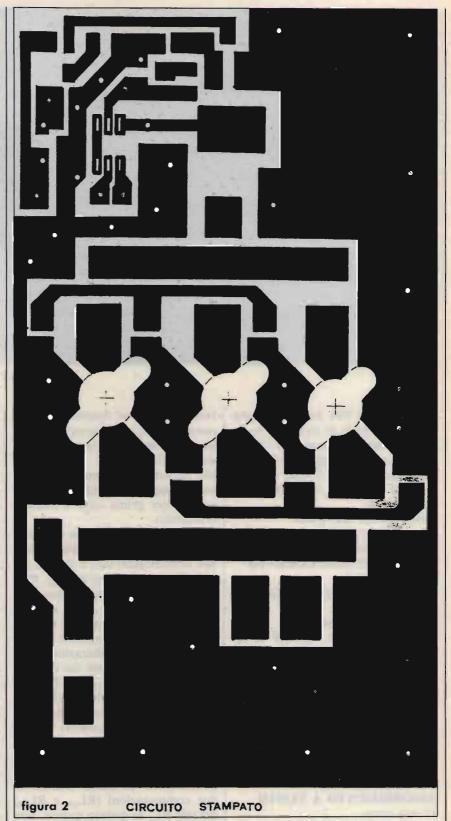
A questo punto RL_{1A} farà pervenire la RF all'ingresso vero e proprio dell'amplificatore. Infatti l'alta frequenza, calibrata dal compensatore C_{V2} , giungerà tramite C_3 , L_1 e la successiva rete di adattamento costituita da L_2 , L_3 , L_4 e annessi, alle basi dei transistori di potenza Q_3 , Q_4 e Q_5 .

frazione di secondo.

Come certo noterete, la famosa rete di adattamento si chiude verso massa, da una parte con il varistor VR₁. Tale componente serve solo a correggere automaticamente even-

tuali fluttuazioni della tensione che si instaura sulle basi. Trattandosi di un tipo di "resistore" un po' difficile da trovare, esso può essere comunque tranquillamente tolto dal circuito senza alterare granché le prestazioni generali.

La RF, fortemente amplificata dai 2N5691, in uscita dal collettore di ognuno, viene "raccolta" su un'unica linea facente capo alle bobine di accordo L₅, L₆ e L₇ e sintonizzata con l'aiuto di C₁₆ e C_{V3}.


Ora finalmente essa può essere applicata al pi-greco adattatore d'uscita, costituito da C_{V4}/C₁₇, L₈ e C_{V5}/C₁₈, che, tramite la seconda azione di commutazione del relé, RL_{IB}, la invia all'antenna.

Come appena visto, il circuito elettronico è di per se abbastanza semplice: quello che invece lo è un po' meno è proprio la realizzazione pratica.

Per prima cosa occorrerà poter disporre di due lastre in vetronite, ramate da un solo lato, di identica grandezza, e cioè esattamente, di 11 x 19,5 cm. La prima verrà utilizzata per realizzare il circuito stampato vero e proprio, mentre la seconda fungerà da schermo inferiore per quest'ultimo. Qualcuno obietterà che si sarebbe potuto utilizzare un'unica lastra di vetronite, ramata da ambedue le facce: in effetti ho voluto, come sempre, utilizzare quello che era già a mia portata di mano e, inoltre, vista la larghezza delle piste, ho pensato che forse le capacità troppo grandi che si sarebbero formate tra il lato superiore e l'inferiore, avrebbero potuto alterare il funzionamento del lineare.

A questo punto bisognerà realizzare gli stampati, cercando di riprodurli il più fedelmente possibile. Una volta pronti, essi verranno forati con pazienza, utilizzando una punta da trapano da 1,5 mm di diametro. I forellini, destinati a connettere le piste superiori con la faccia inferiore, sono in numero di 41.

Perché i fori corrispondano perfettamente, converrà sovrapporre momentaneamente le due lastre di vetronite, ovviamente ambedue con il lato-rame rivolto verso l'esterno, fermandole con del nastro adesivo. Terminata questa operazione, si procederà alla saldatura degli spezzoni di filo, di almeno 1 mm di se-

zione, che uniranno le piste superiori alle inferiori, lasciando liberi solo i due fori destinati a supportare i reofori dell'avvolgimento del relè. L'operazione successiva consiste nel ritagliare, munendosi di un se- l le piccole lime e con carta abrasiva.

ghetto da traforo, le parti di vetronite destinate a contenere i transistori di potenza. Qualora il taglio risultasse un po' troppo irregolare, potrete rifinirlo aiutandovi con del-

Compare many many record to the fact to the state of the the state of the s has you in justicitée, Commisse (-1294 de lettre désign. Le baleire. to lost carbon Mounta and C. I., it waste and the Lordon HEREST THROUGH AND ADDRESS OF THE PROPERTY OF THE PERSON O

TO RESERVE THE TAX BETTER IN

NUMBER OF STREET AND DESCRIPTION OF THE PARTY OF THE ROOM SHOW IN MARKET IN COLUMN TWO IS NOT THE OWNER. The course of the state of Want to Spid to be seen to be waster to the party of the party of the Delical III official or digner petersion petersion WELLING CHIEF CHIEF OF THE PARTY OF

THE RESIDENCE THE PARTY OF A THE WHITE HE WAS THE WAY OF THE PARTY OF T Carrie social reservit dispressions STORAGE PERSONAL CONTRACTOR STATE A COLUMN THE PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARAGRAPH SOURCE C District County of the landing White makes a second to THE REPORT OF THE PARTY OF NAME OF TAXABLE PARTY. state facility of the second s

Principle and Allica Philips (AM, 50 And proceeding week agreems over 1

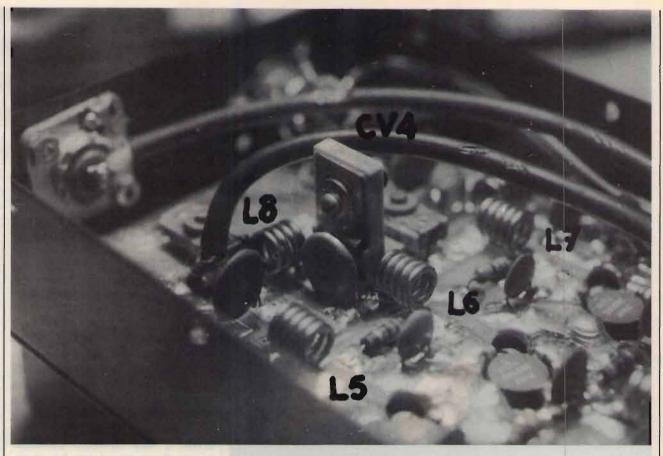


foto 4
Gruppi di bobine di identiche caratteristiche (nel particolare: L₅, L̇₆, L₇).

ELENCO COMPONENTI

R₁ 56 kΩ R₂ 10 kΩ R₃ 820 Ω, 1/2 W R₄, R₆, R₈ 220 Ω, 1/2 W R₅, R₇, R₉ 10 Ω, 1/2 W R₁₀, R₁₁, R₁₂ 22 Ω, 1/2 W

 R_{V1} 3,3 Ω (vedi testo)

 P_1 10 k Ω , trimmer orizzontale

C₁ 22 μF, elettrolitico 16 V_L
C₂ 10 nF, ceramico a disco
C₃ 1 nF, NPO, ceramico a disco
C₄ 10 nF, NPO, ceramico a disco
C₅, C₆ 150 pF, NPO, ceramico
C₇, C₈, C₉ 2 nF, ceramico a disco
C₁₀, C₁₁, C₁₂ 100 pF, NPO
C₁₃ 1 nF, ceramico a disco
C₁₄ 10 nF, ceramico a disco
C₁₅ 10 nF, ceramico a disco
C₁₆ 100 pF, a mica
C₁₇ 150 pF, NPO, ceramico
C₁₈ 68 pF, NPO, ceramico

S₁ interruttore a levetta

Q₁ BC237/BC338/BC547 Q₂ BD175/BD237/BD561 Q₃, Q₄, Q₅ 2N5691 (vedi testo)

D₁, D₂ 0A95, o simili D₃ 1N4148, o simili DL₁ diodo led rosso

RL₁ relè 2 vie tipo Siemens DO418-F104 o simili

F₁ fusibile 20 A, 35 V

C_{V1} 2÷6 pF, compensatore ceramico cilindrico C_{V2} 150÷750 pF, compensatore ceramico a libretto tipo Cyldon o simili C_{V3}, C_{V5} 40÷180 pF, compensatore ceramico a libretto

C_{V4} 20÷250 pF, compensatore ceramico a libretto tipo Cyldon o simili

L₁, L₂, L₃, L₄, L₅, L₆, L₇, JAF₁ vedi testo JAF₂ impedenza VHF tipo VK200

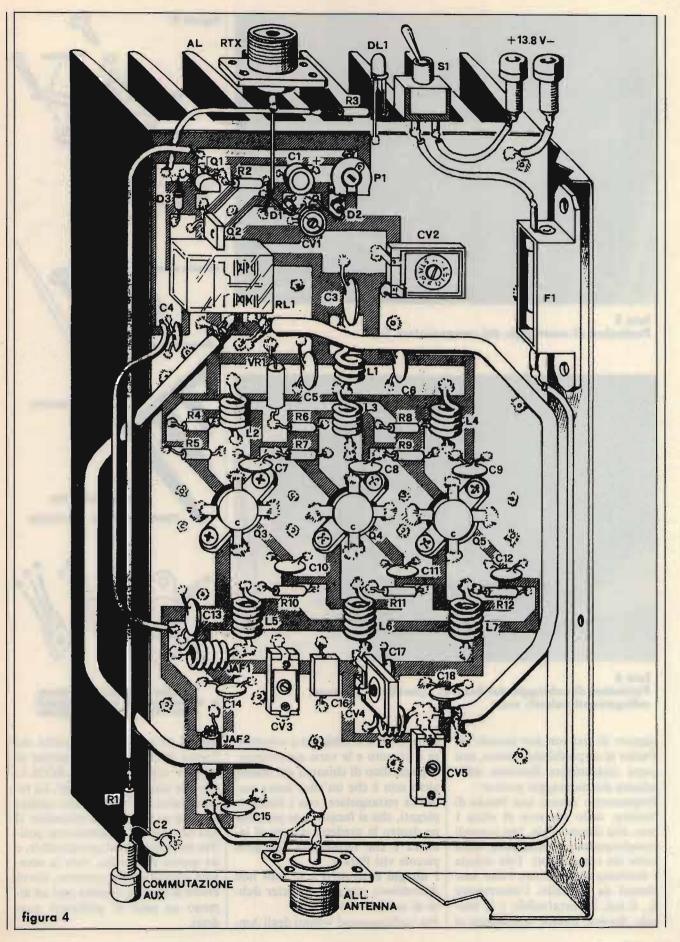
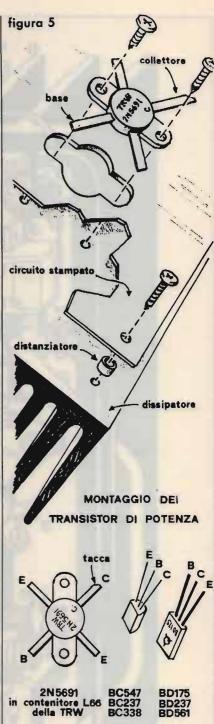


foto 5 Particolari di montaggio del compensatore C_{V2}.

foto 6
Particolari di cablaggio del lineare: pannello di chiusura, collegamenti volanti, ecc.


ognuno di essi con due piccole viti Parker al corpo del dissipatore, così come chiaramente illustrato nello schema del montaggio pratico.

Prepareremo adesso una banda di lamiera, dello spessore di circa 1 mm, alta almeno 4 cm, che circondi completamente lo stampato, dalla parte dei componenti. Tale striscia è destinata a supportare i due Amphenol da pannello, l'interruttore S₁, il led, il portafusibile e le boccole. Servirà, inoltre, unitamente al

coperchio, a inscatolare e schermare il circuito e le varie connessioni. Il pannellino di chiusura del lineare altro non è che un'altra lastra metallica rettangolare, con i bordi ripiegati, che si incastri con precisione dentro la predetta striscia di lamiera e che fermeremo con altre piccole viti Parker.

I disegni costruttivi e le foto non dovrebbero comunque lasciar dubbi di sorta.

cole. Servirà, inoltre, unitamente al | Per i collegamenti volanti degli Am-

phenol all'ingresso e all'uscita del lineare dovremo usare spezzoni di cavetto schermato tipo RG58/U che non siano troppo lunghi. Le relative calze dovranno essere saldate a massa su ambedue le estremità. Il filo che porta l'alimentazione positiva dalla boccola al portafusibile, e da questo al circuito, vista la notevole intensità della corrente, dovrà essere di sezione minima pari ad almeno un paio di millimetri quadrati.

foto 7 Taratura. Il DRAGO durante le operazioni di messa a punto al banco.

Non dimenticatevi di effettuare il collegamento volante che porta la tensione positiva al relè: essa sarà prelevata, con un normale filo da collegamenti, nei pressi del condensatore C_{13} .

Qualora il vostro RTX fosse dotato di presa AUX per commutazioni esterne, si potrà sfruttare la tensione positiva da esso erogata, in trasmissione, per pilotare direttamente la commutazione del Drago. Essa fa capo alla resistenza R_1 e al condensatore C_2 . In questo auspicabile caso, potremo evitare di montare sullo stampato il compensatore C_{V1} e i diodi D_1 e D_2 ottenendo così, oltre a una commutazione più decisa, anche un miglior rapporto di stazionarie tra RTX e lineare.

La taratura del nostro apparecchio si esegue abbastanza facilmente, aiutandoci con i soliti wattmetri/rosmetri: il primo verrà connesso tra la sua uscita e un carico fittizio da $52~\Omega$ di adeguata potenza o, al limite, l'antenna. Sarà comunque bene, in un primo tempo, inserire il ROSmetro tra RTX e lineare. Data tensione, si controllerà che le stazionarie siano le più contenute possibile, agendo per questo sul compensato-

re C_{V2} e, eventualmente, allargando o stringendo un po' le spire delle bobine L_2 , L_3 e L_4 . Osservando quindi il wattmetro posto in serie all'antenna, si calibreranno i compensatori C_{V3} , C_{V4} e C_{V5} , connessi al pi-greco d'uscita. Occorre ripetere più volte le operazioni suddette fino a ottenere la massima uscita RF con il minimo rapporto di onde stazionarie.

Per tarare la sensibilità di commutazione, in mancanza di presa AUX, si porrà C_{V1} alla minima capacità e P₁ con il cursore tutto ruotato verso massa. Ponendo il ricetrasmettitore in trasmissione, si ruoterà il cursore del trimmer fino a sentire lo scatto deciso del relè. Se ciò avvenisse con un po' di incertezza, si ritoccherà anche C_{V1} in modo da aumentarne leggermente la capacità inserita.

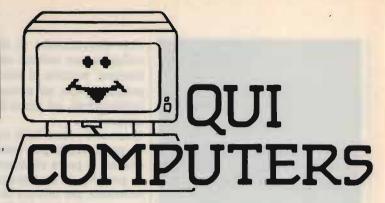
Buon lavoro, quindi, irrimediabili radiomani che non siete altro, con i miei personali auguri di buon anno.

CQ

NUOVA FONTE DEL SURPLUS

Novità del mese:

- Occasione: Jmmy Truck GMC Dump 6 x 6 anno 1944 eccezionale perfetto funzionante
- Ricevitore ARN 6 da 100 Kcs a 1,750 Kcs
- Canadese 19 MK III complete di accessori
- Amplificatore lineare per 19 MK III completo di accessori
 Gruppi elettrogeni PE75 AF 2.2 kw 110-220, DB 12-15 VDC
- Gruppi elettrogeni PE75 AF 2.2 kw 110-220, DB 12-15 VL 30 amp. c.c.
- Generatori a scoppio PE 214-220 volt Ac
- Inverters statici 12 Vcc-110 Vac
- Inverters statici 12/24 Uscita 4,5-90-150 Vcc
- Oscillatori TS-382
- Inverters statici entrata 12 Vcc/Uscita 24 Vcc
- BC 1000 VRC 3. Ricetrasmettitore con alimentatore 6-12-24 V completa di accessori
- Telescriventi TG7
- RXTX PRC9 e PRC10, alimentatori a batteria per tetti
- Stazione completa SCR 193 con IC 312 + BC 191 e accessori per il funzionamento
- RX-TX ARC 44 da 24-52 MC/S completi di C.BOX, Antenna base
- Collins ARC 27 RXTX 229,400 completi di C. Box Cavi antenna tutto funzionante
- Stazione Radio ricevitore R19
- Pali in alluminio per supporto antenna con gradini di salita.
 Tutto l'impianto in 2 casse a tenuta stagna
- Radio receiver R-266/URR 13 da 200 a 400 MCS modificabile da 100-200 MCS o altro


- Kit antenne con borsa da campo PER 19MK3
- Radio receiver-transmitter 30W 100-160 MCS
- Generatori a scoppio autoregolati 27,5 Volt, 2.000 Watt
- Stazione ricevente SCR593 speciale per jeep (ricevitore completo di monting, antenna, batteria al piombo nuova, il tutto originale del 1944)
- NEW: ricevitore per jeep. Ricevitore RRTP-2A da 0,4 a 20 Mcs alimentato a 6-12-24 D.C., 110-220 AC completo di altoparlante, manting e cordoni
- Voltmetro a valvola ME 26D-U con sonda RF fino a 700 Mcs
 Pali supporto antenne tipo a canocchiale e tipo a innesto, completi di controventatura.
- Accordatori per antenne verticali e filari, inoltre parti staccate per possibili autocostruzioni.
- Ricevitori BC312 da 1,5-18 Mcs. AM/CW/SSB filtro a cristallo, alimentazione 12 Volt 110 Volt A.C..
- Ricevitore BC348 da 200 a 500 Kcs, 1,5-18 Mcs.
 AM/CW/SSB filtro a cristallo, alimentazione 28 Volt D.C.
- Stazioni basi e ripetitori 150-180 Mcs.
- Ricevitori 400-600 Mcs.
- Ricevitore R450 da 0 a 54 Mcs, ottimo per telescrivente, doppia conversione, filtro a cristallo, alimentazione 220 Volt
- Trasmettitori BC191. 1,5-12,5 Mcs, AM/CW 120 max.
- Eccitatori pilota. Max 20 Watt. Tipo Collins 1,5-24 Mcs.
 Ricevitore inglese tipo R107 da collezione per amatori.
- Trasmettitore BC610 potenza max 620 Watt.

Via Nirano n. 7 - Spezzano di Fiorano - Fiorano Modenese (MO)
Tel. 0536/844214 - da gennaio prenderà il 0536/940253 - 8,00-12,00/14,00-18,30

NON DISPONIAMO DI CATALOGO — Richiedere informazioni telefonicamente

RUBRICA APERTA A QUALUNQUE TIPO DI COMPUTER PER OM-SWL-BCL E CB

INTERSCAMBI DI PROGRAMMI, INTERFACCIE, MODIFICHE, ESPERIENZE, NUOVE FRONTIERE PER LE RADIOCOMUNICAZIONI COMPUTERIZZATE

• Coordinatore 18YZC, Antonio Ugliano •

L'anno nuovo comincia bene per i possessori dello Spectrum: un programma che indubbiamente farà epoca confrontandolo a un suo predecessore che è restato sulla cresta dell'onda per un anno intero costringendo a ritornare su di sé svariate volte per l'ottimo risultato avuto.

Certo ricorderete FAX della Briggler americana distribuito in Italia dal Girus, un ottimo programma che consente la ricezione di mappe meteo e foto di Agenzie-stampa, però richiedendo un artificio: un'apposita interfaccia autocostruibile (vedi CQ, Novembre 1987).

Il salto di qualità questa volta è stato grande: lo stesso risultato, però senza interfaccia.

In più, dobbiamo aggiungere a questo che il lavoro stavolta è stato fatto tra le mura di casa: è italiano.

Il programma, FAX 512, come già detto, serve alla ricezione di tutte le emissioni in facsimile e si utilizza senza demodulatore né oscillatore esterno. Basta collegare l'uscita dell'altoparlante o cuffia alla solita presa EAR dello Spectrum. Nient'altro.

La definizione orizzontale è di 512 punti (due schermi affiancati), e questa caratteristica lo distingue da altri programmi analoghi.

In senso verticale, la foto a mappa potrà essere lunga a volontà, memoria permettendo: quando questa sarà piena, vedrete lampeggiare la "N" in basso a destra.

Quando invece lampeggia la "S", vi è ancora memoria sufficiente.

A caricamento ultimato, il programma va direttamente in ricezione. Con i valori già inseriti a menu, si può ricevere Roma a 8146 kHz alla velocità di scansione di 120 linee al minuto.

Veniamo al significato del menu:
— se l'immagine è obliqua, correggetela con i tasti 6 - 7 (regolazione fine) e 5 - 8 (regolazione grossa);

— per allargare o stringere l'immagine, servirsi dei tasti 9 - 0;

— per variare la luminosità, usare i tasti 1 - 2;

— il controllo di fase, tasti 3 - 4, sposta l'immagine a destra o a sinistra;

— il tasto "A" attiva l'autofase; questo è possibile solo all'inizio dell'immagine quando viene trasmesso l'impulso di sincronismo, 5% bianco, 95% nero; l'effetto dell'autofase è di spostare il trattino bianco al margine sinistro dello schermo; per attivare questo comando, tenete pressato il tasto "A" sinché si arresta lo scroll verticale; a questo punto, rilasciate il tasto "A", e il gioco è fatto; se la scansione non riprende, sbloccatela premendo un tasto qualsiasi;

— il tasto "S" inizializza la memoria;

— il tasto "N" arresta la memorizzazione; da notare che, ogni qualvolta premete il tasto "S", la memorizzazione si resetta e ricomincia da capo, cancellando l'immagine precedente;

— i tasti "Q" e "W" selezionano la ricezione a 120 o 90 linee per minuto;

— i tasti "R" e "T" selezionano la ricezione di una linea ogni 3 oppuere ogni 2; ad esempio, la REUTER (telefoto) si riceve bene con una linea ogni 2 mentre per le mappe meteo va bene la selezione di una linea ogni tre; modificando la situazione con i tasti "Q", "W", "R", "T", generalmente si deve ritoccare anche la frequenza (tasti 5-6-7-8);

— il tasto "M" torna al menu ove è possibile visualizzare l'immagine ricevuta per esteso; questa può essere spostata a destra, sinistra, alto e basso con i tasti 5-6-7-8; con i tasti 1-2-3-4 lo spostamento sarà di un'intera pagina;

— con il tasto "C" l'immagine viene ridotta da quattro a uno per una vista d'assieme;

— il tasto "S" salva su nastro come SCREEN\$ l'immagine ricevuta;

— il tasto "M" ritorna al modo ricezione resettando tutte le immagini precedentemente ricevute;

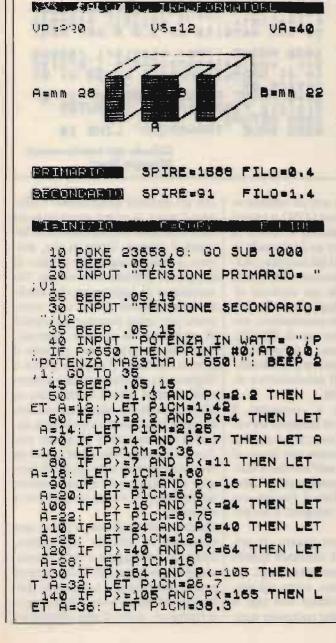
— il tasto "P" esegue la stampa su carta della porzione di immagine al momento inquadrata in tutta la sua larghezza (512 pixel); la stampa è possibile con stampanti grafiche tipo Honeywell collegate via RS232 all'Interfaccia One (quella del microdrive); per chi possiede altra stampante, potrà aggirarsi l'ostacolo salvando su nastro le immagini ricevute e poi stamparle come SCREEN\$.

IMPORTANTISSIMO: in fase di ricezione, i tasti debbono essere

premuti sinché il loro compito non è svolto. Inoltre, la sintonia del ricevitore s'intende centrata solo quando il quadratino che oscilla a destra della scritta SINTONIA, rimane compreso tra i quattro asterischi.

La mappa pubblicata a pagina 31 è stata ricevuta il 30/9/87 alle ore 20 su 11.088 kHz in USB, luminosità 40, una linea su due, frequenza 904 e larghezza 175 pixel.

Come di consueto, il programma è a disposizione gratis per i Lettori tramite mio.


Dimenticavo l'Autore: Davide MA-RINONI di Stezzano, via Vespucci 21, BERGAMO.

Quando nello scorso Novembre accennai al Packet Radio, non immaginavo di aver suscitato un vespaio. Roba da non credersi, telefonate a decine per chiarimenti, informazioni eccetera. Suddividiamole in due categorie: quelli che sono restati delusi, e quelli che non hanno capito niente (in realtà in quella puntata avevo preannunciato che molti non avevano capito niente, ma la mano pietosa dell'Editore aveva sopperito a questa mia gaffe). Dire che non si è compresa una certa cosa non è tacciare l'individuo di ignoranza, dipende anche dal modo come viene presentata la cosa: ho visto articoli in merito zeppi di numeri e termini

in inglese ove non ci avrebbe capito niente neppure un addetto ai lavori. Forte quindi del plauso ottenuto telefonicamente e per tenere fede alle premesse in quella sede fatte, riprendo l'argomento non profondamente trattato per non... arricchire la SIP.

Dedicato a quei Lettori che, candidamente, si sono dichiarati ignoranti in merito.

Dunque, cominciamo col dire che il Packet Radio non è altri che un RTTY tradizionale, però arricchito di un'altissima velocità di trasmissione, di una verifica della reale ricezione di quanto trasmesso, e non per ultimo, il poter utilizzare altre

P>=165 AND P < =260 THEN L
LET P1CM=52.5
P>=260 AND P < =400 THEN L
LET P1CM=74.5
P>=400 AND P < =550 THEN L
LET P1CM=102
1 **CALCOLO LAMIERINO**
1 **CALCOLO SPIRE SEC.**
1 **CALCOLO SPIRE SEC.** 140 F : 140 F ASCASSOCIATION

APACHAPORSO

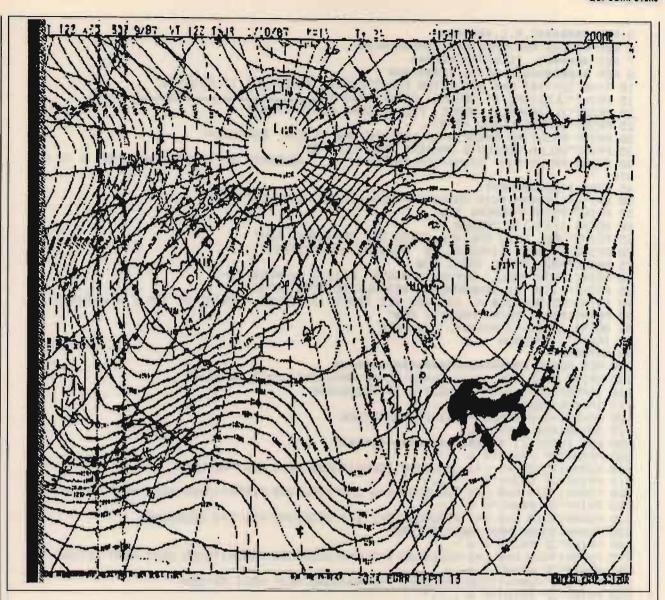
AP NSP2=(V2V*10/6)/(4.44*5 NSP2=[V2V*10/6)/(4.44*5 NSP2=INT NSP2 **CALCOLO SPIRE PRIM** NSP1=(NSP2/V2V)*V1: LET **CORRENTI**
I1=P/V1: LET IZ=P/UQU THEN LET DD=0.2: IF I(=0.12 THEN LET DD=0.3: I(=0.078 THEN LET DD=0.2 <=0.24 THEN LET DD=0.40 TO X X I <= 0.4 THEN LET 3636 DD=0.50: I <= 0.8 THEN LET 900 I(=1.6 THEN LET DD=1: GO I <= 2.35 THEN LET X I <= 2.84 THEN LET TO DD=1.20 <=2.84 THEN LET DD=1.30 I(=3.3 THEN LET DD=1.50. I (=4.3 THEN | ET ICHE THEN PROPERTO G TY-4 7 THEN LET DOW1.80: GRO TE Tra6.3 THEN LET DDm1.90: co th X ... TF T <= 7 480 IF I (=7.8 THEN LET DD=8.1: GO TO X I (m8 . 5 THEN LET DD=2 . 2: TO X 02

```
| Color | Colo
```

```
THE THE TOTAL TO THE TOTAL TO THE TOTAL TO
```

stazioni che si prestino al gioco, come ponti ripetitori per arrivare lontano.

Per poter fare questo, è purtroppo indispensabile arricchire la stazione di un altro aggeggio: il Terminal Node Controller (TNC). Prima ho accennato ai delusi. Sono quella stragrande maggioranza di lettori che, quasi tutti possessori di un CBM 64, si sono cullati nella speranza di fare il Packet con un'interfaccia da quattro soldi e tre integrati che, nelle intenzioni del progettista, avrebbe dovuto sopperire facendone le stesse veci di un TNC che per un tipo economico, non monta meno di trenta integrati e un microprocessore. Questo TNC è un vero e proprio computer ed è applicabile tanto allo Spectrum, al CBM 64, all'Apple e così via. Occorre solo un programma per il computer che si stà usando, e un'interfaccia. Ho detto prima che alcune stazioni fanno da ponte ripetitore. Per il Packet Radio sono le più importanti, quelle che cioè danno la possibilità del DX. Queste vengono chiamate Digipeater's ove un volenteroso OM, per favorire i QSO a grandi distanze, lascia accesa e attiva la sua stazione 24 ore su 24 facendo la gioia di altri utenti del sistema e dell'ENEL. Il volenteroso OM, prima di abbandonare la sua stazione all'uso e consumo degli altri, inserisce nel TNC il proprio nominativo, poniamo I8POS (alter ego di I8YGZ). Da questo momento, e ad intervalli regolari, il TNC attiverà il trasmettitore emettendo il nominativo e altre notizie sull'OM.


Quando andrete a comprare il TNC, con questo vi daranno un volumone per l'uso ove, in un paio di pagine, sono riportate non meno di 150 parole chiavi sull'uso dello stesso. Richiamo a questo punto i delusi che volevano fare il Packet con l'interfaccia a tre integrati e tre parole chiavi.

Logicamente, dopo pagato, la prima cosa da fare è collegare questo TNC a un ricetrasmettitore. In commercio esistono, come già detto, apposite interfacce con cavi e cavetti adatte a ogni computer non-

ché gli appositi programmi. Collegato il tutto, la prima operazione da farsi è caricare il programma che attiverà il sistema. Dopo di che, attivato il sistema seguendo il libro di istruzioni, si passa in ricezione. Dimenticavo di aggiungere che sarebbe bene inserire anche una stampante per avere maggior possibilità di controllo di quanto ricevuto. Avevo detto prima che, durante il giorno, operano le stazioni-ponte o Digipeater; queste emettono a intervalli regolari il loro nominativo e, allorché sarete in ricezione, una delle prime cose che riceverete sarà appunto il nominativo di queste stazioni. Uno dei primi esperimenti da farsi logicamente sarà quello di fungere da Digipeater, quindi inserite nel terminale il vostro nominativo e attendete.

(Giorgio Fino)

Quando uno degli utenti riceve una chiamata e intende rispondere, compila il messaggio e invia. Conoscendo, però (perché li ha ricevuti precedentemente), i nominativi delle stazioni attive come Digipeater's o ripetitori, inserirà alla chiamata i

nominativi delle stazioni che gli serviranno da ponte. Il messaggio parte e attiva rispettivamente nell'ordine le stazioni-ponte che si sono volontariamente prestate.

Se la vostra stazione era attivata come Digipeater, il suo nominativo, cioè il vostro, è stato regolarmente emesso a intervalli regolari, inoltre il vostro TNC sa che dovrà attivarsi e rispondere solo con quel nominativo, e dopo si metterà in attesa d'ascolto. A un certo punto avverrà che qualcuno, per fare un collegamento, avrà bisogno di lui come ponte, e allora, nella lista delle stazioni che gli serviranno da ponte, inserirà anche il vostro nominativo e, una volta che questi lo avrà trasmesso, il vostro TNC si attiverà perché chiamato, riceverà e metterà in memoria il messaggio ricevuto, quindi lo ritrasmetterà a sua volta alla prima stazione dopo di lui figurante nell'elenco compilato da chi ha emesso il messaggio.

Se siete presenti a questa operazione, dovrete porre la massima attenzione per accorgervi di quanto è successo perché la velocità a cui è avvenuta è stata tale che tutt'al più avrete sentito solo lo scatto del relay del ricetrasmettitore e, se questo è a commutazione elettronica, neppure quello.

Per avere un'idea più chiara sul fattore velocità, sarà bene che caricate per prova, per chi non lo ha già fatto, il programma simulatore di Packet pubblicato sul numero 7/87 a pagina 54. Penso che, dalle copie che ho inviato, dovreste averlo tutti. Dunque, caricate il programma nel computer, all'atto lo Spectrum,

inserite un breve messaggio poi collegate un registratore all'uscita MIC, mettetelo in registrazione e inviate il messaggio. Dopo trasmesso, il programma passa direttamente in ricezione; riavvolgete il nastro e inviatelo alla presa EAR. Dopo il solito header, vedrete un brevissimo accenno di caricamento: è tutto. Qualche secondo dopo il messaggio ricevuto sarà presentato sullo schermo a una velocità semplicemente impressionante tale che potrete leggere quanto ricevuto solo dopo che lo stesso è completo.

Questo consente di poter smistare una notevole massa di messaggi in un tempo relativamente breve transitando gli stessi attraverso i Digipeater's per frazioni di secondi.

Logicamente va da se che la ricezione dovrà essere esente da disturbi

```
5 REM 米米米米米米C。R。C。米米米米米米
6 REM **CLUB RADIOAMATORI COMMODORE**
8 REM ********BY.UFYZC.*******
10 T1=6:T2=T1*3:G=4:GOSUB5700:POKE53280,11:POKE53281,11:PRINT"@"
15 PRINT"TLEZIONE DI SEGNALI MORSE":PRINT".
                                                                    ":PRINT
20 PRINT"IL SEGNALE MORSE PUO' ESSERE CORTO (M. ■)"
25 PRINT"OPPURE LUNGO (M-m) .
30 PRINT:PRINT"AD ESEMPIO LA LETTERA MA∎ VIENE ESPRESSA"
35 PRINT"NELLA SEGUENTE MANIERA MAM = (M.-m)"
40 PRINT:PRINT"CIO' SIGNIFICA CHE ESSA E' GENERATA DA":PRINT"UNA LINEA E UN PU
NTO
45 FORM=1T09000:NEXT
50 K=1:L=1:FORM=1T010:GOSUB300:FORN=1T0400:NEXT:NEXT:PRINT
55 PRINT:PRINT"PREMERE 開山書"
60 GETX$: IFX$<>"W"THEN60
65 PRINT" DNEL CASO CHE NEL CORSO DEL PROGRAMMA VO-"
70 PRINT"GLIATE RIVEDERE LE NOZIONI PRECEDENTI"
75 PRINT"PREMETE IL TASTO MZM ."
80 PRINT:PRINT"NELL' ALFABETO MORSE ESISTE LA POSSIBI-"
85 PRINT"LITA/ DI GENERARE UN SEGNALE MOORTO® OPPU~"
90 PRINT"RE MLUNGO∎ A SECONDO DEI TEMPI INTERCOR-":PRINT"SI TRA I 2 SEGNALI ."
95 PRINT:PRINT:PRINT"PREMETE TISE"
96 GETX$:IFX$<>"Z"ANDX$<>"S"THEN96
97 IFX#="Z"THENRUN
99 GOTO800
100 REM MORSE ******************
105 PRINT:PRINT"OK":W=33:FH=23:FL=80:HA=15*16:LA=15:AN=0*16
110 IFPEEK(203)=4THEN:POKESI+4,17:GOSUB1000
115 IFPEEK(203)=4THEN110
120 POKESI+4,0:IFPEEK(203)=14THENRETURN
125 GOSUB1050: GOTO110
200 REM ESERCIZI ****************
205 PRINT"D":PRINT"A = .-"
210 FORM=1T010:K=1:L=1:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
215 PRINT"3":PRINT"B = -..."
220 FORM=1T010:K=0:L=1:GOSUB300:K=3:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
225 PRINT"]":PRINT"C = -.-.
230 FORM=1T010:K=0:L=1:GOSUB300:K=1:L=1:GOSUB300:K=1:L=0:GOSUB300
235 FORN=1T0300:NEXT:NEXT:RETURN
240 PRINT"3" : PRINT"D = -..
245 FORM=1T010:K=0:L=1:GOSUB300:K=2:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
250 PRINT"D":PRINT"E = ."
255 K=1:L=0:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
260 PRINT" : PRINT"F = ..-.
265 FORM=1T010:K=2:L=1:GOSUB300:K=1:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
270 PRINT"D":PRINT"G = --."
275 FORM=1T010:K=0:L=2:GOSUB300:K=1:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
280 PRINT"" : PRINT"H = ...."
285 K=4:L=0:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
290 PRINT"3":PRINT"I = .."
295 K=2:L=0:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
300 REM MORSE 米米米米米米米米米米米米米米米米米米米米米米米米米
305 FORI=1TOK: IFIDKTHEN315
310 POKESI+4,17:FORN=1T0100:NEXT:POKESI+4,0:FORN=1T0100:NEXT
315 NEXT
320 FORI=1TOL:IFIDLTHEN330
325 POKESI+4,17:FORN=1T0300:NEXT:POKESI+4,0:FORN=1T0100:NEXT
330 NEXT
335 RETURN
400 PRINT"]":PRINT"] = .---"
405 K=1:L=3:FORM=1T010:G0SUB300:FORN=1T0300:NEXT:NEXT:RETURN
410 PRINT"" : PRINT" K = -.-"
415 FORM=1T010:K=0:L=1:GOSUB300:K=1:L=1:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
420 PRINT"3":PRINT"L = .-.."
425 FORM=1T010:K=1:L=1:GOSUB300:K=2:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
430 PRINT"]":PRINT"M = --"
435 K=0:L=2:F0RM=1T010:G0SUB300:F0RN=1T0300:NEXT:NEXT:RETURN
440 PRINT"D":PRINT"N = -."
445 FORM=1T010:K=0:L=1:GOSUB300:K=1:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
```

```
450 PRINT"D":PRINT"O = ---"
455 FORM=1T010:K=0:L=3:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
460 PRINT"," : PRINT"P = .--."
465 FORM=1T010:K=1:L=2:GOSUB300:K=1:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
470 PRINT"3":PRINT"Q = --.-"
475 FORM=1T010:K=0:L=2:GOSUB300:K=1:L=1:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
480 PRINT"":PRINT"R = .-.'
485 FORM=1T010:K=1:L=1:GOSUB300:K=1:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
490 PRINT"3":PRINT"S = ..."
495 K=3:L=0:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
500 PRINT"∏":PRINT"T ≈ -"
505 K=0:L=1:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
510 PRINT"3":PRINT"U = ..-"
515 K=2:L=1:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
520 PRINT"":PRINT"V = ...-"
525 K=3:L=1:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
530 PRINT"": PRINT"W = .--"
535 K=1:L=2:FORM=1T010:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
540 PRINT"3":PRINT"X = -..-"
545 FORM=1T010:K=0:L≈1:GOSUB300:K=2:L=1:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
550 PRINT"3":PRINT"Y = -. --"
555 FORM=1T010:K=0:L=1:GOSUB300:K=1:L=2:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
560 PRINT"3":PRINT"Z = --.."
565 FORM=1T010:K=0:L=2:GOSUB300:K=2:L=0:GOSUB300:FORN=1T0300:NEXT:NEXT:RETURN
570 END
800 PRINT"MADESSO VOI VEDRETE E UDIRETE DEI SEGNALI"
805 PRINT"MORSE , QUANDO VI SENTIRETE PRONTI CER-"
810 PRINT"CATE DI RIPETERLI USANDO IL TASTO MF1 CO-"
815 PRINT"ME TELEGRAFO .":PRINT:PRINT"BUONA FORTUNA !!"
820 FORI=1T012000:NEXT
825 GOSUB200:X$=".-":Y$="A":GOSUB2000:GOSUB100:GOSUB215:X$="-...":Y$="B"
830 GOSUB2000:GOSUB100:GOSUB225:X$="-.-.":Y$="C":GOSUB2000:GOSUB100
835 GOSUB240:X$="-..":Y$="D":GOSUB2000:GOSUB100:GOSUB250:X$=".":Y$="E"
840 GOSUB2000:GOSUB100:GOSUB260:X$="..-.":Y$="F":GOSUB2000:GOSUB100:GOSUB270
845 X$="--.":Y$="G":GOSUB2000:GOSUB100:GOSUB280:X$="...":Y$="H":GOSUB2000
850 GOSUB100:GOSUB290:X$="..":Y$="I":GOSUB2000:GOSUB100:GOSUB400:X$=".---"
855 Y$="J":GOSUB2000:GOSUB100:GOSUB410:X$="-,-":Y$="K":GOSUB2000:GOSUB100
860 GOSUB420:X*=".-..":Y*="L":GOSUB2000:GOSUB100:GOSUB430:X*="--":Y*="M"
865 GOSUB2000:GOSUB100:GOSUB440:X$="-,":Y$="N":GOSUB2000:GOSUB100:GOSUB450
870 X$="---":Y$="O":GOSUB2000:GOSUB100:GOSUB460:X$=".--.":Y$="P":GOSUB2000
875 GOSUB100:GOSUB470:X$="--.~":Y$="Q":GOSUB2000:GOSUB100:GOSUB480:X$=".-.
880 Y$="R":GOSUB2000:GOSUB100:GOSUB490:X$="...":Y$="S":GOSUB2000:GOSUB100
885 GOSUB500:X$="-":Y$="T":GOSUB2000:GOSUB100:GOSUB510:X$="..-":Y$="U":GOSUB2000
890 GOSUB100:GOSUB520:X$="..-":Y$="V":GOSUB2000:GOSUB100:GOSUB530:X$=".--"
895 Y#="W":GOSUB2000:GOSUB100:GOSUB540:X#="-..-":Y#="X":GOSUB2000:GOSUB100
900 GOSUB550:X*="-.--":Y*="Y":GOSUB2000:GOSUB100:GOSUB560:X*="--..":Y*="Z"
905 GOSUB2000:GOSUB100:GOTO2100
1010 A$="-"
1020 P=0:R2$=""
1025 RETURN
1050 REM 米米米米米米米米米米米米米米米米米米米米米米米米米米米米米
1055 IFR2#="F"THENRETURN
1060 PRINTA$;:MZ=0:A$=""
1065 P=P+G/2:IFP>T2THENPRINT" ";:R2$="F":RETURN
1070 IFR2#="FF"THENRETURN
1075 IFP>T1THENPRINT" ";:R2$="FF":RETURN
1080 RETURN
2000 REM ******************
2005 PRINT"CPROVATE PER ESERCIZIO A GENERARE :":PRINT:PRINTX$:PRINT
2010 PRINT"CON IL TELEGRAFO (MF1∎) , FATE MOLTA AT-"
2015 PRINT"TENZIONE . POI DI SEGUITO:":PRINT:PRINTX$;" ";X$;"
                                                                   = ";'Y$;'Y$;" 篇PAU
SA CORTAL" PRINT
2020 PRINT"E PER FINIRE PROVATE : ":PRINT:PRINTX$;" ";X$;" = ";Y$;" ";Y$;"@P
2025 PRINT:PRINT"PREMERE MS■ PER PARTIRE E ":PRINT:PRINT"ME■ PER TERMINARE .":PR
INT
2030 GETX$:IFX$<>"S"THEN2030
2045 RETURN
```

```
2100 GETX$:IFX$<>"S"THEN2100
2105 GOSUB100:PRINT"]"
2110 PRINT"PER FARE DEGLI ALTRI ESERCIZI DA ":PRINT:PRINT"MGOTO1000":PRINT:END
5000 REM MORSE ALFABETO *************
5005 REM A=.-
                            S=...
                   J= ---
5010 REM B=-...
                  K=-.-
                            T=-
                   L=.-..
                            U=. . -
5015 REM C=-.-.
5020 REM D=-..
                   M=--
                             V=...-
5025 REM E=.
                   N=-.
                            U= ---
5030 REM F=..-.
                   11=---
                            X==- . -
5035 REM G=--.
                   P=.--.
                            T=- . ---
5040 REM H=....
                   Q=--.-
                            Z=--..
5045 REM I=..
                   R= -
5700 REM TON 米米米米米米米米米米米米米米米米米米米米米米米米米米米米
5705 SI=54272:IFS>1THENRETURN
5710 POKESI+24,15:POKESI+5,0:POKESI+6,9*16
5715 POKESI,23:POKESI+1,80:POKESI+2,240:POKESI+3,240
5720 RETURN
                                                              Programma "Il Telegrafo".
```

che, essendo i messaggi trasmessi a velocità elevata, risulteranno costituiti da impulsi di brevissima durata e quindi facilmente inquinabili da segnali spurii tanto da suggerire che, su frequenze più basse, la stessa venga considerevolmente ridotta per ovviare a quest'inconveniente ma restando comunque tale da consentire sempre un'elevata velocità operativa.

Il TNC consente un numero elevato di possibilità di ricezione e trasmissione, opzioni che vanno dal ricevere messaggi da una sola stazione precedentemente selezionata alla trasmissione di messaggi con indirizzi prioritari. C'è solo l'imbarazzo della scelta.

In sintesi, come già ho precedentemente accennato, un RTTY sofisticatissimo che consente lo scambio di messaggi appoggiandosi a stazioni intermedie che fungono da relay. Logicamente, come ho promesso, tornerò sull'argomento entrando nel vivo del discorso.

E passiamo anche questo mese alla collaborazione dei Lettori.

Un lavoro di Giorgio FINO sul calcolo dei trasformatori impegna questo mese i digitalizzatori dello Spectrum.

Il programma è arricchito di una vista grafica che, oltre a indicare il numero di spire occorrenti per gli avvolgimenti primario e secondario, da' indicazioni sul diametro dei fili da usarsi, sulle dimensioni e misure del nucleo in lamierini necessari per la realizzazione.

Una volta tutti questi calcoli si face-

vano carta e matita e spesso l'unico risultato che si otteneva era una certa collaborazione all'inquinamento atmosferico con fumo e puzza di bruciato. Oggi, con un semplicissimo programma e uno Spectrum da quattro soldi si ottengono risultati di tutt'altra affidabilità.

Da notare che l'Autore consiglia per il nucleo lamierini UNEL al ferrosilicio, e che i calcoli prevedono una densità di 2,5 A per mmq. Qualora si desiderino maggiori ragguagli, potrà essere consultato l'articolo di Nadalet sui trasformatori apparso su CQ nel Dicembre '86.

Per gli utenti Commodore che hanno apprezzato il programma per imparare il CW pubblicato nell'Ottobre '87, questo mese un gradito ritorno sul tema con un programma più impegnativo: il **Telegrafo**.

Descriverlo comporterebbe di allungare la rubrica non poco, per cui faccio un sunto. Si va dal ricevere segnali Morse a velocità programmabile a trasformare il computer in tasto telegrafico per controllare la battuta e le lettere corrispondentemente emesse.

Notare che in REM, linee da 5005 a 5045, è stato riportato per memoria l'alfabeto Morse che non lavorano nel programma e che, in fase di battitura, possono essere omesse.

Ho visto il programma in azione e posso assicurare che chi ha intenzione di imparare la ricetrasmissione Morse può profittare di questo programma come un buon trampolino d'inizio tante sono le sue possibilità che tra l'altro verranno visualizzate in menu.

Prima di chiudere, premio del mese: vince l'antenna COMET CA 2 x 4 Super II bibanda 144/432 MHz: Giorgio FINO, corso Rosselli 68, TORINO.

Ogni Lettore, collaborando alla rubrica, gode della possibilità di vedersi recapitare omaggio a casa un'analoga antenna.

Non dimenticate che chi vuole programmi omaggio per lo Spectrum o per il Commodore 64, non deve fare altro che inviare al mio indirizzo (riportato in fondo alla rubrica) una busta a bolle d'aria con una cassetta C64 o un dischetto per il C64, e ora, da questo mese, altra novità, su cassetta anche per il 64 e su microdrive per lo Spectrum. Non dimenticate di aggiungere il francobollo da 1600 lire per la restituzione (molti lo... dimenticano). Sui supporti che inviate, dischi, microdrive o cassette, dovete registrarci uno o più programmi in campo radio o utility. Ricordo che per lo Spectrum sono disponibili 5 cassette software, e per il 64, il primo dischetto. Dal prossimo mese, nuova edizione. Non vengono presi in considerazione dischetti, cartucce o cassette in bianco.

Indirizzare richieste di software e collaborazione, a:

Antonio UGLIANO

casella postale 65

80053 Castellammare di Stabia (NA).

Un augurio a voi e alle vostre famiglie di un Felice 1988. Ciao come sempre.

CO

FV 707 DM

VFO ESTERNO PER FT707 o SK767 - 6 MEMORIE SHIFT RX-TX, SINTONIA UP-DOWN

FV 700 DM

VFO ESTERNO PER FT77 6 MEMORIE RX-TX

CAD. L. 360.000 + PORTO

OFFERTE SPECIALI AD ESAURIMENTO PEZZI NUOVI IMBALLATI

YAESU FT 790 RC

L. 750.000

IL PORTATILE (BASE O VEICOLARE) ALL MO-DE PIÙ APPREZZATO PER IL TRAFFICO SIMPLEX RPTR O SA-TELLITI.

Opera in SSB CW FM con due VFO simplex o RPTR ±1,6 MHz, 10 memorie non volatili e CH PRIO con scanner automatico multifun-

zione, sintonia meccanica a lettura digitale con clarifier o dal micro UP/DWN, S meter strumento controllo batteria, I NB etc.

Caratteristiche:

Banda 430-440 MHz emissioni in USB-LSB CW FM. Passi sintonia: SSB-CW 100 Hz 1 kHz, FM 25-100 kHz.

RX 2 conversioni SSB CW, 3 conv. FM. Potenza RF: 1 W out con 12 V, consumo RX 100 mA TX 750 mA. Alimentazione: 8 batterie interne o diretta a 12 Vdc.

«PUMA BIT 07» Amplificatore installabile su palmari UHF 430-440 MHz

Lineare a tubo da inserire direttamente sul palmare, plug in-out BNC, alim. 13,8 Vdc dimens. 36×96.

Input 1-3 W out 4-10 W, commutazione VOX RF, interruttore per inserimento o passante.

COMPLETO DI BATTERIA RICARICABILE

Autonomia 120 minuti per 10 W out 1" T/R meter DC out per la ricarica. Custodia vinile.

a L. 260.000

+porto

F. ARMENGHI 14LCK

APPARATI-ACCESSORI per RADIOAMATORI e TELECOMUNICAZIONI

di FRANCO ARMENGHI & C.

40137 BOLOGNA - Via Sigonio, 2 Tel. 051/345697-343923

SPEDIZIONI CELERI OVUNOUE

catalogo generale a richiesta L. 3.000

SPECIALE RADIOAMATORI

Kenwood TS-830 H.P. (High Performance):

da 26,5 a 30 MHz in soluzione continua da 6,5 a 7,5 MHz, e più potenza in uscita...!

> • I8YGZ, prof. Pino Zámboli • con la collaborazione di: Donato, IK8DNP

Fu per un TS-830 che conobbi Donato, IK8DNP. Era l'apparecchio del momento e questo risale a qualche anno fa. Quando apparve sul mercato questo nuovo ricetrasmettitore, la Kenwood voleva contrastare il grande successo della Yaesu che aveva ottenuto con la serie degli FT-101 e principalmente con l'ultimo: lo FT-101 ZD.

una buona preferenza per i ricetra-

I radioamatori hanno sempre avuto | ti. Infatti sono sempre di più quelli che, o per mancanza di spazio o per smettitori compatti e autoalimenta- | praticità operativa o per la maneg-

gevolezza, preferiscono avere un apparecchio "tutto compreso" che non altri accessoriati che devono essere accompagnati dall'alimentatore esterno o dall'altoparlante o da qualche altro accessorio, e non poter funzionare in modo autonomo. Conoscendo questa realtà, quasi tutte le Case costruttici di apparec-

Il Kenwood TS-830 accompagnato dai suoi accessori.

chiature radiantistiche hanno presentato apparati del genere; questo specialmente qualche anno fa quando erano di gran moda le famose linee "separate" composte da ricevitore, trasmettitore e alimentatorealtoparlante. Tutti i vecchi radioamatori ricorderanno la vecchia "Nota Casa" Geloso che produceva le famose linee "G"... e poi la Collins, la Drake, la Hallicrafters. la National, e tantissime altre che producevano apparecchiature di gran classe e risoluzioni che erano all'avanguardia (per l'epoca, s'intende...!). Tanto per citare solo un esempio: chi non ricorda le 3 (dico tre) conversioni dell'Hallicrafters SX 117 e il suo favoloso notch? E la ricezione del Collins KWM 2, e la grande efficacia del Noise Blanker dello R4 C della Drake? Erano altri tempi... e tanto per essere ancora in tema, ognuna di queste Case produceva il suo ricetrasmettitore compatto per chi voleva qualcosa di contenuto.

Ben presto si scoprì che il ricetrasmettitore era più richiesto della Linea, e tutti si preoccuparono di perfezionarlo: infatti i vecchi ricetrans non avevano le stesse caratteristiche delle linee separate e a volte si sfruttava la loro maggior potenza in trasmissione, ma si usava un ricevitore separato per la migliore sensibilità e selettività. Tutte le Case costruttrici si aggiornarono con i tempi e qualcuna purtroppo ancorata a vecchie tradizioni, irrimediabilmente fallì... Fu il caso della Geloso che, dopo aver fatto epoca per decenni con le sue apparecchiature, non recepì il messaggio del ricetrasmettitore! Il caro Pippo Fontana, I2AY progettista della "Nota Casa" non volle ascoltare i messaggi che gli venivano suggeriti dagli amici radioamatori (compreso lo scrivente...!). Penso che a questo punto avrete capito che il ricetrasmettitore occupava una buona fetta di interesse radiantistico.

Con la comparsa sul mercato dei vari FT-100, 150, 200, 400, 500, 505 Yaesu-Sommerkamp, la Trio Kenwood non fu di meno con il TS-510, 511, 515, poi si passò ai transistorizzati e così avemmo la serie Yaesu 101, 101 E, 101 EE, 101 EX e ultimo il 101 ZD; la Trio si affacciò sul mercato con il TS-520, 520E, 520 S,

lo 820 e, dulcis in fundo; il fiammante TS-830 M o S con un fratello più spartano, il TS-530, e poi tutti i transistorizzati del momento.

Il TS-830 rimane oggi, a giudizio di molti, il migliore apparecchio della sua categoria; la ricezione transistorizzata e il finale valvolare con una coppia di 6146, valvole espressamente progettate per la trasmissione, porta fuori una modulazione veramente eccezionale!

Non voglio stare qui a decantarvi tutte le caratteristiche del 830, ma voglio fare solo delle considerazioni. Vi siete mai spiegati perché questo apparecchio che era uscito dalla produzione è ritornato ancora sul mercato? E non è da trascurare il fatto che costa qualcosa più del TS-430 S e appena 300.000 in meno del modernissimo TS-440 S con accordatore... e non dispone di sintonia continua e non ha nemmeno il doppio VFO...!

Se parlate con i migliori DXr del momento o se sfogliate le riviste radiantistiche americane vi accorgerete che i migliori Contester's americani e i Big dell'Honor Roll usano (indovinate un po'...) un TS-830. Per non parlare poi del sottoscritto

che da qualche anno si è classificato sempre ai primi posti nei contest nazionali usando un TS-830 M! A questo punto penso che tutti abbiate capito che il TS-830 è l'apparecchio del momento che si trova nelle migliori stazioni radio ed è ricercato da chi intende fare traffico radio in un certo modo, e con un apparecchio di sicuro e garantito funzionamento.

Di TS-830 ne esistono due tipi: lo M e lo S, che sono praticamente uguali se non per una sola caratteristica, il tipo M tiene anche la scheda AM mentre lo S dispone del CW-N ovvero la possibilità di poter comandare un filtro opzionale dal commutatore MODE. Questa è in sostanza la differenza fra i due tipi; per tutto il resto sono praticamente uguali.

Il TS-830 si presta a molte modifiche, alcune interessantissime e utili, altre un po' meno, ma comunque sempre realizzabili.

Descrivere tutto quello che si può fare a questo apparecchio non è possibile in una sola volta; grazie alle lettere e telefonate giunte dopo la pubblicazione del QTC abbiamo potuto fare una selezione e dare la priorità a quanto vi proponiamo in

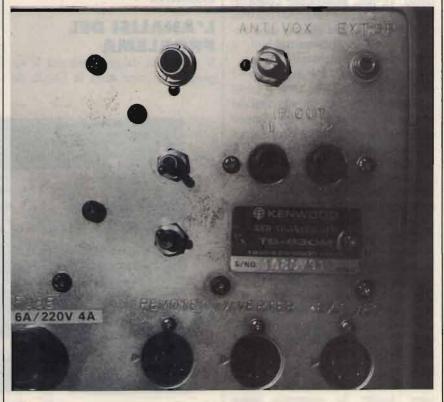


foto 2 I due deviatori messi posteriormente nei buchi già predisposti.

questa prima parte che riguarda il TS-830: 27, 45 e QRO ovvero più potenza in uscita.

LA PRIMA MODIFICA

La prima modifica, che è poi anche quella che ha avuto più richieste, è quella di predisporre l'apparecchio a lavorare sugli 11 e 45 metri. Non stiamo qui a discutere sul perché di tutto questo interesse, sta di fatto che noi seguiamo la direttiva di quei Lettori che hanno preferito questo genere di modifica.

Prima di iniziare la descrizione vera e propria di questa modifica sarà bene qualche precisazione di carattere tecnico.

Il TS-830 appartiene alla nuova categoria di ricetrasmettitori che usano il sistema PLL con matrici di diodi per la determinazione delle bande di frequenza e per la indicazione del lettore di frequenza (che non è un frequenzimetro). Questo sistema elimina il problema più noioso per l'aggiunta di nuove fette di frequenza: quello di dover far tagliare dei quarzi che debbono essere aggiunti o sostituiti a quelli già esistenti. In più, giostrando opportunamente sulle combinazioni dei diodi, si possono fare diverse cose durante le varie sperimentazioni, a volte anche inaspettate!

Ritornando alla 27 e agli 11 e 45 metri, c'è da dire che tutti o quasi gli apparecchi con questo sistema circuitale permettono l'inserimeno di queste bande; l'unico problema è quello di stabilire come attivarle visto che le posizioni del commutatore BAND sono tutte impegnate, a meno che non si voglia perdere quelle originali (28 e 7 MHz) per aggiungere le nuove (27 e 6,5 MHz). Nel caso specifico dello 830 c'è la predisposizione della banda AUX; infatti, tutto a destra dopo la scritta 29, c'è questa che permette la possibilità di inserire un segmento di 500 kHz. Le prime modifiche fatte, e che abbiamo visto un po' in giro, consistevano appunto nella attivazione di questa banda AUX dove si predisponeva la prima banda degli 11 metri (27 + 27,5 MHz). Per attivare anche la seconda fetta (27,5 ÷ 28 MHz) si usava sempre la commutazione AUX e si interveniva con un interruttore posto nella parte posteriore dell'apparato in uno di quei fue fori che si trovano di serie, sulla stessa verticale fra il KEY e il REMOTE. Per i 45 metri si attivano questi e a fine scala si poteva lavorare anche i 40 perché il VFO permetteva una escursione fino a 7075 MHz (logicamente perdendo gli ultimi 25 kHz...).

Chiaramente questa storia dei 40 metri non completi a Donato non piacque subito e così un altro interruttore fu sistemato nell'altro buco disponibile sul retro e fu possibile fare $6.5 \div 7$ e $7 \div 7.5$ MHz senza perdere assolutamente nessun pezzettino di banda (precisando che quelli che ho chiamato interruttori erano dei deviatori).

Dopo questa prima variante che si presentava abbastanza macchinosa da operare dovendo mettere la mano posteriormente, Donato studiò ancora di più il problema, per facilitare i movimenti: prima aggiunse un'altra fetta a disposizione da 26,5 a 27 MHz, sempre comandandola dal deviatore posteriore (quindi si aveva da 26,5 a 28 senza buchi); poi, non contento di questo, ideò la versione definitiva che passiamo a descrivervi.

L'ANALISI DEL PROBLEMA

Il problema da risolvere era il seguente: attivare tutta la banda da 26,5 a 30 MHz senza usare l'AUX (che avrebbe comportato un ulteriore intervento su di una scheda); passare dalle gamme amatoriali a quelle aggiunte solamente chiudendo un interruttore (questa volta veramente un interruttore e non un deviatore), e non fare un sacco di altre manovre come si doveva fare con le modifiche precedenti.

COME FUNZIONA

Tutta la modifica si fa staccando e aggiungendo dei diodi sulla scheda COUNTER UNIT (X54-1540-00) che si trova sulla parte superiore dell'apparecchio esattamente dietro al display che indica la frequenza. Questi diodi, opportunamente combinati fra di loro, danno le altre fette di frequenza e quindi debbono essere commutati nelle varie combinazioni. Abbiamo visto che questo si può fare con dei commutatori ma comportava il problema meccanico; se, invece, al posto dei deviatori si mette un relé a più commutazioni, il gioco si risolve in maniera più semplice, pulita e meccanicamente perfetta. Infatti, per comandare un relé abbiamo bisogno di collegare un filo a massa e il cambio di frequenza avviene automaticamente nel momento stesso che si cambia banda. Così, quando si è in 40 metri. basta far scattare il relé e si è automaticamente in 45 così come da 28 si passa a 27 MHz, ecc. Chiaro?

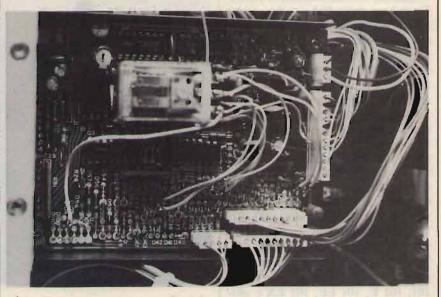


foto 3 La scheda Counter Unit dove si fa la modifica.

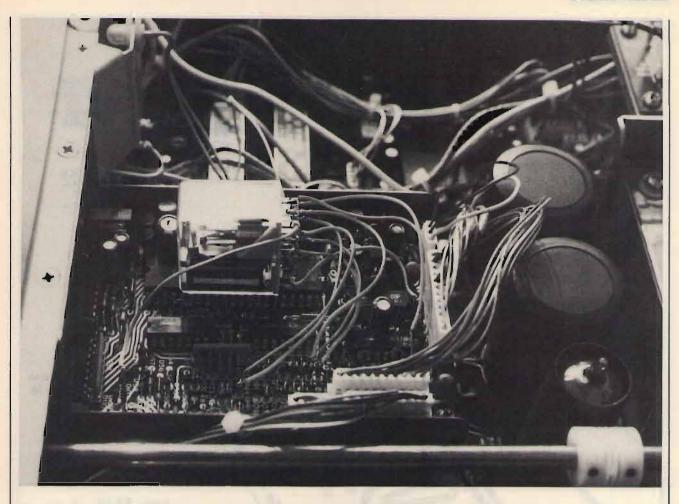


foto 4 Ecco come si fissa il relé.

COME FARE LA MODIFICA

Per la modifica ci sono diverse soluzioni: o la si fa usando un commutatore-deviatore a tre posizioni fissato nella parte posteriore dell'apparato o si usa un relé a tre scambi (o quattro, ma se ne usano solo tre). Se si sceglie la soluzione del relé, per comandarlo si può usare o l'interruttore del DH o il FIX; noi, avendo già usato il pulsante del DH per la modifica QRO (aumento della potenza), per forza maggiore abbiamo risolto con il FIX.

Penso che sia inutile proporre l'attivazione del relé attraverso un interruttore posteriore... a quel punto, si usa direttamente il deviatore, non vi pare? In ogni caso, o si usa il deviatore multiplo, o si usa il relé, le operazioni sui diodi sono sempre le stesse da farsi, quindi sarà opportuno che io vi illustri dove bisogna fare l'intervento... poi ognuno sce-

glierà la soluzione che riterrà più opportuna. Per aiutare il più possibile, in figura 1 sono rappresentate ambedue le possibilità, e servono anche a chiarire meglio in che modo bisogna operare.

Per prima cosa preparate quattro diodi al silicio del tipo 1N4148, e andate a inserirli con un solo lato (quello positivo) nelle seguenti posizioni: D101, D102, D108, D109 (vedi disegno).

Tagliare D26, D27 e D44 nella parte superiore dove c'è la striscetta del positivo; per individuarli, aiutarsi guardando il disegno e la serigrafia sul circuito stampato.

Cominciamo a collegare con un pezzo di filo (A) il positivo D26 al terminale 1 del deviatore S_{1a} (centrale a sinistra); con un altro (B) collegare il terminale 2 di S_{1a} e l'altra parte di D26 precedentemente tagliata.

Si passa poi a D27, collegando il

suo positivo al terminale 7 di S_{1c} (centrale a destra) con il filo C. Con il filo D collegare il terminale 9 di S_{1c} (il primo in alto a destra) al ne-

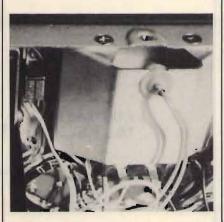
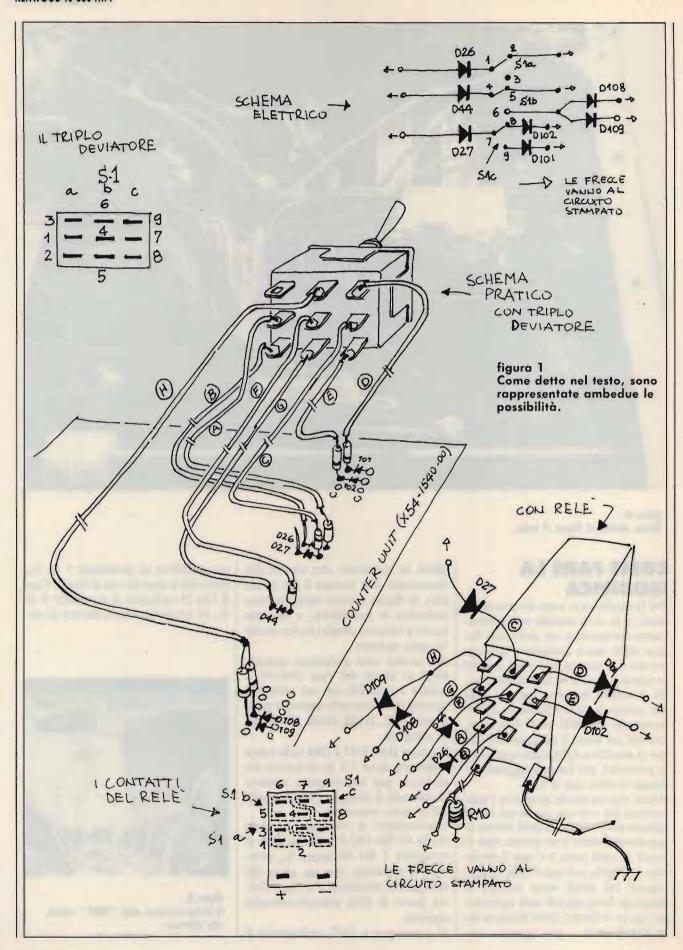



foto 5 L'interruttore del ''DH'' visto da dietro.

gativo D101 (uno di quelli precedentemente inseriti). Il filo E va a collegare il terminale 8 di S_{1c} (in basso a destra) al D102.

L'ultima serie di collegamenti da effettuare parte dal positivo di D44 con il filo F che va collegato al terminale 4 di S_{1b} (centrale).

Poi il terminale 5 di S_{1b} (in basso al centro) va collegato tramite il filo G all'altro capo di D44 sul circuito stampato. Il terminale 6 di S_{1b} (centro in alto) va unito con il filo H ai negativi dei due diodi D108 e D109 uniti insieme.

Basta, per il momento... ma c'è ancora qualche altra cosa da fare!
Coloro che hanno deciso di usare il triplo deviatore non debbono fare altro che fissarlo dietro in uno dei due buchi già esistenti sul pannello. Chi invece ha optato per il relé dovrà fare i collegamenti allo stesso modo come è avvenuto con il deviatore con la sola accortezza di stabilire bene le posizioni degli scambi

del relé usato. In figura 1 noi abbiamo raffigurato quelli del relé che avevamo a disposizione, certo non tutti i relé hanno gli scambi disposti allo stesso modo, per cui sarà bene che vi disegnate su di un pezzo di carta la struttura del relé che intendete usare e poi stabilite i vari collegamenti. Per far scattare il relé c'è bisogno di una tensione (12 V_{cc}) che preleveremo dalla resistenza R10 sempre sulla scheda COUN-TER UNIT che si trova vicino al connettore grande n. 2; è da 220 Ω , e si riconosce facilmente perché è l'unica da mezzo watt posizionata in senso verticale. Il filo di alimentazione del relè andrà saldato direttamente sulla testa della resistenza dove è presente la tensione a 12 V. L'altro capo della bobina del relé andrà collegato a massa attraverso l'interruttore, o del DH o del FIX, come si preferisce. Il sistema più semplice è quello di utilizzare il DH; dietro questo interruttore ci

sono saldati due fili: uno di colore giallo è già collegato a massa, mentre l'altro di colore rosso è collegato al pin 1 del connettore 1 sempre della stessa scheda.

Tagliate questo filo dal connettore e collegatelo all'altro capo della bobina del relé.

Per chi ha intenzione di realizzare la modifica che presentereo dopo (QRO) consigliamo di utilizzare l'interruttore FIX. Premettiamo dicendo che adattare il FIX per far scattare il relé è un po' laborioso, ma non impossibile. Cominciamo col dire che bisogna tirare fuori il VFO, operazione che non vi deve assolutamente spaventare; con una chiave esagonale svitate le quattro viti laterali, e tirate fuori lentamente la scatola del VFO prendendola per la manopola di sintonia. Appena vi è possibile, staccate le due lampadine laterali sfilandole dai loro incavi; quando tutta la scatola è venuta fuori, noterete sulla parte posteriore un connettore che dovete staccare. Nel vano VFO sulla sinistra troverete un circuito stampato che altro non è il supporto dei tre interruttori; la parte che ci interessa è quella superiore corrispondente all'interruttore FIX. Purtroppo fotograficamente era impossibile farvi vedere la modifica "al naturale..." quindi vi riportiamo il disegno su dove e come intervenire (figura 2). Bisogna per prima cosa interrompere una pista e poi fare i ponticelli L e M; il filo N va al relé. Dopo aver fatto queste operazioni, rimettete a posto il VFO, e avete finito veramente tutto; non vi rimane che fissare il relé con un pezzo di nastro autoadesivo a doppia faccia sul dorso dell'integrato Q5 (il più grande che si vede nel contatore).

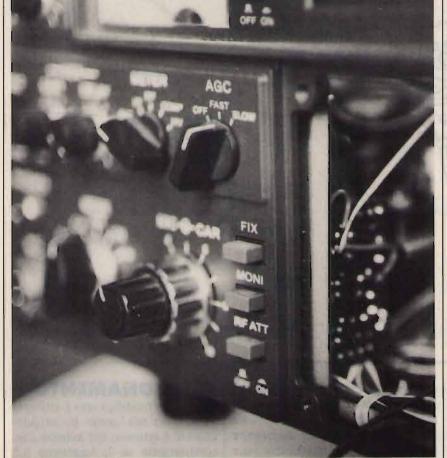


foto 6 Il telaino dove si attiva il FIX, dopo aver asportato il VFO.

TARATURA

Anche questa è molto semplice: è solo necessario effettuarla per la banda $40 \div 45$, mentre per la banda $10 \div 11$ non vi è alcun problema. Procedere nel seguente modo intervenendo solo sulla RF UNIT, la scheda che si trova nella parte superiore a destra, vicino allo stadio finale.

Individuate L25 aiutandovi con il disegno (ove c'è serigrafato 7); que-

sta bobina ha un nucleo di colore blu, e non dovete fare altro che con un cacciavite avvitarla fino a farle toccare il fondo, facendo attenzio-STADIO ne a non spaccare il nucleo. FINALE A questo punto (con apparecchio acceso in ricezione) attivare il cali-BOBINE DA bratore ruotando la manopola del TARARE MIKE GAIN tutta in senso antiorario e sentirete anche lo scatto. Posizionate il commutatore di banda su 7, attivate la modifica (con il comfigura 2 mutatore o il relé), posizionate il Adattare il FIX per DRIVE tutto a sinistra e sintonizzafar scattare il relè. te senza antenna un segnale del calibratore intorno a 6620 ÷ 6630 kHz. Non essendo il ricevitore allineato, lo Smeter non si muoverà e dovete aiutarvi con l'udito. Collegate l'apparecchio al carico fittizio o all'antenna e fate riscaldare le valvole; FIX TERROMPERE QUI DH OTLIV DA DIFTRO Rosto AL RELE DEL CONVETTO RE 1 SULLA SCHEDA

posizionate il commutatore MODE su TUNE e andate in trasmissione. Tarate la bobina L15 fino a ottenere la massima potenza in uscita su un wattmetro con il PLATE e il LOAD; tarato lo stadio finale, perfezionate il picco massimo con il DRIVE, leggendo sullo strumento dell'apparecchio posizionato su ALC. Passate in ricezione e sintonizzate la bobina L6 per la massima lettura del segnale del calibratore precedentemente sintonizzato; fatte queste operazioni nella sequenza che vi abbiamo consigliato, avete terminato la taratura: buoni QSO!

FUNZIONAMENTO

Ouando la modifica non è attivata, tutto funziona come in origine; quando è attivata, noi avremo che, commutando su 7, leggeremo 6,5 MHz, mentre andando su 28 col pulsante + 5 disinserito, il display si spegne... niente paura, è normale!

COUNTER UNIT

figura 3

Modifica QRO.

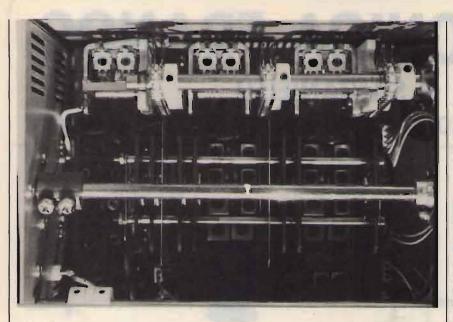


foto 7 La scheda dove si fa la taratura per i 45 m.

Come lo si inserisce apparirà la frequenza da 26.5 a 27 (dipende da dove è sintonizzato il VFO). Passando su 29 avremo da 27 e 27.5 MHz e con il più + 5 inserito avremo da 27,5 a 28 MHz. Come potete ben vedere, non si perde assolutamente nessuna fetta di frequenza, e si ha una risoluzione continua da 26.5 fino a 30 MHz.

QRO (più potenza in uscita)

La modifica consiste nel disattivare l'ALC.

Per fare ciò bisogna intervenire sulla scheda AF UNIT che si trova nella parte inferiore dell'apparecchio, a sinistra. Individuate su tale scheda la resistenza R99; per facilitarvi

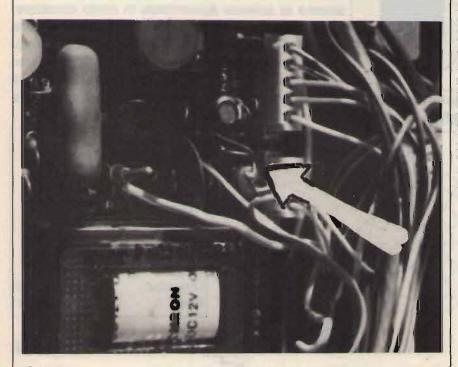


foto 8 La freccia indica R99 per la modifica dell'ALC.

il compito vi diciamo che è localizzata nei pressi del relé. A vostra scelta, o staccate un capo della resistenza dissaldandolo dopo aver smontato la scheda, o più semplicemente lo tagliate e ne asportate la vernice. A questo punto preparate due spezzoni di filo della lunghezza adatta ad arrivare fino all'interruttore DH o a un altro sistemato dietro; uno lo si salda sulla resistenza e l'altro sull'altro capo se l'avete tagliata o sullo stampato se l'avete dissaldata. Questi due fili, se si vuole usare il DH, andranno uno al filo rosso e l'altro al giallo precedentemente tagliati dalle loro posizioni originali; in caso si voglia usare un interruttore posteriore vanno saldati dietro di esso (figura 3). L'efficacia di questa modifica si noterà esclusivamente in modulazione, sopratutto quando si pilota un amplificatore lineare.

Normalmente un TS-830 porta fuori nel picco massimo in CW dai 120 ai 150 W, a seconda della tensione di rete; in modulato, stando nel range dell'ALC, avremo mediamente dai 60 ai 100 W in uscita. Nel momento in cui noi escluderemo l'ALC con la nostra modifica, noteremo che il modulato salirà da 120 a 150 W quasi costanti con un ulteriore irrobustimento della modulazione sempre restando nella caratteristica tipica della modulazione KENWOOD (lo si può notare anche in monitor). L'utilità di questa modifica la noterete principalmente nei pile-up ("mischie" di radioamatori in aria) dove potete sfruttare al massimo la potenza e dell'apparecchio e dell'amplificatore lineare. Noi questo vi garantiamo, ma non la sostituzione dei tubi finali se "dimenticate" sempre il bottone premuto!

ന

ELETTRONICA FRANCO

di SANTANIELLO

C.so Trapani, 69 - 10139 TORINO - Tel. 011/380409 ex Negrini

INTEK TORNADO-34S

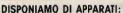
Completo apparato CB - 34 canali in AM/FM/LSB/USB. Adatto per i collegamenti DX a lunga distanza in SSB. OMOLOGATO P.T.T.

GOLDEN STAR

CARATTERISTICHE

lungh.: 5,65 - pot.: 6 kW P.P. - freq.: 26-30 MHz - radiali: 4 - res. vento: 120 km/h - peso: Kg. 3,800 - SWR: 1:1,1 - base in alluminio pressofuso

L. 130,000 **IVA** compresa

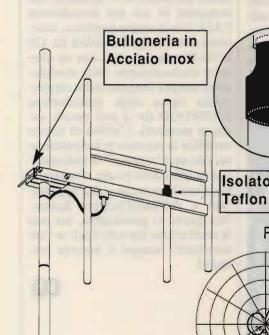

AURORA

CARATTERISTICHE

Freq. 26-30 MHz - Pot. 500 W picco - ROS 1-1,3 - Lung. stilo m. 1,75 - Lung. radiali m. 0,50 - Isolamento 16 kV - Base alluminio

pressofuso

L. 49.500 **IVA** compresa



SOMMERKAMP • PRESIDENT JACKSON • MIDLAND • INTEK • C.T.E. • RMS e modelli 11/45

DISPONIAMO DI ANTENNE: VIMER • LEMM • ECO • C.T.E. • SIRIO • SIRTEL • SIGMA

NOVITA: SUPERVEGA 27 ANODIZZATA • MUNDIAL K 46 - 6 RADIALI

Spedizioni in contrassegno, inviando spese postali. Per pagamento anticipato spese a nostro carico.

L'uso di questa antenna è particolarmente indicato nei ponti ripetitori di media e grande potenza. L' angolo di irradiazione molto ampio, consente di approntare un sistema di antenne aumentando in modo considerevole il guadagno e mantenendo una copertura di zona molto Vasta. L' antenna, inoltre essendo completamente a larga banda, si presta per il funzionamento contemporaneo di più stazioni. La robustezza, infine, fa di Isolatore in questo tipo di antenna uno dei più indicati per sopportare qualsiasi condizione atmosferica.

RADIATION PATTERN

Specifications Mod. AKY/3

Frequency range: Impedance:

Gain:

50 Ohms 7 dB Iso.

88-108 Mhz

1000 W Max Power: Front to back ratio 20 dB

Weight: 8,5 Kg.

Ug 58 Or 7/16 Connector: 1,5:1 or better Wswr:

Antenna Direttiva per trasmissione FM

Mod. AKY/3

TELECOMUNICAZIONI

Via Notari Nº 110 - 41100 Modena Tel. (059) 358058-Tlx 213458-I

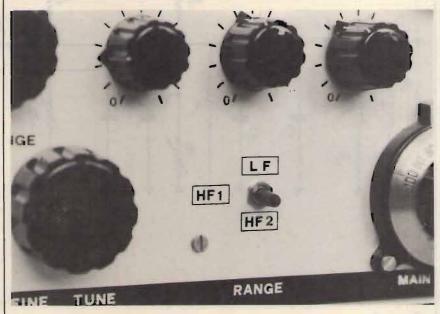
II "DX 10"

ricevitore autocostruito per il DX a sintonia continua

• Giuseppe Zella •

(segue dal mese precedente)

IL CIRCUITO

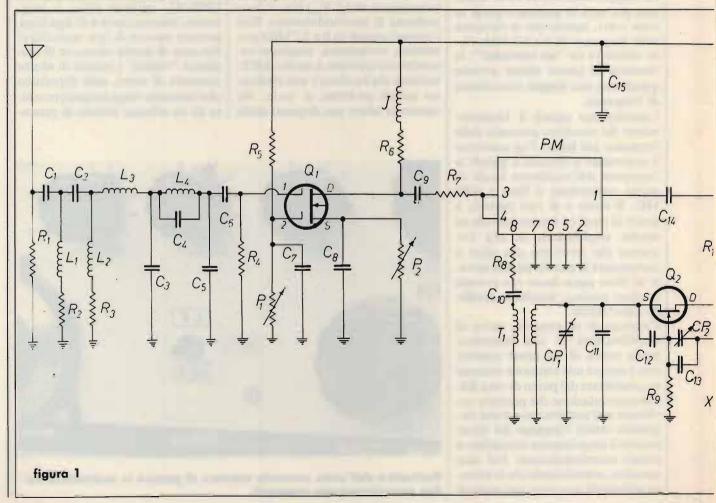

Il ricevitore è sostanzialmente una supereterodina a singola conversione, con rivelazione sincrona in modulazione d'ampiezza (AM) e rivelazione a prodotto per SSB-CW-FSK-RTTY-SSTV e per la demodulazione delle bande laterali dell'emissione AM con la tecnica ECSS. La singola conversione viene utilizzata per tutta la gamma coperta in onde corte, mentre per la ricezione delle frequenze da 0 a 2,2 MHz viene utilizzato un "up converter"; la ricezione di queste ultime avviene quindi con una doppia conversione di frequenza.

Consideriamo quindi il funzionamento del ricevitore partendo dalle frequenze più basse: l'up converter è controllato a cristallo e quindi la frequenza dell'oscillatore locale di prima conversione è fissa a 4000 kHz. Il mixer è di tipo passivo, a ponte di diodi ed è preceduto da un mosfet amplificatore di alta frequenza che serve più che altro a compensare le piccole perdite dovute al filtro passa-basso che precede il mixer passivo, nonché le perdite di quest'ultimo.

L'impiego di un elemento attivo di amplificazione in alta frequenza, posto prima di un mixer passivo, non è sempre una soluzione ottimale se considerata dal punto di vista dell'intermodulazione che potrebbe verificarsi nell'amplificatore d'alta frequenza; infatti l'impiego del mixer passivo è propriamente consigliato a evitare intermodulazione. Nel caso specifico, considerando che le antenne utilizzabili non sono mai ottimali

per le frequenze dalle VLF sino alla fine delle onde medie, è necessario disporre di un minimo di sensibilità (o guadagno) in più rispetto al rendimento di queste ultime. Anche utilizzando l'antenna attiva LPF1/R (illustrata nei numeri di giugno e settembre '86 di CQ) e considerando il guadagno notevole di quest'ultima (il segnale RAI 1 a 900 kHz ha un'ampiezza di 1,2 V_{pp}) non vi sono problemi di intermodulazione. Tutti i restanti segnali da 0 a 2,2 MHz presentano, ovviamente, ampiezza notevolmente inferiore a quello dell'Emittente che ho citato e non sussistono quindi problemi di sorta. Per contro, in taluni casi disperati (nella

ricezione di segnali d'oltre Atlantico in onde medie), questo ulteriore tocco di sensibilità in più è più che mai decisivo e determinante nella rivelazione soddisfacente di un segnale al limite delle possibilità anche utilizzando la tecnica ECSS. L'ingresso del converter ne consente il collegamento tanto ad antenne attive accordabili (quale ad esempio la LPF1/R), antenne attive a larga banda, antenne passive di tipo loop, antenne passive di tipo monofilare. Nel caso di queste ultime, se di lunghezza "ridotta" e minore di alcune centinaia di metri, sarà opportuno che l'antenna venga sempre preceduta da un efficace sistema di pream-


Particolare dell'unico comando selettore di gamma in sostituzione dei due precedentemente impiegati.

plificazione sintonizzabile e tale da sopperire in qualche modo alle notevoli carenze di rendimento tipiche di un'antenna "corta". Nel caso invece di un'antenna monofilare di lunghezza superiore alla precedente, essa potrà direttamente essere collegata all'ingresso del filtro passa-basso che precede l'ingresso del preamplificatore del converter. Il filtro passabasso è assolutamente indispensabile per la soppressione dei segnali presenti nella banda di conversione compresa tra 4000 e 6200 kHz, che in assenza di questo possono tranquillamente passare attraverso al converter e mescolarsi ai segnali da 0 a 2200 kHz ottenuti per conversione, con risultati poco piacevoli. Infatti, il converter non dispone di alcun circuito di ingresso sintonizzabile nell'ambito delle frequenze da convertire, essenzialmente per una ragione di tipo pratico e legata all'impossibilità meccanica di dotare di ulteriori comandi il già "fitto" pannello frontale: inoltre, l'eventuale necessità di sistemi di preselezione di tipo attiva o passiva per una o più frequenze comprese tra 0 e 2200 kHz può essere tranquillamente soddisfatta mediante l'utilizzo di accessori di questo tipo e inseribili tra l'antenna ricevente e l'ingresso del filtro passabasso del converter. Nel caso di utilizzo di antenne di tipo sintonizzabile, le medesime rappresentano già un più che ottimale sistema di preselezione in alta frequenza e di drastica ulteriore attenuazione dei segnali eventualmente presenti nella gamma di conversione, sicché non è mai stato necessario dotare il ricevitore di ulteriori sistemi di preselezione e/o preamplificazione sempreché l'antenna risulti essere molto selettiva e adeguatamente sensibile. La LPF1/R, ad esempio, utilizzata

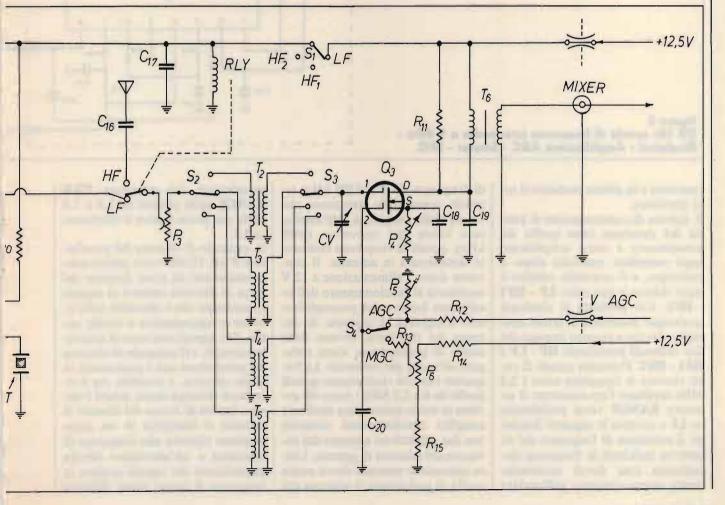
all'interno dell'abitazione consente la ricezione senza problemi anche delle Emittenti dell'"OMEGA NA-VIGATION" tra 10,2 e 13,6 kHz, con segnali dell'ordine del 9+, in qualunque momento della giornata. La notte, questi segnali si rinforzano ulteriormente, così come si rinforzano quelli presenti nella gamma di conversione, che però non passano in assoluto.

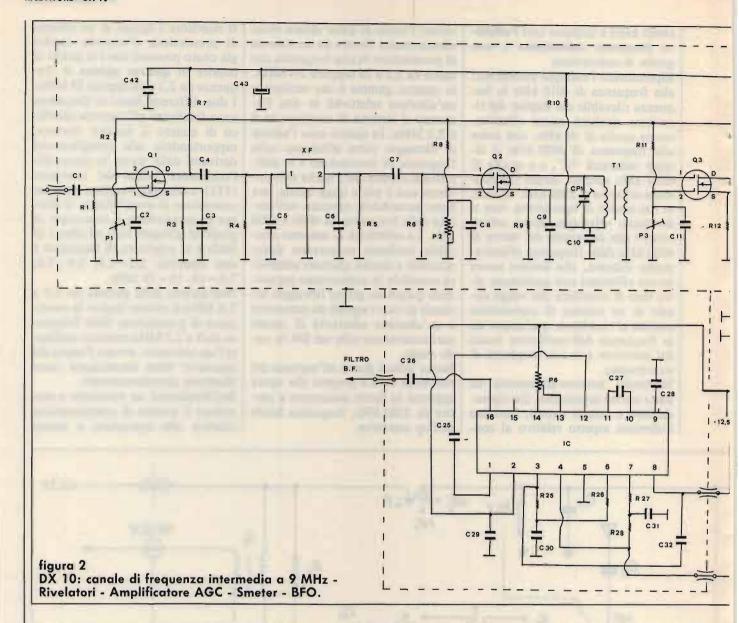
L'uscita del converter è quindi a larga banda e avviene nell'ambito delle frequenze già citate prima e cioè da 4000 a 6200 kHz. Alla frequenza di 4010 kHz si avrà ad esempio la frequenza convertita pari a 10 kHz e a quella di 6200 kHz corrisponderà quella di 2200 kHz. Il sistema di lettura digitale della frequenza a 6 cifre del ricevitore, che vedremo più avanti, è predisposto in modo tale da tenere conto anche della frequenza dell'oscillatore locale del converter

NOTA: tutti gli schemi sono qui rappresentati secondo la logica circuitale, coerente con lo schema a blocchi generale. Nella parte realizzativa saranno ripresentati in ottica costruttiva, e in quella sede saranno anche descritti e commentati i componenti.

(4000 kHz) e indicare così l'effettiva frequenza sintonizzata e non quella di conversione.

Riprendendo l'esempio precedente: alla frequenza di 4010 kHz la frequenza rilevabile dal display del ricevitore risulterà essere effettivamente quella di 10 kHz, così come alla frequenza di 4000 kHz il display indicherà "0", e a quella di 6200 kHz avremo invece l'indicazione effettiva di 2200 kHz. Quindi, ai fini pratici di operazione, non si dovranno effettuare strani calcoli relativi alla detrazione del valore di 4000 kHz dalla frequenza effettivamente indicata, che devono essere invece effettuati con qualunque altro tipo di ricevitore che venga dotato di un sistema di conversione esterno al ricevitore, qualunque sia la frequenza dell'oscillatore locale del converter e la sua frequenza di conversione.

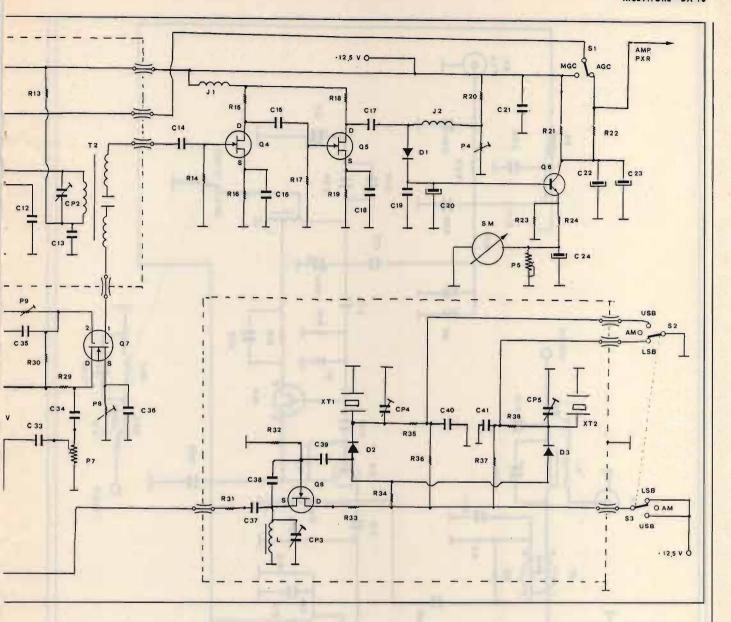

Mettendo momentaneamente da parte questo argomento, che riprenderemo a tempo debito, notiamo l'ulteriore aspetto relativo al converter; l'uscita di quest'ultimo viene ulteriormente filtrata da un sistema di preselezione in alta frequenza che opera da 2,2 a 26 (oppure 29) MHz, in quattro gamme e che conferisce un'ulteriore selettività in alta frequenza al sistema di ricezione da 0 a 2,2 MHz. In questo caso l'azione di filtraggio viene effettuata sulla frequenza di conversione e in definitiva si ottiene che l'uscita del converter non è più a larga banda, ma bensì accordabile appunto nell'ambito delle frequenze da 4000 a 6200 kHz. La selettività di antenna ottenibile mediante un'antenna sintonizzabile e questa ulteriore selettività ottenibile in conversione permettono quindi un primo filtraggio ottimale di tutti i segnali da convertire e un'ulteriore selettività di canale particolarmente utile nel DX in onde medie.


Siamo quindi giunti all'ingresso del ricevitore vero e proprio che opera appunto in modo autonomo a partire da 2200 kHz, frequenza limite dell'up converter.

Il ricevitore è dotato di un sistema di preselezione d'antenna (quello già citato pocanzi) che è in grado di coprire in quattro gamme le frequenze da 2,2 a 26 oppure 29 MHz. I due differenti limiti di frequenza sono finalizzati all'interesse specifico di quanto si desideri ricevere. rapportandolo alle complicazioni derivanti dalla messa in passo dell'oscillatore locale del ricevitore (VFO) e alla relativamente semplice concezione di quest'ultimo. Il sistema di preselezione è comunque in grado di giungere sino ad oltre i 29 MHz e la copertura di frequenza è così ripartita: $2,2 \div 3,9$; $3,9 \div 7,6$; $7,6 \div 16$; $16 \div 29$ MHz.

Nell'ambito della gamma da 3,9 a 7,6 MHz si ottiene inoltre la condizione di preselezione delle frequenze da 0 a 2,2 MHz ottenute mediante l'up converter, ovvero l'uscita del converter viene sintonizzata come illustrato precedentemente.

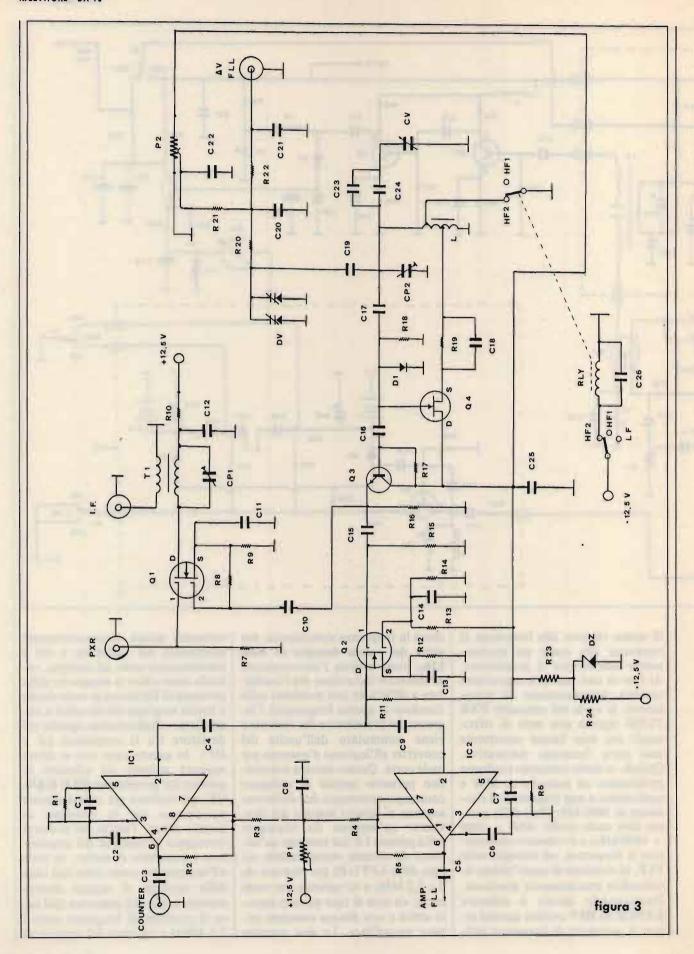
Soffermiamoci un momento a esaminare il sistema di commutazione relativo alle operazioni a mezzo


converter e in diretta mediante il solo ricevitore.

Il sistema di commutazione di banda del ricevitore (non quello del preselettore) è stato semplificato negli esemplari realizzati dopo il prototipo, e il comando relativo è stato ridotto a uno solo: LF - HF1 - HF2. Ciò permette di eliminare qualunque possibilità di errore operativo dovuto a erroneo impiego dei due comandi precedenti: HF - LF e HF1 - HF2. Poniamo quindi di voler ricevere le frequenze sotto i 2,2 MHz mediante l'up converter; il selettore RANGE verrà posizionato su LF e avremo le seguenti funzioni: il contatore di frequenza del ricevitore indicherà la frequenza sintonizzata (che dovrà necessariamente essere compresa nell'ambito

di frequenze da 0 a 2200 kHz) tenendo conto della detrazione del valore della frequenza dell'oscillatore locale del converter (4000 kHz), quindi la frequenza realmente sintonizzata in antenna. Il converter riceve l'alimentazione a 12 V necessaria al funzionamento dell'oscillatore locale e del preamplificatore d'ingresso. L'ingresso di antenna del ricevitore, ovvero dello stadio di preselezione, viene collegato all'uscita del converter. Le frequenze ricevute risulteranno quindi quelle da 0 a 2,2 MHz; tutto ciò avviene in modo automatico mediante semplici commutazioni ottenute con due relé attivati appunto dal deviatore del selettore di gamma. Unica operazione manuale dovrà essere quella di posizionare il selettore del

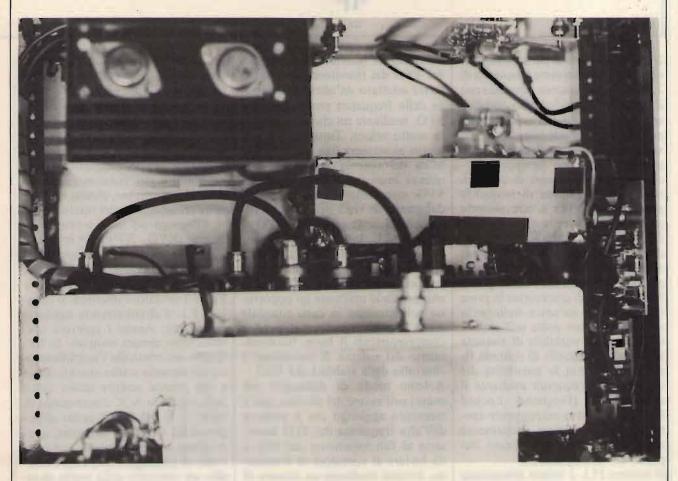
preselettore del ricevitore PXR RANGE nella gamma da 3,9 a 7,6 MHz che porta inoltre il riferimento LF.


Il comando di sintonia del preselettore PXR TUNE verrà posizionato in modo tale da poter disporre del picco di sintonia relativo al segnale sintonizzato che è rilevabile sullo S-Meter e naturalmente a livello audio. Se i segnali non sono di notevole intensità, e il comando di sintonia del preselettore non è posizionato in modo corretto, è possibile che il ricevitore rimanga muto; infatti l'elevato fattore di forma del circuito di sintonia si identifica in un picco piuttosto ristretto alla frequenza di risonanza e un'altrettanto elevata attenuazione dei segnali qualora la frequenza di questi risulti differire

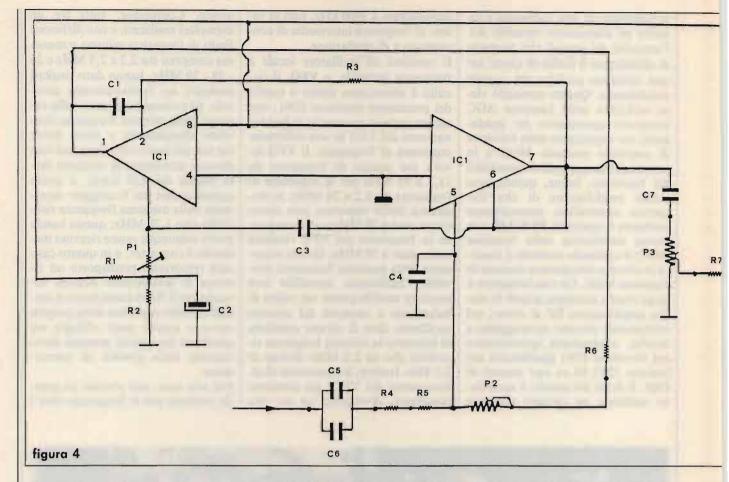
di molto rispetto alla frequenza di risonanza alla quale sia erroneamente sintonizzato il preselettore. Al fine di una rapida e soprattutto corretta sintonizzazione del preselettore, la scala del comando PXR TUNE riporta una serie di riferimenti che non hanno certamente una pura funzione decorativa. Quindi, se detto comando risultasse posizionato ad esempio su MW e equivalente a una frequenza di risonanza di 5600 kHz (fine della gamma delle onde medie: 4000 + 1600 = 5600 kHz) e si volessero sintonizzare le frequenze, ad esempio nelle VLF, la ricezione di quest'ultime risulterebbe enormemente attenuata. Posizionando invece il selettore RANGE su HF1 avviene quanto segue: il contatore di frequenza indi-

cherà la frequenza sintonizzata, ma priva del valore detratto di 4000 kHz; viene esclusa l'alimentazione al converter (ad evitare che l'oscillatore a 4000 kHz crei problemi nella ricezione di questa frequenza); l'ingresso del preselettore del ricevitore viene commutato dall'uscita del converter all'ingresso d'antenna per onde corte. Questo sistema automatico permette quindi di collegare contemporaneamente due differenti antenne ai relativi ingressi del ricevitore: un'antenna da impiegare nella gamma LF (ad esempio un'antenna direzionale sintonizzabile sul tipo della LPF1/R) per ricevere da 0 a 2,2 MHz e un'antenna per onde corte, sia essa di tipo passivo oppure attiva e con discesa coassiale oppure monofilare. Le due antenne

verranno quindi automaticamente selezionate dal ricevitore e ciò è estremamente utile, ad esempio, volendo controllare la situazione della presenza di Emittenti in onde medie e banda tropicale dei 60 metri a onda corta, semplicemente agendo sul deviatore tra le condizioni LF e HF1. In questo caso non si dovrà neppure operare sul selettore di gamma del preselettore PXR RAN-GE che risulterà già correttamente posizionato per la ricezione di quanto citato. Tutt'al più si dovrà correggere la sintonia del preselettore e nemmeno di molto. In serie all'antenna per onde corte (nel caso della ricezione di segnali direttamente), uscita del converter (nel caso di ricezione di frequenze sotto i 2,2 MHz) e ingresso del circuito di



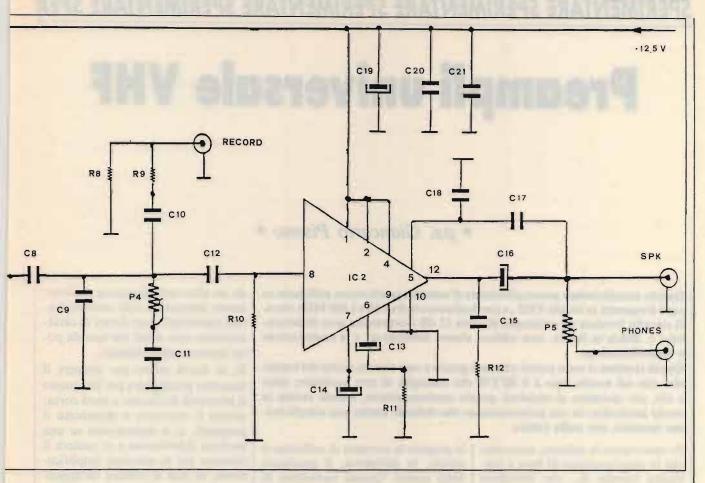
preselezione di alta frequenza è inserito un attenuatore variabile dell'intensità dei segnali che permette di ottimizzare il livello di questi per una ricezione perfetta del segnale sintonizzato. Questo comando viene utilizzato nella funzione AGC (controllo automatico del guadagno), ma soprattutto nella funzione di controllo manuale MGC e in unione ai due controlli di sensibilità del ricevitore. Segue, quindi, uno stadio amplificatore di alta frequenza controllato manualmente mediante il comando RF GAIN e in forma automatica nella funzione AGC: il comando manuale è inserito in circuito unicamente durante la funzione MGC. Un trasformatore a larga banda accoppia quindi lo stadio amplificatore RF al mixer, nel tradizionale circuito equipaggiato a mosfet, ampiamente sperimentato nel ricevitore DX1 (pubblicato nel lontano 1983/84 su vari numeri di CQ). Il drain del mosfet è accordato mediante un circuito trappola


sintonizzato a 9000 kHz, pari al valore di frequenza intermedia di conversione e di rivelazione.

E veniamo all'oscillatore locale a frequenza variabile, o VFO: il circuito è abbastanza simile a quello del precedente ricevitore DX1, con alcune varianti necessarie al funzionamento del VFO in una differente copertura di frequenza. Il VFO lavora nel campo di frequenze da 11,2 a 35 MHz per la copertura di frequenza da 2,2 a 26 MHz; la frequenza limite superiore può essere estesa sino a 29 MHz e in questo caso la frequenza del VFO risulterà essere pari a 38 MHz. Questa estensione della massima frequenza ricevibile, facilmente ottenibile con modeste modificazioni nei valori di induttanza e capacità del circuito oscillante, alza di alcune centinaia di kilohertz la minima frequenza ricevibile che da 2,2 MHz diviene di 2,5 kHz. Inoltre, le operazioni di allineamento del VFO, già piuttosto complesse, divengono un po' più ardue. Comunque, tutti tre gli esemplari realizzati, e con differenti limiti di frequenza minima e massima compresi tra 2,2 e 2,5 MHz e 26 - 28 - 29 MHz, hanno dato risultati analoghi nel funzionamento generale, ad eccezione appunto della variante della minima frequenza ricevibile direttamente e senza dover far uso del converter. Caso mai non dovesse interessare la ricezione della banda dei 120 metri, si potrà quindi optare per la maggior estensione della massima frequenza ricevibile sino a 29 MHz; questa banda potrà comunque essere ricevuta mediante il converter, e in questo caso sarà opportuno predisporre un sistema di preselezione esterno, essendo che il filtro passa-basso è oramai al limite superiore della propria curva e quindi poco efficace nei confronti dei segnali presenti direttamente nella gamma di conversione.

Nel mio caso, non avendo un grande interesse per le frequenze oltre i

Una vista dell'interno del DX10.



26 MHz, ho optato per la soluzione di partire dalla minima frequenza di 2.2 MHz direttamente ricevibile con il ricevitore ed escludendo quindi il converter. Quindi, la scelta spetta poi al Lettore e alle Sue preferenze verso una o l'altra delle soluzioni proposte. Per non complicare eccessivamente il sistema di commutazione della gamma di frequenze generate dal VFO e non essendo possibile ottenere una soluzione funzionale che rispondesse a ridotte dimensioni meccaniche, stabilità, ampiezza del segnale generato e copertura di frequenza, l'unica possibilità è quella di commutare le prese intermedie di un'unica induttanza senza modificare nulla nell'ambito della capacità variabile di sintonia principale e di quella di sintonia fine, ivi compresa la possibilità del controllo di frequenza mediante il sistema FLL (Frequency Locked Loop), anch'esso ampiamente sperimentato e rivelatosi decisamente affidabile e poco complicato dal punto di vista operativo.

Il sistema FLL è infatti abbastanza identico a quello già utilizzato nel

controllo di stabilità di frequenza del VFO del ricevitore DX1, salvo l'aver adottato un'ulteriore divisione della frequenza proveniente dal VFO, mediante un circuito integrato molto veloce. Tutto ciò ha permesso di ottenere una maggior stabilità del sistema anche alle frequenze massime di operazione del VFO, con delle perdite marginali dal punto di vista del prelievo del segnale da campionare, dal VFO al sistema FLL. Infatti il trasferimento del segnale viene effettuato a livello logico, quindi in continua, e a frequenza decisamente inferiore. È così possibile utilizzare un opportuno collegamento in cavo coassiale senza la preoccupazione di perdite compromettenti il buon funzionamento del sistema di correzione e controllo della stabilità del VFO. Avremo modo di dilungarci più avanti nell'esame del circuito, per il momento aggiungo che il prelievo dell'alta frequenza dal VFO necessaria al funzionamento del FLL e da inviare al contatore di frequenza, avviene mediante un sistema di separazione e amplificazione, chiu-

so su due amplificatori in cascata identici per il contatore e per il FLL. Il canale a frequenza intermedia lavora a 9000 kHz ed è abbastanza simile dal punto di vista circuitale a quello del precedente ricevitore. Tranne alcune varianti resesi necessarie per un maggior controllo nell'ambito del funzionamento in AGC del ricevitore, alcune varianti nella realizzazione dei trasformatori, l'impiego del filtro a cristallo a 10 poli (KVG - XF9B 10) invece di quello a otto poli, l'adozione di un ulteriore stadio amplificatore interposto tra l'ultimo trasformatore a F.I. e il rivelatore sincrono, il canale a F.I. è circuitalmente simile al precedente. Anche i controlli manuali sono rimasti invariati: lo I.F. GAIN che controlla l'amplificazione del secondo stadio amplificatore e che rimane sempre attivo tanto nella funzione AGC che in quella di MGC, e lo SD GAIN posto all'ingresso del rivelatore sincrono; quest'ultimo comando, più che un controllo di guadagno, può essere definito un controllo della soglia di rivelazione tanto nella funzione di ri-

velazione sincrona dei segnali modulati in ampiezza, che in quella di rivelatore a prodotto in SSB, CW, FSK, RTTY, ECSS. Totalmente differente è invece il sistema di generazione della tensione di AGC e di pilotaggio dello strumento Smeter.

Il circuito generatore della portante di battimento, **BFO**, è anch'esso più che collaudato e identico a quello del ricevitore DX1; classico circuito generatore delle portanti LSB - USB rispettivamente a 8998,5 e 9001,5 kHz, con l'impiego dei due cristalli in dotazione al filtro di media frequenza.

Il rivelatore sincrono e a prodotto è il circuito integrato SL624C che offre anche il vantaggio di una preamplificazione del segnale rivelato, permettendo così di disporre di maggior potenza in bassa frequenza. Il filtro attivo di bassa frequenza, con alcune modifiche rispetto alla versione precedentemente adottata nel DX1, consente la funzione di "notch" in unione al controllo di tono. L'amplificatore finale di bassa frequenza è totalmente rinnovato

dal punto di vista circuitale, pur conservando il medesimo circuito integrato TBA800.

L'alimentatore da rete è anch'esso totalmente rinnovato: viene utilizzato un solo trasformatore di alimentazione a due secondari, in modo da poter risparmiare spazio oltre che il costo di un altro trasformatore supplementare, precedentemente utilizzato per l'alimentazione del modulo FLL, totalmente autonomo.

Non vi è nulla di particolare da notare, se non il fatto che l'alimentatore fornisce tre differenti tensioni continue regolate: una tensione d'alimentazione di 5 V per il sistema FLL e il relativo amplificatore squadratore.

Una tensione a 12 V fissa per l'alimentazione del contatore di frequenza; una tensione a 12 V, regolabile, per l'alimentazione di tutto il ricevitore e del converter.

Quest'ultima tensione viene inoltre utilizzata per l'alimentazione di un eventuale complesso di preselezione/amplificazione esterno al ricevitore, oppure di una eventuale antenna attiva.

Per concludere, due parole al riguardo del contatore di frequenza: ottimo circuito (realizzato tra l'altro da una gran quantità di Lettori, all'epoca della sua presentazione nell'ambito del ricevitore DX1, per impieghi in altri ricevitori) caratterizzato dalla compattezza, precisione, consumo limitato e da tutta una serie di funzioni automatiche ottenute mediante l'ottimo circuito integrato LSI MK50395. Quindi, circuito identico a quello precedentemente presentato con alcune varianti relative al caricamento (preset) del valore supplementare a complemento della frequenza di 4000 kHz (oscillatore locale del converter) da detrarre in aggiunta a quella di 9000 kHz (valore della F.I. di conversione).

Questa funzione viene svolta mediante la modificazione della matrice dei diodi di preset del contatore, inseriti o esclusi mediante un relé comandato dal selettore di banda LF - HF1 - HF2.

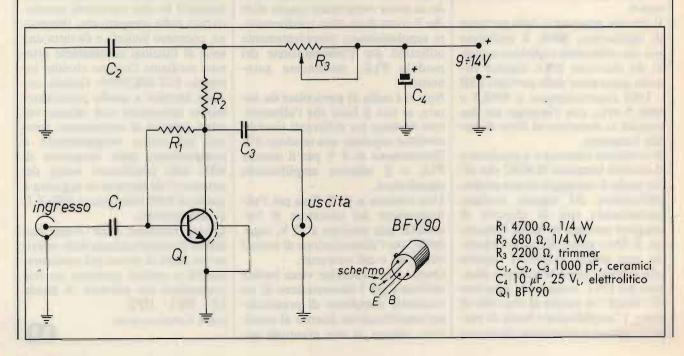
(segue il prossimo mese)

CO

Preampli universale VHF

• p.e. Giancarlo Pisano •

Questo semplicissimo preamplificatore d'antenna potrà essere utilizzato su ogni frequenza in banda VHF, e particolarmente tra i 50 e i 200 MHz circa. Il circuito fornisce un guadagno di circa 12 dB (certamente non disprezzabile) e, dulcis in fundo, non utilizza alcuna induttanza, e la realizzazione è economicissima.


Questi risultati si sono potuti ottenere grazie a una attenta scelta del transistor che nel nostro caso è il BFY90 che consiglio di non sostituire; oltre a ciò, per spremere al massimo questo semiconduttore, è stata curata in modo particolare la sua polarizzazione che richiede anche una semplicissima taratura, per nulla critica.

Se osserviamo lo schema, noteremo che la polarizzazione di base è realizzata tramite R₁, che introduce anche un certo tasso di controreazione, utile per "appiattire" la risposta in frequenza del circuito a tutto vantaggio della larghezza di banda.

R₂ costituisce il carico di collettore, e per il resto troviamo R₃ che regola proprio la corrente di collettore e perciò, in definitiva, il guadagno dello stadio. Questa variazione di guadagno non è elevata perché serve solo per adattare al circuito transistori dello stesso tipo ma costruiti per esempio da Case diverse; il fenomeno, noto come "dispersione delle caratteristiche" è proprio questo: ogni semiconduttore differisce

da un altro (all'apparenza perfettamente identico) e solo semiconduttori selezionati sono dotati di caratteristiche così simili tra loro da poter essere ritenuti identici.

R₃ si dovrà tarare per ottenere il massimo guadagno e per far questo si pretarerà il trimmer a metà corsa; acceso il ricevitore e alimentato il preampli, ci si sintonizzerà su una stazione debolissima e si ruoterà il trimmer per la massima amplificazione; se non si utilizza un'appropriata strumentazione, la variazione di guadagno potrebbe non apprezzarsi a orecchio ma, in tal caso, non dovremo preoccuparci molto perché al massimo potremo perdere un po' in guadagno ma sempre in misura poco rilevante.

La realizzazione si dovrà effettuare "in aria", collegando i componenti direttamente tra loro dopo averne accorciato i reofori al minimo indispensabile.

Se il circuito verrà aggiunto a qualche RX o RTX commerciale molto probabilmente potrà essere assemblato all'interno dello chassis di questi apparecchi, purché si curi l'isolamento dei singoli pezzi per evitare cortocircuiti; visto come circuito separato, lo si potrà costruire all'interno di una scatolina metallica saldabile a stagno che verrà collegata a massa. I vari terminali di massa si dovranno saldare in un solo punto e per le connessioni di ingressouscita si utilizzerà cavetto schermato per AF come lo RG174/U ed eventualmente, nel caso di costruzione separata, appositi connettori tipo BNC.

ADB Elettronica

di LUCCHESI FABRIZIO

Via del Cantone, 714 Tel. (0583) 952612 - 55100 ANTRACCOLI (Lucca)

componenti elettronici vendita per corrispondenza

TRANSISTORS RF - FET - MOSFET - GaAs FET - POWER GaAs FET

DIODI per Microonde - DIODI Schottly **COMPENSATORI** in aria a pistone - film trimmer

CONDENSATORI e RESISTENZE **CHIP**LAMINATO IN TEFLON

☎ 0583/952612 richiedi il nostro catalogo

NEGRINI ELETTRONICA

NUOVE SEDI: Via Pinerolo, 88 - 10045 PIOSSASCO (TORINO)

TEL. 011/9065937 - CHIUSO IL MERCOLEDÌ Via Torino, 17/A - BEINASCO (TORINO)

TEL. 011/3111488 - CHIUSO IL LUNEDI MATTINA

NUOVA RINFORZATA

È stata la 1ª 5/8 ora è l'unica anodizzata

GOLDEN STAR

CARATTERISTICHE

lungh.: 5,65 pot.: 6 kW P.P. freq.: 26-30 MHz radiali: 4 res. vento: 120 km/h

peso: Kg. 3,800 SWR: 1:1,1

base in alluminio pressofuso

L. 130.000 IVA compresa

ORIGINALE FIRENZE 2 È la numero uno in assoluto al prezzo di una qualunque.

Interamente anodizzata nata per durare.

Sono disponibili le antenne "AVANTI"

FIRENZE 2 ORIGINALE

Centro assistenza riparazioni e modifiche apparati CB nella sede di Beinasco

DISTRIBUTORE UNICO PER L'ITALIA Spedizioni ovunque in contrassegno

RIVENDITORE PER LA ZONA TORINO SUD: **ELETTRONICA BORGARELLO**Via Vittorio Emanuele, 113 - CHIERI - TORINO - Tel. 011/9424263

RIVENDITORE PER LA ZONA TORINO NORD: ELETTRONICA R.R. Via Vittorio Emanuele, 2/bis - CIRIÈ - TORINO - Tel. 011/9205977

Nuovo Yaesu FT 711 RM RTX UHF

Le UHF facili

Un vero compagno per le UHF, con grinta è con una potenza selezionabile da 5 e 35 watt. Semplice perchè grazie al suo design particolare il pannello strumentazione e monitor è rivolto verso il viso e non verso le vostre ginocchia come tutti gli altri RTX per mezzo mobile. La lettura è facilitata grazie ad un grande display leggibilissimo. Se la scheda con il generatore di fonemi è installata, premendo il pulsante SPEAK sul microfono MH 14A8 in dotazione, si avrà l'annuncio della frequenza. La facilità di messa a punto e riparazione è riflessa nella filosofia costruttiva di questo apparato, con estensivo uso di circuiti integrati e modularità. Circuitalmente il ricetrasmettitore è molto flessibile, la freguenza operativa può essere selezionata tanto con tasti UP/DOWN posti sul microfono che con il selettore rotativo oppure con i pulsanti posti sul pannello. È possibile programmare 10 memorie con gli scostamenti normalmente usati oppure ricorrere ai +/-600 KHz normalizzati. Un tasto apposito inverte il senso dello scostamento permettendo in tale modo l'ascolto sulla frequenza d'ingresso del ripetitore. La ricerca è possibile entro dei limiti di banda, oppure entro le memorie con l'impostazione del canale prioritario. Ricorrendo al Tone Squelch opzionale tipo FTS 12 si avranno a disposizione 37 toni sub audio che, debitamente selezionati, visualizzati e programmati in una memoria qualsiasi potranno realizzare una rete di due o più corrispondenti usufruendo dei vantaggi offerti dallo sblocco del silenziamento. A prescindere dall'impiego usuale di tali ricetrasmettitori, il presente modello è già stato predisposto con opportuni collegamenti audio al traffico via «Packet». La semplicità d'uso ne fa l'apparato ideale per chi vuole cimentarsi sulle

CARATTERISTICHE TECNICHE

GENERALI

Gamma operativa: 430-440 MHz. Canalizzazione: 12.5 o 25 KHz. Scostamento normalizzato: ± 600 KHz.

Alimentazione: 13.8 Vc.c ± 15% con neg. a massa.

Consumi:

Trasmissione (35W): 8,5A. Trasmissione (4W): 4A. Ricezione: 700 mÁ. Attesa: 450 mA.

Temperatura operativa: -20° C +60°C. Dimensioni: 160 x 50 x 175 mm. Peso: 1.5 Kg.

RICEVITORE

Configurazione: a doppia conversione supereterodina. Medie frequenze: 17,2 MHz 455 KHz. Sensibilità: migliore di 0.2 µV per 12 dB SINAD. Selettività sul canale adiacente: >60 dB. Distorsione da intermodulazione: >70 dB. Livello di uscita audio: 1.5 W su 8 ohm.

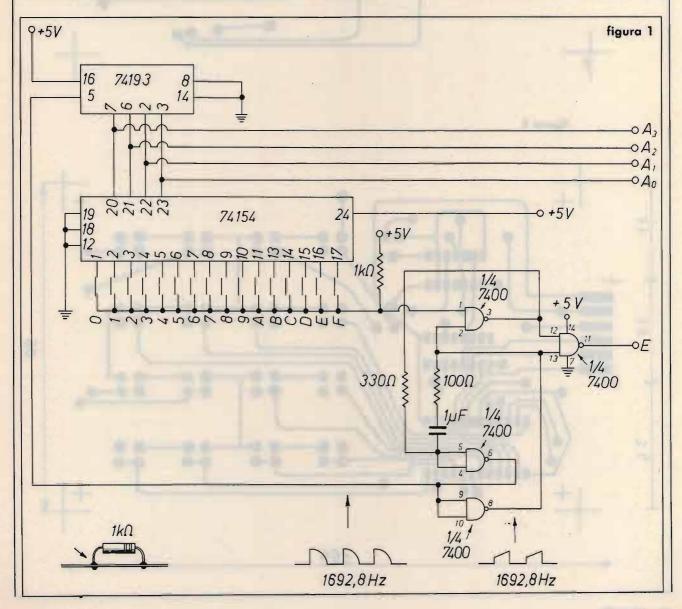
TRASMETTITORE

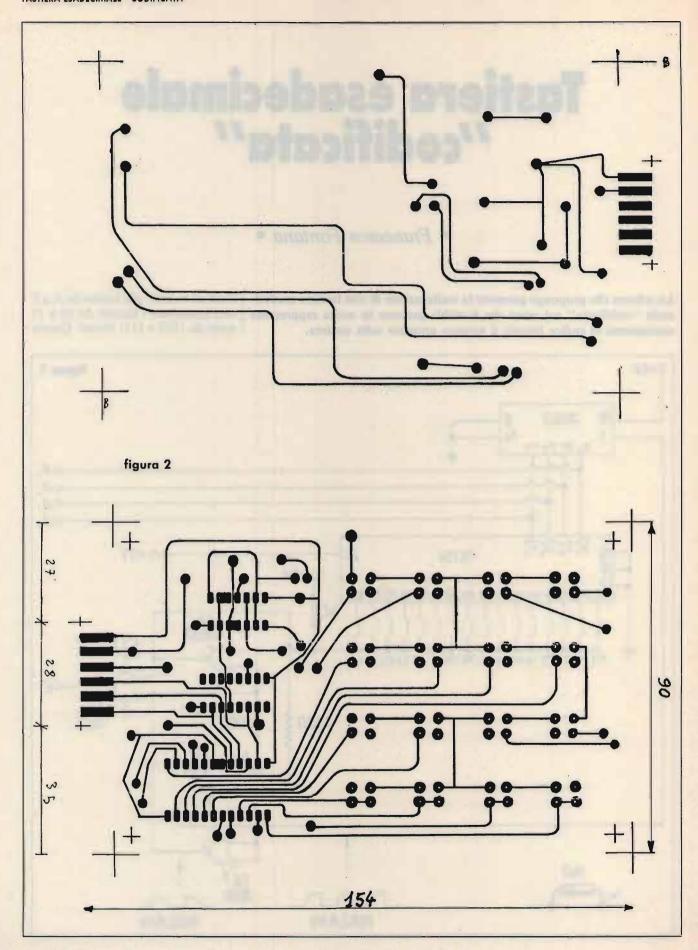
5% ad 1KHz con 3,5

KHz di devia-

Potenza RF: commutabile fra 4 e 35 W (su 50 Stabilità in frequenza: migliore di ± 5 ppm. Deviazione max: ± 5 KHz. Soppressione di spurie ed armoniche: Distorsione audio: < del

ASSISTENZA TECNICA TELECOMUNICATION SERVICE v. Washington, 1 Milano tel. 432704 V. Mazzini, 53 Firenze - tel. 243251 e presso tutti i rivenditori Marcucci S.p.A.


Scienza ed esperienza in elettronica Via F.IIi Bronzetti, 37 - Milano - Tel. 7386051


Tastiera esadecimale "codificata"

• Francesco Fontana •

Lo schema che propongo permette la realizzazione di una tastiera esadecimale "codificata" nel senso che il nibble presente in uscita rappresenta esattamente in codice binario il numero premuto sulla tastiera.

Evidentemente, alle lettere da A a F corrispondono i numeri da 10 a 15 ossia da 1010 a 1111 binari. Questa

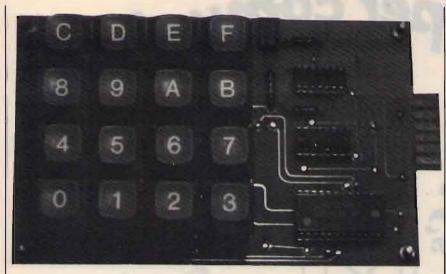


foto 1

tastiera può venire impiegata per introdurre dati nella RAM di un microcomputer o di un "sistema minimo" a microprocessore.

In questo caso, grazie al circuito di codifica, il software di gestione della tastiera ne risulta notevolmente semplificato.

Il funzionamento del circuito è il seguente.

Gli impulsi normalmente presenti sul piedino 6 del 7400 fanno avanzare velocemente il contatore 74193 il quale presenta sulla sua uscita tutti i 16 numeri ciclicamente ogni 10 ms circa.

Questi 16 numeri entrano nel decodificatore "uno di sedici" 74154 il quale scansiona, con un segnale basso che scorre sulle sue uscite, i 16 tasti.

Premendo un tasto, si permette a questo segnale di bloccare l'oscillatore, il quale, non fornendo più alcun impulso al contatore, blocca il conteggio lasciando il dato stabile per tutta la durata della chiusura del tasto.

Il segnale di enable indica questo stato con un livello logico basso.

Per facilitare la realizzazione vi propongo il disegno del circuito stampato a doppia faccia.

La resistenza da 1 kΩ è stata disegnata per evidenziare la doppia saldatura necessaria per collegare le due piste.

I tasti da me utilizzati hanno i reofori a due a due collegati internamente (più precisamente i reofori che si trovano a distanza maggiore tra loro sono collegati internamente); ciò spiega gli strani collegamenti sulla pista inferiore in corrispondenza dei tasti.

In caso si usino altri tipi di tasti il disegno dovrà essere modificato opportunamente.

L'intero circuito va alimentato a 5 V, ed è TTL compatibile.

CO

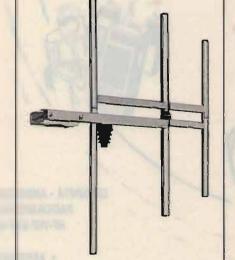
DI CARRETTA MAURIZIO

Via Parma, 8 (c.p. 84) - 41012 CARPI (MO) - Tel. 059/682689

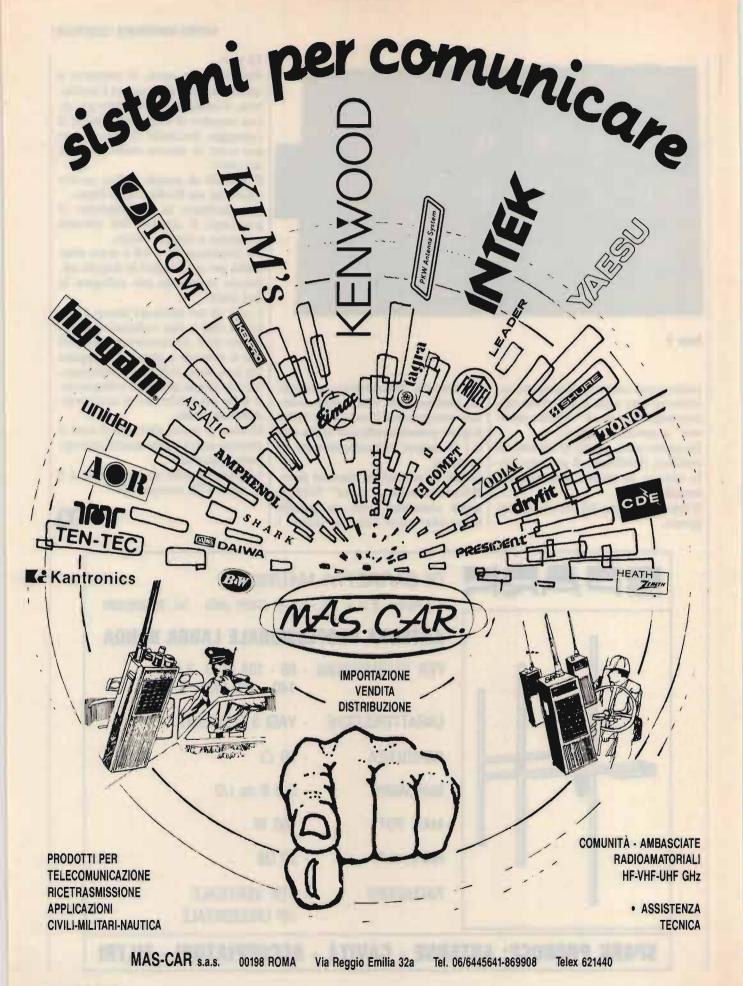
ANTENNA PROFESSIONALE LARGA BANDA

PER TRASMISSIONE - 88 - 108 MOD. 3 FM 140 - 170 MOD. 3 VHF

CARATTERISTICHE - YAGI 3 FI FMFNTI


IMPEDENZA - 50 Ω

- 5 d B su 1/2 **GUADAGNO**


MAX. POT. - 500 W

RAPP, A/R - 20 DB

RADIAZIONE - 1182 VERTICALE 70² ORIZZONTALE

SPARK PRODUCE: ANTENNE - CAVITÀ - ACCOPPIATORI - FILTRI

inserto da staccare

Indice analitico 1987

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
ANTENNE Antenne veicolari per la CB Maurizio Mazzotti	2	55	Guida alla corretta installazione delle antenne CB sugli autoveicoli, con numerosi esempi fotografici.
Collineare verticale a 3 elementi in cavo coassiale per i 145 MHz Cesare Pelosi, Maurizio Lanfranchi	2	85	Teoria e pratica per la costruzione di un'antenna omnidi- rezionale per i 2 metri, con foto e disegni.
Pole Position Marcello Arias	2	91	S. Secchi propone gli schemi di una direttiva per 10/(11)/15 metri.
Pole Position Marcello Arias	3	44	M. Minatore fornisce il progetto dell'antenna AT 1716 per 15/20/40 metri.
Linea coassiale 1/4 lambda per accoppiamento 4 x 20 elementi Yagi in gamma 432 MHz Cesare Pelosi, Maurizio Lanfranchi	3	94	Come realizzare un accoppiatore per ottenere un sofisti- cato sistema d'antenna sui 432 MHz.
Telecomando per piccoli rotori con visualiz- zazione a led Francesco Michienzi	3	99	Realizzazione di una centralina di comando adattabile a qualsiasi rotore d'antenna.
Antenna ''doppia quad'' Pino Zàmboli	4	35	Costruzione di un'insolita direttiva per 144/432 MHz, economica e facilmente realizzabile.
Pole Position Marcello Arias	4	105	S. Giardini presenta una direttiva 4 elementi per CB e 10 metri.
Antenne magnetiche in gamma 144 MHz Cesare Pelosi	5	37	Un'originale antenna interna per VHF: teoria e costruzione.
Radiomania: Kaus, antenna a parabola per i 435 MHz Roberto Galletti	8	22	Dettagliata guida all'autocostruzione di un paraboloide UHF, con foto e disegni illustrativi.
Economica e facile da costruire: antenna a stilo caricata per i 2 m Cesare Pelosi	8	88	Semplice ed economica 5/8 per i 144 MHz.
Loop Yagi per i 1290 MHz Maurizio Mazzotti	9	61	Teoria e realizzazione pratica di una 20 elementi a pola- rizzazione circolare.
Pole Position Marcello Arias	9	91	A. Serani trasforma un lunotto termico in antenna per autoradio.
Pole Position Marcello Arias	10	89	C. Bonasia presenta un'antenna verticale per SWL e BCL.
Pole Position Antonio Ugliano	12	36	E. Montolivo presenta un'antenna caricata per CB; L. Massa un'antenna portabollo per autoveicolo.
COMPUTERS Qui Computers Antonio Ugliano	1	103	Software Spectrum: calcolo orbite Oscar 10, antenne QTH/QRB locator. Hardware: "restauro" di nastri per stampante.
Qui Computers Antonio Ugliano	2	95	Software Spectrum: collegamenti EME, calcolo capaci- tà/induttanza/frequenza, filtri passa-basso.

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
Qui Computers Antonio Ugliano	3	63	Software Spectrum: calcolo Yagi 3 elementi. Hardware Spectrum: filtraggio radiodisturbi; audio attraverso il cavo TV.
Interfaccia registratore per C64 e C128 Fabrizio Borsani	3	69	Semplice circuito per poter usare qualsiasi registratore con i computers Commodore.
Qui Computers Antonio Ugliano	4	111	Software Spectrum: G1FTU RTTY, contest log, linee d trasmissione, cavità risonanti. FAX per Commodore.
Pole Position Marcello Arias	5	67	P. Bianchi descrive alcune valide modifiche per PC IBM
Sperimentare: alimentatore d'emergenza Giancarlo Pisano	5	83	Alternative d'emergenza alle batterie Ni-Cd per calcolatrici programmabili Texas.
Interruttore elettronico save/load per Sinclair Spectrum Clemente Di Nuzzo	5	109	Semplice circuito per poter caricare/scaricare programmi e dati senza scollegare i cavetti EAR e MIC.
Gestione del C.A.T. installato sugli Yaesu tramite lo Spectrum Maurizio Cozzani	6	29	Software e (semplice) hardware per gestire tramite computer lo Yaesu FT-757 e gli Yaesu dell'ultima generazione.
Qui Computers Antonio Ugliano	6	87	Software Spectrum: calcolo orbite satelliti, battimento onde, filtraggio alimentatori. Software Commodore: calcolo Yagi VHF/UHF.
Interfaccia CAT System per Commodore 128/64 Fabrizio Borsani	6	96	Software e hardware per la gestione dello Yaesu FRG-9600 e altri Yaesu "CAT" con computers Commo dore.
Qui Computers Antonio Ugliano	7	54	Software Spectrum: simulatore di Packet, calcolo anten ne Yagi.
Qui Computers Antonio Ugliano	8	50	Software Spectrum: SSTV senza interfaccia, calcolo antenne Yagi, Vu-meter.
Riproduttore di cassette per C128 e C64 Fabrizio Borsani	8	102	Semplicissima interfaccia per poter copiare programm su cassetta con i computers Commodore.
Qui Computers Antonio Ugliano	9	80	Software Spectrum: G1FTU SSTV, simulazione di Packet. Ancora sul FAX.
Qui Computers Antonio Ugliano	10	40	Software Spectrum: codici resistenze. Software Commodore: ricetrasmissione CW.
Hardware debugger per 6502 Andrea Pasquali	11	28	Schemi, realizzazione e uso di un utilissimo circuito per il controllo del corretto funzionamento del 6502 e dei programmi Assembler; modifiche per l'uso sul Commodore 64.
Pole Position Antonio Ugliano	11	74	G. Cosimini presenta una semplice interfaccia per usare stampanti surplus Olivetti con lo Spectrum.
Qui Computers Antonio Ugliano	11	86	Software Spectrum: calcolo QRB. Software Commodore: calcolo antenne. Hardware Spectrum: interfaccia Meteofax.
Qui Computers Antonio Ugliano	12	58	Hardware Spectrum: interfaccia Disciple. Software Spectrum: calcolo adattatori d'impedenza. Software Commodore: gestione e stampa QSL.
Commodorate alla Maurizio Maurizio Mazzotti	12	106	Realizzazione di una semplice sonda logica per analiz zare l'output della "user port" del Commodore 64, e ap posito software per l'uso.

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
RADIOASCOLTO			THE PERSON NAMED IN COLUMN TWO
Europa in onde corte e aggiornamenti su Ra- dio Vaticana Luigi Cobisi	1	46	Radiodiffusione internazionale da Austria, Belgio, Germania Federale, Inghilterra e Vaticano.
Casella postale 28 Claudio Dondi	1	67	Guida alla scelta e all'acquisto dei ricevitori.
Operazione ascolto: sotto i 2 MHz Giuseppe Zella	1	93	Approfondita analisi della propagazione dei segnali radio in onde medie.
Operazione ascolto: caccia al DX onde medie extraeuropeo Giuseppe Zella	2	39	Ulteriore analisi della propagazione in onde medie; Emittenti extraeuropee più comuni e tutte le stazioni extraeuropee ascoltate in Italia nel 1985-86.
Quando sorge il sole Luigi Cobisi	2	75	Radiodiffusione internazionale da Giappone, Cina e Corea del Sud.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America Giuseppe Zella	3	25	Dettagliata analisi delle stazioni USA che è possibile ascoltare in Italia.
Casella postale CQ Luigi Cobisi	3	73	Gli orari delle stazioni radio. Conversione ora UTC/GMT - ora italiana.
Frequenze aeronautiche: aggiornamenti Fabrizio Bernardini	3	89	Aggiornamento delle frequenze presentate nella popola- re serie "Autorizzato al decollo".
Giochiamo un po' con l'E sporadico Fabio Scaramella	4	49	L'E sporadico nella propagazione VHF; FM e TV DX.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America: Stati Uniti Giuseppe Zella	4	87	Continua l'analisi delle stazioni USA ricevibili in Italia.
Radio Váticana: grande rinnovamento Luigi Cobisi	5	45	Nuove antenne per Radio Vaticana, per onde medie e corte.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America: Stati Uniti Giuseppe Zella	5	75	Le stazioni USA più difficili da ascoltare in Italia; rapporti d'ascolto alle Emittenti USA.
Qui Computers Antonio Ugliano	5	105	Interpretazione delle mappe FAX e stazioni meteorologiche che trasmettono mappe FAX su onde corte.
Autorizzato al decollo Fabrizio Bernardini	5	113	Ulteriori aggiornamenti delle frequenze aeronautiche VHF e LF.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America: Canada Giuseppe Zella	6	77	Analisi delle Emittenti canadesi ricevibili in Italia.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America: Canada Giuseppe Zella	7	82	Ulteriori Emittenti canadesi ricevibili in Italia.
Operazione ascolto: ricezione in onde medie di Emittenti del Nord America: Canada Giuseppe Zella	8	64	Termina l'analisi delle stazioni canadesi ricevibili in Ita- lia; loro politica QSL.
"Unico al mondo" Luigi Cobisi	8	95	Descrizione di un modernissimo sistema della RAI per la radiotrasmissione di informazioni sul traffico lungo l'autostrada Firenze-Bologna.
Operazione ascolto: ricezione in onde medie di Emittenti del Centro America e Caraibi Giuseppe Zella	9	41	Dettagliata analisi delle Emittenti centroamericane ricevibili in Italia.

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
Operazione ascolto: ricezione di Emittenti del Centro America e Caraibi in onde medie Giuseppe Zella	10	72	Prosegue l'analisi delle Emittenti centroamericane rice vibili in Italia.
Operazione ascolto: ricezione in onde medie di Emittenti del Centro America e dei Caraibi Giuseppe Zella	11	49	Termina l'analisi delle Emittenti centroamericane ricevi bili in Italia; loro politica QSL.
Radio Londra L uigi Cobisi	12	76	Il servizio internazionale della BBC: storia e attualità programmi e orari.
RICETRASMISSIONE Yaesu FT-230R: tre modifiche per un RTX più versatile in 144 MHz Pino Zàmboli	1	80	Accurata descrizione su come variare lo step e allargare la copertura di frequenza di base alle proprie preferenze
Packet Radio: l'ultima frontiera Fabrizio Bernardini	1	127	Il Terminal Node Controller basato sul chip Z-8530: teo ria e pratica.
Packet Radio Alessandro Novelli	2	49	Introduzione alla Packet Radio: cos'è, come funziona, le apparecchiature necessarie, gli sviluppi futuri.
Nove canali in più sull'Alan 68 CB Muzio	2	82	Semplice e interessante modifica su un RTX per Banda Cittadina.
Speciale radioamatori: Kenwood RS 930-S Pino Zàmboli	2	103	Istruzioni su come attivare l'accordatore d'antenna su tutte le bande, con foto e disegni illustrativi.
Speciale radioamatori: ICOM IC-02E Pino Zàmboli	3	33	Come allargare la copertura di frequenza (140-170 MHz del popolare palmare VHF; circuito "tone squelch" pe agevolare la sintonia dei ponti radio civili.
Radiomania: il Sampietrino Roberto Galletti	3	48	Autocostruzione completa di un walkie-talkie per 2' MHz, con foto e disegni illustrativi.
Sperimentare: ricetrasmettitore portatile Giancarlo Pisano	4	79	Piccolo RTX AM per banda CB, realizzabile facilmento anche dai principianti.
Maurizio Fantasy: 139° episodio Maurizio Mazzotti	4	97	Modem per Packet Radio per Commodore 64 e 128.
Speciale radioamatori: ICOM IC 2E Pino Zàmboli	5	27	Alimentazione esterna direttamente attraverso il pacco-bat terie: le modifiche necessarie, con foto e disegni illustrativi
Ricetrasmettitore FM per i 2 m Matiaz Vidmar	6	25	Introduzione e schema a blocchi di un interessante RT) gestito da microprocessore.
Speciale radioamatori: Kenwood TS 930-S Pino Zàmboli	6	37	Un'altra variante per attivare l'accordatore d'antenna su tutte la banda, a sintonia continua, con foto e disegni illustrativi.
Speciale radioamatori: ricetrasmettitori VHF- FM ICOM IC-28 Pino Zàmboli	7	25	Allargamento della frequenza operativa da 138 a 174 MHz e cambio dello step, con foto e disegni illustrativi
Ricetrasmettitore FM per i 2 m Matiaz Vidmar	7	39	Descrizione e schemi dei moduli ricevitore e trasmetti tore.
Ulteriori modifiche all'Alan 68 CB Muzio	7	50	Raddoppio dei canali di questo RTX CB.
Speciale radioamatori: sogno di una notte di nezza estate Pino Zàmboli	8	57	Yaesu FT-230R: affinamento della modifica presentate in gennaio; agendo su due commutatori si ottiene una maggiore elasticità d'uso.
Una miglioria alla FT-790R Gian Maria Canaparo	8	90	Dettagliata descrizione di una modifica che consente ul più agevole uso dei ponti ripetitori con questo RTX Yaesu

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
Speciale radioamatori: sogno di una notte di mezza estate Pino Zàmboli	9	33	Alcune precisazioni sulle modifiche già descritte per l'I COM IC-02 E; elegante modifica per l'alimentazione esterna dell'ICOM IC-2E.
Ricetrasmettitore FM per i 2 m Matiaz Vidmar	9	52	Descrizione, schemi e software del modulo microproces sore.
Modifichiamo il nostro RTX raddoppiando il numero dei canali Clemente di Nuzzo	9	94	Interessante modifica valida per alcuni RTX CB a 34 ca nali, con foto e disegni illustrativi.
Ricetrasmettitore FM per i 2 m Matiaz Vidmar	10	31	Realizzazione pratica, circuiti stampati e taratura; cons derazioni conclusive.
Speciale radioamatori: Yaesu FT-23R Pino Zàmboli	10	46	Analisi di questo versatile palmare; dettagliata descrizio ne delle modifiche per allargarne la frequenza operativa (140-170 MHz) con foto e disegni illustrativi.
Raddoppiamo i canali dell'Alan 68S Franco Trementino	10	81	Accurata descrizione, con foto e disegni illustrativi, d questa utile modifica di un RTX CB.
Pole Position Marcello Arias	10	89	G. Di Gregorio descrive l'ampliamento della frequenza operativa dello RTX Yaesu FT-727R.
RX autocostruito SPSS-1 Claudio Moscardi	10	101	Uso pratico come ricevitore e come preselettore. VLF in pratica, segnali ascoltati.
Speciale radioamatori: IC-μ2E, l'ultimo nato della ICOM Pino Zàmboli	11	16	Analisi di questo versatile palmare; modifiche per esten derne la frequenza operativa (139-174 MHz), con foto disegni illustrativi.
Radiomania: Bistar Roberto Galletti	11	56	Schemi e realizzazione pratica di un lineare/preamplif catore per i 144 MHz, con foto e disegni illustrativi.
A proposito di Packet Radio Vittorio De Tommasi	12	30	Schema di modem per Packet Radio; uso del Commodo re 64 come TNC, con apposito software.
70 cm facili! Domenico Caradonna	12	64	Schemi e realizzazione pratica di convertitore 432/144 (triplicatore 144/432 per operare sui 432 MHz in FM e CV usando un portatile per i 2 metri.
Speciale radioamatori: ICOM IC-µ2E Pino Zàmboli	12	92	Dettagliata descrizione delle modifiche per ottenere le scanner automatico, con foto e disegni illustrativi.
Una modifica che non sempre si può effet- tuare Clemente Di Nuzzo	12	100	Descrizione delle modifiche per raddoppiare i canali c alcuni RTX CB a 40 canali.
RICEZIONE Up Converter 29/145 MHz Matiaz Vidmar	4	29	Schema e realizzazione di un convertitore per ascoltare i 29 MHz con un RX/RTX/VHF.
Radiomania: Pegasus, un convertitore di fre- quenza per la banda aeronautica VHF Roberto Galletti	5	56	Schema e realizzazione di un convertitore per ascoltar la gamma VHF aeronautica con un apparecchio CB.
Pole Position Marcello Arias	6	46	D. Baj presenta lo schema di un ricevitore superrigene rativo per VHF.
Sistema ricevente 10 kHz-30 MHz; FRG-7700, antenna a ringhiera, ricezione sotto i 150 kHz Claudio Moscardi	7	98	Analisi dello FRG-7700 nella ricezione delle onde lungh e lunghissime; in appendice, stazioni VLF italiane e d sturbi sulle VLF.
RX autocostruito SPSS-1	8	38	Descrizione e schemi di un ricevitore per VLF; antenni in ferrite per VLF.

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
RX autocostruito SPSS-1 Claudio Moscardi	9	70	Continua la descrizione del ricevitore per VLF; sua realizzazione e controllo del corretto funzionamento.
Pole Position Marcello Arias	9	91	F. Tamigi presenta un semplicissimo RX supereterodina per VHF.
Modifiche e migliorie all'ICOM IC-R71 Fabrizio Magrone	12	21	Descrizione di alcune interessanti modifiche per questo ricevitore, con foto e disegni illustrativi.
Operazione ascolto: il "DX-10", ricevitore autocostruito per il DX a sintonia continua Giuseppe Zella	12	82	Inizia la descrizione di questo sofisticato apparecchio; funzionamento e risultati, comandi, schema a blocchi.
STRUMENTI			
Radiomania: Doppia Vela 1 Roberto Galletti	1	30	Costruzione elettronica e meccanica di una stazione di rilevamento dei venti: anemometro digitale, con foto e disegni illustrativi.
Costruiamo un voltmetro stampante Carlo Giaconia	1	57	Progetto di voltmetro digitale connesso a stampante tipo Epson 320 o altre.
Sperimentare: generatore FM quarzato Giancarlo Pisano	1	124	Un generatore di radiofrequenza semplice e affidabile.
Radiomania: Doppia Vela 2 Roberto Galletti	2	26	Costruzione elettronica e meccanica di un anemoscopio digitale per la rilevazione della direzione del vento, con foto e disegni illustrativi.
Il ponte resistivo e suo impiego come impe- denzimetro di antenna Francesco Moscarella	3	113	Funzionamento teorico e realizzazione pratica di un utile strumento per la taratura delle antenne.
Ponte RLC da 1 a 30 MHz Valentino Barbi	5	91	Funzionamento teorico e realizzazione pratica di un utile strumento per misurare capacità e induttanze, nonché l'impedenza delle antenne.
Radiomania: Beta Tauri Roberto Galletti	6	62	Schema e realizzazione di un misuratore di campo per i 27 MHz, utile per la taratura dei sistemi d'antenna.
Costruiamoci un sismografo Antonio Ugliano	7	59	Costruzione elettronica e meccanica di un sismografo con asta a molla.
Radiomania: Beta Tauri Roberto Galletti	7	68	Schema e realizzazione di un misuratore di impedenza per antenne (continuazione dell'articolo precedente).
Radiomania: Lynx Roberto Galletti	10	60	Schema e realizzazione di un ricevitore panoramico (analizzatore di spettro) a visualizzazione oscilloscopica, per i 144 MHz.
SURPLUS			200,000
ll Class D n. 1 Mk l, ll e lll Gino Chelazzi	2	63	Descrizione di questo ondametro inglese, con schemi; modifiche necessarie per alimentario a 220 V.
Surplus anni '60: RX Racal RA-17 Leopoldo Mietto	4	57	Descrizione di questo eccellente ricevitore inglese per onde medie e corte.
Surplus anni '60: AN/URM-26B Maurizio Mazzotti	5	119	Descrizione di questo generatore RF americano da 4 a 405 MHz.
"Douce France": RX surplus RR-TP-2A Gino Chelazzi	6	106	Descrizione di questo ricevitore francese da 0,4 a 20,4 MHz.
Surplus: il ricetrasmettitore "TBY" Gino Chelazzi	8	82	Descrizione di questo RTX americano degli anni '40, per 20-80 MHz; come alimentarlo a 220 V.
Surplus: il ricevitore inglese Redifon R-50M Gino Chelazzi	11	40	Descrizione di questo RX per 0,01-32 MHz; come alimentarlo a 220 V.

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
TRASMISSIONE Sperimentare: trasmettitore sperimentale per onde medie Giancarlo Pisano	2	69	Realizzazione di un piccolo TX (5-8 W) per la gamma del le onde medie.
Sperimentare: micro TX per CB Giancarlo Pisano	5	83	Realizzazione di un piccolo TX (1 W) per la gamma de 27 MHz.
Preamplificatore microfonico da tavolo per apparati RTX Claudio Ballicu	5	99	Semplice realizzazione di un microfono preamplificato ti po Turner + 2 e +3.
Sperimentare: trasmettitore quarzato per VHF-FM Giancarlo Pisano	7	91	Realizzazione di un piccolo TX (0,5 W) per 135-148 MHz
VARIE Parte "Pole Position" Marcello Arias	1	54	Presentazione della nuova rubrica; schema di ricevitore superreattivo per onde lunghe.
Maurizio Fantasy: 138ª evasione Maurizio Mazzotti	1	115	Previsioni di propagazione 1987; i camionisti in Banda Cittadina.
Chimica & Elettronica Massimo Cerveglieri	1	133	Introduzione alla scelta e all'uso degli adesivi cianoacrili ci Cyanolit.
Progetto e realizzazione di una bobinatrice Adriano Panzani	2	110	Autocostruzione di un utile apparecchio per l'avvolgi mento delle bobine.
Quattro utili circuiti per chi lavora in RF Giancarlo Pisano	3	77	Preamplificatore ad alto guadagno per onde lunghe; du oscillatori per banda FM; rivelatore di radiofrequenza.
Il problema del pannello frontale e una possi- bile soluzione Ermanno Larnè	3	81	Un pratico sistema per realizzare eleganti e resistent scritte e disegni sui frontali di apparati autocostruiti o non.
Quasi tutto sul LM3914 Remo Santomassimo	3	107	Dati tecnici e uso pratico di questo integrato. Schema cindicatore di tensione con LM3914.
Radiomania: Antares, coder e decoder per radiocomando inviolabile Roberto Galletti	4	64	Schemi e realizzazione di codificatore e decodificatore per radiocomandare varie apparecchiature in modo noi accessibile a estranei.
Pole Position Marcello Arias	5	67	G.F. Ronzani presenta un indicatore di livello logaritmico realizzabile con componenti di recupero.
Le pile Massimo Cerveglieri	6	50	Teoria e pratica delle pile; loro ricarica.
Quattro utili circuiti per chi lavora in AF Giancarlo Pisano	6	73	Monitor d'ascolto per CB; elevatore di tensione per vari cap; filtro per CB; misuratore di uscita per TX.
Pole Position Marcello Arias	7	35	M. Spano presenta lo schema di un BFO; S. Palazzolo propone il progetto di un tavolo da lavoro.
Autocostruzione di una stampante Emilio Ficara	8	33	Hardware e software per ricavare una stampante d'e mergenza da una Olivetti Divisumma 33.
Sperimentare: sensor switch professionale Giancarlo Pisano	8	47	Realizzazione meccanica ed elettronica di un semplico ma elegante interruttore a contatto.
Introduzione ai condensatori elettrolitici Corradino Di Pietro	8	75	Teoria degli elettrolitici e qualche esperimento in merito

ARTICOLO, RUBRICA E AUTORE	N. Riv.	pag.	SINTESI
Sperimentare: un piccolo amplificatore: il mi- ni ''A'' Giancarlo Pisano	9	87	Descrizione e realizzazione di un amplificatore audio (6 W) in classe A.
Radiomania: Cherie Roberto Galletti	9	100	Schemi e realizzazione pratica di un lineare per radioco- mando operante sui 41 MHz, con foto e disegni illustra- tivi.
Convertitore di polarità per autovettura Francesco Michienzi	9	108	Utile circuito per ottenere 12 V con positivo a massa per l'alimentazione di RTX portatili in automobile.
Quando "filettare necesse est" Cesare Pelosi	9	112	Tutto sulla filettatura "fatta in casa".
Sperimentare: i multivibratori in alta frequenza Giancarlo Pisano	10	94	Uso di un multivibratore astabile come generatore sinusoidale in AF.
Strip-line che passione!e argentare è fa- cile Ivo Brugnera	10	97	Semplici ma efficaci sistemi per la realizzazione di indut- tanze strip-line e l'argentatura dei circuiti stampati.
Gli accessori di stazione: cosa è veramente utile, come si usano Corradino Di Pietro	11	23	Considerazioni teoriche e pratiche su rosmetro, carico fittizio, filtro passa-basso e transmatch; sfatate alcune erronee convinzioni.
QSL computerizzata, ovvero come farsi le QSL senza spendere una lira Ivo Brugnera	11	45	Come disegnarsi e stampare le QSL col calcolatore; software in "Simon Basic" per Commodore 64.
Commutatore RF a diodi PIN Marco Minotti	11	57	Versatile commutatore RX/TX per la interconnessione di apparati amatoriali fino a 100 W: schema e realizzazione pratica.
II rame Massimo Cerveglieri	11	72	Tutto su questo metallo: proprietà, caratteristiche, corrosione e pulitura chimica.
Pole Position Antonio Ugliano	11	74	I. Matterovich presenta un provaquarzi; F. Pascotti un fo- norelay.
Rivelatore coassiale fino a 12 GHz Claudio Moscardi	11	76	Autocostruzione di un rivelatore per SHF con un connettore e un diodo 1N23 o simile.
Sperimentare: il telefono ascoltato via radio Giancarlo Pisano	11	80	Semplice captatore/trasmettitore per ascoltare il proprio telefono con una radio FM.
Interruttore elettronico a combinazione Luca Bettini	11	82	Interessante circuito utilizzabile come serratura a combinazione o come semplice antifurto.
Applicazione di un registratore a un RTX CB Franco Trementino	11	90	Utile circuito per la trasmissione di messaggi registrati, direttamente da registratore a TX.
Alimentatore "multitracking" Luigi Centi	11	93	Schema e realizzazione pratica di un versatile alimentatore multitensioni, regolabile e con voltmetro digitale.
Pole Position Antonio Ugliano	12	36	G. Ruffoni presenta un semplicissimo demodulatore RTTY per computer; A. Poli un carica-accumulatori Ni-Cd.
CW, ossia Carrier Wave (telegrafia non modulata) Ivo Brugnera	12	43	Spezzata una lancia a favore del CW nei collegamenti amatoriali, qualche suggerimento e lo schema di un oscillofono per allenarsi a trasmettere.
Radiomania: Alfa 10 Roberto Galletti	12	48	Descrizione e realizzazione pratica di alimentatore da 5 a 18 V con regolazione della corrente erogata da 2 a 10 A e protezione totale.

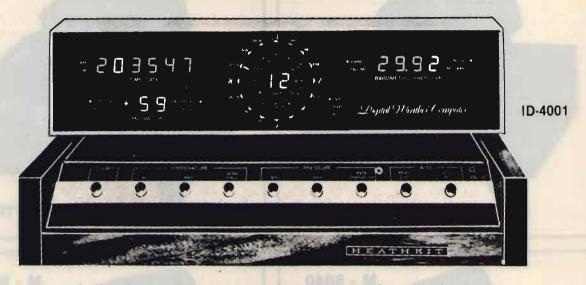
NUOVI!

ETUTTIE QUATTRO OMOLOGATI!

ZODIAC mette a vostra disposizione ben quattro apparati CB veicolari. Si chiamano M-5034, M-5036, M-5040 ed M-5050. Il modello M-5034 opera su 40 canali AM con sintonia a sintesi di frequenza. Lo M-5036 offre in più la possibilità di operare anche in FM.

40 canali in AM/FM vengono offerti anche dallo ZODIAC M-5040, mentre il nuovissimo M-5050 aggiunge la comodità della sintonia UP and DOWN ai suoi 40 canali AM/FM. Tutti e quattro i nuovi ZODIAC presentano una costruzione all'altezza della grande

tradizione ZODIAC. Tutti adottano, ad esempio, nelle aree più critiche dal punto di vista termico semiconduttori resistenti alle alte


semiconduttori resistenti alle alte temperature.

Tutti e quattro i nuovi ZODIAC: M-5034, M-5036, M-5040 ed M-5050 sono naturalmente omologati dal ministero delle Poste e Telecomunicazioni.

70DIAC

Heathkit

COMPUTER METEOROLOGICO MOD. ID-4001

- Indica, immagazzina e riporta la temperatura interna ed esterna
- Indica la direzione e la velocità del vento
- Mostra gli importanti cambiamenti nella pressione barometrica

SPECIFICAZIONI

OROLOGIO DIGITALE/CALENDARIO 4 ANNI - Display: a 6 cifre, con formato a 12 o 24 ore per l'ora, a 4 cifre per la data; indicatore AM-PM per il formato a 12 ore. Precisione dell'ora: determinata dalla precisione della rete CA; nessun errore accumulativo. Comandi sul pannello posteriore: Partenza/arresto orologio: Avanzamento mese/ora; Avanzamento giorno/minuto; Avanzamento 10 minuti; Tenuta ora/data; Formato 12/24 ore.

VETTORE VENTO - Display: 2 cifre significative; indicatori separati identificano M/ora, km/ora o nodi. Memoria: Data, ora e ampiezza del massimo colpo di vento. Precisione: ±5% o meglio. Comandi sul pannello frontale: selettore per memoria colpo di picco e media del vento. Comandi sul pannello posteriore: Selettore M/ora, km/ora o nodi. Display della direzione: Uno dei 16 indicatori predisposto in una rosa dei venti ed angoli radiali. Precisione: ±11.25°.

TERMOMETRO - Display: Lettura a 2 cifre e mezza con di collegamento con batte segno + e — e indicatori interno/esterno e (L) x 184 (A) x 152 (P) mm.

Fahrenheit/Centigradi. Gamma di temperatura: da —40° a +70°C; da —40° a + 158°F. Precisione ±1° sulle letture in centigradi; ±2° sulle letture in Fahrenheit. Comandi sul pannello frontale: Raffreddamento del vento, temp. min. e temp. max. Comandi sul pannello posteriore: Selettore gradi centigradi o Fahrenheit, tenuta della visualizzazione interno-esterno.

BAROMETRO · Display: lettura a 4 cifre. Indicatori separati per salita e caduta e per pollici di mercurio e millibar. Gamme di pressione: da 28,00 a 32,00 in Hg (pollici di mercurio); da 981,9 a 1050 millibar. Precisione: ±0,075 in Hg.più ±0,01 in Hg/°C. Memoria: ora, data e grandezza della pressione minima e massima. Comandi sul pannello frontale: Pressione min. e max; tasso di cambiamento per ora. Comandi sul pannello posteriore: Selettore pollici di mercurio/millibar. Limiti di temperatura: complesso esterno, da —40° a +70°C, apparecchio interno, da +10° a +35°C. Alimentazione: 220 V, 50 Hz. Possibilità di collegamento con batteria esterna. Dimensioni: 406 (L) x 184 (A) x 152 (P) mm.

INTERNATIONAL S.r.I. - AGENTI GENERALI PER L'ITALIA

20129 MILANO - VIALE PREMUDA, 38/A - TEL. 02/795.762

Modifichiamo il nostro RTX omologato, triplicandone i canali

• Clemente Di Nuzzo •

Nei numeri precedenti di CQ vi ho descritto, in modo semplice, come è possibile effettuare modifiche al vostro apparato ricetrasmittente omologato che, purtroppo, per motivi legali, può essere sintonizzato solamente su 34 o 40 canali a secondo dei modelli.

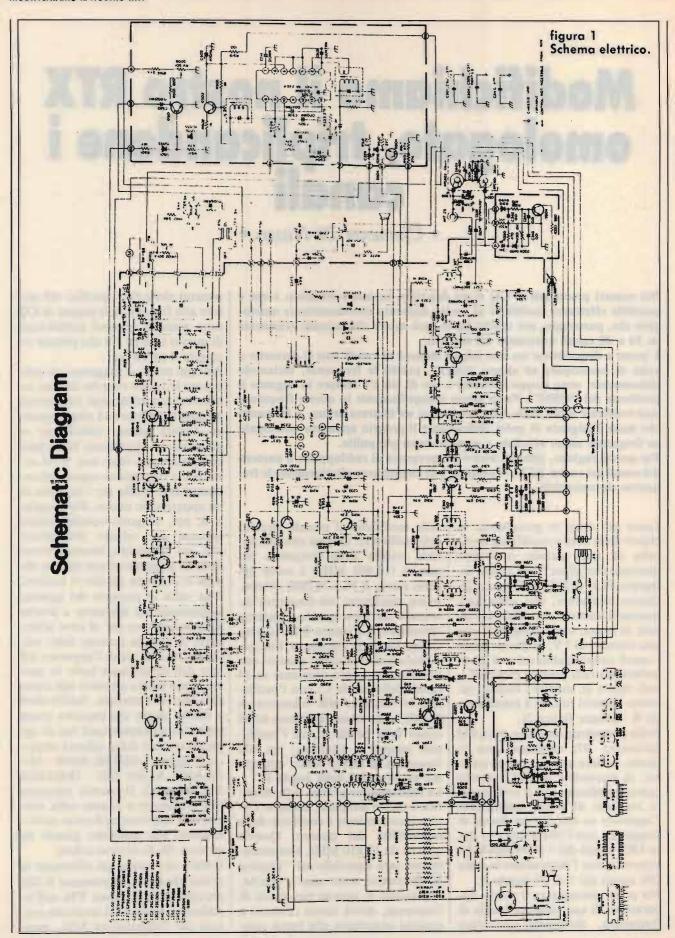
L'avere a disposizione un così esiguo numero di canali non ci permette a volte di partecipare ad alcuni "QSO", poiché le frequenze, diciamolo chiaramente, sono troppo affollate e per di più c'è sempre in agguato il problema del "QRM". Poter girare tranquillamente in queste frequenze così trafficate il più delle volte costituisce un'impresa ardua, a tal punto che nasce l'esigenza di poter sintonizzare il proprio apparato omologato su frequenze meno affollate o quanto meno più pulite.

Per questa ragione, oltre ad avervi già proposto di raddoppiare il numero dei canali del vostro RTX, vi propongo di aumentarne ulteriormente le frequenze sintonizzabili.

Come già detto in precedenza, la chiave della nostra modifica è costituita da quel piccolo oscillatore quarzato che pilota il pin 13 dell'integrato PLL IC202 (vedi figura 1). Questo oscillatore, una volta commutato il selettore dei canali dal canale 26 in poi, viene alimentato con una tensione di 7 V; in questo modo i canali sintonizzabili dal 1 al 25 risulteranno tutti positivi (banda C-vedi figura 2), mentre i restanti saranno negativi (ultimi 8 canali banda B - sempre figura 2).

Nella precedente modifica (vedi CQ Settembre '87) abbiamo fatto in modo, tramite un interruttore esterno, di mantenere acceso o spento questo oscillatore con il conseguente risultato di poter sintonizzare l'apparato su due diverse bande di frequenza: con l'interruttore in stato OFF canali dal 1 al 34 banda C, viceversa, con l'interruttore in stato ON canali dal 1 al 34 banda B.

Per poter sintonizzare il nostro apparato su di una ulteriore banda di frequenza, dobbiamo apportare


delle modifiche al piccolo circuito dell'oscillatore. Questo circuito, infatti, oscilla sulla frequenza del quarzo (14,960 MHz) e come già detto pilota il PLL IC202; orbene, se noi cambiamo tale frequenza inserendo un altro quarzo, potremo esplorare con il nostro RTX una ulteriore banda di frequenza. Più dettagliatamente succede questo: con l'oscillatore spento operiamo su 34 canali della banda C; con l'oscillatore in funzione alla frequenza di 14,960 MHz invece operiamo su 34 canali della banda B; con l'oscillatore sempre in funzione, ma alla frequenza di 15,810 MHz, opereremo su 34 canali della banda D.

La realizzazione pratica della modifica è molto semplice, anche se l'unico inconveniente è costituito dalla reperibilità del quarzo. Questo quarzo da 15,810 MHz, sicuramente non sarà reperibile nel "negozio di elettronica sotto casa", poiché, trattandosi di quarzo per sintesi di frequenza, dovrà essere richiesto a qualche negoziante che tratta com-

ponenti elettronici specifici nel settore alta frequenza; le pagine di CQ sono piene di annunci pubblicitari di questo tipo ed è lì che potrete risolvere il problema.

Ad ogni modo vi suggerisco di indirizzare le vostre ricerche in quei laboratori ove effettuano riparazioni ad apparecchiature ad alta frequenza. Capita spesso, infatti, che vi giungono in riparazione baracchini completamente fuori uso, il cui costo per la riparazione supera abbondantemente quello per l'acquisto di un apparecchio nuovo. Parcheggiati lì, poi, vengono completamente ignorati dai relativi proprietari, che, nel frattempo, hanno provveduto ad acquistarne uno nuovo: ebbene lì troverete ciò che vi occorre. Una volta in possesso del quarzo, acquisterete un deviatore a levetta da pannello e un po' di cavo schermato di piccola sezione; fatto ciò, cominciate ad aprire l'apparato dal lato dell'altoparlante (solo in questo modo potete accedere agli stampati lato componenti). Inutile dirvi a questo punto che possono essere elaborati solamente quei tipi di apparati ricavati dallo schema elettrico in figura 1 (INTEK M340 - MI-DLAND ALAN 68S - IRRADIO MC700, ecc.). Il piccolo stampato dell'oscillatore è situato sulla sinistra dell'apparato ed è unito elettricamente allo stampato grande da quattro fili di diverso colore.

Coloro che hanno già effettuato la prima modifica, troveranno il filo proveniente dal punto P36 dell'oscillatore, saldato sul terminale centrale del commutatore ANL, men-

				Band	le (MHz)				
	Α		В		C		D		E
canale	frequenza	canale	frequenza	canale	frequenza	canale	frequenza	canale	frequenzo
1	26,065	41	26,515	1	26,965	41	27,415	-1	27,865
2	26,075	42	26,525	2	26,975	42	27,425	2	27,875
3	26,085	43	26,535	3	26,985	43	27,435	3	27,885
4	26,105	44	26,555	4	27,005	44	27,455	4	27,905
5	26,115	45	26,565	5	27,015	45	27,465	5	27,915
6	26,125	46	26,575	6	27,025	46	27,475	6	27,925
7	26,135	47	26,585	7	27,035	47	27,485	7	27,935
8	26,155	48	26,605	8	27,055	48	27,505	8	27,933
9	26,165	49	26,615	9	27,065		27,505	9	27,955
10	26,175	50	26,625	10		49	27,313		27,965
11	26,173	51			27,075	50	27,525	10	27,975
	20,100		26,635	11	27,085	51	27,535	11	27,985
12	26,205	52	26,655	12	27,105	52	27,555	12	28,005
13	26,215	53	26,665	13	27,115	53	27,565	13	28,015
14	26,225	54	26,675	14	27,125	54	27,575	14	28,025
15	26,235	55	26,685	15	27,135	55	27,585	15	28,035
16	26,255	56	26,705	16	27,155	56	27,605	16	28,055
17	26,265	57	26,715	17	27,165	57	27,615	17	28,065
18	26,275	58	26,725	18	27,175	58	27,625	18	28,075
19	26,285	59	26,735	19	27,185	59	27,635	19	28,085
20	26,305	60	26,755	20	27,205	60	27,655	20	28,105
21	26,315	61	26,765	21	27,215	61	27,665	21	28,115
22	26,325	62	26,775	22	27,225	62	27,675	22	28,125
23	26,355	63	26,805	23	27,255	63	27,705	23	28,155
24	26,335	64	26,785	24	27,235	64	27,685	24	28,135
25	26,345	65	26,795	25	27,245	65	27,695	25	28,145
	20,343				27,245		27,073		20,145
26	26,365	66	26,815	26	27,265	66	27,715	26	28,165
27	26,375	67	26,825	27	27,275	67	27,725	27	28,175
28	26,385	68	26,835	28	27,285	68	27,735	28	28,185
29	26,395	69	26,845	29	27,295	69	27,745	29	28,195
30	26,405	70	26,855	30	27,305	70	27,755	30	28,205
31	26,415	71	26,865	31	27,315	71	27,765	31	28,215
32	26,425	72	26,875	32	27,325	72	27,775	32	28,225
33	26,435	73	26,885	33	27,335	73	27,785	33	28,235
34	26,445	74	26,895	34	27,345	74	27,795	34	28,245
35	26,455	75	26,905	35	27,355	75	27,805	35	28,255
36	26,465	76	26,915	36	27,365	76	27,815	36	28,265
37	26,475	77	26,925	37	27,375	77	27,825	37	28,275
38	26,485	78	26,935	38	27,385	78	27,835	38	28,285
		79	26,935			79	27,835		28,295
39	26,495			39	27,395			39	
40	26,505	80	26,955	40	27,405	80	27,855	40	28,305

figura 2 Bande di frequenza. Frequenze tutte in megahertz.

tre il filo proveniente dal punto B+ del selettore dei canali è saldato su uno dei due terminali liberi dello stesso commutatore ANL.

Dissaldate, a questo punto, i terminali del quarzo dal circuito dell'oscillatore, avendo cura di non piegarli bruscamente altrimenti potrebbero spezzarsi; fatta questa operazione, cominciate a spellare gli estremi di tre spezzoni di cavo schermato lunghi una quindicina di centimetri ognuno. Su una delle due estremità dei tre cavetti va tolta anche la calza metallica che funge da schermo, mentre l'estremità del cavo centrale va stagnata. Sulle altre estremità, invece, stagnate sempli-

cemente i terminali di ogni cavo.

Per quanto riguarda i quarzi, siccome li dovremo montare in parallelo sul circuito, e poiché ci sono limiti di spazio, ne dovremo modificare la disposizione dei terminali.

Uno dei due terminali del quarzo da 14,960 va piegato a "L", l'altro terminale, invece, va semplicemente piegato lateralmente. Per quanto riguarda l'altro quarzo, solamente uno dei due terminali va piegato lateralmente.

Eseguita questa semplice operazione, cominciate a montare il quarzo da 14,960 sul piccolo stampato dell'oscillatore, inserendo il terminale piegato a L nel foro in prossimità

del condensatore ceramico C401 (vedi figura 3). Con una saldatura unite elettricamente questo terminale con la pista di rame sottostante, tenendo presente che sull'altro terminale va saldato il filo centrale di uno dei cavi schermati precedentemente preparati.

L'altro quarzo, invece, va montato, per le già menzionate ragioni di spazio, saldando il terminale non piegato direttamente sulla pista di rame del circuito dell'oscillatore nello stesso punto in cui è stato saldato precedentemente il terminale piegato a L del quarzo da 14,960 MHz; sul terminale piegato lateralmente salderete il filo centrale di uno dei

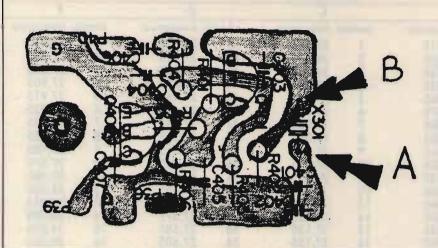


figura 3
Il terminale piegato a L del quarzo da 14,960 MHz andrà inserito nel foro indicato dalla freccia con la lettera A. Il terminale non piegato del quarzo da 15,810 MHz andrà invece saldato direttamente sulla pista di rame sottostante al foro sempre indicato dalla freccia con la lettera A. Nel foro indicato dalla freccia con la lettera B andrà inserito il filo centrale del cavo schermato.

Comm. ex-ANL: ON Deviatore: pos. A	Comm. ex-ANL: OFF	Comm. ex-ANL: ON Deviatore: pos. B		
Banda B	Banda C	Banda D		
1 26,565	1 26,965	1 27,415		
2 26,575	2 26,975	2 27,425		
3 26,585	3 26,985	3 27,435		
3 26,585 4 26,605 5 26,615 6 26,625 7 26,635 8 26,655	4 27,005	3 27,435 4 27,455 5 27,475 6 27,485 7 27,505 8 27,515		
5 26,615	5 27,015	5 27,475		
6 26,625	6 27,025	6 27,485		
7 26,635	7 27,035	7 27,505		
8 26,655	8 27,055	8 27,515		
9 26,665	9 27,065	9 27,525		
10 26,675	10 27,075	10 27,535		
11 26,685	11 27,085	11 27,555		
12 26,705	12 27,105	12 27,565		
13 26,715	13 27,115	13 27,575		
14 26,725	14 27,125	14 27,585		
15 26,735	15 27,135	15 27,605		
16 26,755	16 27,155	16 27,615		
17 26,765	17 27,165	17 27,625		
18 26,775	18 27,175	18 27,635		
19 26,785	19 27,185	19 27,655		
20 26,805	20 27,205	20 27,665		
21 26,815	21 27,215 22 27,225	21 27,675		
22 26,825	22 27,225	22 27,685		
23 26,855	23 27,255	23 27,705		
24 26,845	24 27,245	24 27,685		
25 26,865	25 27,265	25 27,695		
26 26,875	26 27,275	26 27,715		
27 26,885	27 27,285	27 27,725		
28 26,895	28 27,295	28 27,735		
29 26,905	29 27,305	29 27,745		
30 26,915	30 27,315	30 27,755		
31 26,925	31 27,325	31 27,765		
32 26,935	32 27,335	32 27,775		
33 26,945	33 27,345 34 27,355	33 27,785 34 27,795		
34 26,955	34 27,355	34 27,773		

figura 4 L'apparato dopo la modifica potrà essere sintonizzato su queste tre bande di frequenze. Frequenze tutte in megahertz. due cavetti schermati ancora disponibili.

Giunti a questo punto, è opportuno fissare tra di loro, con del collante, i due quarzi montati parallelamente allo stampato; in questo modo eviterete di danneggiare i relativi terminali con qualche eventuale strattone

Nel foro sul piccolo stampato rimasto libero (prima della modifica era occupato da due dei terminali del quarzo da 14,960), inserirete il filo centrale dell'ultimo cavetto schermato ancora disponibile; con una saldatura lo unirete alla pista di rame sottostante.

Ultimate tutte queste operazioni, dovrete solamente collegare i tre fili provenienti dall'oscillatore a un commutatore a una via-due posizioni, che precedentemente avete montato sul retro del baracchino.

Il filo proveniente dal quarzo da 14,960 MHz andrà saldato sul primo terminale del deviatore montato sul pannello; l'altro filo, proveniente dal quarzo da 15,810 MHz andrà invece saldato sull'ultimo terminale del deviatore stesso. Per quanto riguarda l'ultimo cavetto, questi andrà saldato sul terminale centrale. Le tre calze metalliche dei cavi schermati andranno unite fra di loro e collegate al telaio dell'apparecchio.

Fatto ciò, potete già effettuare i primi controlli per verificare se la modifica è stata effettuata regolarmente.

Con il commutatore ex-ANL in stato OFF, l'apparato potrà essere sintonizzato su 34 canali della banda C (si noti che quando il deviatore exANL è in questa posizione, il commutatore montato sul retro del pannello non è operativo, per il semplice fatto che il circuito dell'oscillatore non è in funzione).

Commutando il deviatore ex-ANL nella posizione ON, invece, l'apparato oscillerà su 34 canali della banda B o D a secondo della posizione del commutatore posto sul retro. Comunque, per una maggiore chiarezza riferitevi alla figura 4.

Prima di congedarmi, vorrei ringraziare la mia collaboratrice Pina Giuliano per il suo prezioso contributo tecnico che mi ha permesso di redigere questo articolo.

CO

VIDEO SET sinthesys STVM

Nuovo sistema di trasmissione, ridiffusione e amplificazione professionale

Trasmettitore televisivo ad elevata tecnologia dell'ultima generazione, composto da modulatore audio e video a F.I. europea con filtro vestigiale, e sistema di conversione sul canale di trasmissione governato da microprocessore con base di riferimento a quarzo, e filtro d'uscita ad elevata soppressione delle emissioni spurie con finale da 0.5 watt, programmabile sul canale desiderato; viene proposto in 3 versioni: banda IV, banda V, e bande IV e V, permettendo la realizzazione di impianti ove la scelta o il cambiamento di canale non costituisce più alcun problema. Il sistema STVM SINT-HESYS, che a richiesta può venire fornito portatile in valigia metallica per impieghi in trasmissioni dirette anche su mezzi mobili, consente il perfetto pilotaggio degli amplificatori di potenza da noi forniti.

Si affiancano al sistema STVM SINTHESYS, il classico e affidabile trasmettitore con modulatore a conversione fissa a quarzo AVM con 0.5 watt di potenza d'uscita, i ripetitori RPV 1 e RPV 2, rispettivamente a mono e doppia conversione quarzata entrambi con 0.5 watt di potenza d'uscita e i ripetitori a SINTHESYS della serie RSTVM. Su richiesta si eseguono trasmettitori e ripetitori a mono e doppia conversione su frequenze fuori banda per transiti di segnale.

E disponibile inoltre una vasta gamma di amplificatori multi stadio pilotabili con 100 mW in ingresso per 2·4 Watt e in offerta promozionale 8 e 20 Watt; per vaste aree di diffusione, sono previsti sistemi ad accoppiamento di amplificatori multipli di 20 Watt cadauno permettendo la realizzazione di impianti ad elevata affidabilità ed economicità.

Su richiesta disponibile amplificatore da 50 Watt.

Tutti gli apparati possono essere forniti su richiesta, in cassa stagna "a pioggia" per esterni.

ELETTRONICA ENNE

C.so Colombo 50 r. - 17100 SAVONA - tel. (019) 22407 (prenderà il n. 82.48.07) e dal 1° gennaio 1988, risponderà anche il numero 019/88.06.24

STANDARD

INSIEME, SEMPRE

Standard II primo portatile bibanda

Standard C-500E è il primo portatile bibanda (VHF e UHF) full duplex. Mentre trasmette su una banda riceve contemporaneamente sull'altra.

Standard C-500E è il primo portatile che può selezionare dalla tastiera tutti i passi di canalizzazione esistenti: 5-10-12,5-20-25 e 50 kHz.

Addirittura ha la possibilità di passi a 100kHz per veloci QSY.

Standard C-500E è il primo portatile che può trasmettere con una frequenza di tone squelch diversa da quella usata in ricezione insieme al tono a 1750 Hz per l'apertura dei ponti radioamatoriali.

Standard C-500E è il primo portatile che, oltre ad una buona autonomia può vantare il battery save programmabile con 9 tempi di campionamento diversi.

Standard C-500E possiede una logica

molto sofisticata, infatti, oltre ad avere ben 20 memorie è dotato di tutte quelle funzioni che hanno reso famosi i modelli C-120 e C-420 con, in più, lo Shift programmabile e registrabile sulle memorie, il doppio VFO, il controllo a manopola rotativa del tone squelch, della frequenza operativa, del passo di canalizzazione, dello shift e della selezione memorie.

Standard C-500E è il primo portatile con l'S-meter digitale a 15 effettivi livelli di indicazione.

Standard C-500E ha una sezione ricevente che non teme confronti. La sua sensibilità è di 0,16 μ V/12 dB SINAD, l'intermodulazione è di 65 dB e la prima LF, è di 55.05 MHz.

C-500E ha la sensibilità costante al variare della frequenza, ma in presenza di segnali molto forti, questa può essere ridotta di 20 dB con un attenuatore disinseribile. **Standard C-500E** ha una costruzione raffinata, ma robusta. I componenti sono selezionatissimi mentre la struttura metallica garantisce la massima protezione possibile.

Standard C-500E ha un'elevata potenza d'uscita. Alimentato dalla batterie ricaricabili CNB 111 fornisce 3,5W in VHF e 3W in UHF. Nel caso di trasmissioni a breve distanza la potenza è riducibile rispettivamente a 350 mW e 400 mW.

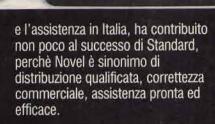
Standard C-500E ha la presa di alimentazione esterna che permette la connessione diretta a qualunque fonte di c.c. con valori da 5,5 a 16V quali batterie d'auto, moto ecc.

Con l'alimentazione esterna il C-500E eroga un potenza di ben 5W.

Standard C-500E ha una gamma di accessori in grado di soddisfare le necessità più diverse. Non solo DTMF, to-

<u> </u>	Chadling in hunta
Desidero avere maggiori informazioni riguardanti il ricetrasmettitore portatile Standard modello C-500E	Spedire in busta chiusa a: Novel S.r.l. Servizio Consulenza e Informazioni Via Cuneo, 3
NOME	20149 Milano
COGNOME	
INDIRIZZO N.	
CAP. CITTÀ PROV.	

E NOVEL


PIU' AVANTI

C-500E 144/430 MHz full duplex

ne squelch encoder/decoder, pacchi batterie e borse, ma anche piena compatibilità con tutti gli accessori della serie C-120 e C-420.

Standard C-500E ha le dimensioni molto contenute. Con i suoi 173x60x34 mm è di soli 10 mm più alto dei conosciutissimi C-120 e C-420.

Standard è tradizione di alta tecnologia e qualità. Infatti 20 anni fa nasceva il primo portatile 2 m: il famoso Standard C-145. Conosciuto da tutti con il soprannome di Ponghino, aveva caratteristiche d'avanguardia, per quei tempi, usciva con 1W di potenza e aveva ben 6 canali.

Fu un successo incredibile, ma

meritato, tant'è che ancora oggi molti radioamatori usano un Ponghino con piena soddisfazione.

Oggi più che mai gli apparati Standard sono tecnologicamente i più evoluti, ma beneficiano dell'affidabilità e della robustezza ormai tradizionali. L'organizzazione Novel che, da

L'organizzazione Novel che, da sempre, cura la distribuzione esclusiva

NOY.EL.

NOV.EL. S.r.I. Via Di Vittorio, 7 Pero (MI)

Vendita e Assistenza Tecnica: Via Cuneo, 3 - 20149 Milano - Tel. 02/433817-4981022 - Telex 314465 NEAC I - Telefax 02/3390265

3&V

"Recuperiamo" I'AN/ARN-6, RX surplus

• Gino Chelazzi •

Come Vi avevo promesso nel "commiato" a termine del pezzo sul ricetrasmettitore TBY, questa volta parleremo di un ricevitore, della stessa epoca, ma molto più diffuso, anche se lo ritengo ingiustamente trascurato specialmente adesso che potrebbe essere utilizzato con la "moda" della BCL.

RADIO COMPASS UNIT PHOTE PARN-6 AND MOUNTING MT-274(MARN-6 OR MT-273(MARN-6 () INDICATES ANY MODEL INDICATOR ID-921 MARN-6 figura 1

Moltissimi appassionati del surplus ne avranno un esemplare, più o meno "corredato" degli accessori, dimenticato in qualche angolo della soffitta o della cantina.

Esteticamente, si presenta come un grosso parallelepipedo nero (vedi figura 1), ma ha, pur sempre, la sua linea, con il relativo comando a distanza il quale può essere di svariati modelli, ma tutti utilizzanti la stessa componentistica e lo stesso principio. È vero che oggi vi è il problema dello spazio nelle case, e il ricevitore, che non è "minuscolo", si presenta come una grossa valigia; ma, dato che i vari comandi non sono direttamente sull'apparato, bensì sul remote control, si potrà benissimo sistemare il ricevitore in un angolo "nascosto" (anche all'interno di un armadio vicino!), agendo poi direttamente sul remote control, il quale contiene tutto, anche l'uscita audio.

Come ricevitore, in passato, è stato ingiustamente "bistrattato" sia perché a quei tempi era sconosciuta la BCL, sia perché per l'uso radiantistico erano preferiti ricevitori decametrici, dal BC312, o BC348, o il vecchio caro inglese R-107 (ricordi di gioventù!) o altri più "sofisticati" per quell'epoca, come il Super Pro, lo HRO, e altri. Infatti l'AN/ARN-6 ha una copertura di frequenza da 100 a 1750 kHz in sintonia continua e, proprio per questa copertura, non era, allora, molto utilizzato per i fini radiantistici. Una certa difficoltà era rappresen-

tata dalla mancanza degli accessori, del comando a distanza, dei flessibili del comando di sintonia e un po' dalla alimentazione che, una delle pochissime eccezioni negli apparati aereonautici, non è a 400 Hz di frequenza, come i confratelli AN/ARN-7 o BC453/C (leggermente più piccoli come dimensioni, ma identici come copertura e prestazioni). Quindi, l'ARN-6, in quei tempi "oscuri" era pressoché sconosciuto, anche se era reperibilissimo sul mercato surplus, e non preso molto in considerazione.

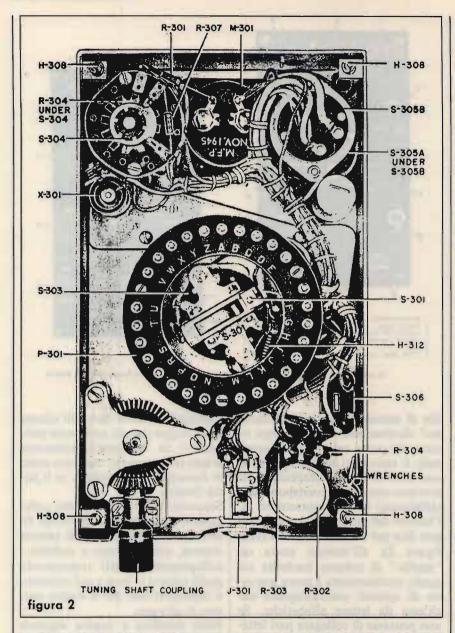
Originariamente era corredato di una antenna a loop (impiegata principalmente sugli aerei, con funzioni radiogoniometriche), del comando a distanza, di un altro comando, più piccolo, per il pilota e di due strumenti indicatori di rotazione (del loop) che venivano impiegati dal navigatore e dal pilota.

Ora, per l'uso radiantistico, non sono più necessari gli strumenti indicatori e il loop originale, in quanto, data la copertura di frequenza, è più che sufficiente o un'antenna "filare" o uno stilo tipo "carro armato" di circa 6 metri. E per questi tipi di antenna, specialmente quella a stilo, è previsto originariamente sul frontale del ricevitore (non sul remote control) un bocchettone SO-239 per lo scopo. Il problema dell'antenna sarebbe, così, risolto, ma quello più grosso è rappresentato spesso dalla mancanza del mounting originale che, sino ad oggi, ha rappresentato un vero handicap per la messa in funzione del ricevitore. "Va là - mi direte - un mounting! Un telaio metallico, con quattro piedini basculanti, sul quale poggia l'apparato!".

È vero, amici, però questo accade nella stragrande maggioranza degli apparati: ma nell'ARN-6 è di tipo particolare, perché, all'interno, e per accedervi, occorreva togliere una piastra metallica, vi era tutta una serie di morsettiere cablate tra loro, le quali avevano la funzione di "smistare" i vari collegamenti degli strumenti indicatori, dei remote controls (che potevano essere impiegati simultaneamente in coppia) e della alimentazione. Mancando il mounting, occorre, per l'uso, collegare direttamente il ricevitore al remote control e all'alimentazione. Una cosa non facile in quanto, posteriormente, nel ricevitore vi è una

fila di spinotti i quali si "infilavano" direttamente in un analogo ricettacolo posto sul mounting originale. E sono tutti contrassegnati da una serie di lettere alfabetiche che avevano una eguale corrispondenza (alfabetica) in una morsettiera all'interno del mounting. Lo stesso si può dire per il remote control (vedi figura 2); all'interno porta un "anello" di robusta bachelite sul quale, circolarmente è posta una serie di spinotti contrassegnata anch'essa da lettere alfabetiche. Se uno pensasse di collegare pari lettere tra remote control o alimentazione con il ricevitore, farebbe la cosa più errata di questo mondo, perché non sono affatto corrispondenti. Infatti, la alfabetizzazione posteriore del ricevitore arrivava all'interno del mounting a una morsettiera. Da qui cambiava, cioè da un ordine alfabetico, diveniva numerico e, tramite collegamenti di smistamento interni, ritornava alfabetico, però con un ordine di lettere completamente cambiato rispetto all'uscita posteriore del ricevitore.

C-149A/ARN-6, Front View


Per cui, dovendo "saltare" il mounting, per la cronica mancanza dello stesso, figlioli mi sono messo a studiare il manuale e tutti gli schemi a corredo per più di una settimana, riuscendo a trovare "l'ago nel pagliaio", come si dice. Gli schemi sono troppo grandi: non posso pubblicarli! Se vi servono, scrivetemi presso la Redazione, e al puro costo di fotocopia e francobolli, ve li potrò fornire.

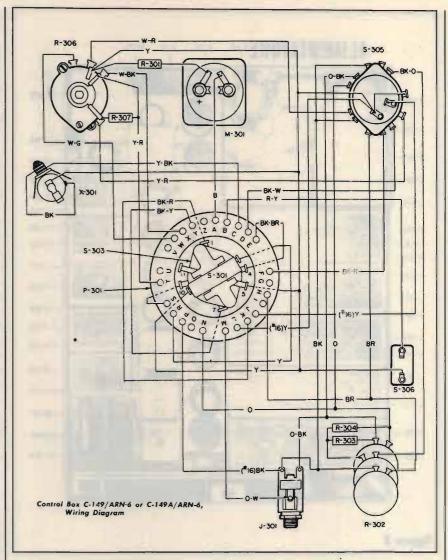
Front of Control Panel C-403A/A

Seguendo tutti i percorsi dei collegamenti, partendo dal retro del ricevitore e dall'interno del remote control, sono arrivato a stabilire i collegamenti diretti tralasciando quelli relativi al loop e agli strumenti indicatori che, per il nostro uso, non ci servono.

Nella tabellina a pagina seguente potete vedere, nelle rispettive colonne, i vari terminali.

A sinistra quelli riportati sul retro del ricevitore, e a destra quelli del remote control (nel mio caso ho impiegato un modello C-149, ma altri modelli di remote controls vanno bene, in quanto è identica, come funzioni, la letteratura riportata nella colonna). Quindi, dobbiamo considerare solo le lettere, in quanto i numeri, a destra e la "numerazione intermedia" erano quelle riportate sul mounting e che ho trascritto solamente a titolo di cronaca. Ovviamente, un cavo multiplo con una quantità di conduttori del genere non è facile da reperire, quindi ho preferito fare un cablaggio, impiegando tanti fili quanti ne

Morsettiera ricevitore		Numerazione intermedia	Numerazione su C-14:	
(A)	29	negativo rete	P	
(B)	38	13	W	
(C)	39	14	X	
(D)	22	va ad indicatore		
(E)	21	27	Т	
(E) (F)	20	2 va ad indicatore		
(G)	49	10	L	
(H)	23	5	E	
	24	6	K	
(J) (K)	25	7	S	
(L)	26	8	Y	
(M)	35	12	D	
(P)	32	diretto	N	
(R)	34	11	F	
(S)	41	15	В	
(Ú)	44	18	Н	
(W)	42	16	A	
(X)	2	va al loop		
(Z)	3C	36	R	
$V_{DC} + 26,5$	30 3		J	
DC	4	17	M	


nando tutto, dopo, in un tubo flessibile isolante e termorestringente, di colore nero, ovviamente. In questo cablaggio sono contenuti anche i due fili della alimentazione che, a scanso di errori, ho messo di sezione più grossa rispetto agli altri. Detto questo, vorrei fare adesso un discorsetto sulla alimentazione. L'alimentatore originale che contiene, tra l'altro, anche il vibratore a 26,5 V_{cc} è alloggiato in uno scompartimento, visibile nella figura 3, amovibile, in fondo a sinistra, togliendo il coperchio superiore di chiusura dell'apparato. Ed è facilmente riconoscibile perché vi sono, oltre al vibratore, anche il trasformatore di alimentazione, due valvole stabilizzatrici tipo 2050, più altra componentistica, come condensatori, filtri, ecc. Si era pensato, in un primo momento, di utilizzare i 115 V in alternata direttamente sul primario del trasformatore; oppure di sostituire lo stesso collocando al suo posto uno identico, ma con primario a 220 V_{ca}. L'idea potrebbe essere stata eccellente, in teoria, in quanto mettevamo "fuori uso" il vibratore; però, sono venuti fuori alcuni problemi i quali, nella prima congettura, erano passati inosservati o quasi. Dall'ingresso della morsettiera del ricevitore sino al vibratore, per quanto concerne i 26,5 V vi sono delle derivazioni le quali servono a far funzionare gli elettromagneti e gli elettrocommutatori presenti nell'apparato, assieme ad alcuni relè; quindi, non sarebbe stato possibile introdurre il 220 V_{ca} direttamente, sotto pena di... arrosti! L'unico sistema sarebbe stato quello di sostituire il trasformatore di alimentazione originale con uno a primario 220 V_{ca}, avendo però cura di far eseguire, nel secondario, un avvolgimento supplettivo con 20 V_{ca} in uscita in modo che, raddrizzando e filtrando e ...x 1,41, si sarebbe ottenuta circa la tensione (e le correnti necessarie) per il movimento di questi meccanismi. Praticamente, avremmo staccato lungo tutto il percorso della linea di alimentazione questi servomeccanismi e li avremmo collegati, in un secondo tempo, al nuovo secondario del trasformatore. Certo, si sarebbe trattato di un'operazione non mol-

occorrevano e per finezza, inguai-

to facile, ma non ci sarebbe stato altro modo. Io, però, per evitare di modificare l'apparecchio in questo senso e disponendo di due vibratori (uno in uno e uno di ricambio), ho preferito fare l'alimentazione "alla originale".

Quindi, ho inviato dentro circa 24 V (se poi la tensione in arrivo era con qualche volt in più, non guastava niente, andava bene lo stesso). Una volta collegato il cavo autocostruito (della lunghezza che avrete ritenuto necessaria), vi è un altro problema che, però, è risolvibile: il flessibile per il comando del variabile di sintonia. Spessissimo, gli ARN-6 ne erano mancanti, e questi "cavi meccanici" sono oggi introvabili. Per cui, pensa che ti pensa, è stata trovata la soluzione che non è strettamente legata al surplus, ma che, in questo caso (noblesse oblige!), ne è un valido supporto. Si tratta di acquistare quei comandi flessibili usati nei contachilometri delle auto, e inserirlo tra ricevitore e remote control, dopo avere sostituito ovviamente le cremaglierine che, originariamente, servivano per il flessibile "della casa". In questo modo, potrete avere una trasmissione anche lunga, in quanto le "mosche bianche" originali di quel genere che si sono trovate raramente in commercio, erano spezzoni dai 30 ai 60 cm di lunghezza; quindi, troppo corti per poter manovrare, con una certa comodità, sul remote control. Il flessibile del contachilometri da auto, essendo molto più lungo, è senz'altro migliore.

Bene, siamo arrivati ad avere già pronto il cavo di collegamento, i due terminali (negativo a massa) della alimentazione, e il comando di sintonia pronto. Non resta, adesso, che applicare l'antenna e, come ho detto all'inizio, dato che l'apparato deve servire per scopi radiantistici, sarà sufficiente una filare, o una verticale da "carro armato" di circa sei metri. Al limite, per le prove, potete anche usare il classico spezzone di filo elettrico della lunghezza di un paio di metri. Ad ogni buon conto, dato che la presa dell'antenna è un SO239, quindi, un centrale e una massa, o usate un cavo coassiale a bassissima impedenza (la calza sarà la massa, ovviamente) e lo potete usare, nel caso della filare,

solamente per la discesa, non per la linea. Per l'antenna a stilo non ci sono problemi, in quanto essa, generalmente, è già provvista di una presa similare, alla base.

- Quindi:
 1) collegato il ricevitore al remote control,
- 2) collegata l'alimentazione,
- 3) collegata l'antenna,

non resta che procedere al "varo". Se avrete fatto bene tutti i collegamenti, mettete l'altoparlante (un LS-3 va benissimo) e il jack lo troverete (come nel caso del remote control C-149) nella parte inferiore. Lì c'è il jack dove infilerete l'altoparlante.

Adesso, tutti trepidanti ed emozionati, sarete sul punto cruciale, in quanto si tratta di dare tensione. Fatevi il classico segno di scaramanzia, e procedete. Il primo segno di vita verrà dal vibratore, che inizierà

sommessamente a ronzare (attenuando seguentemente il ronzio; quindi si accenderà la lampadina di illuminazione della scala di sintonia del remote control. Il cuore vi batte in gola, ma andate avanti. Accertata questa funzionalità, inserite l'altoparlante sotto al remote control. Sentirete il fruscio di fondo in audio: è fatta! Potrete tranquillamente cominciare a cercare le stazioni, agendo sulla manovellina che comanda la sintonia sul remote control. Una volta giunto a fondo scala, cambiate gamma (c'è il commutatore al centro del quadrante). Sentirete, nel ricevitore, uno "STAC!", niente paura è l'elettromagnete che comanda i blocchi fissi dei gruppi RF che è scattato, e sarete su un altro settore di sintonia, sul quale potrete nuovamente effettuare la perlustrazione della gamma. Ricordate, però, che non esiste un

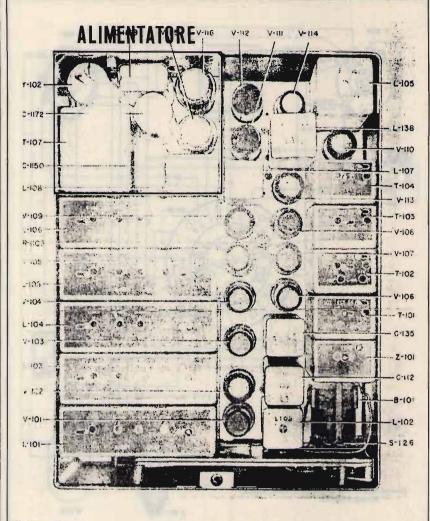


figura 3

interruttore di accensione, quindi, ogni volta che darete tensione all'apparato, questo entrerà subito in funzione sino a che terrete l'alimentazione attaccata. Sul remote control avrete anche l'interruttore per l'inserimento eventuale del BFO, nel caso di CW inintellegibile. Lo strumentino a fondo nero in alto al centro, che è sinistrorso, contrariamente a quasi tutti gli strumenti da pannello, sarà il vostro Smeter, e già solamente prima di incappare in una portante, dovrete vederlo "fremere" ad eventuali disturbi elettrici sul fruscio di fondo.

Tutto quanto ho detto è provato personalmente e vale ovviamente per ricevitori integri, cioè non sabotati o modificati, e quello sul quale ho fatto i collegamenti era nuovissimo internamente. Comunque, gente, non disperate; schema alla mano, ricontrollate le parti interne, se tutto è a posto. E se, eventualmente, aveste bisogno di qualche dettaglio, o vi mancassero i remote controls, scrivetemi due righe in merito in Redazione, d'accordo? Magari (e vi sarei grato), unitemi un francorisposta, del quale vi ringrazio.

Una cosa, adesso, sulla quale vorrei soffermare la vostra attenzione, è rappresentata da un microswitch posto sul commutatore di cambio gamma (potrete provarlo ad apparato spento per trovarlo). Questo componente non deve essere mai usato. Ciò perché originariamente progettato per altri scopi, può causare un corto interno (che si rivelerebbe nel far saltare continuamente un fusibile da 5 A!). Vi consiglio, quindi, di bloccare questo microswitch applicando una goccia di Attack o di Loctite (cianoacrilici) sullo stesso, in modo da inchiodarlo sulla manopola del commutatore di

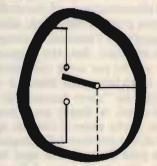
gamma.

Importante: per questo lavoro, non avete da spendere, forse solamente per il flessibile del tachimetro, perché avendo tutti i componenti originali, si tratta solamente di avere tra le mani un po' di filo di vari colori. di tipo flessibile, cioè non rigido, per costituire il cavo di interconnessione, non c'è bisogno di altro. Se non avete l'altoparlante LS-3, potete impiegare un qualsiasi altoparlante il quale abbia, però, un trasformatore di uscita con un valore, verso il ricevitore, di 600 Ω circa e. ovviamente, dall'altra parte, quelli richiesti dall'altoparlante.

Buon lavoro, ragazzi, e sappiatemi dire qualcosa, d'accordo? Attendo anche le eventuali critiche. Ma avrete, almeno, rimesso in vita un ricevitore che potrà essere validamente utilizzato per la BCL e poi, volete anche mettere la soddisfazione di un lavoro riuscito, fatto con le vostre mani?

Auguri, ragazzi, auguri!

Bibliografia


TM 11-5125 = Radio Compass AN/ARN-6 (September 1956).

CO

ERRATA CORRIGE

Articolo: 70 cm facili! (Caradonna, CQ 12/87)

Pagina 64: figura 1: i due diodi in basso a sinistra sono, ovviamente, due 1N4148, e non 4948. La commutazione del relé 2 è come da schizzo:

Pagina 68: figura 5: la resistenza del partitore di base del 2N709 non è da 5,6 Ω ma da 5,6 $k\Omega$. La presa su L_3 è alla seconda spira dal lato massa.

Lafayette Dakota

40 canali in AM

Quando il microfono sostituisce la plancia di comando

OMOLOGATO

Supermoderno CB di tecnologia avanzata, questo apparato riunisce tutte le funzioni sul microfono, permettendo così una guida più sicura. Infatti sul microfono troviamo i seguenti comandi: display digitali per visionare il canale, modo di stato RX-TX, indicatore di segnale RF a LED, commutatore segnale vicino/distante, commutatore istantaneo sul CH 9 emergenza, pulsanti UP/DOWN che permettono il cambio canale automaticamente, interruttore volume, squelch e microfono/altoparlante.

Il microfono con tutti questi comandi viene applicato all'apparato vero e proprio, che potrà essere installato anche in un punto nascosto della vettura. Questa parte fissa dell'apparato ha diverse uscite per diverse applicazioni: altoparlante esterno, o altoparlante autoradio, antenna elettrica,

CARATTERISTICHE TECNICHE RICEVITORE

Circuito: Ricevitore supereterodina a doppia conversione, con filtro ceramico sullo stadio RF a 455 KHz.

Gamma di frequenza: 40 CH da 26,965 a 27,405 MHz.

Sensibilità: 1,0 μV a 10 dB S/N. Selettività: Superiore a 60 dB. Silenziatore: 0-100 μV.

TRASMETTITORE

Potenza RF: 5W. Tipo di emessione: 6A3 (AM). Spurie: Superiore a 60 dB. Mudulazione: AM 90%.

GENERALI

Uscita audio: 4W.

Impedenza altoparlante: 4/8 ohm.

Transistor: 26. Integrati: 6.

Alimentazione: 12 Vcc (negativo a

massa).
Dimensioni:

158 x 50 x 107 mm.

In vendita da CI Marcuccio dell'elettronica dell'elettron

Lafayette marcucci &

Modifiche e migliorie all'ICOM IC-R71 La "PLAM Option"

• Fabrizio Magrone •

Un uso particolarmente avanzato di un ricevitore nel campo dell'ascolto Broadcasting, specie nel DX in onde medie e bande tropicali, consiste nell'ECSS (Exalted Carrier Selectable Sideband). In parole povere, al di là della sigla un po' astrusa, si tratta di sintonizzare in SSB una stazione che trasmette in AM.

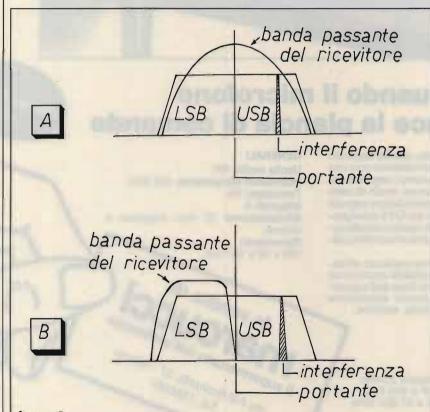


figura 1 Sintonizzandovi in AM, sarete disturbati dall'interferenza; con una selettività più stretta potrete forse eliminare il disturbo, ma l'audio peggiorerà.

În ECSS potete eliminare il disturbo scegliendo la banda laterale non interferita; nonostante la banda passante anche stretta, l'audio rimane brillante. L'argomento è già stato trattato con molta chiarezza in un ottimo articolo di Giampaolo Galassi (CQ 2/86), cui vi rinvio per maggiori ragguagli su questa tecnica di ascolto.

Basti ricordare i vantaggi offerti dalla sintonia in ECSS:

- 1) possibilità di scegliere la banda laterale meno interferita;
- 2) sfruttamento ottimale di selettività strette, pur mantenendo un audio non eccessivamente cupo;
- 3) eliminazione o forte riduzione della distorsione audio dovuta all'evanescenza del segnale AM.

In figura 1 potete osservare una schematica spiegazione dei punti 1 e 2. La distorsione è dovuta all'evanescenza selettiva della portante rispetto alle bande laterali che portano l'informazione audio (selective fading): in ECSS la portante la fornite voi, tramite il BFO dell'apparecchio, eliminandone perciò l'evanescenza e i problemi ad essa correlati.

A fronte di questi indubbi vantaggi, l'ECSS risulta però di uso non perfettamente agevole, richiedendo un costante controllo della sintonia. Difatti, questa tecnica richiede che la portante prodotta dal BFO risulti perfettamente sovrapposta alla portante AM; una differenza di decine o centinaia di herz produrrà il ben noto fischiaccio dovuto al battimento delle portanti, mentre una differenza di qualche hertz, o comunque pochissime decine di hertz,

produrrà un fischio troppo cupo per poter essere udito, ma causerà una distorsione dell'audio tale da renderlo scarsamente o per niente intelligibile. Quindi, per un ascolto ottimale, la differenza tra le portanti dovrà essere nulla, o limitata a pochissimi hertz.

Ciò richiede una sintonia accuratissima e una costante correzione della sia pur piccola deriva di frequenza del ricevitore, la cui entità è funzione della stabilità dell'apparecchio; pertanto, un apparato di ottima qualità, particolarmente stabile, sarà il più adatto all'uso in ECSS: il '71 è tra questi.

Però, anche un mostro come il '71 presenta una deriva di frequenza, piccola ma pur sempre non trascurabile in ECSS; inoltre, punto di particolare importanza, il circuito PLL del '71 ha un passo minimo di sintonia pari a 10 Hz, cioè non è possibile sintonizzare qualsiasi se-

gnale con accuratezza maggiore di 10 Hz: ciò limita ineluttabilmente la precisione con cui potete regolare la sintonia in ECSS, indipendentemente dalla vostra abilità.

Queste considerazioni valgono per qualsiasi ricevitore con circuito PLL: esiste sempre un incremento minimo di sintonia al di sotto del quale non è possibile scendere, a meno che non esista un apposito controllo che consenta un'ulteriore regolazione finissima; ad ogni modo, dovrete effettuare manualmente, con la massima accuratezza, sia la sintonia sia le correzioni necessarie.

L'ultimo grido nella tecnologia dei ricevitori disponibili sul mercato è, però, proprio l'ECSS automatica: al momento in cui scrivo, l'unico apparecchio che ne è dotato è il Sony ICF-2001D, un portatile. Questa prerogativa viene definita "Synchronous Detector Circuit", ma

potremmo chiamarla anche ECSS "sincronizzata": grazie a un apposito comando, il ricevitore passa sulla banda laterale prescelta e si sincronizza automaticamente sulla portante AM, mantenendosi agganciato senza bisogno di intervento manuale da parte dell'ascoltatore. Come fare allora per mantenere il '71 al passo con i tempi? Semplice: gli aggiungiamo la "PLAM option".

PLAM OPTION

Si tratta di un circuito, prodotto dalla Ditta svedese ESKAB su progetto della danese EDVIS, da inserire all'interno del '71, per rendere possibile l'ECSS automatica su qualsiasi frequenza; è pertanto del massimo interesse per chi si interessa di ascolto e di DX in campo Broadcasting. Sottolineo invece che non serve per l'ascolto di segnali in SSB/CW/RTTY/FM/FAX.

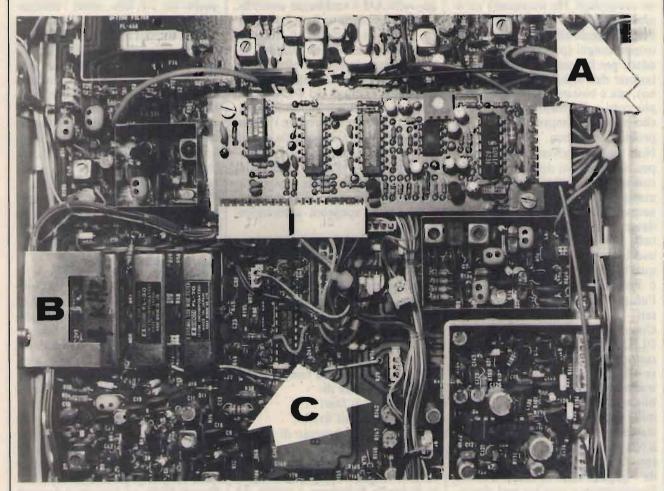


foto 1 Visione parziale del Main Board. In ''A'' la PLAM option installata, con i suoi tre connettori. In ''B'' il filtro opzionale da 4 kHz. In ''C'' si nota la zona dove è necessario intervenire per le modifiche di selettività.

Realizzato su vetronite, già pronto per l'installazione, va inserito sul main board nello spazio destinato all'unità opzionale FM (foto 1); quest'ultima può comunque essere installata, poiché lo spazio è sufficiente per entrambi i circuiti.

Il montaggio richiede la saldatura di 17 fili in vari punti del '71, più alcune altre operazioni, e viene spiegato passo per passo, con estrema chiarezza, in un manuale di istruzioni (in inglese) che viene inviato insieme al circuito. Personalmente ho impiegato circa tre ore per l'installazione, ed è andato tutto bene al primo colpo.

Certo, non mi sento di consigliare la modifica a chi non ha mai tenuto in mano un saldatore, ma per chi ha un minimo di esperienza ed è in grado di seguire le istruzioni (ripeto: sono chiarissime, corredate di schemi e disegni esemplificativi, però sono in inglese) non ci sono problemi particolari. Ho incontrato un'unica difficoltà: i bulloncini allegati per il fissaggio alla Main Unit erano troppo lunghi (probabilmente sono adatti per la contemporanea installazione dell'unità FM, che io non ho), ma è bastato pescarne un paio più corti nella scatola delle "coseche-possono-sempre-servire": un problema da poco.

Non sto a descrivere il montaggio, perché altrimenti dovrei scrivere un romanzo e non un articolo: vi rimando alle istruzioni. Gli attrezzi necessari sono un cacciavite, un saldatore e un tronchesino; per la taratura possono essere utilizzati un oscilloscopio, un tester, oppure quel raffinatissimo apparecchio che è l'orecchio umano: io ho usato l'ultimo sistema, con ottimi risul-

Come comando per l'accensione del PLAM viene utilizzata una metà del tasto N/W (Narrow/Wide) del Noise Blanker, posto sul frontale: si tratta dell'unico pulsante raggiungibile senza dover smontare il '71 in mille pezzi. La conseguenza di questa scelta è che, in SSB/CW/RTTY, il NB può essere usato solo in "Narrow", ed esclusivamente in "Wide" quando siate in modo PLAM. Personalmente non ho mai riscontrato la benché minima differenza tra queste due posizioni del NB, quindi la perdita di una sezione di I vertito in una corrente di determi-

interruttore è assolutamente priva di conseguenze negative.

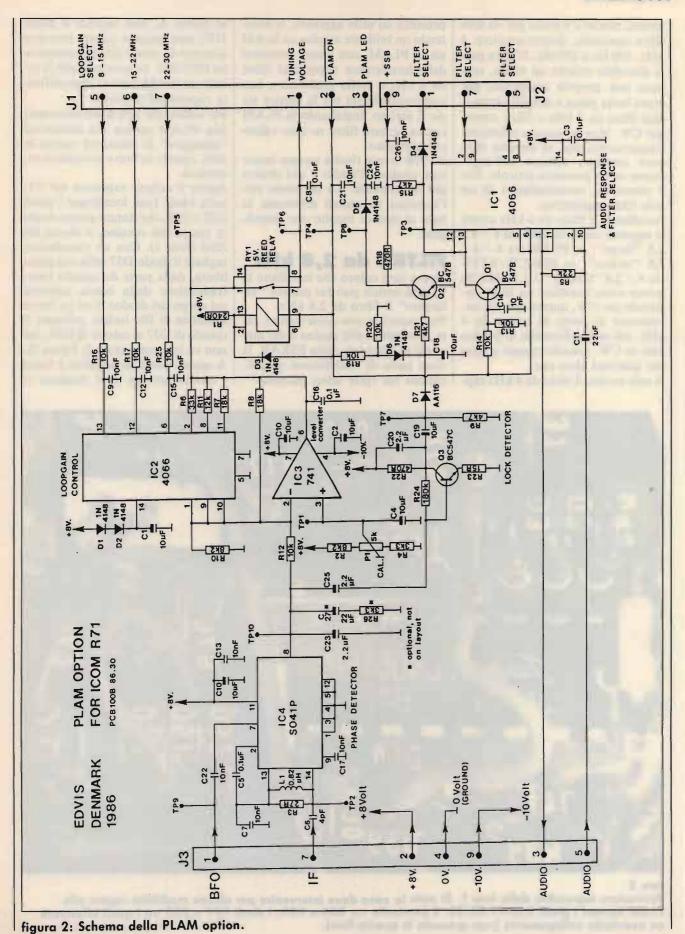
Come indicatore luminoso di inserzione del PLAM viene utilizzato il led "Function"; il comando Function rimane peraltro normalmente funzionante.

Modo d'uso: cercate una stazione in AM; passate in USB o LSB; inserite il PLAM premendo il tasto "NB N/W": si accenderà il led "Function". Ora sintonizzate la stazione in modo che il fischio di battimento diventi sempre più cupo, fino a sparire. Quando sarete quasi sulla frequenza esatta, il led si spegnerà, per tornare ad accendersi non appena la portante sarà stata agganciata. D'ora in avanti penserà il PLAM a mantenersi sincronizzato, mentre voi avrete una ricezione perfetta, con un audio che neppure ye lo immaginate: personalmente, mi sono abituato ad ascoltare quasi sempre in PLAM, perché il vantaggio sulla AM è veramente sensibile. La sincronizzazione è molto efficace, anche in presenza di notevole evanescenza, e avviene anche su segnali estremamente deboli: l'ideale quindi in fase di DX, dove l'audio risultante dall'uso del PLAM può consentire quel briciolo di intelligibilità in più che vi permette l'identificazione. Nell'ascolto delle grandi BC internazionali, poi, non esistono problemi e l'audio consentirà una ricezione piacevole e rilassata. Passando all'ascolto in AM o FM, il PLAM si spegnerà automaticamente.

Veniamo al funzionamento. Rinvio i più esperti allo schema del circuito, riportato in figura 2; in questa sede mi limiterò a citare solo il principio del funzionamento, in modo schematico.

Innanzitutto, PLAM significa "Phase Locked AM", ovvero "AM ad aggancio di fase".

- Il circuito consta di:
- 1) rivelatore di fase;
- 2) convertitore di livello;
- 3) rivelatore di aggancio di fase;
- 4) selettore dei filtri.


Nell'integrato S041P, il rivelatore di fase, vengono comparati il segnale di media frequenza e quello del BFO; il risultato, vale a dire la differenza tra i due segnali, viene connato voltaggio $(1,5 \div 3,5 \text{ V})$ che va ad agire sul circuito di sintonia del ricevitore. Uno scostamento di frequenza dei due segnali comparati produce pertanto una correzione di sintonia tale da riportarli in fase. Viene quindi mantenuto un aggancio perfetto, entro scostamenti che non superino i 70 Hz circa; la sincronizzazione avviene al singolo hertz, superando il limite intrinseco di 10 Hz del '71 ed eliminando perciò qualsiasi distorsione, garantendo un audio perfetto e costante nel tempo.

Il circuito PLAM modifica anche la selettività del '71: infatti, mentre in SSB/CW/RTTY il ricevitore continua a operare con selettività di 2,8 ÷ 2,3 kHz, più quella dell'eventuale filtro opzionale (250 o 500 Hz; ma vedi oltre), in PLAM la scelta è tra 6 ÷ 2,8 kHz (più filtro opzionale). In AM i filtri restano 6 ÷ 2,8 kHz (più filtro opzionale), però quello da 2,8 kHz viene "allargato" facendolo seguire, nella sezione a 455 kHz, dal filtro da 6 kHz invece che da quello da 2,8 kHz: ciò rende l'audio più brillante in AM stretta, ma nel contempo diminuisce la reiezione delle interferenze. Da notare che la modifica di selettività in AM è definitiva, nel senso che resta attiva sia che il PLAM sia inserito o disinserito. La logica è che così avete più scelta: AM larga, AM "stretta ma non troppo" PLAM larga, PLAM stretta (più stretta della AM stretta: mi si scusi l'involontario gioco di parole). Torneremo più oltre sull'argomento.

FILTRO da 4 kHz

La ESKAB offre anche la possibilità di acquistare, insieme alla PLAM option (ma anche indipendentemente: ne prenda nota chi, non interessato alla PLAM, desideri comunque un filtro di selettività intermedia tra quelli in dotazione), un filtro opzionale della larghezza di 4 kHz.

I valori esatti, riscontrati da Don Moman della canadese "Shortwave Horizons", sono 4,2 kHz a -6 dB e 5,2 kHz a -60 dB, con un eccellente fattore di forma pari a 1,24. Questo filtro va inserito nel posto riservato al filtro opzionale (foto 1). Il montaggio è semplicissimo e non richiede saldature. Natural-

mente, poiché c'è posto per un solo filtro opzionale, dovete scegliere: 4 kHz, 500 Hz o 250 Hz. D'altra parte dovrebbe esistere un modo, seppure non proprio ortodosso, per avere botte piena e moglie ubriaca, cioè filtro da 4 kHz e filtro stretto per CW. Non ho ancora effettuato l'esperimento ma, se dovesse dare esito positivo, tornerò sull'argomento in un prossimo articolo. Per il momento, accontentatevi di un solo filtro aggiuntivo.

Installando il filtro da 4 kHz avrete le seguenti scelte: in AM tra 6 / 4 / 2,8 "largo"; in PLAM tra 6 / 4 / 2,8 "stretto"; in SSB/CW/RTTY tra 4 / 2,8 "stretto"; in SSB/CW/RTTY tra 4 / 2,8 "stretto" / 2,3 kHz. Se invece avete installato un filtro opzionale per CW, questo opererà ovviamente al posto di quello da 4 kHz, ma sarà utilizzabile in pratica solo in CW, essendo troppo stretto per qualsiasi altro uso.

A mio avviso, il filtro da 4 kHz rap-

presenta un'utile aggiunta, consentendo un brillante ascolto sia in AM sia in PLAM, con buona reiezione delle interferenze rispetto al filtro da 6 kHz e audio gradevole e ben comprensibile sia per la musica sia per il parlato. Installando la PLAM option, questo filtro ne è un valido complemento.

In SSB invece risulta troppo largo: non migliora l'audio e tira dentro più interferenze. La decisione sull'acquisto va quindi effettuata in base al tipo di ascolto che prediligete.

FILTRO da 2,8 kHz

Non a tutti coloro che installano la PLAM option può far piacere "allargare" il filtro da 2,8 kHz. Per lasciare le cose come stanno, fate riferimento alla pagina 6 del manuale di istruzioni della ESKAB, là dove parla di "Additional modifi-

cations for filter select purposes":

al punto A, non tagliate il diodo D37; non eseguite quanto descritto al punto C, vale a dire la connessione D37-D39. In questo modo la selettività in AM rimarrà immodificata rispetto all'originale.

Per coloro che non siano interessati alla PLAM option ma desiderino "allargare" la selettività stretta in AM, riporto la breve procedura necessaria.

Aprite il cofano superiore del '71; sulla Main Unit localizzate i diodi D37 e D39, che stanno grosso modo al centro del circuito, a destra dei filtri (foto 1). Con un tronchesino tagliate il diodo D37 nella sua parte libera, dalla parte del catodo (contraddistinto dalla banda colorata sul corpo del diodo). Con un breve spezzone di filo isolato collegate il catodo di D37 al catodo di D39, che non va interrotto (foto 2; figura 3). A questo punto la modifica è finita e potete provare se il risultato vi

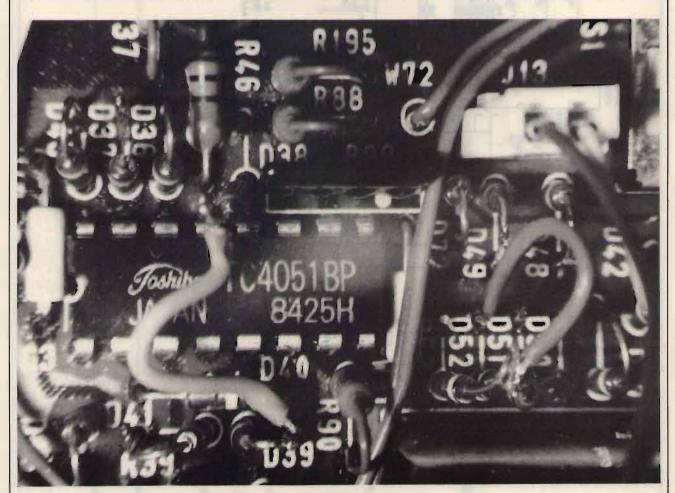


foto 2
Particolare ingrandito della foto 1. Si nota la zona dove intervenire per alcune modifiche legate alla
PLAM option: i diodi D50-51-52-53, il ponticello tra D38 e D39, i diodi D37 e D39 tra i quali effettuare
un eventuale collegamento (non presente in questa foto).

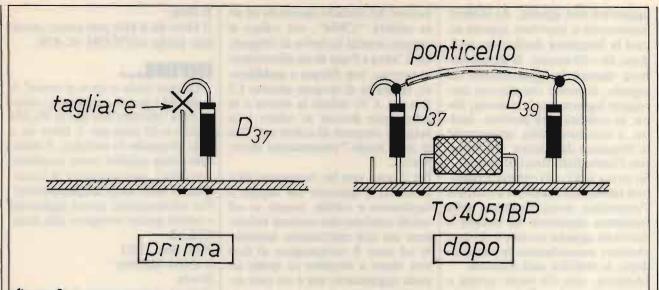


figura 3 Le operazioni necessarie per ''allargare'' il filtro da 2,8 kHz in AM: tagliare il diodo D37 e collegarne il catodo col catodo di D39, con un ponticello che scavalca l'integrato interposto tra i due componenti.

soddisfa; in caso negativo potete ripristinare le condizioni originali togliendo il ponticello di filo e risaldando il diodo D37.

MODIFICARE LA MODIFICA

Il PLAM va molto bene, l'audio è ottimo, i risultati sul piano dell'ascolto non si fanno attendere, ma... eh, sì, per un DXer c'è ancora qualcosa che manca.

Abbiamo visto che, in modo PLAM, le selettività disponibili sono, col filtro ESKAB installato, 6 / 4 / 2,8 kHz.

D'altronde il filtro da 6 kHz, in PLAM, è fin troppo largo e non eccessivamente utile, specie in presenza di disturbi; il filtro da 4 kHz fornisce un audio ottimo, praticamente uguale a quello ottenibile coi 6 kHz, ma offre una reiezione delle interferenze nettamente superiore, anche perché il suo fattore di forma è molto migliore di quello del filtro da 6 kHz. Per farla breve, per un ostacolo generico è molto più efficiente il filtro da 4 kHz.

Il filtro da 2,8 kHz è stretto, ma offre sempre un buon audio: risulta molto più pratico per l'ascolto in presenza di disturbi non tremendi e per un DX "rilassato".

Manca però la possibilità di usare una selettività ancor più stretta, vale a dire il filtro da 2,3 kHz: questo è disponibile in SSB, ma non possiamo usufruire dei vantaggi del modo PLAM. Questo filtro è peraltro di enorme utilità al momento del DX più impegnativo, in bande particolarmente congestionate: penso in particolare alle bande tropicali e alle onde medie, e rileggendo gli articoli di Giuseppe Zella potrete meglio capire cosa intendo. Sarebbe ideale poter ottenere, con una selettività così spinta, i vantaggi audio del PLAM.

Una studiata ai vari schemi, ed ecco risolto il problema: si sacrificano senza alcun rimpianto i 6 kHz e si ottengono le seguenti possibilità in modo PLAM: 4 / 2,8 / 2,3 kHz. Premetto che, a 2,3 kHz, l'aggancio di fase del PLAM diventa un po' critico, specie se i segnali sono estremamente deboli: a volte si può anche avere lo sganciamento a causa dell'evanescenza. D'altra parte, questa selettività si usa in pieno DX e va da sé che il DXer sta ai comandi del proprio ricevitore, pronto a correggere la sintonia in ogni momento, per ottenere sempre il massimo anche nell'ascolto dei segnali più flebili. Se il DX più impegnativo non vi interessa, questa modifica non fa per voi.

Fate riferimento alle pagine 5 e 6 del manuale ESKAB, là dove parla di "Installation of the wires from plug J2", "Connection procedure":

"Grey wire, pin 1": non collegate il filo grigio al diodo D49;

"Orange wire, pin 5": non collegate il filo arancione al diodo D49; "Red wire, pin 7": non tagliate i diodi D50-51-52-53 e non collegatene i catodi; se avevate già effettuato questo passaggio, potete ripristinare le condizioni originali collegando i quattro catodi saldati assieme con uno qualsiasi dei quattro terminali tagliati, in quanto questi ultimi sono tutti collegati tra loro. Non collegate il filo rosso ai quattro catodi. "Black wire, pin 9": eseguite quanto descritto nel manuale, vale a dire il collegamento con W29, altrimenti la PLAM option non funzionerà. A questo punto avrete tre fili, dei quattro provenienti dal connettore J2 della PLAM option, che non sono collegati da nessuna parte; isolatene le estremità con un po' di nastro per evitare il rischio di un corto circuito e lasciateli dove stanno: non servono più.

In questo modo avrete le stesse selettività sia in PLAM sia in SSB: 4 / 2,8 / 2,3 kHz.

LE MAGAGNE del PLAM

Sinceramente, il PLAM va benissimo. L'unico problema è che i margini di aggancio, 70 Hz, sono ben adeguati ma di poco insufficienti a compensare la seppur lieve deriva termica del '71.

Mi spiego: se tarate la PLAM option a ricevitore freddo, questa si

aggancerà non appena, da tastiera, imposterete a ricevitore appena acceso la frequenza desiderata; però, dopo 20 ÷ 30 minuti, la deriva termica causerà lo sganciamento del segnale, di modo che dovrete correggere leggermente la sintonia; dopo, la stabilità sarà perfetta. Inoltre, a ricevitore caldo, impostando la frequenza da tastiera, non otterrete l'immediata sincronizzazione. Se tarate la PLAM option a ricevitore caldo, non riuscirete a ottenere l'immediata sincronizzazione della frequenza impostata da tastiera a ricevitore appena acceso, e dovrete ritoccare manualmente la sintonia: dopo, la stabilità sarà assoluta. Insomma, non c'è verso: prima o

la faccenda diventa fastidiosa. Le soluzioni sono due, alternative o contemporanee. La prima è l'instal-

poi una ritoccatina di sintonia gliela

dovete dare. Non è un grosso pro-

blema, ma se volete effettuare registrazioni automatiche con un timer lazione del cristallo opzionale ad alta sabilità "CR64", che riduce ai minimi termini la deriva di frequenza. L'altra è l'uso di un alimentatore esterno, ben filtrato e stabilizzato, in grado di erogare almeno 1,5 A a 13, 8 V: infatti la deriva è in gran parte dovuta al calore e la maggior sorgente di calore nel '71 è di gran lunga l'alimentatore incorporato.

Per il resto non ho riscontrato altri problemi; l'aggancio sui segnali è facilissimo e stabile, tranne se sul canale operano due stazioni vicinissime ma non esattamente isoonda: in tal caso il comparatore di fase non riesce a decidere su quale segnale agganciarsi; ma è un caso assai infrequente.

E CHI NON HA il '71?

Circuiti PLAM specifici sono disponibili anche per i seguenti altri ricevitori: ICOM IC-R70, JRC NRD-515 e NRD-525; Kenwood

R-5000.

Il filtro da 4 kHz può essere installato anche sull'ICOM IC-R70.

INFINE...

...Quanto costa e dove si trova? A metà '87 i prezzi, al cambio, erano di circa 150 mila lire per la PLAM option e 63 mila per il filtro da 4 kHz. Pagando in anticipo, il materiale viene spedito come pacchetto "privato", consentendovi di risparmiare i soldi dello sdoganamento! Per informazioni, prezzi aggiornati e ordini potete rivolgervi alla ditta:

ESKAB

P.O. Box 32001 S-20064 Malmoe

Svezia

A questo punto penso di aver detto proprio tutto: non mi resta che augurarvi buone saldature.

CQ

MAREL ELETTRONICA via Matteotti, 51 - 13062 Candelo (VC) - Tel. 015/538171

- FR 7A

 RICEVITORE PROGRAMMABILE Passi da 10 KHz, copertura da 87 a 108 MHz, altre frequenze a richiesta. Sui commutatori di programmazione compare la frequenza di ricezione. Uscita per strumenti di livello R.F. e di centro. In unione a FG 7A oppure FG 7B costituisce un ponte radio dalle caratteristiche esclusive. Alimentazione 12.5 V protetta
- FS 7A SINTETIZZATORE Per ricevitore in passi da 10 KHz. Alimentazione 12,5 V protetta.
- FG 7A ECCITATORE FM Passi da 10 KHz, copertura da 87 a 108 MHz, altre frequenze a richiesta. Durante la stabilizzazione della frequenza, spegnimento della portante e relativo LED di segnalazione. Uscita con filtro passa basso da 100 mW regolabili. Alimentazione protetta 12,5 V, 0,8 A.
- FG 7B ECCITATORE FM Economico. Passi da 10 KHz, copertura da 87 a 108 MHz, altre frequenze a richiesta. LED di segnalazione durante la stabilizzazione della frequenza. Alimentazione protetta 12,5 V, 0,6 A.
- FE 7A CODIFICATORE STEREOFONICO QUARZATO Banda passante delimitata da filtri attivi. Uscite per strumenti di livello. Alimentazione protetta 12,5 V, 0,15 A.
- **FA 15 W AMPLIFICATORE LARGA BANDA -** Ingresso 100 mW, uscita max. 15 W, regolabili. Alimentazione 12,5 V, 2,5 A. Filtro passa basso in uscita.
- **FA 30 W AMPLIFICATORE LARGA BANDA -** Ingresso 100 mW, uscita max. 30 W, regolabili. Alimentazione 12,5 V, 5 A. Filtro passa basso in uscita.
- FA 80 W AMPLIFICATORE LARGA BANDA Ingresso 12 W, uscita max. 80 W, regolabili. Alimentazione 28 V, 5 A. Filtro passa basso in uscita.
- **FA 150 W AMPLIFICATORE LARGA BANDA** Ingresso 25 W, uscita max. 160 W, regolabili. Alimentazione 36 V, 6 A. Filtro passa basso in uscita.
- **FA 250 W AMPLIFICATORE LARGA BANDA -** Ingresso 10 W, uscita max. 300 W, regolabili. Alimentazione 36 V, 12 A. Filtro passa basso in uscita. Impiega 3 transistors, è completo di dissipatore.
- FL 7A/FL 7B FILTRI PASSA BASSO Da 100 e da 300 W max. con R.O.S. 1,5 1

 FD 5/FD 10 ALIMENTATORI PROTETTI Da 5 e da 10 A Campi di tensione da 10 a 14 V e da 21 a 29
- FP 5/FP 10 ALIMENTATORI PROTETTI Da 5 e da 10 A. Campi di tensione da 10 a 14 V e da 21 a 29 V.
 FP 150/FP 250 ALIMENTATORI Per FA 150 W e FA 250 W.

PER ULTERIORI INFORMAZIONI TELEFONATECI, TROVERETE UN TECNICO A VOSTRA DISPOSIZIONE

Lafayette Nevada 40 canali in AM-FM

5 Watt AM-FM. Piccoli piccoli.

Le piccole dimensioni di questo ricetrasmettitore si prestano ottimamente per ubicazioni veicolari sacrificate pur assicurando tutte le funzioni richieste normalmente in tale tipo di apparato. La visualizzazione del canale operativo è data da due grandi cifre a sette segmenti. Sempre mediante semiconduttori, sono previste altre indicazioni; la commutazione RX/TX, il livello del segnale ricevuto, la potenza relativa del segnale emesso. Un selettore a levette posto sul frontale permette di selezionare il modo operativo: FM-AM-PA. In quest'ultimo modo (in basso) l'apparato si comporta quale amplificatore di bassa frequenza. La presa per l'altoparlante esterno, l'alimentazione, ecc. trovansi sul pannello posteriore. Le prestazioni del ricevitore non hanno nulla da invidiare, ottima selettività in AM, buona limitazione ai disturbi impulsivi in FM e notevole qualità sulla riproduzione. La polarità dell'alimentazione a massa non è vincolante.

CARATTERISTICHE TECNICHE

TRASMETTITORE

Potenza RF: 5 W max con 13.8V di alimentazione. Tipo di emissione: 6A3 (AM); F3E (FM).

Soppressione di spurie ed armoniche: secondo le disposizioni di legge.

Modulazione: AM al 90% max.

Deviazione FM: ±1.5 KHz tipico.

Gamma di frequenza: 26.965 - 27.405 KHz.

RICEVITORE

Configurazione: a doppia conversione.

Valore di media frequenza: 10.695 MHz; 455 KHz. Determinazione della frequenza: mediante PLL.

Sensibilità: 1 µV per 10 dB S/D.

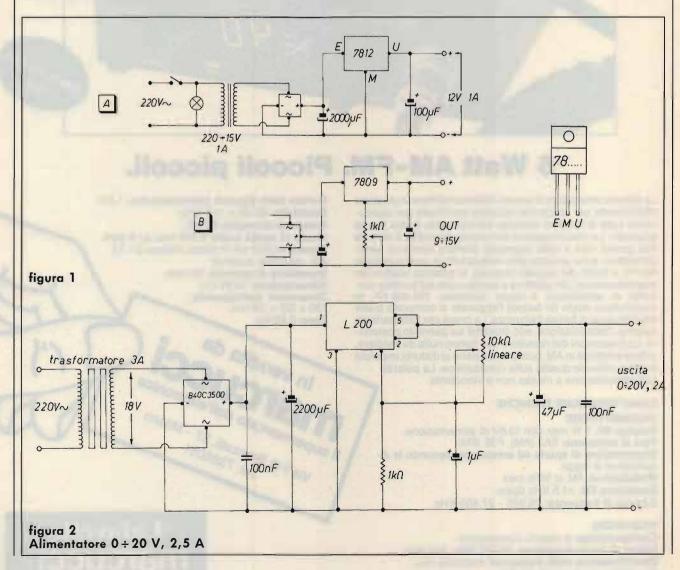
Selettività: 60 dB a ±10 KHz. Reiezione immagini: 60 dB. Livello di uscita audio: 2.5W max su 8 ohm. Consumo: 250 mA in attesa, minore di 1.5A alla massima potenza Impedenza di antenna: 50 ohm. Alimentazione: 13.8V c.c. Dimensioni dell'apparato: 130 x 221 x 36 mm. Peso: 0.86 Kg. In vendita da Il supermercato dell'elettronica Via F.III Bronzetti, 37 - Milano

Lafayette

marcucci§

Portata dello Squelch (silenziamento): 1 mV.

RDEVEM STERIE


MIN WHAT IN TITUED OF

Alimentatori elementari

• I6IBE, Ivo Brugnera •

Il pezzo più importante in un piccolo laboratorio elettrotecnico, o di un semplice appassionato di elettronica, è senza dubbio l'ALIMENTATORE, magari variabile, per adeguarsi alle varie tensioni richieste sulle varie apparecchiature, e che abbia minimo un paio di ampere per potere alimentare, senza problemi, il piccolo ricevitore FM, il baracchino, o magari l'autoradio per poterla ascoltare in casa.

Tempo addietro, nelle varie riviste di elettronica, non passava mese che non venissero pubblicati uno o più schemi di alimentatori, più o meno efficienti, ad uno o più transistor.

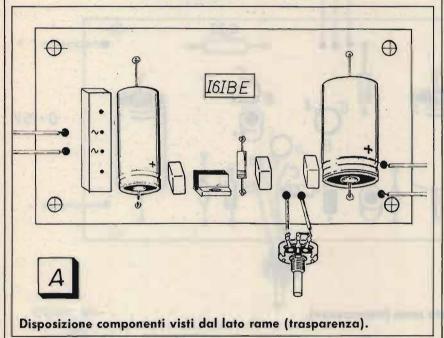



foto 1 Alimentatore con L200.

Ora, invece, visto il proliferare degli ottimi stabilizzatori integrati serie 78... di schemi di buoni alimentatori variabili non se trovano molti, essendo stato risolto il problema usando uno di questi integrati. Infatti, basta inserire uno di questi comodissimi "treppiedi" dopo il raddrizzatore di un qualsiasi semplice alimentatore, per ottenere una efficace tensione stabilizzata, con una corrente di un ampere circa, il tutto con costi accessibilissimi (figura 1). Pur riconoscendo la grande versatilità di tali integrati, ci si rende conto, poco dopo, che essi sono limitati per quanto riguarda l'utilizzazione perché a tensione fissa, anche se sopperiscono a questa con la loro gamma di tensioni disponibili. È comunque possibile, con buoni risultati, ovviare a questo, sollevando il piedino centrale da massa con un trimmer di bassa resistenza (500 Ω). Sul mercato, comunque, è presente un buon integrato regolatore di costo contenuto, ottimo per realizzare dei buoni alimentatori, è lo L200 prodotto dalla SGS, la cui tensione è regolabile, e la corrente supera i 2,5 A.

Questo integrato, al suo interno, provvede alla limitazione di corrente e potenza, ha una protezione termica, e una protezione contro le extratensioni di ingresso se esse superano i 60 V. È indistruttibile dai seviziatori di integrati; richiede pochissimi componenti per potere funzionare. Lo schema è quello di figura 2; nei particolari, e in foto 1, si vedono lo stampato e il montag-

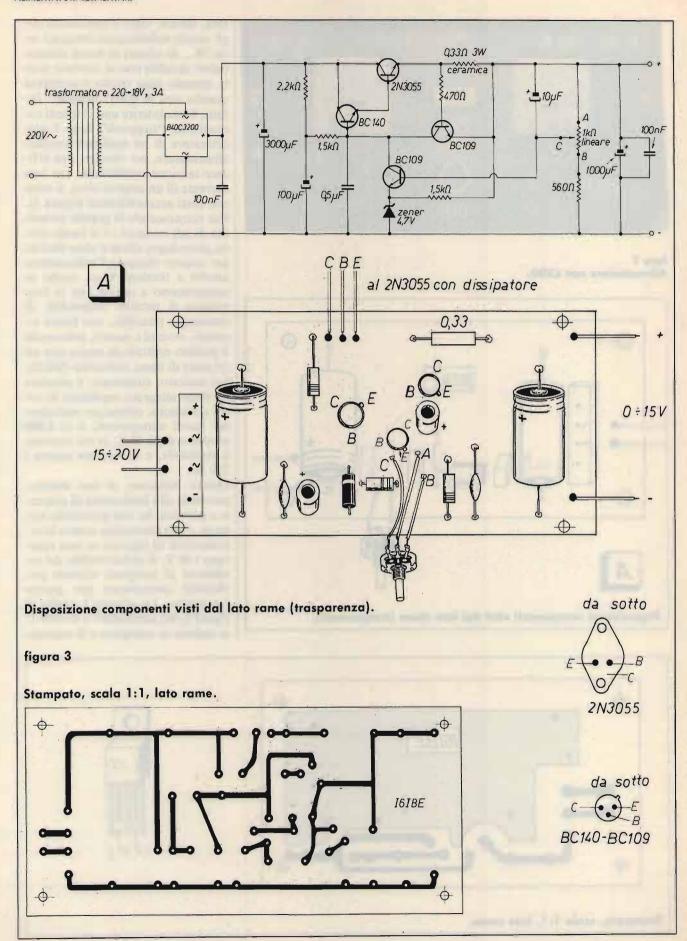


foto 2 Alimentatore variabile a transistor.

gio. Il trasformatore è da 220→18 V, 3 A, la tensione del secondario non è critica: 15÷20 V vanno ugualmente bene, la corrente max di questo alimentatore è di circa 2,5 A, buona per tutti gli usi di laboratorio o per baracchini CB.

Per chi non ha dimestichezza con gli integrati, propongo un alimentatore classico, tutto a transistor, di ottimo funzionamento, anch'esso variabile da 6 a 15 V, con una corrente di 2 A, protetto contro i cortocircuiti. È realizzato con transistor non critici che sicuramente avrete nel cassetto, quindi la spesa sarà minima.

Lo schema è facile ed è quello di figura 3 e foto 2 e 3; unica accortezza da seguire, è quella di munire il transistor 2N3055 di un buon dissipatore di calore.

A tutti buona realizzazione e buon lavoro.

IVO

CQ

foto 3 Alimentatore: vista interna.

VENDITA - ASSISTENZA CENTRO-SUD AUTORIZZATA

APPARATI F.M. UH

ELETTRONICA S.p.A.
TELECOMUNICAZIONI

DE PETRIS & CORBI

C/so Vitt. Emanuele, 6 00037 SEGNI - Tel. (06) 9768127

Lafayette Kentucky

40 canali in AM

Design e semplicità in un tranceiver CB

Il ricetrasmettitore si differenzia radicalmente dagli altri apparati per il nuovo tipo di controllo usato. Mentre la selezine del canale è fatta mediante dei pulsanti UP-DOWN, il resto dei controlli è a slitta.

Il visore, oltre ad indicare il canale operativo, provvede pure ad indicare la percentuale di modulazione in AM, il livello del segnale ricevuto e la potenza relativa emessa tanto in RF che in BF. La sezione ricevente è provvista del limitatore automatico dei disturbi e di filtri che assicurano la migliore selettività sul segnale AM. È possibile l'accesso istantaneo al canale 9. L'apparato può essere anche usato quale amplificatore di BF. Riguardo l'alimentazione, la polarità negativa della batteria deve essere posta a massa. L'apparato viene fornito completo di microfono e staffa di supporto veicolare.

CARATTERISTICHE TECNICHE

TRASMETTITORE

Potenza RF: 5 W max con 13.8V di alimentazione.

Tipo di emissione: 6A3 (AM).

Gamma di frequenza: 26.965 - 27.405 KHz.

Soppressione di spurie ed armoniche: secondo le di-

sposizioni di legge.

Modulazione: AM, 90% max. Deviazione FM: ±1.5 KHz tipico.

RICEVITORE

Configurazione: a doppia conversione.

Valore di media frequenza: 10.695 MHz; 455 KHz. Determinazione della frequenza: mediante PLL.

Sensibilità: 1 µV per 10 dB S/D.

Portata dello Squelch (silenziamento): 1mV.

Selettività 60 dB a ±10 KHz. Rejezione immagini: 60 dB.

Livello di uscita audio: 2.5W max su 8 ohm. Consumo: 250 mA in attesa, minore di 1.5A a pieno volume.

Impedenza di antenna: 50 ohm.

Alimentazione: 13,8V c.c.

Dimensioni dell'apparato:

130 x 221 x 36 mm.

Peso: 0.86 Kg.

Lafayette marcucci &

Bella Italia, amate sponde...

• Dottor Luigi Cobisi •

Bella Italia, amate sponde... non è solo poesia né patriottismo rivisitato. È — pensavo — che questo Paese è letteralmente immerso nella radio e i suoi mari o i grandi laghi del nord muovono le loro onde in sintonia con quelle hertziane che, da una parte all'altra del confine, si lanciano dal mondo dell'italiano in minoranza alla nostra penisola.

Svizzera, Istria, Montecarlo, Terre neglette dal dxismo paludato, sono un porto sicuro per i principianti, un'attrazione per il grande pubblico e un'autentica miniera di dati su altri modi di fare radio in italiano, senza essere direttamente pressati dalle vicende della Repubblica.

Anche tecnicamente il profilo di queste Emittenti è interessante: si tratta in genere di servizi per l'interno il cui "mercato" principale finisce per diventare l'Italia, creando un dualismo tra le esigenze di un programma per una certa zona, e un servizio internazionale.

È il caso della Lugano proiettata nelle onde corte di Radio Svizzera Internazionale.

Operativa come stazione ticinese, la Radio della Svizzera Italiana dispone di due reti FM, la prima delle quali è anche trasmessa in onda media utilizzando il glorioso trasmettitore di Monte Ceneri (558 kHz la frequenza, per 100 kW di potenza) il cui segnale raggiunge agevolmente tutta la pianura padana di giorno e si estende fino a Roma di notte, trasmettendo da alcuni anni 24 ore su 24. Novità, forse inconsapevolmente vissuta a Lugano, la Rete 1 ticinese è ripetuta tra le 14,30 e le 18,30 di ogni giorno sulle frequenze europee della sorella in onde corte: 3985, 6165, 9535 kHz. Ricezione ottima e qualche informazione in più da Pietro Ribi, intervistato in margine alla recente assemblea dell'Associazione Italiana Radioascolto che ha conferito a Radio Svizzera Internazionale il premio di popolarità.

"La trasmissione in italiano — ci ha detto Ribi — ha delle caratteristiche particolari, sia come pubblico che come contenuto. Va precisato infatti che solo circa il 6% degli svizzeri parla italiano e che negli anni si è affermato un ascolto immenso da parte di italiani della penisola sparsi in tutto il mondo. Accanto alle vicende del Ticino non può perciò mai mancare la schedina italiana o un'occhiata al Napoli di Maradona".

In questo senso — abbiamo chiesto a Ribi — il pubblico influenza anche le vostre scelte?

"Senz'altro — riprende il giornalista svizzero — poiché quando all'inizio dell'anno Radio Svizzera Internazionale ha deciso per esempio di interrompere la conferma con cartoline QSL dei rapporti di ricezione si sono avute reazioni supernegative quasi solo dall'Italia e sono adesso autorizzato a dire che riprendiamo a confermare solo noi della Redazione italiana".

Un esempio di furore BCL che da' una dimensione della varietà di atteggiamenti in questo hobby e anche del diverso entusiasmo con cui

la radio viene vissuta. Episodi non mancano dalla Svizzera a contraddire — pur in parte nella medesima lingua — il nostro atteggiamento in genere benevolo verso la radio. Per esempio, quando si deve costruire un nuovo trasmettitore a onde corte, ormai necessario per raccordare tutti i programmi svizzeri verso il pubblico internazionale, sorgono varie difficoltà, sicuramente non di ordine tecnico bensì, dice ancora Ribi: "si tratta di un problema politico, visto che abbiamo la possibilità a livello locale da parte della popolazione di intervenire su questi tipi di problemi; il che significa che ogni comune può votare se vuole o non vuole le antenne di Radio Svizzera Internazionale. Attualmente, per esempio, il trasmettitore di Schwarzenburg può operare solo al 50% di potenza perché, trovandosi in una zona densamente popolata, può creare dei disturbi anche alla popolazione. D'altra parte si sostiene che le antenne deturpano il paesaggio". E così, come già per correre in Formula 1, gli svizzeri abbandonano la loro terra e, grazie ai satelliti, possono già immaginare di rifornire impianti a onde corte zonali di più specifica portata. E il caso di un ripetitore di cui si parla da tempo e che verrebbe installato in Cina. Naturalmente anche qui la politica ha il suo peso e le trattative sono in corso. La neutralità elvetica è vista di buonocchio a Pechino che del resto non ha da temere programmi in cinese da Berna, dove non ne esistono. Piuttosto sono gli svizzeri a temere il concetto di recifigura 1
I trasmettitori a onda ultracorta (come gli svizzeri chiamano la FM) della prima rete di Radio della Svizzera Italiana. Come si osserva dalle linee (nere o tratteggiate rappresentano tutte i limiti delle zone di copertura degli impianti) l'orografia accidentata del Canton Ticino e del Grigioni italiano influisce notevolmente sulla ricezione e vi sono zone dove, accendendo la radio in FM (provare per credere), non si sente niente. Inutile dire che in Italia tali località appartengono al passato remoto.

procità che potrebbe condurre i cinesi a farsi "ripetere" in Europa dal territorio confederale sugli impianti esistenti. Una trattativa franco-cinese in tal senso era già abortita lo scorso anno al cambio di direzione politica a Parigi.

Curiosamente, ma non troppo, visto che dalla prima riga di questo articolo ci stiamo occupando di confrontare esperienze italiane con quelle più ampiamente intese come italofone, anche la Rai ha condotto sondaggi in questi ultimi mesi per avere accesso ai trasmettitori di Radio France Internationale in Gabon cui già si appoggiavano varie Emittenti, tra cui Radio Giappone, proprio in italiano (ore 7,45 legali, 9570 kHz).

Anche qui problemi politici hanno impedito un salto di mamma Rai verso l'Argentina con scalo gabonese e ora il Ministero degli esteri ha aperto un dossier i cui tempi di definizione sono in perfetta aderenza

con il costume burocratico nazionale: approfondimento di ogni aspetto, ma lentezza.

Tornando al Ticino, prima di voltare pagina con un classico "Lugano addio", da "anni settanta" liceali, dall'anno scorso opera anche una stazione privata. Autorizzata dalle Poste è una delle 34 stazioni private con potenza da 10 W a 1 kW funzionanti in FM nella Confederazione insieme con le 19 consorelle germanofone e le 14 romande.

IN ISTRIA PER RICORDARE

Così ha titolato in una sua pubblicazione il Touring Club Italiano, che con attenzione da anni è una delle poche voci nazionali ad accorgersi di quanto, per poco possa esservi rimasto, vi sia da salvare dell'italianità. Scrive di giornali, di strade dedicate a Garibaldi, di teatro, dell'esodo di 270.000 nostri

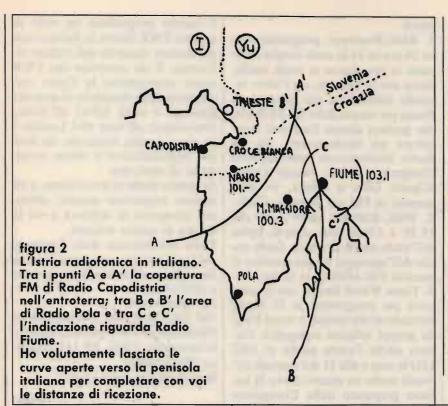
connazionali su 300.000 che fino al 1947 abitavano l'Istria.

POSCHIAVO 93.9

BAUSIO 91.5

D'FARETT 92.1

Valtellina


Poi c'è la radio e, aggiungo io, geografi di questo straordinario mezzo di comunicazione, qui segno di tutte le contraddizioni (anche tecniche, e le vedremo tra un attimo) di una Terra strappata alle sue origini.

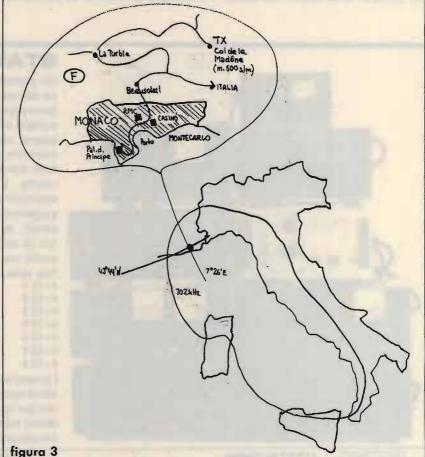
La più nota Emittente della zona è Radio Capodistria (1170 kHz) il cui ruolo commerciale ha avuto nell'Italia degli anni '70 un certo sviluppo poi sfibrato dal sorgere nel nostro paese di reti private. È un fatto comunque che si tornò a parlare di Capodistria tra i giovani proprio attraverso la radio. Ha una storia tutta particolare essendo stata avviata nel 1949 dal faro di Salvore con soli 700 W di potenza contro gli attuali 300 kW installati nel 1979, che può considerarsi l'anno di massima espansione della Emittente.

Anche qui osserviamo la doppia attività verso l'interno (basta seguire i notiziari per rendersene conto) e verso l'estero. Curiosamente si ripete il fenomeno già incontrato a Lugano. Anche Radio Capodistria fornisce un programma in onde corte alla Emittente centrale di Belgrado (Radio Jugoslavia) che lo ripete su 6100, 7240, 9620 kHz.

È un programma di una mezz'oretta, diffuso alle 23,45 italiane e ripetuto in FM dalla capitale jugoslava su 103,8 MHz.

Anche a Pola e Fiume tracce di radiofonia italiana sono ben udibili. Dalla città dell'Arena, anzi, è stato

— i puristi mi farebbero vergognare — che si sia trattato di dxismo, ma segnalo la cosa a chi vuol provare a salire in montagna con una radio portatile e verificare di persona le mille voci (oltre a quelle istriane e jugoslave in genere ci sono greci e albanesi) che dall'alto si riescono a captare in FM.


E IL GRAN PRIX? A MONTECARLO, NATURALMENTE!

Per una Svizzera verso la Cina, un'Istria tutta da scoprire e qualche riferimento alla nostra situazione, premio, anzi Gran Premio di fantasia e allegria tutto a Radio Montecarlo, punta d'iceberg radiotelevisivo del Principato di Monaco. Qui, come in altri microstati europei, la radio è un affare, potendo venir costituita a tutto interesse dei Paesi più grandi limitrofi.

avviato nel 1984 un piano di potenziamento sulla FM attraverso un tx molto potente sul Monte Maggiore (Uçka) a QRG 100,3 MHz che gode di particolare protezione internazionale per la caratteristica di essere bilingue. È una conseguenza degli accordi di Ginevra che dovrebbero tener conto di determinate priorità nella FM e sui quali — ecco un altro piccolo tema che ci riporta nella nostra Repubblica — dovrebbe basarsi in parte anche la ormai "inafferrabile" legge di regolamentazione dell'etere tricolore.

Il programma — in onda dalle 17,30 alle 18,30, seguito poi da una trasmissione turistica — è in stretta correlazione con quanto avviene a Fiume dove la radio locale (103,1 MHz) diffonde una propria trasmissione in italiano, alle 18,30-19,00.

Questi orari ed Emittenti sono state già diversi anni orsono protagoniste di alcuni pomeriggi memorabili sotto il sole cocente della croce del Pratomagno in Toscana (1500 metri d'altezza) dove, come in altre località appenniniche orientate correttamente verso est/nordest, Emittenti d'oltre Adriatico non mancano mai di apparire. Non voglio affermare

L'Italia tirrenica racchiusa (in nero) dalla maggior forza del segnale di RMC 702 kHz, comunque udibile anche in gran parte dell'area padana.

Nel diagramma in alto le località radiofoniche del Principato.

In effetti da circa ventuno anni radio Montecarlo ha mostrato all'Italia un modo giovane, per certi versi "da spiaggia" di fare radio. Qualcosa che ha anticipato i tempi delle private, cui non è poi riuscito fare una concorrenza veramente incisiva. Sono comunque impressioni. La realtà è che dal territorio del principato operano in realtà un blocco di Emittenti diversificate per taglio, lingua e scopo.

Tecnicamente tutte fanno capo a un Centro emittente di tutto rispetto localizzato nelle Alpi marittime in territorio francese a Col de la Madône. È qui che i tecnici guidati da Louis Allavena gestiscono un impianto a onda lunga (218 kHz, 1200 kW, programma francese), due a onda media (1467 kHz per la Francia e 702 kHz per l'italia) qualche tx FM e tre impianti a onda corta (1x500 kW e 2x100 kW) utilizzati questi ultimi da Trans World Radio. Vediamo le caratteristiche delle tre branche della radiofonia mone-

gasca.

1. RMC-Francese: programmazione 24 ore su 24 in onde lunghe e durante le ore diurne in onde medie, tipica per la Francia, tra l'altro venendo controllata dal governo di Parigi per mezzo della SO.FI.RAD. che gestisce alcune Emittenti francofone nel Mediterraneo, tra cui Radio Mediterranée Internationale (Tangeri) e RMC Moyen Orient (Cipro). Oltre a questa, tre programmi in FM per Monaco Città.

2. RMC-Italiano: dalle 6,30 alle 19,30 è l'Emittente diurna tipica dell'onda media tirrenica. Gode anche dell'appoggio di una trentina di stazioni FM affiliate in Italia.

3. Trans World Radio: usa le onde corte per programmi in 35 lingue destinati ai più lontani e vicini Paesi da gruppi religiosi evangelici. Utilizza anche l'onda media di 1467 kHz la sera e alle 21 del martedì diffonde anche un quarto d'ora in italiano preparato dalla Evangelium Rundfunk di Wetzlar in Germania.

È questo programma un resto di quanto TWR faceva in italiano con particolare riguardo agli italiani all'estero. È da osservare che TWR opera direttamente in Centri trasmittenti dalle Americhe (il quartier generale è negli USA) all'Africa (Swaziland) all'Asia (Sri Lanka) e in altre località fungendo da base per organizzazioni e chiese protestanti di ogni tipo.

In questo modo ci avviciniamo a un aspetto imprevisto quando abbiamo intrapreso la scrittura e voi la lettura di questo articolo.

Dalla osservazione delle Emittenti più facili e vicine, uno stimolo e una conoscenza a Emittenti più lontane e difficoltose.

Ne riparleremo.

Nel frattempo non dimentichiamo l'indirizzo di TWR per uno schedule completo: TWR, BP 141, Monaco (Principato).

Bonne chance, mes amis!

CQ

STABILIZZATORI B.T.

Gli stabilizzatori B.T. di produzione CEP sono alimentatori adatti all'impiego generale di laboratorio. La razionale configurazione circuitale offre un'alta affidabilità unita ad una buona stabilità sia della tensione che della corrente di uscita. Tutti i modelli sono protetti contro sovracorrenti e corto circuiti in uscita. L'ampia gamma di alimentatori disponibili offre una vasta scelta per tutte le esigenze di laboratorio, hobbistiche o industriali. A titolo esemplificativo elenchiamo qui di seguito alcune offerte di alimentatori scelti tra la vasta gamma disponibile:

Tens. variab.	Corrente	Strumentazione	Prezzo
4+15 V	30 A	1 digit. V/A	L. 250.000
4+15 V	30 A	1 analog. V/A	L. 220.000
4+15 V	0+20 A	1 digit, V/A	L. 220.000
0+18 V	0+10 A	1 digit. V/A	L. 180.000
4+15 V	0,5+6 A	1 analog.	L. 60.000
4+15 V	30 A	2 analog.	L. 235.000
4+15 V	0,5+15 A	1 digit. V/A	L. 170.000

I prezzi indicati comprendono l'IVA ed escludono spese di spedizione. Condizioni particolari per quantitativi. Per altri modelli interpellateci telefonicamente. Su ordinazione si costruiscono alimentatori per speciali esigenze.

COSTRUZIONI ELETTRONICHE PROFESSIONALI 04100 LATINA (Italy)
Via S. Francesco, 60 - Tel. 0773/242678
C.P. 21 - Telex 680506 I

Controllo dei tubi elettronici

• IODP, Prof. Corradino Di Pietro •

Anche se i transistori hanno ormai soppiantato i tubi elettronici, ci sono ancora in giro molti apparecchi validi a valvole o "ibridi" (valvole e transistori).

Specialmente per chi non può spendere alte cifre. l'acquisto di detti apparati potrebbe essere una soluzione. A chi non piacerebbe un Drake ibrido o un Collins valvolare?

C'è però il problema della reperibilità delle valvole, se qualcuna di esse fosse esaurita. Quindi l'acquirente deve dare una controllatina alle valvole, e questo articolo vuole dare qualche suggerimento.

Quanto si dirà a proposito delle valvole vale anche per i fet, dato che essi assomigliano più alle valvole che ai transistori bipolari. Naturalmente mi riferisco al loro funzionamento, non alla loro costituzione allo stato solido. Per questo non va esclusa la possibilità di sostituire qualche valvola con un fet o con un mosfet a doppia porta.

FUNZIONAMENTO DI UN TRIODO

È molto intuitivo, e si dimostra con il semplice circuito di figura 1, nel quale, per ragioni di chiarezza, è omessa l'alimentazione del filamento, il cui scopo è quello di riscaldare il catodo, affinché esso possa emettere elettroni.

Ouesti elettroni vengono attirati dalla placca (o anodo). Se la griglia è a tensione zero, avremo la massima corrente anodica, che nel grafico di figura 1 è di circa 18 mA.

Se si applica alla griglia una tensione negativa, la corrente anodica diminuisce, in quanto gli elettroni (particelle negative) vengono "ostacolati" dalla griglia, anch'essa negativa.

Aumentando la tensione negativa sulla griglia, la corrente fra catodo e anodo continua a diminuire, fino a cessare del tutto, come si vede nel grafico, che si chiama "caratteristica mutua".

Questo è tutto!

Quanto detto vale anche per i fet, con la semplificazione che manca il filamento, e il vantaggio che si usano tensioni notevolmente più basse, e quindi non c'è pericolo per lo sperimentatore. Con le valvole fate attenzione perché la tensione può essere molto pericolosa. Quando si fanno i controlli sulle valvole adoperare solo una mano e tenere l'altra mano e i piedi isolati da massa o da terra. Ricapitolando, la griglia "controlla" il flusso della corrente; per questo essa si chiama "griglia controllo", anche per distinguerla

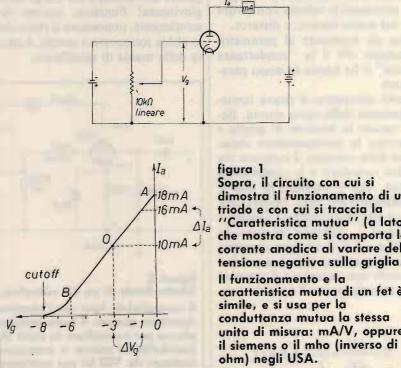


figura 1 Sopra, il circuito con cui si dimostra il funzionamento di un triodo e con cui si traccia la "Caratteristica mutua" (a lato), che mostra come si comporta la corrente anodica al variare della tensione negativa sulla griglia. Il funzionamento e la caratteristica mutua di un fet è simile, e si usa per la conduttanza mutua la stessa unita di misura: mA/V, oppure

dalle altre griglie in un tubo multigriglia.

L'invenzione della valvola amplificatrica fu una rivoluzione nel campo della radio. Il suo inventore fu l'americano Lee de Forest nel 1907. Diamo adesso uno sguardo alla curva mutua.

Dal punto A al punto B essa è quasi lineare, e per amplificare senza distorsione si fa generalmente lavorare la valvola in questo tratto. Nel funzionamento in classe A si mette la tensione di griglia a metà del tratto lineare (punto O), per il quale la tensione di griglia è —3 V e la corrente 10 mA.

Quando arriva il segnale da amplificare sulla griglia, esso farà variare in più o in meno la tensione negativa, a cui corrisponderanno variazioni nella corrente anodica, le quali produrranno forti variazioni di tensione sul carico. Questo carico non si vede nella figura 1, perché il funzionamento di una valvola (o di un transistor) si studia prima a vuoto e poi sotto carico. Questo carico può essere un resistore, un trasformatore, un circuito accordato, ecc. Quando questo carico si trova sulla placca si dice che il tubo è a "catodo comune", ed è la configurazione più usata. È anche facile capire, dall'osservazione della caratteristica mutua, che il segnale da amplificare non deve superare i 3 V di picco, altrimenti la valvola non lavora più nel tratto lineare, e distorce.

Resta da accennare al parametro principale che è la "conduttanza mutua" (i fet hanno lo stesso parametro).

Questo parametro si ricava immediatamente dalla curva mutua. Basta variare la tensione di griglia e osservare la corrispondente variazione della corrente; il rapporto fra le due variazioni è la conduttanza mutua, che si esprime in mA/V (milliampere per volt). Meglio delle parole vediamo l'esempio numerico di figura 1. Abbiamo spostato da —3 V a —1 V la tensione di griglia (quindi variazione di 2 V), a cui corrisponde una variazione di corrente di 6 mA; facciamo il rapporto:

$$S = \frac{\Delta I_a}{\Delta V_g} = \frac{6}{2} = 3 \text{ mA/V}$$

Questo parametro serve per vedere se una valvola è esaurita o meno. A questo punto il principiante potrebbe pensare che sia necessario un provavalvole. La risposta è che il provavalvole è il semplice circuito di figura 1, anzi non c'è bisogno di due batterie: con un piccolo trucco possiamo fare a meno della batteria per la polarizzazione della griglia.

CONTROLLO DI UNO STADIO DI POTENZA

Passiamo ai fatti, e vediamo come si controlla uno stadio valvolare. Diciamo subito che la riparazione è facilitata dal fatto che la valvola si può togliere; quindi non influenza certe misurazioni, specialmente quelle con l'ohmetro, le quali, in un circuito solid-state, sono influenzate dalle giunzioni dei transistori. Un altro vantaggio è che i circuiti a valvola sono meno miniaturizzati, il che è un vantaggio non trascurabile. L'unica cosa negativa è il pericolo delle alte tensioni, ergo sempre una mano in tasca, in modo che non vi venga la tentazione di appoggiarla sul telaio!

Premetto che il circuito di figura 2 è reale: è lo stadio finale di un ricevitore costruito trent'anni fa, e al quale sono piuttosto affezionato perché mi ricorda i bei tempi della giovinezza! Funziona ancora discretamente, nonostante il fatto che lo abbia sottoposto a sevizie, a causa della mania di modificare.

Si tratta di una valvola molto comune. Il fatto che abbia una griglia schermo non modifica quanto è stato detto a proposito del triodo. In questo caso la tensione sulla griglia schermo è uguale a quella sulla placca. Va solo precisato che la tensione su detta griglia deve essere stabile, anche quando arriva il segnale: per questo la griglia schermo è sempre bypassata da un condensatore (nel caso in questione c'è l'elettrolitico da 32 µF).

Per quanto riguarda la polarizzazione della griglia controllo, si nota che essa è collegata a massa per mezzo di un resistore. Invece il catodo non è collegato direttamente a massa, c'è un resistore nel quale scorre una corrente che è la somma della corrente di placca e della corrente di griglia schermo. Questa corrente produce una caduta di tensione che è uguale alla tensione negativa di polarizzazione che si sarebbe dovuta applicare alla griglia controllo: quindi "relativamente" la griglia è negativa rispetto al catodo, e in questo modo abbiamo eliminato la batteria "negativa" di figura 1. Nei fet si procede allo stesso modo; non è così per i comuni transistori, per i quali non è necessario questo resistore sull'emettitore, dato il loro diverso principio di funzionamento. È vero che spesso c'è questo resistore sull'emettitore, ma esso serve a stabilizzare termicamente il transistor, cioè a evitare un suo eccessivo riscaldamento.

Tornando al provavalvole, esso in

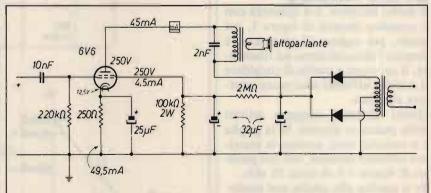


figura 2 Stadio finale di un RX valvolare.

Ē consigliabile fare con l'ohmetro tutte le misurazioni possibili a ricevitore spento. È bene inserire un milliamperometro nel circuito di placca per controllare lo stato di efficienza dellla valvola (conduttanza mutua = transconduttanza = pendenza). Notare il resistore da 100 kΩ per scaricare gli elettrolitici.

definitiva non è altro che un alimentatore con tensione di uscita variabile, la cui costruzione non presenta difficoltà; in caso di emergenza si può usare anche l'alimentatore dell'apparato che si deve riparare, oppure l'alimentatore di un altro apparato valvolare.

Diciamo adesso quattro parole sul controllo ed eventuale riparazione del circuito di figura 2.

Siccome non è facile oggigiorno sostituire una valvola, è bene procedere con cautela per non danneggiarla; infatti un componente difettoso può rovinare la valvola: per questo è importante la prova "a freddo"

(apparato spento). Dopo un primo controllo "visivo", si controllano con l'ohmetro i vari componenti, come la continuità degli avvolgimenti del trasformatore e l'isolamento dei condensatori. Se il primario del trasformatore è interrotto, non ci sarà tensione sulla placca; in queste condizioni la valvola si rovina, perché la griglia schermo funziona da placca e assorbe una corrente eccessiva. La stessa cosa accadrebbe alla griglia controllo se fosse in cortocircuito il condensatore da 10 nF che porta il segnale; essendo esso collegato alla placca del tubo precedente, si avrebbe sulla griglia controllo una

È superfluo sottolineare che è importante conoscere il "compito" dei vari componenti e sapere se essi sono critici o no.

tensione positiva eccessiva.

Per esempio, il resistore sul catodo è bypassato da un elettrolitico, la cui mancanza produrrebbe una controreazione: leggera diminuzione di potenza d'uscita, compensata da minore distorsione. Le cose cambiano se esso fosse in cortocircuito: la valvola non sarebbe più polarizzata con fortissimo aumento della corrente e surriscaldamento; anche se le valvole sopportano bene il calore, una tale condizione non sarebbe sopportata dalla valvola e la placca diventerebbe rossa, il che significa che bisogna spegnere subito l'apparato.

Prima di rimettere la valvola al suo posto, vale la pena di controllare se i vari elettrodi non sono in cortocircuito, specialmente il catodo con il filamento (ohmetro sulla portata più alta).

Sempre per ragioni di prudenza, è

consigliabile inserire un milliamperometro sul circuito di placca, come si vede in figura 2. Esso è molto utile per non danneggiare la valvola. Nel mio caso, esso segnava una corrente inferiore a 40 mA, il che mi ha fatto supporre un leggero esaurimento del tubo. Ma una corrente più bassa del normale non significa necessariamente che la valvola è un po' esaurita. Bisogna anche controllare la griglia schermo e la tensione di polarizzazione sul catodo. Nel mio caso la griglia schermo era in ordine, sulla griglia controllo la tensione era zero, la tensione sul filamento era 6,3 V e sul catodo la tensione era 10 V.

A questo punto ero certo che la valvola era leggermente esaurita. la sua conduttanza era 3,5 mA/V invece di 4,1. In ogni modo era ancora sufficientemente valida. Invece la valvola che ho dovuto sostituire era la raddrizzatrice; in questo caso non conviene comprare la valvola, ma sostituirla con due comuni diodi montati direttamente sullo zoccolo della valvola (1.000 PIV, 0,1 mA). Ho anche risparmiato, dato che i due diodi sono costati 500 lire. La sostituzione con i diodi porta ad aumento della tensione del 10 ÷ 20%, cosa che le valvole possono facilmente sopportare.

A questo punto possiamo sintonizzare una stazione e controllare il segnale audio in vari punti del circuito: all'ingresso, ai capi del primario e sul secondario; su quest'ultimo possiamo misurare anche la corrente del segnale, che è molto forte, dato il forte rapporto fra le spire del primario e quelle del secondario. A proposito la 6V6 vuole un'impedenza d'uscita di 5000 Ω con le tensioni indicate nella figura 2. Questo parametro è dato dal Costruttore e si trova nel Data-sheet. Per coloro che non hanno dimestichezza con le valvole, è intereressante procurarsi un catalogo dal quale si apprendono molte cose utili.

Resta da vedere la distorsione, per la quale lo strumento più adatto è l'oscillografo. In ogni modo anche il milliamperometro in placca può darci qualche informazione. Esso segna 45 mA in assenza di segnale; con il segnale essa varierà in su e giù di molti milliampere, che lo strumento non può accusare. Dato che lavoria-

mo in classe A, la semionda positiva del segnale e la semionda negativa sono eguali, e lo strumento resta su 45 mA, a causa della sua inerzia. Al massimo lo strumento potrà vibrare; se invece l'indice dello strumento si sposta, significa che c'è distorsione, il che potrebbe essere dovuto (anche se non necessariamente) a una errata polarizzazione. Un'ultima cosa per la sicurezza del dilettante.

Quando si spegne l'apparecchio, gli elettrolitici potrebbero restare carichi per un certo tempo. Invece di scaricarli ogni volta con il cacciavite — cosa che essi non gradiscono — è meglio metterci un resistore "bleeder" che li scarichi in una ventina di secondi (nello schema il resistore da $100 \text{ k}\Omega$ e 2 W, meglio abbondare nel wattaggio).

CQ

Preamplificatore broadband 3-30 MHz per antenne filari

• IW0BOM, Marco Minotti •

Gli ascoltatori delle frequenze decametriche 3÷30 MHz non sempre dispongono di ricevitori professionali, ma soprattutto, per vari motivi, non dispongono di antenne atte a lavorare su tutte le bande a loro disposizione. I motivi sono spesso riassumibili in ragioni di "buon" vicinato, in quanto il BCL o lo SWL vengono scambiati per nuovi CB, colpevoli di tutti i disturbi presenti nell'etere e apparsi sul teleschermo.

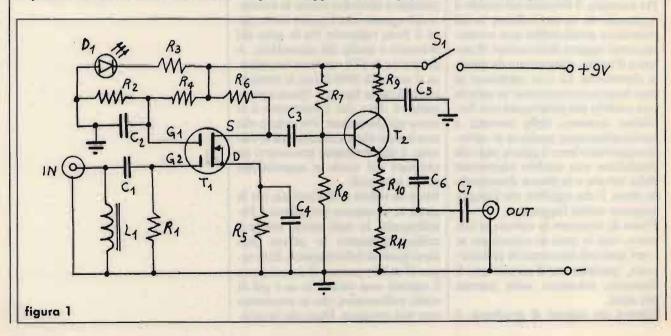
Quando il BCL o lo SWL stessi non devono combattere contro qualche CB, fruitore di tutto lo spazio disponibile...

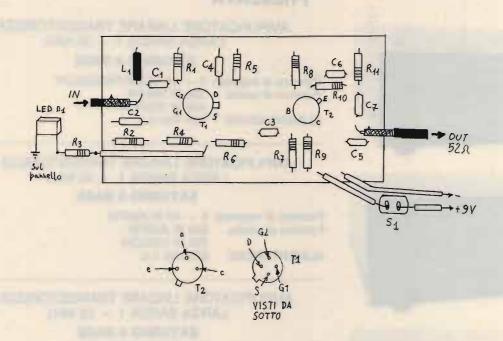
Per questi e altri motivi si ricorre ad antenne filari o interne, magari coadiuvate da semplici preamplificatori d'antenna.

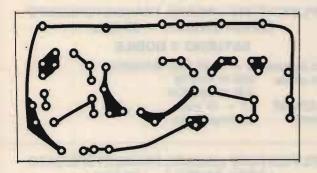
IL CIRCUITO

Il circuito che vi presento oggi è un preamplificatore d'antenna impiegante un singolo dual-gate mosfet in configurazione broad-band e un 2N2222 utilizzato per adattare l'alta impedenza d'uscita del mosfet, alla

bassa impedenza d'ingresso del ricevitore, di solito 50Ω .


La larghezza di banda varia da circa 3 ai 30 MHz, intorno ai 3 ÷ 5 MHz vi è una certa attenuazione prevista per attenuare le broadcast più potenti che potrebbero mandare in autooscillazione il circuito.


Questa piccola perdita di guadagno su questa porzione di banda è accettabile tenendo presente che, saldando questa trappola, non si potrebbero ascoltare che forti segnali. Come mosfet ho utilizzato un Sylvania ECG-221, GE FET-4, giapponese 3SK-63GR, o altri equivalenti.


Non fatevi vendere dei mosfet di scarsa qualità o dei transistori spacciati per mosfet.

Il circuito elettrico è visibile in figura 1; partendo da sinistra troviamo il filtro passa-alto composto da una impedenza da 1 μ H e da un condensatore da 1 nF, applicato sul gate 2 del mosfet. Troviamo quindi tutta la rete di polarizzazione del circuito costituita da R_1 , R_5 e C_4 e tra gate 1 e source R_4 , R_6 , R_2 e C_2 ; tramite R_3 si accende un piccolo led, sempre utile per controllare l'alimentazione.

Il segnale giunge quindi tramite C₃ al transistor 2N2222 sostituibile anch'esso da equivalenti.

figura 2 Stampato lato rame.

figura 3 Componenti.

 R_1 , R_4 0,1 $M\Omega$ R_2 33 $k\Omega$ R_3 2,2 $k\Omega$ R₅ 560 Ω R₆ 4,7 kΩ $R_7 47 k\Omega$ R₈ 10 kΩ R₉ 1 kΩ R_{10} 470 Ω R₁₁ 47 Ω tutte da 1/4 W, al 5 o 10% C₁ 1 nF C₂ C₄ C₅ C₆ C₇ 10 nF C₃ 100 pF tutti ceramici a disco L₁ 1 μH, impedenza RF

T₁ dual-gate mosfet GE FET-4 o Sylvania ECG221

T₂ 2N2222, npn, o equivalenti

D₁ led quadrato

COSTRUZIONE

La costruzione non presenta difficoltà di sorta ricorrendo al circuito stampato in vetronite; è possibile un montaggio a fili su una basetta per i più pazienti.

Il componente più critico è (come ovvio) il mosfet, che è facilmente danneggiabile da cariche elettrostatiche.

Esistono in commercio mosfet protetti internamente, ma non sempre | funzionare subito; chiaramente se

si riesce a trovarli; di solito si raccomanda di scollegare il saldatore quando questo è alimentato a rete, cosa che io faccio e consiglio di fare.

In passato ho letto un articolo sulla inutilità di molte di queste precauzioni, ma non è vero: la prudenza non è mai troppa.

Il circuito, una volta alimentato e collegato a un'antenna, dovrebbe qualche problema dovesse intervenire, il primo imputato sarebbe il

L'alimentazione viene fornita tramite una piccola pila da 9 V.

BIBLIOGRAFIA

The Radio Amateur's Handbook, edizioni '82-'85-'86.

di BARSOCCHINI & DECANINI SIL

VIA DEL BRENNERO, 151 LUCCA tel. 0583/91551 - 955466

PRESENTA

AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 ÷ 30 MHz

SATURNO 4 BASE

Potenza di ingresso 5 ÷ 40 W AM/FM/SSB/CW

Potenza di uscita 200 W AM/FM

400 W SSB/CW ALIMENTAZIONE 220 Volt c.a.

> AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 ÷ 30 MHz

SATURNO 5 BASE

Potenza di ingresso 5 ÷ 40 W AM/FM Potenza di uscita 350 W AM/FM

700 W SSB/CW

220 Volt c.a. ALIMENTAZIONE

> AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 + 30 MHz

SATURNO 6 BASE

Potenza di ingresso 5 ÷ 100 W AM/FM/SSB/CW

Potenza di uscita

600 W AM/FM 1000 W SSB/CW

ALIMENTAZIONE 220 Volt c.a.

> AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 ÷ 30 MHz

SATURNO 4 MOBILE

Potenza di ingresso 5 ÷ 40 W AM/FM/SSB/CW

Potenza di uscita

200 W AM/FM

ALIMENTAZIONE

400 W SSB/CW

11 ÷ 15 Volt

Assorbimento

22 Amper Max.

AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 ÷ 30 MHz

SATURNO 5 MOBILE

(due versioni)

Potenza di ingresso 5 ÷ 40 W AM/FM/SSB/CW

Potenza di uscita

350 W AM/FM 600 W SSB/CW

ALIMENTAZIONE

11 ÷ 15 Volt / 22 ÷ 30 Volt

Assorbimento 22 ÷ 35 Amper Max.

> AMPLIFICATORE LINEARE TRANSISTORIZZATO LARGA BANDA 1 ÷ 30 MHz

SATURNO 6 MOBILE

Potenza di ingresso 5 ÷ 40 W AM/FM/SSB/CW

Potenza di uscita

500 W AM/FM 1000 W SSB/CW

ALIMENTAZIONE

22 ÷ 30 Volt d.c.

Assorbimento

38 Amper Max.

SATURNO 68

28 32 912

& BARSOCCHINI & DECANINI STACE

VIA DEL BRENNERO, 151 LUCCA tel. 0583/91551 - 955466

PRESENTA

=NOVITA! IL NUOVO RICETRASMETTITORE HF A TRE BANDE $26 \div 30 - 5 \div 8 \ 3 \div 4,5 \ MHz$ CON POTENZA 5 e 300 WATT

REL 2745

QUESTO APPARATO DI COSTRUZIONE PARTICOLARMENTE COMPATTA È IDEALE PER L'UTILIZZAZIONE ANCHE SU MEZZI MOBILI. A SUA ACCURATA COSTRUZIONE PERMETTE UNA GARANZIA DI FUNZIONAMENTO TOTALE IN TUTTE LE CONDI-ZIONI DI UTILIZZO.

CARATTERISTICHE TECNICHE

GAMMA DI FREQUENZA: 26 ÷ 30 — 5 ÷ 8 3 ÷ 4,5 MHz MODI DI EMISSIONE: AM/FM/SSB/CW POTENZA DI USCITA: 26 ÷ 30 MHz LOW: AM-FM 8W — SSB-CW 30 W / HI: AM-FM 150 W — SSB-CW 300 W

POTENZA DI USCITA: 5 ÷ 8 3 ÷ 4,5 MHz LOW: AM-FM 10 W — SSB-CW 30 W / HI: AM-FM 150 W — SSB-CW 300 W

CORRENTE ASSORBITA: 6 ÷ 25 amper SENSIBILITÀ IN RICEZIONE: 0,3 microvolt

SELETTIVITÀ: 6 KHz - 22 dB ALIMENTAZIONE: 13.8 V cc DIMENSIONI: 200 x 110 x 235

PESO: Kg. 2,100

CLARIFIER RX e TX CON VARIAZIONE DI FREQUENZA di 15 KHz

CLARIFIER SOLO RX CON VARIAZIONE DI FREQUENZA di 1,5 KHz LETTURA DIGITALE DELLA FREQUENZA IN RICEZIONE

E TRASMISSIONE

RICETRASMETTITORE

«SUPER PANTERA» 11-40/45-80/88 Tre bande con lettore digitale della frequenza RX/TX a richiesta incorporato

CARATTERISTICHE TECNICHE:

GAMME DI FREQUENZA:

26 ÷ 30 MHz 6.0 ÷ 7,5 MHz 3 ÷ 4,5 MHz

SISTEMA DI UTILIZZAZIONE: AM-FM-SSB-CW

ALIMENTAZIONE:

12 ÷ 15 Volt

BANDA 26 ÷ 30 MHz

POTENZA DI USCITA:

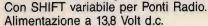
AM-4W; FM-10W; SSB-15W

CORRENTE ASSORBITA: Max 3 amper

BANDA 6.0 ÷ 7.5 3 ÷ 4.5 MHz

Potenza di uscita: AM-10W; FM-20W; SSB-25W / Corrente assorbita: max. 5-6 amp. CLARIFIER con variazione di frequenza di 12 KHz in ricezione e trasmissione. Dimensioi: cm. 18 x 5,5 x 23

ATTENZIONE!!!


POSSIAMO FORNIRE CON LE STESSE GAMME ANCHE APPARECCHI TIPO SUPERSTAR 360 E PRESIDENT JACKSON

TRANSVERTER TSV-170 per Banda VHF/FM (140-170 MHz)

per Banda AMATORIALE, NAUTICA e PRIVATA VHF/FM

Freguenza di lavoro 140-170 MHz. - da abbinare ad un qualsiasi apparato CB o apparato amatoriale in HF. Modo di emissione in FM Potenza di uscita regolamentare 10W.

ELT

elettronica

Spedizioni celeri Pagamento a 1/2 contrassegno

CONVERTITORE CO-40

Ingresso 432-436 MHz, uscita 144-148 MHz, guadagno 22 dB. Dimensioni 14 x 6.

L. 85.000

CONVERTITORE CO-20

Guadagno 22 dB, alimentazione 12 V, dimensioni 9,5 x 4,5. Ingresso 144-146 MHz, uscita 28-30 MHz oppure 26-28 MHz; ingresso 136-138 MHz, uscita 28-30 MHz oppure 24-26 MHz.

L. 60.000

VFO mod. SM1

Alimentazione 12 V, dimensioni 11 x 5 cm, prese per applicarlo all'SM2.

L. 55.000

MODULO PLL mod. SM2

Adatto a rendere stabile come il quarzo qualsiasi VFO fino a 50 MHz, alimentazione 12 V, dimensioni 12,5 × 10 cm.

L. 106.000

MOLTIPLICATORE BF M20

Serve a leggere le basse frequenze, in unione a qualsiasi frequenzimetro; non si tratta di un semplice amplificatore BF, ma di un perfetto moltiplicatore in grado di ricevere sull'ingresso frequenze anche di pochi Hz e di restituirle in uscita moltiplicate per 1000, per 100, per 10, per 1. Per esempio la frequenza di 50 Hz uscirà moltiplicata a 50 KHz, per cui si potrà leggere con tre decimali: 50,000 Hz; oppure, usando la base dei tempi del frequenzimetro, di una posizione più veloce, si potrà leggere 50,00 Hz. Sensibilità 30 mV, alimentazione 12 V, uscita TTL.

PRESCALER PA 1000

Per frequenzimetri, divide per 100 e per 200, alta sensibilità 20 mV a 1 GHz (max 1,2 GHz), frequenze di ingresso 40 MHz - 1 GHz, uscita TTL, alimentazione 12 V. L. 66.000

TRANSVERTER 432 MHz

Mod. TRV1, ingresso 144-148 MHz, uscita 432-436 MHz. Alta sensibilità in ricezione, potenza ingresso 0,1-10 W (attenuatore interno), uscita 4 W, modi FM/SSB/AM/CW. Transverter di alta qualità, esente dalla 3ª armonica, doppia conversione in trasmissione. Già montato in contenitore metallico: L. 340.000. In scheda L. 290.000

TRANSVERTER 1296 MHz

Mod. TRV10. Ingresso 144-146 MHz. Uscita 1296-1298 MHz. Potenza ingresso 0,05-2 W, attenuatore interno. Potenza uscita 0,5 W. Modi FM/SSB/AM/CW. Ottima sensibilità. Alimentazione 12-15 Volt L. 192.000

Mod. TRV11. Come il TRV10 ma senza commutazione UHF.

L. 180.000

AMPLIFICATORE 1296 MHz

Nuovo modello 2WA; per 0,5 W d'ingresso, uscita 3,5 W a 14 Volt, 3 W a 13 Volt. Ingresso 0,25 W, uscita 3,2 W a 14 Volt, 2,7 W a 13 Volt. Alimentazione 12-15 Volt.

L. 115.000

FREQUENZIMETRO PROGRAMMABILE 1 GHz alta sensibilità 1000 FNB

Oltre come normale frequenzimetro, può venire usato come frequenzimetro programmabile ed adattarsi a qualsiasi ricetras. o ricevitore compresi quelli con VFO a frequenza invertita. La programmazione ha possibilità illimitate e può essere variata in qualsiasi momento. Alimentazione 12 V 250 mA, sei cifre programmabili. Non occorre prescaler, due ingressi: 0,5-50 MHz e 40 MHz-1 GHz (max 1,2 GHz). Già montato in contenitore 15 x 6 x 17 cm. L. 199.000

FREQUENZIMETRO 1000 FNC

Come IL 1000 FNB ma a 7 cifre. 21 x 7 x 17 cm. Molto elegante.

L. 225.000

RICEVITORE W 144R

RICEVITORE W 144R gamma 144-146 MHz, sensibilità 0,2 microV per —20 dB noise, sensib. squeltch 0,12 microV, selettività ±7,5 KHz a 6 dB, modo FM, out BF 2 W, doppia conversione, alim. 12 V 90 mA, predisposto per inserimento del quarzo oppure per abbinarlo al PLL W 144P, insieme al W 144T compone un ottimo ricetrasmettitore.

Dim. 13,5 × 7 cm.

L. 150,000



Gamma 144-146 MHz, potenza out 4 W, modo FM, deviazione ±5 KHz regolabili, ingresso micro dinamico 600 ohm, alimentazione 12 V 750 mA.

L. 102.000

CONTATORE PLL W 144P

Adatto per funzionare in unione ai moduli W 144R e W 144T, sia separatamente che contemporaneamente, step 10 KHz, comando + 5 KHz, comando —600 KHz, comando per frequenza intermedia ai 5 KHz, commutazione tramite contraves binari (sui quali si legge la frequenza), led di aggancio, alimentazione 12 V 80 mA. I contraves non vengono forniti.

Tutti i moduli si intendono montati e funzionanti - Tutti i prezzi sono comprensivi di IVA

ELT elettronica - via E. Capecchi 53/a-b - 56020 LA ROTTA (Pisa) - tel. (0587) 484734

E L T elettronica

Spedizioni celeri Pagamento a 1/2 contrassegno GENERATORE ECCITATORE 400-FXA Frequenza di uscita 87,5-108 MHz (altre frequenze a richiesta). Funzionamento a PLL. Step 10 kHz. Pout 100 mW. Nota BF interna. Quarzato. Filtro PB in uscita. VCO in fondamentale. Si imposta la frequenza tramite contraves (su quali si legge direttamente la frequenza). Alimentazione 12 V. Larga banda. Caratteristiche professionali. Pacchetto dei Contrares a richiesta.

L. 215.000

LETTORE PER 400 FXA 5 displays, definizione 10 kHz, alimentazione 12 V. L. 77.000

GENERATORE 40 FXA Caratteristiche come il 400 FXA ma senza nota e con step di 100 KHz.

L. 150.000

AMPLIFICATORE LARGA BANDA 25 WLA Gamma 87,5-108 MHz. Pout 25 W (max 35 W). Potenza ingresso 100 mW. La potenza può essere regolata da 0 al massimo. Alimentazione 12,5 V. Dimensioni 13,5 x 8,5. Completo di dissipatore.

AMPLIFICATORE LARGA BANDA 15WL Gamma 87,5-108 MHz. Pout 15 W (max 20 W). Potenza ingresso 100 mW. Alimentazione 12,5 V. Dimensioni 14×7,5. Completo di dissipatore.

AMPLIFICATORE SELETTIVO G2/P Frequenza 87,5-108 MHz (altre frequenze a richiesta). Pout 15 W. Potenza ingresso 30-100 mW. Alimentazione 12,5 V.

L. 105.000

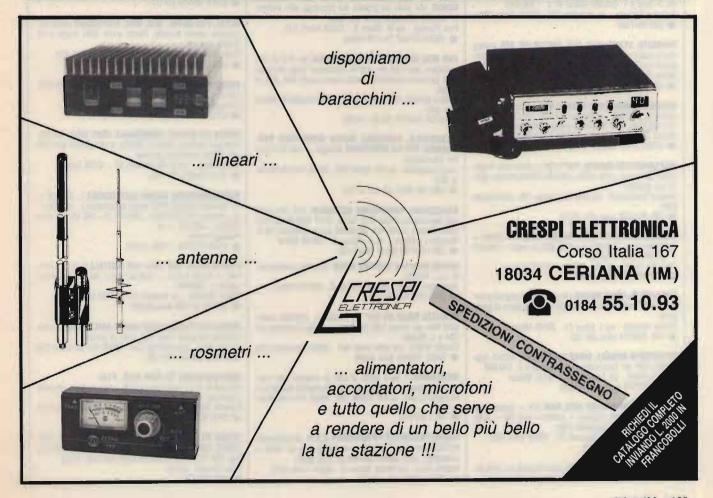
AMPLIFICATORE 4WL Gamma 87,5-108 MHz out 4 W larga banda.

L. 63.000

AMPLIFICATORE 4WA Ingresso 100 mW, uscita 4W, frequenza a richiesta.

L. 63.000

CONTATORE PLL C120 Circuito adatto a stabilizzare qualsiasi oscillatore da 10 MHz a 120 MHz. Uscita per varicap 0-8 Volt. Sensibilità di ingresso 200 mV. Step 10 kHz (Dip-switch). Alimentazione 12 V.


L. 102.000

CONTATORE PLL C1000 Circuito adatto a stabilizzare qualsiasi oscillatore da 100 MHz a 1 GHz. Uscita per varicap 0-8 V. Sensibilità a 1 GHz 20 mV. Step 100 kHz (Dip-switch). Alimentazione 12 V. Possibilità di operare su frequenze intermedie agli step agendo sul compensatore.

L. 108.000

Tutti i prezzi sono comprensivi di IVA

ELT elettronica - via E. Capecchi 53/a-b - 56020 LA ROTTA (Pisa) - Tel. (0587) 484734

OFFERTE E RICHIESTE

OFFERTE Computer

VENDO CBM64 + REGISTRATORE con manuale e imballo originale, nuovo solo 15 ore di funzionamento L. 345.000. Silvano Franza - via Gramsci 68 - 20026 Novate Milanese (Mt) 2 (02) 3567496 (ore serali)

PROGRAMMI IBM C64 Amiga Spectrum novità vendo prezzi modici o cambio con materiale OM FT7B o simili. Massimo Fabrizi · via Augusto Dulceri 110 · 00176 Roma **2** (06) 274138 (ufficio)

ECCEZIONALE METEOFAX RTX RTTY CW SSTV funz. senza Modem o interf. per CBM64 disponibili 10 dischi OM per Spec-

trum RTTY FAX CW SSTV a colori.

Maurizio Lo Menzo · largo Cirillo 10 · 00166 Roma

(06) 6282625 (ore 20,30÷21)

VENDO CASIO FP200 + 16 KRAM ESP. + manuali L. 300.000, C64 L. 350.000. Scambio programmi Amiga. Vendo Sharp PC1500 + 16 KRAM + CE150 (stamp.) + man. e solt L. 800.000 (lutto perf.).

Massimo Sernesi - via Svezia 22 - 58100 Grosseto ☎ (0564) 412518 (ore pasti)

VENDO COMMODORE 64 + registratore + Yoystick + ca. 200 giochi e programmi divisi in 22 cassette + riviste + tastiera cavi e imballi. Il lullo come nuovo a L. 400.000 Massimo Selva

3 (0541) 997682

TASTIERA PROFESSIONALE A 5/8 con voci di piano, strings, brass e monosynth, eccellente anche per studio, vendo, in zona a L. 300.000 (listino 81 L. 1.800.000). Giovanni Calderini via Ardeatina 222 00042 Anzio (RM) **3** (06) 9847506

PERMUTO STAMPANTE OKY MICROLINE 82A praticamente nuova con stampante MPS80Z, 803 o con altri tipi compatibili con CBM64 senza interfacce oppure vendo L. 400.000. Nicola Pisilli · via Mol. di Lorenteggio 15 · 20094 Corsico (MI) **(02)** 4408947 (18,00+21,00)

VENDO ILLUMINATORE 850/980 MHz L. 100.000, valvola 4x400 L. 200.000, registratore bobine 28 CM nuovo L. 700.000 tratto zone limitrofe o cambio TXRX pari valore. Alberto Carli · via Blasi 21 · 00053 Civitavecchia (RM) ☎ (0766) 27341 (20,30÷21,30)

MINICOMPUTER DIGITAL PAP11/34 perlettamente funzionante, con dischi, unità nastro, consolle. Potenziamento sistemi già esistenti.

Antonio De Benedetti · via Delle Case Basse 198 · 00129 Acilia

2 (06) 6057434 (non oltre le 22)

VENDESI COMPUTER MSX PHILIPS VG8020, 64 KRAM + 16 KRAM video, 32 KROM a lire 200.000, in regalo 1 Yoystick + cassetta con 10 giochi.
Giuseppe Pelotti · via M.L. King 4 · 40132 Bologna

(051) 403236 (solo serali)

SINCLAIR QL COME NUOVO con programmi originali e carlucce vuote vendo a lire 250.000 (più eventuali spese di spedi-

Andrea Antonini · via I. Nievo 21 · 20145 Milano 2 (02) 4698714 (sino alle 23)

STAMPANTE MPS801, DRIVE FLOPPY disk, VIC541, registratore C2N per Commodore C64 vendesi a L. 530.000. Amedeo Bollini · via Teodosio 33 · 20131 Milano **2** (02) 234579 (oppure 2363351)

CEDO PET COMMODORE 3032 RAM 32k + doppio drive 3040 + reg. cassette originale + software, vario OM + utility oppure permuto con materiale radio. Ermete Guerrini - viale Pisacane 24 - 40026 Imola (80)

(0542) 28353 (ore pasti)

ECCEZIONALE SVENDITA di 30 ottimi dischetti per C64 pieni di games, utility, didattici, musica ecc. (su entrambe le fac-

ciale). Il lutto a lire 50.000. Piero Discacciali · via Paganini 28-B · 20052 Monza (MI) © (039) 329412 (festivi o serali)

VENDO ZX SPECTRUMPLUS 48k stampante interfaccia 1, microdrive, libri e programmi lire 500.000 Giuseppe Martore · via Micca 18 · 15100 Alessandria

VENDO COMMODORE 64 più registratore come nuovo L. 300 000

Francesco Sommese · via Mugnaio 14 · 80030 Cimitile (NA) 2 (081) 8239474 (ore pranzi)

COMPUTER IBM COMPATIBILE 512k scheda videografica, 2 driver, video monocromalico, tastiera regalo software L. 1.200.000 trattabili tutti gli integrati Zoccola. Clemente Palladini · piazza Accursio 4 · 20155 Milano

☎ (02) 368481 (20÷21)

2 (0131) 43198 (ore pasti)

VENDO PERSONAL COMPATIBILE IBM XT video colore media risoluzione. Accello eventuale cambio per portatile VHF in ottime condizioni... Alfare. Claudia Longhi · via Paruta 74 · 20127 Milano ☎ (02)2567251 (19÷22)

DISPONGO DEL MEGLIO DEI PROGRAMMI PER ZX SPECTRUM radioamatoriali tulti funz. senza modem o int. G1FTU, SSTV, RTTY, CW, 3 in 1 e il famoso Fax, garantiti ist.

Mario Bartuccio - via Mercato S. Ant. 1 - 94100 Enna ☎ (0935) 21759 (9÷13) (16÷19,30)

RTTY 2/3 DEMODULATORE TX/RX ELETTROPRIMA VENDO. Mai usato ma provato, per passaggio altro sistema, L. 160.000. Consegno pers. sud Italia.

Pino Plantera · via B. Vetere 6 · 73048 Nardò (LE)

☎ (0833) 811387 (14÷16 feriali)

PER MSX DISPONGO DI PROGRAMMA per RTX di CW; contatterei altro OM per scambi esperienze cerco drive per MSX (se buona occasione). Vendo corso Scuola Rad. Elett. di TV.BN

Stefano Borroni · via De Amicis 25 · 62010 Trodica di Morrovalle (MC)

(0733) 564620 (12,30+13,50)

INCREDIBILE. FACSIMILE SENZA INTERFACCE PRO-GRAMMA PER LD SPECTRUM omaggio ai soci del Girus. Per informazioni

Luca Evangelista · via Vitt. Veneto 390 · 80058 Torre Annunzia-

2 (081) 8614017 (24 ore su 24)

ECCEZIONALI PROGRAMMI METEOFAX, RTX, fac simile con caricamento Screen RTX, SSTV, RTTY 1000 Baud, funz. senza Modem e CW RTX, allrettanto per lo Spectrum 48 k. Maurizio Lo Menzo · via L. Porzia 12 · 00166 Roma **☎** (06) 6242766 (serali 18,30÷20)

VENDO MONITOR FOSFORI VERDI 12 pollici, professionale, a L. 150.000.

essandro Malpici - via Del Bargeo 6 - 50135 Firenze ☎ (055) 608240 (19÷21)

REALIZZO DRIVE DA 3,5" per Amiga a L. 250.000, espansioni Ram per Amiga 500; interfaccie parallele Centronic per C64 a L. 60.000.

Claudio Redolfi · via delle Grole 16/7 · 35043 Monselice (PD) 2 (0429) 780339 (solo serali)

INCREDIBILE il Girus regala ai soci in omaggio tulti i pro-grammi esistenti in campio radio. Per informazioni rivolgersi a: Evangelista Luca - via Vilt. Veneto 390 - 80058 Torre Annunziata (NA)

3 (081) 8614017

VENDO PACCHETTO PROGRAMMA C.A.D. precisamente: AUTOCAD versione 2.17b della Autodesck gira su I.B.M. e compatibili, sono quattro dischetti da 5,25 pollici. Antonio Rico - via Monte Bianco 9 - 60054 Vasto (CH)

☎ (0873) 73055 (13÷14,15)

PER ZX SPECTRUM dispongo di molti radioprogrammi: G1FTUSSTV, G1FTU RTTY, G1FTU CW, tre in uno, Meteolax ecc. garantiti al 100% istruzioni in italiano, tutti originali. Mario Bartuccio · via Mercato S. Ant. 1 · 94100 Enna ☎ (0935) 21759 (9÷13 e 16÷19,30)

VENDO C64 + REGISTRATORE + 14 libri + 50 cassette già registrate per basic e altri programmi. Se vi interessa tratto di persona e non con perditempo. Intesi. Sorpresa. Gino Maini · via Garibaldi 3 · 43047 Pellegrino (PR) (ricevo dalle ore 2 alle 17)

OFFERTE Radio

VENDO OMOLOGATO ELBEX TRANSIT 34 34C HAM FM T CB Ashak 1420 AM 40 CH 5 W + rosmetro Intek + 1 microfono preamplificato + 5 metri di cavo RG 58, il tutto a lire 380.000, non trattabili.

Daniele Tonon · via Altinia 21 · 30030 Favaro Veneto (VE) ☎ (041) 631719 (13,30÷17,30)

1200 W FINALE FM ELECTRONIC CENTER. Pilotaggio solo 5 W. Vendo L. 1.500.000 non funzionante. L. 2.500.000 revisionato con valvole nuove. Vendo altro mat. FM. Alberto Erasmi · via Soglia 1/1 · 42100 Reggio Emilia ☎ (0522) 557475 (ore 17÷19,40)

VENDO TOKAY PW 5024, WATTMETRO-ROSMETRO TENKO, adaltatore per uso portatile a mano, alimentatore reg. 25 amp. ecc. ecc. Tutto lire 150.000 tratt.

Alberto G. Bianchi - via Reg. Margherita 51 - 15060 Bosio (AL) 2 (0143) 684184 (24 h.)

OCTAL, PRE-OCTAL, BLU, ORO, A SPECCHIO vendo vecchissime valvole assorlite. Vendo anche 6080 nuove a lire 20.000 ciascuna.

Guido Gardinali - Borgonuovo 35 - 27038 Robbio (PV) (0384) 62129 (lasciare recap.)

VENDO FT102 COMPLETO DI SCHEDE AM, FM e filtri SSB.

CW; L. 1.000.000 trattabile. Cotanelli Carlo · via Aldo Moro 4 · 60035 Jesi (AN) (0731) 204435 (dalle 20 in poi)

VENDO RX NAVALE UNIVERSALE IRME MOD. RXU70, copertura continua, 100 kHz, 28 MHz, in otto gamme alim. 220 volt. Ottime condizioni generali.

Enrico Alciati - corso Re Umberto 92 - 10128 Torino ☎ (011) 504395 (18÷22)

VIDEOCONVERTER NUOVA ELETTRONICA L. 400.000 + ss. Ricevitore Marelli RP32 senza alimentatore L. 150.000 + ss., ricevitore RS ESM180 L. 600.000 25-180 MC. Scanner SX200 L. 400,000 + ss. Pierluigi Pardini

☎ (0584) 913266 (17,30÷20,30)

FT207R PALM. VHF 144 ÷ 148 DIGITALE 3 W + caricabatt. + Nicad nuova + manuale istruz. ital. + 2 antenne, svendo L. 260.000. Marco Mannelli · via Badaloni 56 · 57100 Livorno **☎** (57100) 401809 (ore 20,30)

VENDO RTX YAESU FT200 BANDE AMATORIALI, Comunications computer Tono 350, tratto di persona. Luciano Biagi · viale Dei Tigli 22/D · 38066 Riva del Garda (TN) (0464) 520318 (18 + 20)

AMPLIFICATORE TV FIAR MOD. P144

AP2 banda IV e V senza alimentatore vendo al miglior offerente o permuto con piccolo tornio anche da sistemare Edoardo Scattolin · via Col di Lana 11 · 30170 Mestre (VE) (V41) 928588 (ore pasti)

VENDO RTX CB SAMURAI: 1355 CAN. AM, FAM, SSB, CW/8W, 30W/Rosm. Wattm. frequenzim. incorporati. Alim. Zodiac 10A 13.8V nuovo Mic da base apremplif. Astral. Luca Porrozzi - Roma

3 (06) 7591764

VENDESI RICETRASMETTITORE VHF AZDEN PCS 3000 ampliabile 140 150 MHz ottimo stato lire 400.000 non trattabili. Fabrizio Barenco · via Monte Darmolo 4 · 14038 Sarzana (SP)

(0187) 625956 (dopo ore 20)

VENDO RX JRC NRD 515 con n. 2 filtri CW L. 2.350,000, RX Drake R4B L. 400.000, RTX Trio TS 530 S L. 1.200,000, URM 25 L. 300.000, RTX PRC9 L. 275.000, RTX IC 740 L.

Lucio Pagliaro · via Gino Bonichi 10 · 00125 Acilia (RM) ☎ (06) 6052058 (ore 20)

VENDO VALVOLE ANNI '30-'40-'50 nuove d'imballo serie

americane e europee. Francesco Igore - via Dei Liburni 14 - 00185 Roma ☎ (06) 493173 (20,30÷22)

CERCO SCHEMA O MANUALE RX MARCONI MERCURY TIPO 1017 con 5 gamme = kHz 15, 40, 100, 250, 600, 1600, 1600, 4 MHz. Ottimo per RTT. A chi interessa posso barattarlo con altro RX Surplus.

Emilio Torgani · lungo Tanaro Solferino 7 · 15100 Alessandria ☎ (0131) 446874 (ore ufficio)

VENDO INTERFACCIA TELEFONICA DTMF SIMP-DUP NUOVA completa di cornetta interionica L. 450.000, intratt. Decodifiche DTMF digitali quarzate L. 90.000. Andrea Sbrana · via Gobetti 5 · 56100 Pisa ☎ (050) 29842 (13÷14)

VENDO LINEA COMPLETA DRAKE, T4XC, R4C, MS4, usata solo in ascolto con imballo originale, prezzo interessante. Franco Bertò · via Kennedy 2 · 39055 Laives (BZ) (0471) 954199 (8,15÷12 15,30÷19)

VALVOLE MILITARI VENDO: 6AC7, 6SH7, 12A6, 12SG7, 6H6, E1148, 6K8, eccetera L. 6.000 cadauna, esclusa spedi-

Guido Villa · viale S.M. del Carso 12 · 20144 Milano (02) 4816291 (dopo ore 20)

VENDO ICOM 745 + HM15 + 2 MAN. completo filtri RX. Cop. cont. RTX AM CW SSB RTTY come nuovo a L.

1.600.000. Anche contrassegno. Cerco Icom IC SM8 15 PS 3. SWL1895, Mauro Spano · via Eucalipti 3 · 04024 Gaeta (LT)

☎ (0771) 464724 (14÷16 e 21÷22)

TRANSVERTER 144-1296 OE9PMJ nuovo montato e tarato dal costruttore L. 350.000. Icom IC202 da tarare sintonia con manuale 1 150 000

IKOAWO, Gianfranco Scinia · via Del Mercato 7 · 00053 Civitavecchia (RM)

VENDO RICEVITORE YAESU FR67 0+30 MHz in oltimo stato; Yaesu FT77 (da riparare in TX); ant. direttiva 5 elem. PkW 27÷30 MHz in perfetto stato. Silvano Bertolini · via G. Marconi 54 · 38077 Ponte Arche (TN)

☎ (0465) 71228 (19÷22)

HAM MULTIMODE 3 L. 300.000, portatili Sony 2 canati impermeabili L. 150.000 la coppia, amplificatore lineare 100 W con amplif. di ricezione L. 100.000, antenna mt. 7 L. 70.000. Ugo Mantellino - via Buonarroti 29 - 28066 Galliate (NO)

(0321) 862139 (solo serali)

FT101ZD CON 11 + 45 MT. INUSATO L. 1.100.000. FT203R 140→150 MHz con DTMF L. 350.000. AF9 THB L. 200.000. VIC 20 con Eprom per RTTY-CW ecc. L. 130.000. SP520 L. 50.000. IC751 A L. 1.900.000. Sante Pirillo · via Degli Orti 9 · 04023 Formia (LT) ☎ (0771) 270062

VENDO PER AMPLIAMENTO STAZIONE: Transverter 144÷1296 Puma Bit Zero DX All Mode in 0÷1 W Out 1,2 W. Un mese di vita. (Nuovo) qualsiasi prova. L. 450.000. Mario Zunino · via Mignone 37 · 17100 Savona ☎ (019) 822233 (12,45÷13,30 e 18÷20)

VENDESI AMPLIFICATORE FM 88 ÷ 108 MHz da 1 kW

Pier Franco Gollero · via Blana 10 · 13058 Ponderano (VC) **(**015) 543995 (ore ufficio)

PERMUTO, VENDO TM ORIGINALI USA con altri manuali tecnici tipo Apa APM APN APS ARC ARN ARR BC C CV DY

EE FRR GRC I ID KY ME OS PE PP PRC R RT SCR TS. Tullio Flebus - via Mestre 16 · 33100 Udine ☎ (0432) 600547

VENDO FT ONE, ULTIMA SERIE, Full Optionals, per molivi di spazio, o permuto con apparato più piccolo. Sergio Sicoli · via Madre Picco 31 · 20132 Milano

2 (02) 2565472 (solo serali)

CAMBIO OSCILLOSCOPIO Scuola Radio Elettra con RX G4 216 Geloso, se di persona regalo anche libri dal 1939 come Handbook, Radio Riparazioni + schemario 1939-43. Giulio De Riso · via Roma 5 · 80057 S. Anlonio Abate (NA)

VENDO PERSONAL COMPUTER APPLE IIC completo di monitor, mouse, libri, riviste dedicate e manuali del valore di L. 1.000.000 oppure cambio con RTX C.B. portatile o fisso oppure con radiotelefono tipo Goldatex 0012 o Lafayette 009 di pari valore o eventuale conguaglio. Fulvio Zanuso · via A. Diae 8r · 17048 Valleggia (SV) ☎ (019) 882508 (12,30÷15 e 17,30÷22)

VENDO VIDEOREGISTRATORE SLF1 SONY con tutti gli accessori a L. 1.500.000. Nº 2 antenne per baranautica L. 25.000 l'una. Nº 2 RTX Maxon portatili VHF completi L. 500.000 la coppia. Flavio Bonato · via G. Bonaguro 5 · 36061 Bassano del Grappa

☎ (0424) 27341 (18,00÷22,00)

VENDO YAESU 757 SINTONIA CONTINUA ancora nuovo con imballo e microfono in dotazione L. 1.500.000. Alimentatore della Zetagi modello 1120-S con 20V e 25A L. 200.000. Microfono Turne + 3B da tavolo L. 150.000. Eros Savio · via Europa 13 · 37060 Bagnolo Nogarole Rocca

☎ (045) 7920185 (8÷22)

VENDO RX TX ICOM 720A SINT. CONT. perfette condizioni L. 1.300.000.

Antonio Caputo · 15048 Valenza Po (AL)

(0131) 951546 (ore pasti)

RF SPECTRUM ANALYZER 03/1GHz

Nuovo modello professionale di analizzatore di spettro, fornito in due versioni: (03/1GHz: 10 ÷ 860 MHz, 03/1GHz B: 10 ÷ 1000 MHz)

Interamente rinnovato nella sezione di alta frequenza (dinamica >60 db), e dotato di lettore e Marker quarzato e rivelatore audio per ascolto del segnale ncevuto, nonchè di monitor 12" a fosfori verdi a media persistenza.

Per le elevate caratteristiche, si pone nella fascia dedicata all'uso professionale nell'ambito di tarature e applicazioni elettroniche di alta qualità.

Si affianca ai precedenti modelli semiprofessionali (dinamica >50 db) già in commercio forniti in tre versioni:

01 36V/3C: 10 ÷ 360 MHz

01 36UH/3C: 10 ÷ 360 MHz 470 ÷ 860 MHz

01 36UH/3C Special: 10 ÷ 860 MHz

con opzioni D (lettore di frequenza) e opzione audio (rivelatore del segnale ricevuto) con visione su qualsiasi monitor, TV e oscilloscopio.

UNISET - casella postale 119 - 17048 VALLEGGIA (SV) tel. 019/22407 - (prenderà il n. 82.48.07). Dal 1º gennaio 1988, risponderà anche il numero 019/88.06.24

ALCUNE APPLICAZIONI:

Consente l'immediata visualizzazione delle emissioni spurie e della qualità di trasmissione, in particolare del contenuto armonico, dei prodotti di intermodulazione presenti nei circuiti a più portanti. Resta pertanto possibile la messa a punto di qualsiasi circuito accordato o a larga banda operante in alta frequenza, mediante l'osservazione contemporanea delle emissioni indesiderate e della portante fondamentale. Inoltre consente la valutazione percentuale e qualitativa della modulazione, il funzionamento e la resa degli oscillatori, liberi o a quarzo, mediante l'impiego di antenna ricevente fornisce la visione panoramica o espansa dei segnali presenti in banda. Risolve pertanto qualsiasi problema inerente alla costruzione, manutenzione, progettazione di apparati di alta frequenza, sia trasmittenti che riceventi.

TELEREADER CWR 685/E L. 1.200.000. VFO FV-901/DM L. 200.000. Accordatore Daiwa CNW-418 L. 220.000. Accordatore Milag AC1200 (new) L. 240.000. Kenwood TM-2550/A. Yaesu FTC-1540/A

2 (0331) 669674 (serali)

VENDO YAESU FT23R 2M agosto 1987, modello ultimo con scanner imballato manuale italiano a L. 450.000. Fabio Robbioni · via Respighi 1 · 20127 Milano (02) 77402537 (9.00÷16,00)

VENDO PREZZO DI REALIZZO Modem AMT-1 A.E.A. per RTTY-Amtor, CW, Ascii interfaccia RS232 o TTL, manuali italiano inglese lire 20.000 trattabili.

Fabio Provedel - viale Dei Mille 20 - 31100 Treviso 2 (0422)543065 (13÷15 19÷21)

VENDO GRUNDIG SATELLIT 2000 nero perfetto con schema manuale imballo e convertitore per SSB a lire 250.000 cerco schema RX Lafayette TW1200 o Marc NR52F1. Filippo Baragona · via Visitazione 72 · 39100 Bolzano (0471) 910068 (ore serali)

VENDO TELEREADER CWR-860 video demodulatore RTTY-CW - Amtor. Cerco RTX HF NEQ CQ110 - Kenw. TS520 -TS820 - TS530 - TS430 - TS830 Yaesu FT301 - FT101 - FT902 Allas 350-XL. Alberio

(0444) 571036

VENDO MT3000B PHILIPS 4407 HAM EG, HM 207 freq. Over Matic Osker 200 DVC, 32 AF8S Noise Blan per Drake PS per Drake antenna Telget Variac ricevitore marino. Giancarlo Bovina · via Emilia 64 · 04100 Latina ☎ (0773) 42326 (serali)

VENDO PALMARE KENWOOD TH 215 E nuovo L. 400.000, Ktokuto in ottimo stato L. 200.000, alcune antenne per la 27 e 144 MHz

Silvia Mario · via Filippo Rega 18 · 80132 Napoli ☎ (081) 8841014 (20÷21)

Giovanni Tumelero · via Leopardi 15 · 21015 Lonate Pozzolo

25W ancora imballato corredato di alimentatore e antenna + Michele Tito · via Raffaele Testa 179 · 80147 Barra Napoli (NA) **☎** (081) 7526333 (19÷22)

VENDO RICETRASMETTITORE WHF, FM Yaesu, FT270R.

VENDO COMPLETO YAESU 1 ricetrasmettitore FT757GX, 1 accordatore automatico FC757AT, 1 alimentatore 220V FP757HD, 1 microtono, tutto quasi nuovo tel. 039-383990. Gianfranco Gambero via Parini 11 - 20052 Monza (MI) 2 (039) 383990 (pasti)

VENDO PALMARE VHF 140 ÷ 150 MHz Yaesu FT209RH 5W. 10 memorie visore LCD, condizioni perfette con imballo originale. Regalo microfono esterno, lire 400.000.

Lello Bove · via Papini 29 · 80046 San Giorgio a Cremano (NA) **2** (081) 7714412 (ore 19÷21)

VENDO CAUSA PASSAGGIO AD OM RICEVITORE HAM-MARLUND HQ 129X cop. continua 500kHz 30MHz con BFO buono stato L. 100.000. Antenna attiva Dressler ARA30a L.

Renzo Broccaioli · via Donatori Sangue 10 · 46040 Rodigo

2 (0376) 650305 (17 ÷ 20)

VENDO GRID-DIP HEATHKIT 1.6-250 MHz, contenitore metallico, a transistor, montato dalla ditta di produzione 87, nuovo, completo di tutto, L. 200.000.

11SRG, Sergio 2 (0185) 731868

VENDO RTX HEATHKIT HW9 QRP 10 12 15 18 20 30 40 80 m., antenna verticale 10 15 20 m.

Giancarlo Fassetta · via San Rocco 14-A · 10060 San Secondo Pinerolo (T0)

(0121) 500624 (20+21)

VENDESI RX DRAKE R7 accessoriato come nuovo, RX Drake DSR2 pertetto. Sistema ricezione meteosat con sat. meteorologici, videoloto e carte met. completo di conv. Claudio De Sanctis · via Luigi Dulci 18 · 50124 Firenze ☎ (055) 229607 (serali)

Novità per Radioamatori

Alla 15ª elettroexpo di Verona (Mostra Mercato Elettronica - Radiantismo - Strumentazione - Componentistica), sono stati presentati due nuovi prodotti di grande interesse per i Radioamatori.

RICETRASMETTITORE HF FT-747 RICETRASMETTITORE HF IC 781

Caratteristiche

- Gamme di frequenza: 160, 80, 40, 30, 20, 17, 15, 12, 10 metri
- · Tipi di emissione ricevibili: AM, CW, LSB, USB e FM (opzionale)
- Potenza di uscita: 100 Wpep in SSB e CW; 25 W in AM
- RX a copertura continua da 100 kHz a 30 MHz
- Sintonia a passi di 25 Hz o 2,5 kHz, selezionabili in SSB e CW; 1 kHz o 10 kHz, selezionabili in AM
- Alimentazione: 13,5 V_{cc}, 19 A max (100 W)

Caratteristiche

- · RTX da 1,8 a 30 MHz con RX a copertura continua da 100 kHz a 30 MHz
- · Modi di emissione: SSB, CW, RTTY, AM, FM
- Sintonia a passi di 10 Hz o 1 kHz selezionabile
- Potenza di uscita: 150 Wpep in SSB e
- Alimentazione: 220 V_{ci}
- · Possibilità di Semi-Break-in, oppure Full-Break-in
- · Accordatore d'antenna automatico incorporato
- 100 memorie, più 2 canali prioritari
- · Scansione tra le memorie

Ambedue gli apparecchi annunciati sono già disponibili presso la RETE COMMERCIALE MARCUCCI.

VENDO DIPOLO FILARE 11-45 caricato 10 mt. Cerco oscilloscopio HC o doppia traccia. Variac 2000W antenna verticale 10÷80 mt, e tre elementi 10÷15÷20. Rotore.

Antonio Marchetti · via S. Janni 19 · 04023 Acquatraversa Formia (LT)

☎ (0771) 28238 (sab., dom.)

VENDO MONITOR OLIVELLI 5' nuovo imballato L. 35.000; micr. Yaesu nuovo MD-1 L. 140.000; motorini passo-passo, nuovi imballati L. 10.000 cad.

Massimo Marcomini · via Leopardi 12 · 20052 Monza (MI) **2** (039) 329895

VENDO RICEVITORE MARC UR82F1 gamma OM OC OL VHF UHF due mesi di vita come nuovo con garanzia L.

Guido Guidani · div. Cremona 28 - 48011 Allonsine (RA) 2 (0544) 82315 (ore pasti)

VENDO RICETRASMETTITORE 27 MHz Ham International mod. Viking 2160 CH AM/FM comprato aprile 4W di uscita come nuovo a prezzo da concordare.

Roberlo Lerario · via De Gasperi 100 · 70021 Acquaviva delle Fonti (BA)

2 (080) 762806 (14 in poi)

2 (02) 6142403 (20,30+22,00)

VENDO AMPLIFICATORE TV FIAR MOD, 144 AP2 banda IV senza alimentatore ADR3 Fantini mai usata Oscar SWR200. Il tutto al miglior offerente o permuto con piccolo tornio. Edoardo Scattolin · via Col di Lana 11 · 30170 Mestre (VE) 2 (041) 928588 (ore pasti)

VENDO RX FRG9600 COMPLETO: consolle LC965 amplifi-catore WA965 convertitore HFFC965 scheda video, tutto in ga-ranzia Marcucci solo in blocco a L. 1.400.000. Giuseppe Babini via Del Molino 34 - 20091 Bresso (MI)

VENDO PALMARE 2m ICOM IC2E completo del suo caricabatteria a L. 300.000 trattabili. Vendo inoltre alim. 12,6V 5A

Massimo Milazzo · via Vitt. Veneto 106 · 91011 Alcamo (TP) ☎ (0924) 23036 (dopo le 21)

VENDO RICAMBI ORIGINALI nota linea Geloso: alimentatore G4/229 completo, mobili per ricevitore G4/216, mobili per trasmetlitore G4/228, valvole nuove ecc... prezzi interessanti. Luciano Silvi - via Gramsci 30 - 62010 Appignano (MC) ☎ (0733) 579534-57209 (ore serali)

VENDO ANCHE SEPARATAMENTE RTX Midland Alan 88S L. 250.000, alimentatore 13,6V 5+7A L. 25.000, amplificatore d'antenna L. 25.000, il tutto a lire 300.000. Mauro Ottone · via Maestra 243 B · 15030 Terranova Monf.lo

(0142) 805182

VENDO COLLINS R390A copertura continua sintonia digitale in ollime condizioni completo di cofano e manuale L. 650.000. Antonio Ciani Passeri · via Torremuzza 54 · 00119 Ostia Antica

2 (06) 5651850 (dopo le 19)

VENDO: SX-28, RX 0,5 ÷ 42 MC HALLICRAFTERS; R-395, RX 01÷30 MC; R-19J, RX 70÷100 MC; T-14J, TX 70÷100 MCF, M. 250W; BC61 OE, TX 400W. Tutti con manuali e ac-IK1CFJ, Biagio Pellegrino · via Nazionale 456/4 · 16039 Sestri

Levante (GE)

(0185) 47067 (solo serali)

ATTENZIONE TX 88 ÷ 108 PLL CONTRAVERS esterni L. 120.000. 4 dipoli Aldena professionali come nuovi; metà prez-zo. Codificatore stereo Nordeccri L. 240.000, lin. 80 W L. 190,000.

Fabrizio - Abbiategrasso (MI)

(02) 9464191 (ufficio)

CAMBIO FT1012D COME NUOVO con ricevitore copertura continua tipo Yaesu 8800 R2000 IC70 IC71 o simili. Gildo Gessolo · via Stazione 15 · 14057 Isola d'Asti (AT) 2 (0141) 958794 (solo serali)

VENDO KENWOOD "TS 130S". NUOVO, VFO esterno 120, accordatore AT130, con imballi origin. e manuali italiani. IN3RZY, Dieter Monauni · via Alto Adige 22 · 39100 Bolzano (0471) 972585 (uff.), 974334 (casa)

VENDO ANTENNA PLC BISONTE/S. (Sigma) per i 45 m. + cavo RG 58 nuovaaaal L. 40.000 + RP6 Zelagi (Reducer PW). Pierluigi Bologna · via Madonna di Pettino · 67100 L'Aquila 2 (0862) 311142 (14+15 e 20,30+22) VENDO KIT NUOVA ELETTRONICA da rioarare LX 591 (RTX 27 MHz) LX 503 (VFO CB 300ch) completi di mobiletti metallici 65.000 cadauno.

Domenico Lepore · via Dell'Epomeo 348 · 80126 Napoli-

2 (081) 7283190 (10+12 e 20,30+21)

ICOM 201 144 FM SSB 1 0 10W sintonia continua L. 550.000 2 interioni L. 40.000 Zodiac portil. e 2CH 60.000 lin. mob 160 W SSB 80W AM L. 50.000 tutto perfet, funzionante, Giorgio Rossi · Fornaci Formigosa 3 · 46030 Mantova **(0376) 632887**

VENDO RX R2000 KENWOOD 0,150-30 MH. Convertitore originale entro contenuto 118/174 MH. Prossoché nuovi imballi accessori manuali L. 1.250.000. Renato Bjancucci - via Achille Grandi 1 - 55048 Torre del Lago

2 (0584) 350441 (solo serali)

VENDO PALMARE YAESU FT209RH 5W visore LCD 10 memorie 140-150 MHz condizioni perfette regalo microfono esterno L. 400.000 intrattabili grazie!!! Lello Bove - via Papini 29 - 80046 San Giorgio a Cremano (NA) ☎ (081) 7714412 (19÷21)

CAMBIO RTX CB LAFAYETTE LMS200 + corso di inglese completo di lutto con RTX radioamatoriale di qualsiasi marca purché funzionante.

Davide Savini · via Bartolenga 57 · 53041 Asciano (SI) **☎** (0577) 718647 (ore pasli)

VENDO 2 LINEARI 10W 144MHz ideali per palmari, porta-batterie Icom ICBP4, microaltoparlanti ICHM9, elementi NICD per IC2E, se in blocco prezzo discreto. Roberto Barina · via Cappuccina 161 · 30171 Mestre (VE) ☎ (041) 930954 (dopo le 19)

VENDO FRG9600 YAESU RICEVITORE 60-900 MHz praticamente nuovo completo di convertitore FC965 500kHz 60MHz L. 700.000.

Franco Pozzetti - via XX Settembre 15 - 22100 Como (031) 260604 (ore pasti)

VENDO MISURATORI DI IMPEDENZA Rhode Schwarz 30 - 2400 MHz; telescrivente Olivetti solo RX; memorie Eprom 27256 e 2764.

Fabio Bovero · via Foscolo 37 - 20059 Vimercate (MI) ☎ (039) 680081 (20÷20,30)

VENDO PER RINNOVO STAZIONE anche separatamente Multimodell L. 180.000 e International L. 50.000. Alessandro Stenti - viale M. F. Nobiliore 123 - 00175 Roma 2 (06) 7487684 (ore serali)

VENDO LINEA DRAKE C CON FILTRI CW perfette condizioni qualsiasi prova, non effettuo spedizioni escluso microfono serie valvole ricambio L. 1.600.000. Umberto Brunetti · via Rosa Luxemburg 21 · 47040 Ospedalet-

2 (0541) 656428 (ore pasli)

to di Rimini (FO)

CEDO HQ 140, RX O.L.M.M.O. 1750, vari RX civili anni 50-60. Cerco FUNK450, Surplus VHF fino 250 MHz. Luciano Manzoni · via D. Michel 36 · 30126 Lido Venezia ☎ (041) 764153 (15÷17 e 20÷23)

ANTENNA AMPLIFICATA 0-30 MHz Sony AN1 + Control Box L. 100.000 RX Sony ICF 2001 D 100 kHz 30 MHz 32 memorie Scanner + FM 76-108 + AIR 116-136 L. 600.000. Gigli Stefano · via E. Toti 13 - 60123 Ancona ☎ (071) 36845 (20,30÷22,00)

RADIO ANTICHE UNDA MOD. ST5 ANNO 1935 L 100.000. Telefunken mod. T8 anno 1948 5 gamme con 11 mt. L. 150.000. I.R.E.T. anno 1950 OM 0C1 0C2 0C3 L. 50.000 funzionanti monitor SSTV con tubo 9' L. 250.000 n. sp. Luciano Tonezzer · via Villa 139 · 38052 Caldonazzo (TN) **3** (0461) 723694

VENDO IMPIANTO COMPLETO RICEZIONE Meteosat-2 cerco Turner+3 da tavolo. Angelo Picci · via Don Minzoni 3 · 53020 S. Giovanni d'Asso

2 (0577) 823114 (16,30÷20,30)

CAMBIO YAESU FT23 (140-173 MHz) completo di imballi, garanzia, alimentatore con ricevitore digitale da 0 a 30 MHz, solo in zona.

Fabrizio Terranova · strada Pino To.se 23 · 10020 Baldissero Torinese (TO)

2 (011) 512884 (ore ufficio)

DIGITAL ECHO 128K

La vostro voce acquisterà un effetto meraviglioso con questa apparecchiatura che è costruita con nuove tecnologie percui è in grado di fornire
particolari prestazioni.

1) Ritardo di eco molto lungo, regolabile fino a 2 secondi con il comando
SPEED che spazia da un riverbero, ad un eco, ad una effettiva ripetizione
del segnale modulante.

Assoluta fedeltà del segnale modulante. Possibilità di regolare da una a più ripetizioni con il comando REPEAT. Possibilità di regolare la quantità di eco che va a sommarsi al segnale modulante.

Possibilità di riascoltare ciò che è stato regolato inserendo un alto-

parlante esterno nel jack posteriore.

6) Il DIGITAL ECHO è anche un preamplificatore microfonico.

Caratteristiche tecniche:

Banda passante 300 ÷ 12000 Hz lineari Ritardo di uscita regolabile da 0,1 a 2 sec. Livello di uscita regolabile da 0 a 2 V Potenza amplificatore BF 4 W su 8 Ohm Capacità della memoria 128Kbit

Oltre al materiale di nostra produzione disponiamo di apparati omologati

MIDLAND

ALAN 34S AM-FM ALAN 68S AM-FM ALAN 69S AM-FM ALAN 67S AM-FM ALAN 88S AM-FM-SSB

M 34S AM FM 680 AM-FM FM 500S AM-FM

FLBEX

IRRADIO MC 700 AM-FM MC 34 AM MASTER 34 AM-FM-SSB

INTEK

Apparati non omologati

PRESIDENT JACKSON AM-FM-SSB 226 CH SUPERSTAR SS 360 FM AM-FM-SSB-CW 120 CH

FILTRI DUPLEREX VHF 7 CELLE

Separazione porte 70 dB Prezzo speciale L. 150.000

ES 50 DECODER DTMF
Telecomando a 5 relé con codice di accesso
Tipo di comando SET/RESET o IMPULSIVO

La ELECTRONIC SYSTEM è organizzata per vendite in corrispondenze a condizioni PIÙ CHE VANTAGGIOSEI

VIA DELLO STADIO ANG. VIALE G. MARCONI - 55100 LUCCA

- TEL. 0583/955217

ES 103

MICROTRASMITTENTI IN FM

Si tratta di trasmettitori ad alta sensibilità ed alta efficienza. Ognuno di questi trasmettitori è a taglia ridotta, tanto da essere nascosto nel palmo della mano, gli usi di detti apparati sono illimitati, affari, vostro comodo, per preve-nire crimini, ecc. la sensibilità ai segnali audio è elevatis-sima con eccellente fedeltà. Per i modelli a celle solari è illimitata l'autonomia in presenza di luce. La sua discrezione è tale da essere usato senza infrangere la privacy di altre persone.

Sono disponibili vari modelli con un raggio di copertura da un minimo di 50 metri fino a 4/5 km, la frequenza di funzionamento va da 50 a 110 MHz.

TX I dimensioni 16×9×6 millimetri (comprese le batterie).

SISTEMI DI AMPLIFICAZIONE

Incrementano notevolmente la portata di qualunque telefono senza fili, vari modelli disponibili, con diversi livelli di potenza, trovano ampia applicazione in tutti i casi sia necessario aumentare il raggio di azione; potenze da pochi watt fino ad oltre 100 W.

BLACK-OUT

Un problema risolto per sempre! A quanti non è successo di perdere preziose ore di lavoro per una improvvisa interruzione nell'erogazione di energia elettrica o per una banale caduta di tensione?

U.P.S. - 150-250-500-1000 W - Tensione di alimentazione 220 V \pm 10% - Tensione di uscita 220 V \pm 3% a pieno carico - Frequenza di uscita ottenuta tramite oscillatore "Proportional Oven" 50 Hz - Caricabatterie automatico incorporato - Visualizzatore stato carica batterie - Tempo intervento: istantaneo - Rendimento 82% - Disponibili versioni LOW COST - Settori di applicazione: computer, teletrasmissioni, registratori di cassa, ecc

GPO BOX 168 - 91022 Castelvetrano

TELEFONO (0924) 44574 - TELEX 910306 ES - ORARI UFFICIO: 9-12,30 - 15-18

FREQUENZIMETRO IAJ 6 NIXIE + KS107 L. 150.000. Linea FRDX 500 + FLDX 500 L. 700.000. Ponte radio UHF. Yaesu FT250 + FP250. Monitor SM220 + panoramico. TS660/S 30+30 ch. AM L. 80.000.

Giovanni Tumelero · via Leopardi 15 · 21015 Lonate Pozzolo

(0331) 669674 (serali)

VENDO ANT, CB DA TETTO RINGO, Vendo TV B/N e TV colori. Vendo autoradio nuova imballata. Se interessati cambio con baracchino CB (a parilà di valore).

Luciano Burlando - via Bellini 2 - 15100 Alessandria (0131) 40429 (20÷21)

YAESU FT7B MAI USATO + antenna verticale 14AVQ Hygain 10-40 mt. + linea Kenwood PS 515 + AL. PS515 + VFO5S. Tutto in ottime condizioni non modificati + schemi. Dante Travagliati · strada S. Paolo 3 · 00052 Cerveteri (RM) ☎ (06) 9951345 (21,00÷22,00)

VENDO VHF FT 480 R ALL MODE come nuovo L. 600.000; accordatore Drake MN 2000 2 kW L. 400,000 completi manua-

li e imballi originali. Mario Maffei · via Resia 98 · 39100 Bolzano

2 (0471) 914081 (solo serali)

DR7500 A + DC7011 ROTATORE E COMANDO DAIWA come nuovi + traliccio 3 mt. e base nuovi + 4 elementi 11 mt. come nuova vendo in blocco o separatamente. Sergio Savi · via Montecassino 7 · 20037 Paderno Dugnano

2 (02) 9106088 (serali)

VENDO KENWOOD TR 2500 MHz 141-151; Superslar 120 CH con 11-45 RX SX 200 da 26 MHz a 514. Microfono da base Turner Espander. Cerco RX Yaesu FRG 9600. Salvatore Margaglione - via Sant'Antonio 55 - 14053 Canelli (AT)

(0141) 831957 (12,30 ÷ 13,30 e 19 ÷ 20,30)

VENDO BC 603 220V L. 50.000. Vendo BC348 modificato e rifatto L. 50.000; 220V coppia casse acustiche autocostruite 60 W + cambiadischi B5R L. 100.000.

Filippo Baragona · via Visilazione 72 · 39100 Bolzano (0471) 910068 (ore pasti)

VENDO YAESU FT 757 GX + AL. ORIG. FP 757 HD; acc. aut. FC 757 AT; mic. HD 1 88 e MH 1 88; interfaccia Hard-Soft per gestire il C.A.T. system con CBM 64 e 128; Osker SWR 200; Direttiva 3 el. C.T.E.; Yaesu FT 2700 RH accessoriato; ICO2 e 04AT + modifiche particolari; scambiasi software per CBM 64/128. Alessandro

(0935) 21639 (non oftre 23,00)

SOMMERKAMP FT DX 505 S VENDO (decametriche + 11 mt. Inaux) L. 600.000; Lalayette 8790 DX 164 CH. (RTX CB)

L. 200,000, causa cessata attività. Stefano Stomeo · via Remondini 3 · 30126 Venezia Lido (041) 762042 (ore pasti)

OFFERTE Varie

CALCOLO TAB. COMP. ORIENTAM. ant. HF. CA500 Riftiprefissi orient, dist, km, miglia + lat long-fornire nom. QTH e latit+longit. L. 10.000 inc. S.S. o contrass. + spese. Piergianni Moda · via Macchie 31/B · 70057 Palese (BA)

CAMCORDER HITACHI VM 500 E HQ poco usalo, accessoriato, con una batteria da 2 ore in regalo, vendo a lire 2.800.000 trattabili per passagio ad altro materiale. L'apparec-

chio è a disposizione per qualsiasi prova. Furio Ghiso · via Ciapasqua 3/2 · 17014 Cairo Montenotte (SV)

2 (019) 504909 (ore ufficio)

VENDO NAVIGATORE SATELLITARE Satnav mod. 801 completo antenna amplificata bussola asservib. Antonio Candia - via Marconi 22/A - 70043 Monopoli (BA)

☎ (080) 743212 (21÷23)

VENDO OSCILLOSCOPIO MODELLO 4658 Tektronix a L. 2.500.000 in ottime condizioni

Ezio Balbo · via Boccaccio 218 · 20099 Sesto San Giovanni

☎ (02) 2487802 (19÷21)

VENDO STRUMENTO DIGITALE per misurare la capacità dei condensalori (mai usalo) Commodore 16 nuovo, mai usalo da riparare.

Antonio Silvagni · via Tiziano 13 · 20096 Pioltello (MI)

☎ (02) 9237266 (17÷24)

VENDO OSCILLOSCOPIO TEKTRONIX mod. 506 completo di cassetti 9Al-3B1 ottimo. Vendo terminali stampanti con tasliera Honeywell lipo Sara 20 e Rosi 26 nuove Renato Tapra · via Speranza 23 · 10099 San Mauro Torinese

(T0)

(011) 8221103 (ore serali)

ACQUISTO, VENDO, BARATTO, RADIO, VALVOLE, riviste, schemari, libri e materiale radio epoca 1920÷1933. Procuro schemi dal 1933 in poi. Vendo o baratto culfia stereo Koss ESP9 nuovissima imballo originale.

Costantino Coriolano · via Spaventa 6 · 16151 Genova (010) 412392 (pasti)

CERCO VENDO BARATTO: CB, lineari preapli., alim., rosmetri, wattmetri. Tutto funzionante. Omologato o no. Richiedere quotazione. Rispondo a tutti. Allegare L. 600. Marco Ferigutti · via Macello 8 · 33058 San Giorgio di Nogaro

VENDO TELECAMERA BLAUPUNKT CR-8000 sistema video 8 con 2 cassette da 60 min. usata pochissimo L. 2.800.000.

Antonio Ceruti · via Per Gaino 2 · 25088 Toscolano (BS) (0365) 641144 (ore ufficio)

CAMBIO REGISTRATORE STEREO PHILIPS 4407 privo di cinghia di trasmissione con RTX CB 5 Watt omologato qualsiasi marca ma non manomesso.

Mario Zucconi · via Verdi 5 · 29010 Monticelli D'Ongina (PC)

VENDO COMMODORE 16 CON ACCESSORI. Frequenzimetro ZG C45 e mic. Turner +2 base prezzo da convenire. Oscar Caravello - via S. Vincenzo 6 - 15046 San Salvatore (AL) (0131) 237847 (19+21)

PERMUTO FT 150 + MAYOR 11-45 200 CH, lineare Speedy, rosmetro Ere, Polmar 309, autoradio cassetta Pionner 4900, autoradio cassetta Interpacific equalizzatore a 5 bande inc., mangianastri Mavestic, equalizzatore 3 bande. Il tutto lo permuto con monolocale (anche fondo adibito a locale) al mare possibilmente zona Emilia Romagna fare proposte. Walter Scaramucci · via Montecassino 25 · 06012 Città di Ca-

PERMUTO TASTIERA PORTATILE Yamaha PS 400 usata pochissimo 10 registri sez. ritmica sincro. ed auto-chord, con oscilloscopio min. 15 MHz.

Domenico Vatteroni · via C. Menotti 34 · 54036 Carrara (MS) (0586) 634082 (ore pasti)

VENDO RICEVITORE COLLINS 392URR completo alimentatore 220 Volt, con incorporato altoparlante e convertitore 144 MHz L. 600.000 trattabili. Cerco proiettore Ducali 16 m. Gioia. Adriano Dioli · via Volontari Sangue 172 - 20099 Sesto San Giovanni (MI)

(02) 2440701 (ore serali o 8/10 mattino)

TS 340 SOMERK. 11-45 mt. incorporati AM-SSB 250.000 VFO-ELT, elet. 26-28 MHz P.Rosso amplificatore BM 40W Tokai 5024. Cerco TRX lipo FT7B con 11.45 trasportabile. Franco · 63037 San Benedetto del Tronto (AP)

2 (0735) 658788 (non oltre 22)

VENDO GIROBUSSOLA SPERRY J2 completa di indicatore, amplificatore e unità rivelatrice campo magnetico: o scambio con casco da pilota tipo USAF o AM. Roberto Tesio · corso G. Agnelli 45 · 10036 Settimo Torinese

(011) 8012345 (dopo le 20)

VENDO OSCILLOSCOPIO CHINAGLIA funzionante L. 80.000 millivoltmetro AC/Db L. 50.000, due trasformatori 12V 20A nuovi L. 25,000 cad.

Maurizio Maruca · via Mecenate 12 · 20138 Milano **☎** (02) 5064447 (15,00÷19,00)

VENDO CINEPRESA SUPER 8 PROFESSIONALE "Bolex" mod. 580 sound. Oltime condizioni completa di borsa in pelle a sole L. 300.000.

Davide Albertin - via San Lorenzo 58 · 15020 S. Giorgio M.

2 (0142) 806478 (dopo 18,00)

VENDO WOOFER E TWITTER NUOVI a sosp. pneumatica o piezo, diametro 20 ÷ 30 cm., potenza 40 ÷ 100 W a L. 40.000 la coppia, vendo anche filtri CR05/OWER con accessori. Alessandro Vietti · via Tanzi 5 · 28050 Bee (NO)

(0323) 56113 (12 ÷ 13 19 ÷ 20)

VENDO VISUALIZZATORE RX-TX Nuova Elettronica, con schede 9MHz-455kHz, completo di contenitore e alimentatore a lire 120.000.

Malleo Reilano - viale S. Margherila 91 - 52100 Arezzo

VENDO MATERIALE SURPLUS DI VARIO GENERE, valvole, condensatori, potenziometri variabili, apparecchiature radio, riviste di elettronica anni 50, ecc. Roberto Spadoni - via Levati R-5 - 44020 Ostellato (FE)

(0533) 680055 (ore pasti serali)

VENDO ICO2E espanso + interfaccia telefonica DTMF simplidup perfett. funzionanti L. 850.000 telecom. 2÷8 canali DTMF con risposta automatica L. 300.000 nuovo. Andrea Sbrana · via Gobetti 5 · 56100 Pisa ☎ (050) 29842 (ore 13÷14)

BARATTO SCHEMI SURPLUS manuali tedeschi in copia 1943. Altri in originale e cedo IP10/ULR Collins con alimentatore e schemi o cambio.

Claudio Moscardi - via Le Sacca 27/B - 50047 Prato (FI) (0574) 460278 (20÷22)

MATERIALE RF VARIO ovvero condensatori Chip, filtri, IF, transistor, GAAS-FET, BY-PASS, transistor di potenza per connettori, diodi vari Choke, ecc. ecc.

☎ (02) 9988831 (dopo 20,30)

ACQUISTO, VENDO, BARATTO RADIO, VALVOLE, RIVI-STE, libri, schemari radio dal 1920 al 1933. Procuro schemi dal 1933 in poi. Cerco valvole VCL11 e VY2 Telefunken o valvo. Vendo o baratto cuffia stereo Koss Esp9 nuovissima. Costantino Coriolano · via Spaventa 6 · 16151 Genova r (010) 412392 (pasti)

INTERFONO FM AD ONDE CONVOGLIATE; ZX81 + espansione 16k e libri suo utilizzo controllo elettrodomestici: amplif 60W; materiale Surplus USA. Vendo basso costo. Mauro Grusovin · via Garzarolli 37 · 34170 Gorizia **(0481) 87903**

in ottone cromato anno 1944 + 45 L. 100,000, Fatme Roma da tavolo bachelite marrone anno 1960+65 L. 60.000. Angelo Pardini · via A. Fratti 191 · 55049 Viareggio (LU) ☎ (0584) 47458 (17÷20)

VENDO TUBO OSCILLOSCOPIO DG1074 TR allo zoccolo schermo mel. L. 150.000. Frequenzimetro N.E. 1,3 GHz. nuovo mobile, alim. 220 V L. 130.000 o cmabio con analogo BF piastra Pioneer T.REC CT506 L. 100.000. Ivano Ranghiaschi · via Inghilterra 4 · 06063 Magione (PG) (075) 841537 (serali 21÷22)

VENDO I SEGUENTI APPARECCHI TELEFONICI: Siemens

da muro in ferro colore nero anno 1938÷45 L. 120.000, Ericsson-Holland da muro in bachelite nera disco combinatore

VENDO OSCILLOSCOPIO HP141A L. 1.400.000; FT250 L. 700.000; computer Casio FP200 32 K ram completo plotter L. 1.000.000; Tektronix 585 tubo nuovo L. 600.000; freq. NP

Claudio Tambussi · via C. Emanuele III 10 · 27058 Voghera

(0383) 214172 (ufficio)

VENDO OTTIMA VETRONITE vergine per fare circuiti stampati, riviste e materiale elettronico, eccellenti apparecchi per spionaggio nuovi e recentissimi. Enrico Giangeri · viale Giotto 31 · 52100 Arezzo (0575) 353235 (ore pasti)

MATERIALE D'ANTENNA VENDO (amplificatori aliment.). MATERIALE D'ANTERIAL VERDO (amplinicatori aminient).

Vendo molti kit elettronici (luci psico e strobo antifurti ampli).

Tester digitale LCD 50AR ME501 L. 120.000.

Antonio Piron · via Gioia 8 · 35136 Padova

(049) 8714055 (ore serati)

PERMUTO LINEARE SPEDY + ROSMETRO WATT, ERE WINSCONSIN baracchino omologato con Commodore 64. completo. Permuto in cambio di baracchino President Jachson 240 AM/FM/SSB con gli 11-45 ml. Il seguente maleriale Polmar 309 omologato (però da riparare) + baracchino Winsconsin Lafayette 40 canali nuovo omologato + (rosmetro + wattmetro Ere) + registratore a bobine Revve T2 ottimo per CB o radioamatori. Sono interessato anche ad altri cambi lare proposte. Permuto autoradio mangianastri Pionne KE 6300B con SB 350 CTE. Permuto lineare Spedy con SSB 350 CTE

Walter Scaramucci - via Montecassino 25 - 06012 Città di Ca-

VENDO TELECAMERA PANASONIC a 2 titolatrice 7 colori, zoom 6x, macro autofocus, eventuali filtri e borsa L. 1.250.000; tratto di persona.

I3KYP, Adriano Penso · via Giudecca 881/C · 30133 Venezia **☎** (041) 5201255 (ore pasti)

VENDO BATTERIA ELETTRONICA 15 ritmi, pubblicazione VENDU BATTERIA ELETTHONICA 15 ritmi, pubblicazione Nuova Eletronica n. 54 e 55 completa di doppio alimentatore, per abbinamento tastiera L. 250.000. Alvaro Ricchi · via Volterra 24 · 47023 Cesena (FO) ☎ (0547) 335077 (ore pasti)

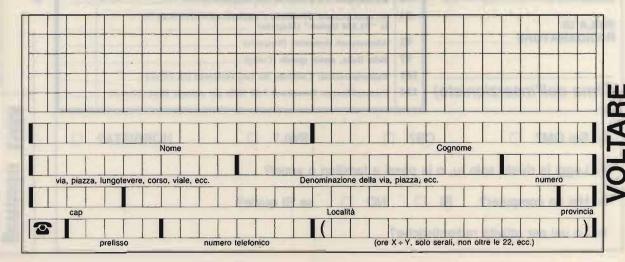
VENDO VALVOLE NUOVE a L. 1.400 cadauna DY80, 6DR7, 6Y6GT, 6B27, EC86, ECC85, ECC189, ECN42, ECL805, EF183, EZ80, PC88, PCF801, PCL82, PY82, PY81, PY83, ecc. Maurizio Caruso via Settembrini 21/8 - 95014 Giarre (CT) (095) 7791786 (dalle 9 alle 17)

VENDO COMPONENTI S.M.D. Led colorati e varie forme, I.R. emettitori foto elementi, diodi per microonde, Power Pin diodi TRW. Tutto a prezzi bassi. Giuseppe Revelant · via Caneva 5 · 33013 Gemona del Friuli

☎ (0432) 981176 (9÷11 e 15÷18)

VENDO DEFRIBILLATORE PACEMAKER, MONITOR E.C.G. portatile 12 V-220 V. Diluilori automatici. Sistema completo Blood Analyzer. Centrifughe pinze emost. O.K. per elettro-

FFERTE E RICHIESTE


modulo per inserzione gratuita

Questo tagliando, va inviato a CQ, Via Agucchi 104, 40131 Bologna.

La pubblicazione è gratuita, le inserzioni aventi per indirizzo una casella postale sono cestinate.

Per esigenze tipografiche e organizzative Vi preghiamo di attenervi scrupolosamente alle norme. Le inserzioni che vi si discosteranno saranno cestinate. Precedenza assoluta agli abbonati.

UNA LETTERA IN OGNI QUADRATINO - SCRIVERE IN STAMPATELLO

QUESTO TAGLIANDO NON PUÒ ESSERE SPEDITO DOPO IL 31/1/88

Giuseppe Revelant - via Caneva 5 - 33013 Gemona del Friuli (UD) (U432) 981176 (9÷11 e 15÷18)

VIDEO CASSETTE E120 VHS imballatte mai usate vendo a L. 8.000 cad. (mod. alta qualità) Diodi TV 18 L. 1.500, BV208A Toshiba L. 1.900. LM 7815 L. 700.

Maurizio Caruso - via Settembrini 21/B - 95014 Giarre (CT) **2** (095) 7791786

OFFRO C64 O C128 SOFTWARE, con anche tastiere C64. Vi metterete in contatto con stelliti con il vostro C64. Per favore

Van Loon Michael · p.o. BOX 473 · 4870 AL Etten-Leur

VENDO TRALICCIO ZINCATO 13 MT triangolare + rotore CCD45 + Moonraker AU 140; prezzo da stabilire, telefonare ore pasti.

Giovanni - 36066 Sandrigo (VI) (0444) 659482 (12÷14 e 18÷22)

HAI UNA STAZIONE PRIVATA? SEI UN CB OM SWL? Hai bisogno di riparazioni elettroniche? Vuoi un apparato di sicura affidabilità? Allora scrivimi o telefona. Troverai un amico!! Allieri Pasquale · via S. Barbara 6 · 81030 Nocelleto (CE) ☎ (0823) 700130 (ore 9÷12 e 15÷20)

OSCILLOSCOPIO TEKTRONIX SONY MOD 335 COME NUOVO PORTATILE CON MANUALE. Alim. 220 AC/12-24 UC. Vendo/permuto con ICR71 o simile, TS 440, tastiera Ro-

Stelvio Zoffoli · via Monte Santo 51 · 20092 Cinisello Balsamo

2 (02) 6185528 (serali)

VENDO TRANSISTOR NUOVI, tulta la serie AC... Alimentatori d'antenna a L. 4.800. Dispongo di transistor integrati, tutto nuovo chiedere listato.

Maurizio Caruso · via Settembrini 21/B · 95014 Giarre (CT) **(095)** 7791786

CAMBIO O VENDO TRANSVERTER 40/45 M. lineare 70W 3-30 MHz accordatore 6÷30 MHz generatore onde quadre 20-2000 Hz verlicale 45 m. senza radiali. Mario Grotlaroli - via U.S. Marlino 86/1 - 61100 Pesaro

(0721) 454034 (ore pasti)

VENDO SURPLUS R-392, APX-6, APX6B, ARC-44; materiale in ottime condizioni con accessori e manuali. Cerco materiale Avio, Iff, Radar e simili Ugo Fermi · via Bistagno 25 · 10136 Torino

2 (011) 366314 (serali)

VENDO PER PRATICANTI METAFONIA o psicofonia apparecchi elettronici che facilitano i contalti metafonici. Tale offerta è valida anche per i principianti.

Sandro Pulin · via Cibrario 15 · 30175 Venezia-Marghera ☎ (041) 5280069 (15÷20)

VENDO LIRE 2.000 CAD. SPED. COMPRESA CQ Elettronica Radio rivista, Radio Kit e altre dal 1979 ad oggi, pagamento anticipato invio assortito

Vittorio Palmieri - via Aquileia 12 - 00198 Roma **(06)** 8459954

PERMUTO FT 150 CON 11 + 45 MT. + Mayor 200 con 200 CH AM FM USB LSB con 11 + 45 mt. + preamplificato + lineare Speedy CTE base + rosmetro Ere S 55 B + Winsconsin 40 CH omologato, il tutto permuto con monolocale al mare oppure anche ex garage con WC e (lavandino), tipo cucina adibito a monolocale zona Rimini o adiacenze. Walter Scaramucci · via Montecassino 25 · 06012 Città di Ca-

VENDO STRARPAINTER ORIG. C64 L. 30.000, interfaccia DTMF L. 100.000, stamp. MPS1000 L. 450.000, progr. per circ. stampati MSDOS L. 40.000, riv. e libri elettr. comp. metà Loris Ferro · via Piatti 4D · 37139 S. Massimo (VR) (045) 8900867 (dopo le 15)

PER YAESU 9600 CEDO AMPLI Original WA965 L. 30.000. Solo provalo. Cedo, baralto, cerco U.S.A. manuali. Mi libero la cantina da trasfo, dinamo, parti radar, ecc. Pierluigi Turrini · via Tintoretto 7 · 40133 Bologna

VENDO ANT. VERTICALE 10-15-20-40-80 MT. (18 AVT) HYGAIN (usata pochissimo) L. 250.000. Lineare valv. 160W Norge-Eltelco L. 120.000. Lineare trans. 220V-120W B132 ZG 130 000

Oreste Rondolini - via Roma 18 - 28020 Vogogna (NO) 2 (0324) 87214 (ore pasti)

VENDO FOTOMOLTIPLICATORE EMI Type 6097A nuovo a L. 50.000 oppure scambio con Surplus anche da riparare. Antonio Rico · via Monte Bianco 9 · 66054 Vasto (CH) ☎ (0873) 73055 (13,00÷14,00)

VENDO ALIMENTATORE SWITCH-MODE ingr. 220V, usci-te: ± 24V/02A; -5V/05A; +6V/2A; +5V/8, 4A. Con due unità possibilità di raddoppiare le uscite. Allego schemi. Rossano Manzotti · via Grotte 30 · 60025 Loreto (AN) ☎ (071) 9796646 (19−21)

VENDO PONTE RIPETITORE UHF banda civile HM apparati RX TX standard 4 CH cavità per antenna RAC 6RX010Z scatolato e perfettamente funzionante.

Claudio Paolini - via Jacopone da Todi 58 - 00137 Roma ☎ (06) 8273399 (8÷10)

RICHIESTE Computer

CERCO SOFTWARE USO RADIANTISTICO PER AMIGA 500. Fare offerte.

Maico Kelly · via Barico · 6981 Purasca Ti Svizzera

CERCO PROGRAMMI PER SPECTRUM 128. Cedo a richiesta lista gratuitamente. Chi ha Utility interessanti mi scriva.

controllo

8

RISERVATO

ricevimento del

ਰ

gennaio 1988

-

IL TUO VOTO PER LA TUA RIVISTA

Al retro ho compilato una	pagina	articolo / rubrica / servizio					
COMPUTER RADIO VARIE Vi prego di pubblicarla. Dichiaro di avere preso visione di tutte le norme e di assumermi a termini di legge ogni responsabilità inerente il testo della inserzione. SI NO ABBONATO SIGLA DI RADIOAMATORE (firma dell'inserzionista)	18 28 36 45 54 57 61 71 78 84 92 97 101 104	Radiomania: Drago, ovvero un lineare 27+30 MHz da barra mobile (Galletti) Qui Computers (Ugliano) Speciale Radioamatori: Kenwood TS-830 H.P. (Zàmboli e Donato) Operazione Ascolto: Il "DX 10" - RX autocostruito per DX a sintonia continua (Zella) Sperimentare: Preampli universale VHF (Pisano) Tastiera esadecimale codificata (Fontana) Indice Analitico 1987 Modifichiamo il nostro RTX omologato, triplicandone i canali (Di Nuzzo) Recuperiamo l'AN/ARN-6, RX surplus (Chelzzi) Le mani in pasta: Modifiche e migliorie all'ICOM IC-R 71: la "PLAM Option" (Magrone) Alimentatori elementari (Brugnera) Bella Italia, amate sponde (Cobisi) Radioriparazioni: Controllo dei tubi elettronici (Di Pietro) Preamplificatore Broadband 3-30 MHz per antenne filari (Minotti)					
1. Sei OM? CB? SWL? HOBBISTA? Leggi la rivista solo tu, o la passi a familiari o amici? 3. Hai un computer? SI NO se SI quale? 4. Lo usi per attività radiantistiche?							

Antonio Ursino - via Pascoli 29 - 33085 Maniago (PN) 2 (0427) 731111 (ore pasti)

CERCO PROGRAMMI PER ATARI 1040 ST USO RADIOA-MATORIALE: Packet, CW, SSTV, RTTY, Amtor ecc. Schema VFO per l'apparato Multi 7 o il VFO originale. Fabio Zaccaria - via G. Gussone 52 · 00177 Roma 2 (06) 2676549 (ore pasti)

CERCO SOFTWARE USO RADIANTISTICO per Commodore 64/128. Favorevole a scambio su disco/nastro. Fare offerte. Alberto Pistone · via Donaver 16/33 · 16143 Genova **☎** (010) 511801 (21,00÷22,30)

SCAMBIO MA NON VENDO VASTO SOFT RADIOAMATO-RIALE X C64. Scambio anche con Hardware x computer. Scambio i migliori programmi per Spectrum RTTY, CW, SSTV, Packet. Scambio o vendo RTX autocostruito 12 metri da riparare, microfono professionale originale americano Electrovoice. Giovanni Samannà · via Manzoni 24 · 91027 Paceco (TP) 2 (0923) 882848 (serali)

CERCO SOFTWARE USO RADIANTISTICO per Sinclair Spectrum, qualsiasi configurazione. Massimo Asquini · via Dei Savorelli 54 · 00165 Roma

CERCO MODEM PER OLIVETTI M20 con interfaccia e ricetrasmettitore AM/FM, il tutto a poco prezzo. Diego Reale - via G. Marconi 3/2 - 16018 Mignanego (GE) **2** (010) 7792486 (16)

CERCO KENWOOD TS440 O TS430, non manomesso, a prezzo ragionevole. Tratto preferibilmente con località ambito nuoliese

Michele Parente · via La Sorte 40 · 74023 Grottaglie (TA) 2 (099) 668012 (ore serali)

RICHIESTE Radio

CERCO ACCORDATORE D'ANTENNA Drake MN2700. Sergio Sicoli · via Madre Picco 31 · 20132 Milano 2 (02) 2565472 (solo serali)

WANTED: T\$430, T\$440, FT757, IC735, IC745. Cerco schemi elettrocardiografi ed elettrobisturi. IK5IVX, Roberto Rainis - strada Delle Tolfe 39 - 53100 Siena (0577) 330152 (19÷21)

CERCO KENWOOD TS830S perietto non manomesso. Sta-zione base VHF All Mode SSB, CW, FM, 1025W. Fare offerte. Vendo o cambio cinepresa Canon Super8. Pietro D'Auria · rione Croce 58 · 87027 Paola (CS)

(0982) 610358 (dalle 8 alle 17)

CERCO WORLD RADIO TV HANDBOOK 1979-1985-1977 e anni precedenti schemi e manuali originali RX Collins R390A URR. Compro RX RPM 8800 Sanyo. Giuseppe Babini · via Del Molino 34 · 20091 Bresso (MI) 2 (02) 6142403 (serali)

DRAKE FS4 SINTETIZZATORE CERCASI e Kenwood R300. Vendo Hallicrafters HT46 e Swan Cygnet 300B con 88-45-11. Cerco inoltre manuale per TS288A. Fabrizio Levo · via L. Marcello 32 · 30126 Lido (VE)

CERCO RTX DUALBANDER YAESU 727R possibilmente

non manomesso a prezzo modico. Giuseppe Cecchini · via Statale 36 · 61020 (PS) (0722) 327407 (dalle 3 alle 6)

(041) 763695 (ore pasti)

RICEVITORE KENWOOD R2000 (possibilmente con filtro per CW) Scanner AOR 2002 accordatore 0.300 MHz demodulatore RTTY

Claudio Patuelli · via Piave 36 · 48022 Lugo (RA) (0545) 26720 (solo serali)

STUDENTE UNIVERSITARIO CERCA PER STUDIO, RA-DIOTRASMETTITORI di qualsiasi frequenza rotti, irreparabili, grafis o a prezzo di rottame. Pago io le spese di spedizione. Livio La Ferla · via Vinc. Giuffrida 30 · 95128 Catania

CERCO LIBRETTO ISTRUZIONI ricevilore R-600 Kenwood li-

nea trio. Gabriele Mutti · via Piave 91 · 12051 Alba (CN) **(0173)** 281528

CERCO OGNI TIPO DI APPARATI CB 27 MHz in disuso anche con guasti irreparabili, pago max L. 25.000 a seconda delFerdinando Miraglia · via Avellino 9 · 81100 Caserta (CE) (0823) 444102 (12AM÷14PM)

CERCO DRAKE RV7, SL4000 Kenwood YK88A, YK88CN, FM430, PS430 o IC PS15, anche non funzionanti, ma integre parti meccaniche. Cerco antenna in gomma per FT290R. Umberto Angelini - via Agrigento 9 - 63040 Folignano (AP) 2 (0736) 491959 (pomeriggio)

CERCO RX SX200 solo se non manomesso e perfettamente funzionante

Ponzoni Daniele - via San Marco 6 - 37138 Verona

CERCO MATERIALE VARIO PER AUTO COSTRUZ. RTX tubi, libri, riviste, gruppi RF, VFO; F180 ÷ 250kHZ; schermi octal G/GT; triodi risc. dir. variabili multisez. zoccoli; Giancarlo Chiovatero · via Torre Maridon 1 · 10015 Ivrea (TO) 2 (0125) 230067 (18,00 ÷ 22,00)

CERCO RICEVITORE ICOM ICR70 Scanner Regency MX8000 solo se in ottimo stato, Scanner Yaesu FRG 9600, RX Kenwood R 2000, accordatore Yaesu FRT 7700. Claudio Paluelli - via Piave 36 · 48022 Lugo (RA) 2 (0545) 26720 (non oltre le 22)

COMPRO GELOSO G208, G218, G220, G222 convertitori e parti staccate. Cerco RX AR 18 e RTX 58MK1. Franco Magnani · viale Gramsci 128 · 41049 Sassuolo (MO)

CERCASI APPARATO RADIOAMATORE OM con finale a valvole, zona Genova, anche vecchio tipo funzionante. Alberto Cestino - c.so Benettini 2/6 - 16143 Genova 2 (010) 502455 (ore serali)

CERCO MONITOR 12" FOSFORI VERDI con audio, eventualmente cambio con CB valvolare Lafayette 25B Constat, oppure con allimetro marca Goldlime da zero a 3.000 metri. ISOWHD, Luigi Masia · viale Repubblica 48 · 08100 Nuoro **☎** (0784) 202045 (14÷15,30 e 19÷22)

CERCO IC 202 solo se in buone condizioni vendo Gunnplexer Microwave.

Cesare Bontempi · via Cassino 13 · 60020 Castelferretti (AN) **5** (071) 918762 (20+21)

COMPRO SOLO SE OTTIMO IL SEGUENTE MATERIALE YAESU: FV 10IB, SP 101, FL 2000 B. Maurizio Fini · via Fiorana 9 · 44010 Bando (FE) ☎ (0532) 807186 (ore pasli)

CERCO RTX ICOM IC751-751A compro solo se funzionante a prezzo onesto, vendo inoltre lettore dig. per FT101-277-401-505 mod. YC601 a lire 200.000 trat. Ivano Giannini · via B. Blasi 23B · 00053 Civitavecchia (RM) **2** (0766) 27417 (13,30÷14,30)

CERCO RX GRUNDING 3400 nuovo o usato, massima urgenza, pago bene. Leonardo Lella · Damecuta 6 · 80071 Anacapri (NA) ☎ (081) 8371312 (ufficio)

CERCO SCHEDE PER FTV 901 R. 430 Mhz. 50 MHz. certo FC 902, YO 902 filtri AM CW per FT 902, Vendo RXTX FL-50B FR-50B, G4/214, President Maison 26.065 MHz 28.305 MHz. Sandro Sechi · via La Plata 117 · 07040 Argentiera (SS)

CERCO COPPIA RTX V/UHF PALMARI anche quarzati. Fabio Tranquillini · Calle 100 Pietre 1208 · 30123 Venezia (VE) 2 (041) 5205053 (ore pasti)

CERCO SP75 DRAKE solo se in perfette condizioni. Cedo IC22A.

Stefano Bellei - via Zamenhof 188 - 41100 Modena ☎ (059) 363878 (13÷14 e 19,30÷22)

CERCO BARLOW VADLEY NON MODIFICATO funzionante. completo di manuale. Ritiro di persona anche fuori zona. Giorgio Arrighi · corso Italia 29 · 21052 Busto Arsizio (VA) 2 (0331) 635192 (ore pasti)

ACQUISTO HAM MULTIMODE 2 0 3 0 SIMILI. Lineari di qualsiasi potenza. Acquisto RT, TX VHF, UHF. II tutto se in buone condizioni.

Emanuele Nerantzulis · via Kastorias 2 · 71307 Iraklion (Creta Grecia)

CERCO APPARATI VHF GTE modelli 290/291 anche non funzionanti purché completi e non rovinati. Cerco anche video registratori guasti per recupero pezzi. Sergio Cairo · via S. Cristina 13/B - 28013 Gattico (NO)

☎ (0322) 88458 (19÷20,30)

CERCO YAESU O SOMMERKAMP FL210 OB FTV250, Y0100, FR101 Drake MN2700 MT3000DX. Grazie. Evandro · via Mad. Angeli 31 · 12078 Ormea (CN) ☎ (0174) 51482 (13÷14 20÷22)

CERCO RICETRASMETTITORE YAESU FT 707 con alimen-

CERCO RTX PORTATILI A VALVOLE apparati radio usati,

da agenti per servizi speciali o segreti; a chi mi aiuta in questa

Mario De Rossi - frazione Sant'Andrea 20-35 - 39040 Bressa-

Tito Mancini · via Catalzo 11 · 00135 Roma

latore ed accordatore.

none (BZ)

☎ (06) 3274671 (solo serali)

ricerca regalo giradischi a tromba.

2 (0472) 31620 (solo serali)

CERCO LAFAYETTE TRRO ricevilore tribanda perfettamente **funzionante**

Dino Dalessandro · via Goldoni 6 · 75012 Bernalda (MT) **☎** (0835) 743650 (ore 20÷21)

CERCO RTX ICOM IC751-751A compro solo se perfettamente funzionante in ogni sua singola funzione. Ivano Giannini - via B. Blasi 23 B · 00053 Civitavecchia (RM) 2 (0766) 27417 (13,30÷14,30)

CERCO SCHEDE 430MHz 70 cm. per FTV 901R, FC 901 adattatore di impedenza, FL 2277 ZD 1,2kW filtri AM CW per

Sandro Sechi · via La Plata 117 · 07040 Argentiera (SS) **2** (079) 530360

CERCO LINEARE HF 80-10 M VHF All Mode traliccio 6 m. o più, vendo verticale 10.40 Mosley computer Laser 110 nuovo o permuto con mat. radio.

Fabrizio Borsani · via Delle Mimose 8 · 20015 Parabiago (MI) **(0331)** 555684

RICHIESTE Varie

CERCO TUTTE LE POSSIBILI INFORMAZIONI SU OSCIL-LOSCOPIO VALVOLARE Cossor mod. 1049 MK IV, possiedo numerose valvole, schemi sperimentali e non di radio. Stefano Serena · via Valle Aurina 35 · 39032 Campo Tures (BZ)

CERCO APPARECCHI E PARTI STACCATE PER RADIOA-MATORI, apparecchi civili a valvole, esclusi TV, cerco anche RX AR 18 e RTX 58MK1.

Franco Magnani · viale Gramsci 128 · 41049 Sassuolo (MO)

ACQUISTO VALVOLE VCL11 E VY2 TELEFUNKEN, radio. valvole, libri e riviste e schemari radio dal 1920 al 1930. Procuro schemi dal 1933 in poi. Vendo radio perfetti anni 40. Cuffia stereo Koss Esp9 nuovissima vendo o baralto. Costantino Coriolano - via Spaventa 6 - 16151 Genova 2 (010) 412392 (pasti)

CAMBIO ACCORDATORE MT1500 MAGNUM con accordatore manuale Kenwood MT 1500, come nuovo, con manuale di istruzione.

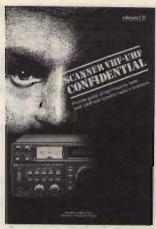
Sanlo Palmeri · via Acquamova 1 · 94010 Villarosa (EN) 2 (0935) 31848 (ore pomerigoio)

CERCO MANUALE ISTRUZIONE E SCHEMA ELETTRICO anche fotocopia amplificatore lineare Zetagi B, V130 (linale 1 valvole 6JB6). Pago L. 10.000. Luciano Somaschini - via Sciesa 19 - 20038 Seregno (MI)

2 (0362) 239935 (16÷22)

GELOSO CERCO, apparecchi e parti staccate per radioamatori. Cerco inoltre apparecchi a valvole Geloso per uso civile e Surplus 58 MK e RX AR18.

Franco Magnani · viale Gramsci 128 · 41049 Sassuolo (MO)


CERCO SERIA DITTA disposta a collaborare all'invenzione e alla successiva realizzazione in serie, di varie cose non elettroniche.

Antonio Biondo · via Pascasino 63 · 91025 Marsala (TP)

CERCO OSCILLATORE MODULATO Scuola Radio Elettra oppure lipo equivalente, tralto solo di persona. Enrico Campanella - via Galvani 50 - 71016 San Severo (FG) \bigcirc (0882) 21871 (9÷13 e 17÷19)

CERCO MANUALE (originale o fotocopie) del programma "GEOS" per Commodore CBM64. Scambio utilities radioamatoriali e non

Roberto Pagano - via S. Anna 1/B - 34074 Monfalcone (GO) 2 (0481) 74476 (14+16 e 20+21)

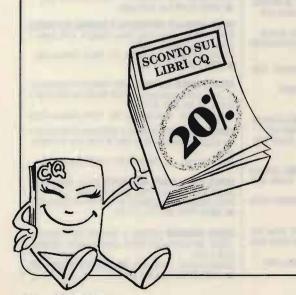
Un ricevitore, un'antenna ed ecco che tutto il mondo dell'azione sulle VHF-UHF è a portata di mano.

Il primo vero manuale delle antenne. Antenne per tutti i tipi di frequenza e per tutti i gusti.

Un valido manuale per catturare trasmissioni radiofoniche: emozioni e misteri dall'inascoltabile.

Il libro "sempreverde" per chi vuole entrare nel mondo dei semiconduttori.

Andresti senza tachimetro e senza spia della riserva? E allora come fai se la misura non ce l'hai?



L'unica guida delle apparecchiature Surplus militari dell'ultima guerra (Inglesi, Tedesche, Americane e Italiane)

Il Computer è facile, programmiamolo insieme... Se mi compro il libro di Becattini, è ancora più facile: me lo programmo da solo.

COMPILATE IL MODULO CON LE FORME DI PAGAMENTO PRESCELTE E SPEDITELO IN BUSTA CHIUSA A **EDIZIONI CD** VIA AGUCCHI, 104 - 40131 BOLOGNA

Prezzo di copertina L. 4.000

GLI ABBONATI PER IL 1988 HANNO DIRITTO AD UNO SCONTO DEL 20% SUL PREZZO DI COPERTINA DI TUTTI I LIBRI DELLE EDIZIONI CD PUBBLICATI E DI PROSSIMA PUBBLICAZIONE NELL'88 E SUI NUMERI ARRETRATI.

Per abbonarsi è sufficiente effettuare il versamento a mezzo c/c postale n. 343400 - vaglia postale - assegno, intestati a Edizioni CD.

SE VI ABBONATE ALLA RIVISTA **CQ ELETTRONICA**NON DIMENTICATEVI DI APPROFITTARE
DI QUESTA VANTAGGIOSA OFFERTA
SULLE PUBBLICAZIONI "EDIZIONI CD".

Una guida sincera, comprensibile e fedele rivolta a tutti coloro che vogliono intraprendere l'affascinante viaggio del pianeta radio.

In casa, in mare e ovunque il "baracchino" segna con la sua presenza uno strumento di utilità e svago quasi con un carattere di indispensabilità.

ABBONAMENTO L. 36.000

12 numeri reali

anziché L. 48.000

Descrizione degli articoli	Quantità	Prezzo di listino cad. 48.000	Prezzo scontato 20% (36.000)	Totale
ABBONAMENTO 12 NUMERI	-	48.000	(30.000)	
L'abbonamento deve decorrere dal				
Scanner VHF-UHF confidential		14.000	(11.200)	
L'antenna nel mirino		15.000	(12.000)	
Top Secret Radio		14.000	(11.200)	
Come si diventa radioamatore	4 5 6	14.000	(11.200)	
Canale 9 CB		12.000	(9.600)	
Dal transistor ai circuiti integrati		10.000	(8.000)	
Alimentatori e strumentazione		8.000	(6.400)	
Radiosurplus ieri e oggi		18.000	(14.800)	
Il computer è facile programmiamolo insieme		7.500	(6.000)	
Totale				
Sconto in quanto abbonato 20%	- 3111111			
Spese di spedizione solo per i libri 3.000				
Importo netto da pagare				
FORMA DI PAGAMENTO PRESCELTA:				
☐ Allego assegno ☐ Allego copia del vers	samento p	ostale \square	Allego copia	a del vaglia (
COGNOME	NOME			
VIA				
CITTÀ	The same of the sa			

I.L.ELETTRONICA

ELETTRONICA E TELECOMUNICAZIONI

Via Aurelia, 299 19020 FORNOLA DI VEZZANO (SP) Tel. 0187/997262

Kenwood TS 440 S/AT

Ultimo nato in banda HF, opera in SSB, CW, AM, FM con accordatore automatico di antenna incorporato

99 000

L. 140.000 L. 190.000

L. 245.000

rich. quot. L. 250.000

rich. quot. L. 95.000 L. 170.000 170.000 125.000 L. 110.000 L. 759.000

L. 200.000

29.000 47.000 75.000 150.000

180,000 50,000 85.000

180.000

79.000 78.000 L. 110,000

L. 45.000 L. 99.000 L. 495.000

rich. quot.

rich. quot.

LA COPPIA L. 125.000

prezzi di lancio!!!

PRESIDENT LINCOLN

28-29,7 MHz CW LSB. USB, AM, FM

LAFAYETTE - DAKOTA 40 CH AM

SUPERGALAXI BIANCO

PRESIDENT JACKSON

RICETRASMETTITORI CB

-RTX LAFAYETTE OMOLOGATI 40 canali tutti i modelli a prezzi imbattibii Wisconsin - Nevada - Texas - Hawai - California - Novità Oakota-Indiana e Kenfucky
-RTX MIDLANO OMOLOGATI A 34 0 40 CANALI futti i modelli Alan 34/S - Alan 88/S - Alan 88 SSB - Midland
-77 800 e Midland 77-102 - Alan 44 - Alan 48 - Alan 92!!!
-RTX OMOLOGATI NTEK M 4010 40 ch. AM NATO MODELOGHT INTER W 4010-40 CIT. ANY
MAG03 40 CH. AMIFM
RT 40A "IL RADIOTELEFONO CB" 40 CH OMOLOGATO 5 W
RTX PRESIDENT JACKSON 226 CH. AMIFM/SSB 10 W AMIFM 21 W SSB
PRESIDENT J.F.K. 120 CH. AMIFM POTENZA REGOLABILE MAX 15 W PRESIDENT J.F.K. 120 ch. AMIFM POTENZA REGOLABILE MAX 15 W
RTX BASE SUPERGALAXI ECO 226 ch. AMIFMISSBROW pot. 16g, max 40 W SSB
RTX COLT 320 DX 120 ch. AMIFMISSB 12 W PEP SSB cont MIKE PRE
RTX SUPERGALAXI 226 ch. AMIFMISSB 10 W AMIFM 21 W SSB CON FREQUENZ
RTX PALMARE OMOLOGATO ELBEX GT 418 AM 6 CANALI 5 W CON STRUMENTO
RTX PALMARE HANDICOM 40S 40 ch. PLL 4 W OMOLOGATO
RTX PALMARE DYNACOM 80 (40 + 40) 5 W 80 ch. AM
RTX ZODIAC M5036 AMIFM 40 ch. 5 W OMOLOGATO
RTX ZODIAC M5034 AM 40 ch. 5 W OMOLOGATO
RTX BASE 220 V 2001AC 550 0MOLOGATO AMIFMISSB 34 ch. 5 W + TIMER ECC.
RTX BASE 220 V 2001AC 550 0MOLOGATO AMIFMISSB 34 ch. 5 W + TIMER ECC.

APPARATI 2 METRI YAESU FT 23, YAESU FT 211 RH, ICOM IC MICRO 2, IC 02E, IC 28E/H LINEA KEMPRO COMPLETA KT 220 EETW, KT 22, FM 240 NUOVI, INTEK M. 544/S E.M. 548/S I. NUOVI OMOLOGATI AM e. AM/FM a. 40 canali NUOVO PRESIDENT LINCOLN

RTX ZODIAC M5040 AM/FM 40 ch. 5 W OMOLOGATO

ACCESSORI PER RICETRASMETTITORI

LINEARE IL 35 AMIFM 27 MHz QUT 20.35 W 12 V

LINEARE IL 60 AMIFMSSB 27 MHz QUT 25-60 W

LINEARE IL 60 AMIFMSSB 27 MHz QUT 60-160 W

LINEARE IL 160 AMIFMSSB 27 MHz QUT 60-160 W

LINEARE IL 350 AMIFMSSB 330 MHz 70-150 W AMI/140-300 W SSB

LINEARE IL 350 AMIFMSSB 330 MHz 10-100 AM/20-400 SSB

ROSWATTMETRO SWRSO DOPPIO STRUMENTO 1,8-150 MHz 1 KW in metallo

ROTATORE KING ROTOR 200 XL 50 KG, 3 FILL PER DIRETTIVE VHF E 27 MHz

ROTATORE ANTENNA KEMPRO KR 250 250 KG, TORSIONE 50 KGO, CARICO VERT TELEX CB 1200 CUFFIA - MINE ORIG. USA MONOAURICOLARE PTT SUL CAVO ANTENNA "WEGA 27" 5/8 D'ONDA 27 MHz ANTENNA "S 2000" 5/8 D'ONDA 8 RADIALI 27 MHz FREQUENZIMETRO TRISTAR F-700 7 CIFRE 10 KHz-50 MHz

RICEVITORI E SCANNERS

RICEVITORE MULTIBANDA TASCABILE CC 833 CRIVIHFIFM RICEVITORE MULTIBANDA EUROMATIC 217 5 BANDE SWIFM 88-108 RICEVITORE SCANNER REGENCY MX 1500 26-512 NON CONTINUI RICEVITORE PROFESSIONALE YAESU FRG 9600 RICEVITORE MARC 2 OM/OL/OC/VHF/UHF CON TASTIERA PROGRAMMABILE

VARIE

RICETRASMETTITORE IN CUFFIA con vox escludibile nuovo modello con 5 canali e possibilità di PTT esterno e installazione in casco moto/auto utile in tutti i casi lavoro o sports in cui occorre comunicare a mani libere.

Leggero pratico ed economico. Batterie stito 1,5 o ricaricabili

LA COPPIA

CUSTODIA PER CB tipo Intek G030 · 4010 · Latayette Nevada · Catifornia · Indiana ecc. per trasformare il Vs. apparato veicolare in portalite compileto di antenna in gomma, contenitore batterie norm. o Niccad e cinghia a tracolla ANTIFURTO-RICERCA PERSONA 1 utenza nuovo modello miniaturizzato sp 113D. Trasmette l'allarme a una distan-L. 70,000 za (ampliabile) di ca. 5 Km. dal veicolo o abitazione ove è installato. Il ricevilore tascabile emelle il classico BEEP L. 175.000
PANNELLI SOLARI per carleare le batterle del Vostri apparatil - Modello singolo 20 V a 560 mA L.
175.000 - Modello doppio 22 V a 1.100 A L. 350.000 - Vallgetta completa glà di batteria L. 390.000 CONDIZIONI DI VENDITA: Le spedizioni vengono effettuate in contrassegno più spese di spedizione. - Per ordini superiori al milione anticipo del 30%. Disponiamo a magazzino di un vasto parco di apparecchiature, antenne ed accessori per C.B.-O.M. - Prima di qualsiasi acquisto interpellateci!

RICHIEDERE NUOVO CATALOGO 64 PAG. INVIANDO L. 1.500 IN FRANCOBOLLI

SIAMO PRESENTI A TUTTE LE FIERE RADIOAMATORIALI

LAFAYETTE - TEXAS AM/FM

INTEK M 548/S

REGENCY MX 1500

KENWOOD 940 S/AT

Da 160 a 10 mt in SSB, CW, FM

Dal 1° dicembre 1987 la distribuzione per l'Italia delle

APPARECCHIATURE PER RADIOAMATORI KENWOOD

è stata affidata alla

LINEAR ITALIANA S.p.A.

Per la sua avanzatissima tecnologia

KENWOOD

è leader mondiale nella

ALTA FEDELTÀ

e nella

ELETTRONICA PROFESSIONALE

Con la sua struttura multinazionale

KENWOOD

è impegnata nella sfida alle tecnologie del futuro.

Da oggi la

LINEAR ITALIANA

è impegnata a costituire in Italia, anche nel

SETTORE DELLE TELECOMUNICAZIONI

una struttura adeguata al prestigio del marchio

KENWOOD

e alle proprie tradizioni al servizio della

CLIENTELA

Linear Italiana S.p.A. - Via Arbe, 50 - 20125 Milano Tel. 02/6884741 Telex 331487

UR)=

ROLLIE

ECCITATORE FM SINTETIZZATO PLL LARGA BANDA Aggancio da 82-112 MHz a passi di 100 KHz Potenza di uscita 2 W Armoniche a - 70dB, spurie assenti Fornito con commutatori contraves Alimentazione 12/13,5 Volt

T 5281

AMPLIFICATORE LINEARE LARGA BANDA 86-108 MHz Potenza di uscita 250 W Potenza massima d'ingresso 2 W Allmentazione 28 Volt — 16-18 Ampère Armoniche senza filtro - 45dB

VASTO ASSORTIMENTO MODULI PER TELECOMUNICAZIONI

Produzione e Distribuzione:

Elle Erre

PA 5283

ELETTRONICA di RAMELLA BENNA GIUSEPPE & C. s.n.c.
VIA Oropa, 297 - 13060 COSSILA - BIELLA (Vc) - Tel. (015) 57.21.03

V.H.F. POWER TRANSISTOR: 2N 6080 - 2N 6081 - 2N 6082 ecc. N.B! CONSEGNE URGENTI

Appuntamento a **BOLOGNA**

12-13 Marzo '88

SCONTI INGRESSO PER GRUPPI E COMITIVE EXPORADIO 5°MOSTRA MERCATO del RADIO AMATORE e CB ELETTRONICA e COMPUTER

12-13 Marzo '88

PRESSO LO STAND

«ERMEI ELETTRONICA»

POTETE «SPENDERE» IL VOSTRO

BIGLIETTO DI INGRESSO!!!!!

(PER ACQUISTI SUPERIORI A L. 30.000, VI VERRA SCONTATO

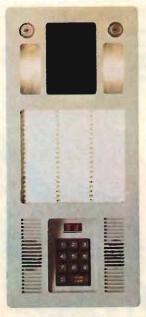
L'EQUIVALENTE DEL COSTO DEL BIGLIETTO

Bologna - Palazzo dei Congressi (Fiera)
orario mostra 9/13 - 15/19

PER INFORMAZIONI E PRENOTAZIONI STAND
SEGRETERIA ORGANIZZATIVA: PROMO EXPO VIA BARBERIA, 22 · 40/23 BOLOGNA · TEL. (051) 333657

ELETTRA

VIA G. PASTORE, 1 - ZONA INDUSTRIALE GERBIDO - CAVAGLIÀ (VC) - TEL. 0161/966653-966377


VIDEOCITOFONO

Un binomio perfetto di eleganza e funzionalità

Firmato da uno dei più noti Designer industriali italiani, rappresenta un binomio perfetto di eleganza e funzionalità.

Il Gruppo Ripresa Esterna, realizzato in materiale antigraffio, visualizza in modo chiaro e in pochissimo spazio, la tecnologia necessaria per chiamare da 1 a 99 utenze, con una tastiera digitale.

Il Posto Interno, vero gioiello miniaturizzato con monitor da 3", dalla linea armonica e moderna, può essere sistemato a tavolo, oppure attraverso lo speciale applicatore, può essere installato a parete.

POSTO ESTERNO Lit. 400.000

DUE 99

consente di avere più prese all'interno con facile passaggio da tavolo a parete o da una presa all'altra, come un normale telefono.

MONITOR Lt. 100.000 cad.

L'installazione molto semplice viene effettuata tramite due soli fili e può essere montato senza modifiche a qualsiasi tipo di impianto preesistente (campanello o citofono).

completo

W.I.P. Alarm il primo sistema antifurto che protegge entro 10 minuti dall'acquisto.

Non necessita di nessuna particolare installazione.
Potete proteggere la vostra casa il vostro magazzino o negozio semplicemente inserendo due spine a rete.

Centrale con sirena incorporata e rivelatore volumetrico a microonde (Mod. ROC 2)

Sirena autoalimentata ed autoprotetta da esterno (Mod. SAC 1)

• COMPONENTISTICA • VASTO ASSORTIMENTO DI MATERIALE ELETTRONICO DI PRODUZIONE E DI MATERIALE SURPLUS • STRUMENTAZIONE • • TELEFONIA • MATERIALE TELEFONICO •

ZETAGI

Via Ozanam, 29 - 20049 CONCOREZZO (Mi) - Tel. 039/649346 - Tlx 330153 ZETAGI

POWERLIN

B501P per mobile

Frequenza: 3 - 30 MHz Potenza d'ingresso: 1 - 10 W AM 20 SSB Potenza d'uscita: 70 - 300 W AM 500 SSB

Preamplificatore incorporato Alimentazione: 24 - 28 V 24 A Dimensioni: 260x160x70 mm

B1200 per mobile

o per mobile

Potenza d'ingresso: 1 - 12 W AM 25 SSB
Alimentaziona: 24 - 29 V 40 A Alimentazione: 24 · 28 V 40 A Dimensioni: 200x350x110 mm

NEW

B2002 per base fissa per Dase TISSA

prequenza 3. 30 MHz

prequenza 3. 30 MHz

prequenza 6. 30 MHz

potenza d'ingresso: 1. 00 W AM 1200 SSB

potenza d'ingresso: 1. 00 W AM 120 SSB

potenza d'ingresso: 1. 00 W AM 1200 SSB

potenza d'ingresso

YAESU FRG 9600

Ricevitore-scanner a copertura continua AM-FM-SSB da 60 a 905 MHz

YAESU FT 757

Ricetrasmettitore HF, FM-SSB-CW. copertura continua da 1,6 a 30 MHz, 200 W PeP.

ICR-7000 SCANNER

Ricevitore scanner 25 ÷ 2000 MHz

LAFAYETTE HAWAII

40 canali in AM-FM

VI-EL VIRGILIANA ELETTRONICA s.n.c.

Viale Gorizia, 16/20

Casella post. 34 - 46100 MANTOVA - Tel. 0376/368923

SPEDIZIONE: in contrassegno + spese postali

La VI-EL è presente a tutte le mostre radiantistiche.

NUOVO ICOM IC-µ2

1W - 10 memorie direttamente dal taschino della vostra giacca

CARATTERISTICHE SALIENTI

Gamma operativa: 144-148 MHz - Canalizzazione: 12.5-25 KHz - Potenza RF: 1W oppure 0.1W - Tensione di batteria: 8.4V - Dimensioni: 58 x 140 x 29 mm - Peso: 340 g.

Ricezione a lunga autonomia: 6 mA - Ricezione silenziata: 30 mA - Ri-cezione con vol. al max: 170 mA - Trasmissione: 600 mA (con 1W di RF), 300 mA (con 0.1W di RF) - Configurazione del Rx: doppia conversione (16.9 MHz; 455 KHz) - Sensibilità: < di 0.15µV per 12 dB SINAD - Livello di uscita audio: > 0.25W su 8Ω

YAESU FT23 Le VHF-UHF in miniatura

CARATTERISTICHE SALIENTI Gamma operativa: 144-148 MHz, 430-440 MHz - Aliemnta-zione: 6-15V a seconda del pacco batterie impiegato - Dimensionl: 55 x 122/188 x 32 mm - Peso: 430/550 g a seconda del pacco batterie - Sensibilità del Rx: mi-gliore di 0.25µV per 12 dB SINAD - Selettività sul canale adiacente: >60 dB - Resistenza all'intermodulazione: >65 dB - Livello di uscita audio: 0.4W su 8Ω

FT 211RH

Ricetrasmettitore VHF/FM, 45 W, 138-174 MHz RX, 138-159 TX.

Nuovo Icom IC 28 E e IC 28 H

CARATTERISTICHE TECNICHE

CARATTERISTICHE TECNICHE GENERALI: Gamma operativa: $144 \sim 146$ MHz (ampliabile da 140 a 150 MHz) · Impedenza d'antenna: 50Ω · Stabilità in freq.: ± 10 p.p.m. · temperatura operat.: -10 C $\sim +60^{\circ}$ C - TRASMETTITORE: Emissione: F3 · Potenza RF: 25W (Hi) 5W (Low) riferito al mod. 28, 45W (HI) 5W (Low) riferito al mod. 28H · Deviazione max.: ± 5 KHz · Modi operativi: Simplex; Semiduplex · Soppressione spurle: > di 60 dB · Impedenza microf.: 600Ω - RICEVITORE: Configurazione: a doppia conversione · Medie frequenze: 16.9 MHz; 455 KHz · Sensibilità: < 15 dB $_{\mu}$ V per 12 dB SINAD; < 10 dB $_{\mu}$ V per 20 dB di silenziamento

INNOVAZIONI NELLE COMUNICAZIONI CB

S. 2000 GOLDEN Antenna base CB

Creazione originale SIRTEL
Larga banda
Massima potenza
Alto guadagno
Per chi si pone sempre
nuovi traguardi
Per chi sa scegliere
sempre il meglio
La tecnologia
senza compromessi

Presso i migliori Rivenditori. Distribuzione:

G.B.C. SpA - Cinisello Balsamo/MI Tel. 02/6189391 e tutti i suoi punti di vendita

IMELCO - 00143 ROMA EUR Via Gaurico 247/B - Tel. 06/5031572

LEAR - 41100 LESIGNANA (Modena) Str. Naz. per Carpi 1070 Tel. 059/339249

KENWOOD

Per i Radioamatori

CUORE... E TECNOLOGIA

TS 140S

Espressione della più avanzata tecnologia.

Progettato per operare su tutte

le bande amatoriali: SSB (USB e LSB) -CW-AM-FM.

Ricevitore a copertura continua da 500 kHz a 30 MHz

ad elevata dinamica: 102 dB.

Doppio VFO digitale con passo di 10 Hz,

per una facile esplorazione della banda e doppia predisposizione.

Tutte le operazioni da un unico comando.

Eccezionale compattezza.

Peso: 6,1 kg.

Dimensioni: $(1 \times a \times p) 270 \times 96 \times 270$ mm.