
H E W L E T T - P A C K A R D

O C T O B E R 1 9 S S

H E W L E T T
P A C K A R D © Copr. 1949-1998 Hewlett-Packard Co.

J J
H E W L E T T - P A C K A R D

October 1988 Volume 39 â€¢ Number 5

Articles

O Disc less HP-UX Works ta t ions , by Scot t W. Wang

9 Program Management

10 A D isc less HP-UX F i l e Sys tem, by Debra S . Bar t l e t t and Joe l D . Tes te r

D i s c l e s s P r o g r a m E x e c u t i o n a n d V i r t u a l M e m o r y M a n a g e m e n t , b y C h i n g - F a H w a n g
and Wi l l i am T . McMahon

T h e D e s i g n o f N e t w o r k F u n c t i o n s f o r D i s c l e s s C l u s t e r s , b y D a v i d O . G u t i e r r e z a n d
Chyuan-Shiun Lin

O " 7 C r a s h D e t e c t i o n a n d R e c o v e r y i n a D i s c l e s s H P - U X S y s t e m , b y A n n e t t e R a n d e l

33 B o o t M a r v i n , f o r D i s c l e s s H P - U X , b y P e r r y E . S c o t t , J o h n S . M a r v i n , a n d R o b e r t
D. Quist

) ~ 7 D i s c l e s s S y s t e m C o n f i g u r a t i o n T a s k s , b y K i m b e r l y S . W a g n e r

O Q S m a l l C o m p u t e r S y s t e m I n t e r f a c e , b y P a u l 0 . P e r l m u t t e r

44 SCSI and HP-IB

> X : A W i n d o w S y s t e m S t a n d a r d f o r D i s t r i b u t e d C o m p u t i n g E n v i r o n m e n t s , b y F r a n k
' E . Ha l l and James B . Bye rs

51 M a n a g i n g t h e D e v e l o p m e n t o f t h e H P D e s k J e t P r i n t e r , b y J o h n D . R h o d e s

5 3 M a r k e t R e s e a r c h a s a D e s i g n T o o l
54 Human Factors and Indust r ia l Des ign o f the HP DeskJet Pr in ter

Deve lopmen t o f a H igh -Reso lu t i on The rma l I nkJe t P r i n thead , by W i l l i am A . Busk i r k ,
David E. Hackleman, Stanley T. Hall, Paula H. Kanarek, Robert N. Low, Kenneth E. Trueba,

and R ichard R. Van de Po l l

Editor, Richard P. Dolan â€¢ Associate Editor, Charles L. Leath â€¢ Assistant Editor, Hans A, Toepfer â€¢ Art Director, Photographer, An/id A- Danielson
Support European Susan E. Wright â€¢ Administ rat ive Serv ices, Typography, Anne S. LoPrest i â€¢ European Product ion Supervisor , Michael Zandwi jken

2 HEWLETT-PACKARD JOURNAL OCTOBER 1988 Â© Hewlett-Packard Company 1988 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

I n t e g r a t i n g t h e P r i n t h e a d i n t o t h e H P D e s k J e t P r i n t e r , b y J . P a u l H a r m o n a n d J o h n
A . Widder

DeskJet Pr in ter Chass is and Mechanism Des ign, by Lar ry A. Jackson, K ieran B. Ke l ly ,
Dav id W. P inkerne l l , S teve 0 . Rasmussen, and John A. Widder

Da ta Lund , B . in the HP DeskJe t Pr in te r , by Donna J . May , Mark D . Lund , Thomas B .
Pr i tchard, and Claude W. Nicho ls

77 The DeskJet Pr in ter Custom In tegra ted C i rcu i t
7 9 D e s k J e t P r i n t e r F o n t D e s i g n

Fi rmware for a Laser-Qual i ty Thermal InkJet Pr in ter , by MarkJ. D/Vi t tor io , Br ian Cr ipe,
C laude W. N icho ls , Michae l S . Ard , Kev in R. Hudson, and Dav id J . Nef f

8 2 S l o w - D o w n M o d e

Robotic Assembly of HP DeskJet Printed Circuit Boards in a Just- in-Time Environ-
) / m e n t , b y P . D a v i d G a s t

88 DeskJet Pr in ter Des ign for Manufacturab i l i ty
90 Fabr ica ted Par ts Too l ing P lan

1 CIM Pr intheads, Machine Vis ion in the Product ion of Thermal InkJet Pr intheads, by Mark
C . Hu th , Robe r t A . Conde r , G regg P . Fe r r y , B r i an L . He l t e r l i ne , Robe r t F . Aman , and

Timothy S. Hubley

92 Whole Wafer Assembly o f Thermal InkJet Pr in theads
96 Product ion Pr int Qual i ty Evaluat ion of the DeskJet Pr in thead

Q Q E c o n o m i c a l , H i g h - P e r f o r m a n c e O p t i c a l E n c o d e r s , b y H o w a r d C . E p s t e i n , M a r k G .
' - ' Leonard, and Rober t N ico l

100 Bas ics o f Opt ica l Incrementa l Encoders
105 A Comple te Encoder Based on the HEDS-9000 Encoder Modu le

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

1 0 7 A u t h o r s

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
In eng ineer ing works ta t ions runn ing under AT&T 's UNIX opera t ing sys

tem or one of i ts many versions, such as Hewlett-Packard's HP-UX, a lot of
disc space is used for system code and standard ut i l i t ies that every worksta
t ion must have. When severa l UNIX worksta t ions are c lus tered on a loca l
a r e a b y i t ' s n a t u r a l t o t h i n k o f l o w e r i n g d i s c m e m o r y c o s t s b y s t o r i n g
these common p rog rams a t on l y one works ta t i on and a l l ow ing the o the r
workstat ions to access them over the network instead of having indiv idual
copies. To take the idea a step farther, user disc files can also be concentrated
at a s ingle workstat ion, so the other workstat ions don' t need disc dr ives at

a l l . for is the object ive of the HP-UX 6.0 operat ing system for HP 9000 Ser ies 300 Computers.
With th is system, t ight ly networked d isc less graphics workstat ions on an IEEE 802.3 local area
network can share a single fi le system server. A simplif ied, proprietary networking protocol delivers
d isc less indus t ry - per fo rmance tha t comes c lose to s tand-a lone per fo rmance, wh i le indus t ry -
s tandard ne twork ing serv ices , such as ARPA/Berke ley and NFS, a re p rov ided fo r in te rvendor
and interc luster communicat ion and f i le shar ing. HP-UX 6.0 also supports the industry-standard
SCSI and VME i n te r f aces , t he X W indow Sys tem, and h i gh -pe r f o rmance HP 9000 g raph i cs
subsystems. Major features are the s ingle-system view presented to users and the h igh degree
of network transparency achieved. The system looks the same from any workstat ion in a cluster,
and network operat ion is t ransparent to the user . Whi le the idea behind the HP-UX 6.0 system
is s imp le , the eng ineer ing was no t . Fo l low ing an in t roduc t ion to the sys tem on page 6 , e igh t
papers include the design chal lenges the development team had to deal wi th. These include the
implementation of a discless fi le system (page 1 0), discless program execution and virtual memory
management (page 15) , ne twork func t ion and pro toco l des ign (page 20) , c rash detec t ion and
recovery SCSI 27), boot mechanism design (page 33), and system conf igurat ion (page 37). SCSI
a n d X a n d S y s t e m s u p p o r t a r e d e s c r i b e d i n t h e p a p e r s o n p a g e s 3 9 a n d 4 6 .

The August 1988 issue featured the HP PaintJet Color Graphics Pr in ter and i ts contr ibut ions
to thermal ink jet pr int ing technology, which inc lude a second-generat ion pr inthead design, reso
lu t ion of 180 dots per inch (near ly double that o f the ThinkJet pr in ter in t roduced in 1984) , and
fu l l -co lor pr int ing on paper or overhead t ransparency f i lm. This issue presents the next chapter
of this printing which stars the HP DeskJet printer. Delivering laser-quality printing at 300-dot-per-inch
resolut ion on standard off ice papers, the DeskJet pr inter is pr iced competi t ively with noisier, less
re l iab le tex t p r in te rs o f fe r ing much lower p r in t qua l i t y . DeskJe t fea tu res inc lude merged tex t
and graphics, multiple fonts, two slots for font or personality cartridges, 1 20-character-per-second
letter-qual i ty speed, and a bui l t - in cut-sheet paper feeder. Beginning with management issues on
page development. eight papers in this issue tell the story of DeskJet development. The third-generation,
high-resolution, thermal inkjet printhead is discussed beginning on page 55. Electrical connections
to the maintain cartr idge, and the systems that hold, move, protect, and maintain the cartr idge and
f i re the ink drops are descr ibed in the paper on page 62. The mul t i func t ion chass is , des igned
using an costs CAD system, the paper handling system, an unusual transmission that lowers costs
by making one motor per form three funct ions, and the paper dr ive motor and i ts contro l system
are t reated in the paper on page 67, whi le the paper on page 76 tel ls how a microprocessor-con
t ro l led custom integrated c i rcui t manipulates character dot data to provide var ious text enhance
ments and graphics. Firmware design is the subject of the paper on page 81 , and two manufacturing
papers, printhead on robotic circuit board assembly and one on machine vision systems for printhead
product ion, are on pages 87 and 91 .

4 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

T h e s h a f t i s t h a t p r o v i d e s f e e d b a c k f o r t h e D e s k J e t p r i n t e r p a p e r d r i v e s e r v o s y s t e m i s
avai lable to customers as a separate product l ine, the HEDS-9000 Shaft Encoder Module family.
Des igned for low cost , rap id assembly , and f reedom f rom fo l low-up ad jus tments , th is encoder
module printer, closed-loop operation feasible for low-cost products l ike the DeskJet printer, where
i t t rans la tes in to h igher speed and pr in t qua l i ty . The HEDS-9000 des ign inc ludes e lements o f
integrated detector c ircui ts, l ight-emit t ing diode technology, plast ic opt ics, and high-volume man
ufactur ing. The story begins on page 99.

-R.P. Dolan

Cover
The cover photograph represents the HP-UX 6.0 discless operat ing system. The photographer

has used simulate special lens to multiply the image of this HP 9000 Series 300 workstation to simulate
a cluster of workstat ions on a local area network. Al l but one of the disc dr ive images have been
faded workstation indicating that in an HP-UX 6.0 discless cluster, only one workstation needs to have
a disc drive.

What's Ahead
The HP NewWave environment, a state-of- the-art user interface for personal computers, is the

major sub jec t in the December issue. There w i l l a lso be ar t ic les on the HP 64700 Ser ies host
independent emulators for microprocessor-based system development, on the plain paper research
that was done for DeskJet printer development, and on a technique for adjusting dual-channel data
sampled by the HP 5180A Waveform Recorder . The annual index wi l l a lso be presented.

The Hewlet t -Packard Journal is publ ished b imonthly by the Hewlet t -Packard Company to recognize technical contr ibut ions made by Hewlet t -Packard (HP) personnel . Whi le
the in format ion o f in th is pub l ica t ion is be l ieved to be accurate , the Hewlet t -Packard Company makes no warrant ies , express or impl ied, as to the accuracy or re l iab i l i t y o f
such informat ion. The Hewlet t -Packard Company discla ims al l warrant ies of merchantabi l i ty and f i tness for a part icular purpose and al l obl igat ions and l iabi l i t ies for damages,
including but not l imited to indirect, special , or consequent ial damages, attorney's and expert 's fees, and court costs, ar is ing out of or in connect ion with this publ icat ion.

Subscr ipt ions: non-HP Hewlett-Packard Journal is distr ibuted free of charge to HP research, design, and manufactur ing engineering personnel, as wel l as to qual i f ied non-HP
individuals, business and educational inst i tut ions. Please address subscript ion or change of address requests on printed letterhead (or include a business card) to the HP address
on the please cover that is closest to you. When submitt ing a change of address, please include your zip or postal code and a copy of your old label.

Submiss ions: research ar t ic les in the Hewlet t -Packard Journal are pr imar i ly authored by HP employees, ar t ic les f rom non-HP authors deal ing wi th HP-re la ted research or
solut ions contact technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitt ing such art icles. Also, the
Hewlett-Packard should encourages technical discussions of the topics present ing in recent art ic les and may publ ish let ters expected to be of interest to readers. Letters should
be br ief , and are sub|ect to edi t ing by HP.

Copyright publication granted Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not Hewlett-Packard used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the tit le of the publication and date appear on
the copies; Otherwise, be a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
produced recording, information in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written
permission of the Hewlet t -Packard Company.

Please Hewlett-Packard inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal. 3200 Hillview Avenue, Palo Alto, CA 94304, U.S.A.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

Discless HP-UX Workstat ions
HP-UX 6.0 provides low-cost discless workstation operation
over a local area network. I t a lso provides a s ingle f i le
system view, intervendorf i le sharing, and conformance to
UNIXÂ® System V Interface Definit ion (SVID) semantics.

by Scot t W. Wang

THE HP-UX RELEASE 6.0 SYSTEM is a major soft
ware contribution to the HP 9000 Series 300 worksta
tion platform. This release of the HP-UX operating

system provides discless workstation operation in a net
work and intervendor file sharing through the Network
File System (NFS*).

The HP-UX 6.0 system enables tightly networked discless
graphics workstations to share a single file system server
transparently in an Ethernet or IEEE 802.3 local area net
work. Fig. 1 shows a typical HP-UX 6.0 system configura
tion and defines a few terms that are used here and in other
articles in this issue. The terms discless cnode (cluster
node] and discless workstation are used interchangeably
in this article.

The standard ARPA/Berkeley networking services and
NFS complement the tightly coupled workstations by offer
ing intervendor and intercluster communication and file
sharing capabilities. In addition to the discless and NFS
capabilities, the HP-UX 6.0 system also offers:
â€¢ Industry standard Small Computer System Interface

(SCSI) and VME support
â€¢ Enhanced graphics support for the new HP 98550A high-

resolution graphics board and displays and the HP
98556A 2D integer-based graphics accelerator

â€¢ Commands and libraries from Release 1.0 of the HP 9000
Series 800 HP-UX system

â€¢ The X Window System
SCSI and the X Window System are discussed on pages

39 and 46, respectively.

*NFS is a product of Sun Microsystems, Inc.
UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries.

Design Goals
There are many ways to implement a discless worksta

tion capability. However, our design choices and imple
mentation techniques were guided by the need to achieve
the highest quality goals of functionality, usability, reliabil
ity, performance, and supportability. This resulted in the
following design goals for our discless workstation imple
mentation:

Low-cost discless workstation operation overa local area
network

â€¢ A single file system view
â€¢ Conformance to AT&T's UNIX System V interface Defi

nition (SVID) semantics and backward compatibility
with previous releases of HP-UX

â€¢ A design that coexists with and complements NFS, HP's
Network Services (NS), and ARPA/Berkeley network
facilities
At least 80% of the throughput performance of a stand
alone system (workstation with a disc)

â€¢ Flexible system configuration and dynamic reconfigure -
tion

â€¢ Thorough usability and reliability testing.

Low-Cost Discless Workstat ions
Clustering discless workstations is a way to achieve

lower cost per workstation, to meet certain environmental
conditions (poor environment for discs), and to meet spe
cific ergonomic requirements. To operate in a discless
mode the workstation needs access to a remote file server
for booting up, for gaining access to files, and for doing
virtual memory swapping from the server's disc. Remese

C l u s t e r N o d e s (C n o d e s)

L A N (I E E E 8 0 2 . 3)

D i s c l e s s
W o r k s t a t i o n s

R o o t S e r v e r L o c a l S w a p
D i s c

F i g . 1 . M a j o r c o m p o n e n t s o f a
cluster of discless workstat ions. A
c luster is a group of workstat ions
connected by a network that share
a s i ng le f i l e h i e ra r chy . A c l us te r
node (cnode) is one of the nodes,
or workstations in a cluster. A disc-
l ess cnode i s a cnode tha t does
not have a local f i le system; its f i le
system resides on the root server.
A root server is the cnode to which
t h e d i s c c o n t a i n i n g t h e r o o t f i l e
s y s t e m i s p h y s i c a l l y a t t a c h e d .
There is on ly one roo t server fo r
each cluster. In the HP-UX 6.0 sys
tem re/ease the root server is also
the f i le server.

6 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

boot and virtual memory operations are described in detail
in the articles "Boot Mechanism for Discless HP-UX," and
"Discless Program Execution and Virtual Memory Manage
ment." on pages 33 and 15. respectively.

Single Fi le System View
There are two basic computing environment models:

time-shared systems and distributed systems. Time-shared
systems allow multiple users to communicate with each
other easily, and to share a single computer's environment
and resources. The disadvantages of a time-shared system
are poor response time, limited configuration and scalabil
ity, limited graphics capability, and limited system avail
ability. Distributed systems alleviate many of the disadvan
tages of time-shared systems by distributing the computing
and other resources onto networked full graphics work
stations that are smaller and less expensive. However, shar
ing resources and communicating between users on sepa
rate workstations is usually more complex in a distributed
system. For the HP-UX 6.0 system we wanted the best of
both models: a high degree of network transparency be
tween workstations and a single-system view.

A single-system view in a workstation cluster means the
user sees a single file system from any workstation and
there is a single point for system administration. A user
can log in to the system from any workstation in the cluster
and see the same environment in the same manner as seen
when logging into a time-shared system from any terminal.
Single-point system administration means the system ad
ministrator can administer the cluster of workstations from
any workstation in the cluster, and the work involved is
no more complex than a time-shared system with the same
number of users.

Most important, a single-system view in a cluster means
a single global file system. Each workstation user sees and
shares the same file system just as in a multiuser time-
shared system. The implementation of this concept means
solving many interesting technical problems. For example,
file synchronization needs to be maintained between work
stations in the same standard HP-UX semantic exhibited
in a multiuser HP-UX system. There are subtleties and
implications in performance because of file system buffer
caching that involves file accesses in both synchronous
and asynchronous modes.

A single-system view also means shielding the user from
differences in the workstations in the cluster. In a single
cluster, workstations may have different types of CPU (e.g.,
68010 and 68020), different floating-point processors (e.g.,
68881 versus a floating-point card), and different graphics
displays. To solve this problem the concept of context de
pendent files (CDF) was defined and implemented for disc-
less workstations. Each workstation has a context file de
scribing that workstation. CDFs reside in a hidden directory
that holds context dependent objects (text files and execut
ables), and maintain the same file path name from any
cnode in the cluster. This allows a CDF to be accessed
using the same file name from any cnode, with the system
automatically differentiating and selecting the proper CDF
based on the workstation configuration.

A single-system view in a cluster creates the problem of
process ID (PID) collisions between independently execut

ing HP-UX environments in the workstations. Collision
must be avoided since HP-UX uses PIDs as unique iden
tifiers in many places (e.g., temporary file names). Simi
larly, clocks in individual workstations in a cluster must
be synchronized to have a consistent time in the cluster.
The single file system demands that timestamps on files
be consistent no matter which workstation puts the time-
stamp on the file. This has interesting implications for the
make command if the clocks are not synchronized.

Additional details on the file system can be found in the
article, "A Discless HP-UX File System," on page 10.

Compatibil i ty
Conformance to AT&T's UNIX System V interface Defi

nition (SVID) and object code compatibility with previous
releases of the HP 9000 Series 300 HP-UX systems were
objectives in all design considerations for the HP-UX 6.0
system. For example, the process ID collision problem men
tioned above cannot be solved by simply prepending a
cnode ID number to the PIDs to make them unique. Instead,
PIDs must remain five digits (1 to 32768) for compatibility.
The problem is solved by a PID server process that manages
and allocates PIDs in chunks to the discless cnodes while
guaranteeing their uniqueness in a cluster. Other examples
are file synchronization and file locking, which must be
done in a way to preserve standard HP-UX semantics. See
the article "A Discless HP-UX File System" for more de
tails. Ensuring conformance to the SVID, the HP-UX 6.0
system has passed the System V Validation Suite (SVVS).

Other Network Protocols
While the discless capability is the primary objective of

the HP-UX 6.0 system, another objective was to allow ac
cess to NFS, HP's NS, and ARP A/Berkeley network services
concurrently with the discless functions. Implementation
of these capabilities affects the file system and the network
system. For example, the key to a single-system view is
the file system. This means we had to integrate all the
requirements for other network file systems into the same
file system used for the discless implementation.

Discless Performance
In a discless environment, some performance loss is un

avoidable because of remote file accessing and virtual mem
ory swapping over the network. The performance goal we
set for the HP-UX 6.0 system was 80% of a stand-alone
workstation's throughput performance. Three areas were
identified as key to achieving this performance: network
protocol, virtual memory swapping, and file system caching.

A lightweight protocol was defined to handle the kernel-
to-kernel communication between a discless cnode and the
server. This resulted in a significant performance advantage
compared to other discless implementations based on stan
dard network protocols such as TCP/IP. The discless pro
tocol is discussed in the article "The Design of Network
Functions for Discless Clusters," on page 20. A perfor
mance analysis is also included in the article.

To address the performance bottleneck of remote swap
ping at the file server, we include support for local swap
discs on a discless cnode. For virtual memory intensive
applications running on a discless cnode, the user has the

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

options of adding a local swapping disc to improve perfor
mance while maintaining the single file system view, and
of sharing resources with other cnodes.

Standard HP-UX file system buffer caching is maintained
on the server and the client cnodes, thus maintaining the
performance improvement file caching provides. This is
discussed in more detail in the article "A Discless HP-UX
File System."

Flexible Configuration
For HP-UX system 6.0, all models of the Series 300 family
of workstations are supported. However, the server is re
stricted to the Series 350 only. Every workstation, including
the server, runs the same version of the HP-UX 6.0 system.
The server is not a dedicated server, in that it can also be
used as a workstation. In addition, the discless cnodes and
the server retain their ability to support multiple terminal
users if desired. The cluster size and configuration depend
on the requirements of users and applications.

Dynamic reconfigurat ion
Users can add cnodes to or delete cnodes from a cluster

and move cnodes from one cluster to another. A cluster
can dynamically grow or shrink as necessary.

A cluster can start from as little as two workstations and

expand as required without unloading the file system and
repartitioning the disc. Discless cnodes can join and unjoin
a cluster at boot time without affecting the activity of the
rest of the cluster. The new cnode is immediately recog
nized by other cnodes in the cluster. When a cnode leaves
a cluster the rest of the cluster will automatically reconfig
ure and continue operation. Multiple clusters can be de
fined on a single LAN and each discless cnode on the LAN
can easily choose to join any cluster during boot.

To maintain the single-system view, the configuration
of discless cnodes must be as simple as adding a terminal
to a multiuser time-shared system. Because of the single
file system implementation it is not necessary to partition
the server disc according to the number of discless cnodes
in the cluster. The file system and swap area on the server
disc are shared by all discless cnodes. This allows the
system to pool a large swap area when large swap intensive
application programs are executed.

Easy cluster definition and configuration are ac
complished through a program called reconfig. This is de
scribed in the article "Discless System Configuration
Tasks," on page 37.

Another example of flexibility and ease of configuration
is sharing of peripherals on the server, and the ability to
configure local devices on the discless nodes.

Program Management

The HP-UX 6.0 system release was a large team effort spanning
many o rgan iza t ions and func t iona l a reas . The management o f
t h i s r e l e a s e w a s a n e x c e l l e n t e x a m p l e o f t h e c o n c e p t c a l l e d
p rog ram managemen t . The o rgan i za t i ons i nvo l ved we re HP 's
System Sof tware Operat ion (SSO), Technica l Workstat ion Oper
at ion (TWO), Corval l is Workstation Operation (CWO), Information
Sys tems Ope ra t i on (ISO) , and Co lo rado Ne two rks Ope ra t i on
(CND). The funct ional areas involved Included several R&D labs
inc lud ing opera t ing sys tems, languages , g raph ics , commands
and l ibrar ies, network ing, per formance, system integrat ion, and
program management. Other funct ional areas were product mar
k e t i n g f r o m t h e v a r i o u s o r g a n i z a t i o n s , m a r k e t i n g s u p p o r t ,
documenta t ion , qua l i t y assurance, and manufac tu r ing . In add i
t i on , t he re were many app l i ca t i ons o rgan iza t i ons such as the
E lec t ron ic Des ign D iv is ion (EDO) and Log ic Sys tems D iv is ion
(LSD) tha t needed to be kep t in fo rmed o f our p rogress . These
two o rgan i za t i ons and o the rs we re co l l ec t i ve l y ca l l ed t he En
g ineer ing System Group (ESG*) par tners.

The program management model centered on what was cal led
the HP-UX team, wh ich cons is ted o f rep resen ta t i ves f rom the
various organizat ions and funct ional areas. The HP-UX team met
weekly for status updates, informat ion, and issue resolut ion.

Program management documents inc luded the team meet ing
minutes, a system PERT chart , a program data sheet, a program
requ i remen ts document , a de l ta document , commi tmen t l i s t s ,
and a mi lestone check l is t . Severa l o f these documents deserve
fur ther explanat ion. The del ta document was publ ished ear ly for
the ESG and other partners. I t contained the dif ferences between
Re lease 5 .5 and Re lease 6 .0 o f the HP-UX sys tem, and i tems
that could af fect the par tner appl icat ion and subsystem develop
ment. For example, the need for a new boot ROM affected header
f i l e changes , ob jec t code compa t ib i l i t y i ssues , and code s i ze
es t ima tes . The commi tmen t l i s t was impor tan t because i t p ro
v ided us wi th a cent ra l l i s t o f a l l known customer commi tments

in te rms o f ea r l y re lease requ i rements , who made the commi t
ments , when they were requ i red , and whether they requ i red a
d isc less system or just NFS. The mi lestone check l is t was used

' t o t rack a l l ma jo r ac t ion i t ems and a l l known ma jo r and m inor
mi lestones. I t was reviewed and updated at each team meet ing.
The check l is t not on ly enabled us to check progress and fo l low
up on act ion i tems, but a lso showed progress be ing made. The
checklist was a great supplement to the system PERT chart which
was a lso rev iewed each week.

T h e p a r t n e r s w e r e k e p t u p t o d a t e b y m e a n s o f t h e d e l t a
d o c u m e n t a n d i n s o m e c a s e s t h e t e a m m e e t i n g m i n u t e s . W e
a lso had a month ly (l a te r b imonth ly) meet ing to share s ta tus .
Th is was ca l led the ESG in format ion exchange meet ing. I t was
an effective way to exchange data and keep each other informed.
I also served as the major interface to people in California through
the per iodic HP-UX Steer ing Counci l meet ings.

The HP-UX 6.0 system program l i fe cycle included three ear ly
bird (EB) releases that were roughly two months apart . EB1 was
used to t une the p rocesses used to bu i l d and pu t t he sys tem
through in tegrat ion and test . EB1 turned out usable enough for
distr ibut ion to partners and selected customers. EB2 was a func
t iona l ly complete system for ent ry in to f ina l QA and for par tner
and cus tomer commi tment d is t r ibu t ions . EB2 was a lso used in
the f i rs t human factor usabi l i ty test ing. EB3 was the f ina l ref ine
m e n t o f t h e p r o d u c t a n d t h e r e l e a s e b e f o r e t h e f i n a l s y s t e m
integrat ion and test process. In essence, the EBs were tr ial runs
forthe real release and at the same time served as useful systems.
"ESG Group currently called Engineering and Measurement System Group (EMSG)

Scof f W. Wang
R&D Lab Manager

Information Software Division

8 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Usability and Reliabil ity
Features that contribute to the usability of the HP-UX

6.0 system include the single-system view, ease of config
uration, and compatibility. We worked with human factors
engineers to test our early releases for usability. This testing
resulted in many changes to the documentation and en
hancements to the reconfig program.

Reliability is achieved by extensive prototyping, design
reviews, and testing. Besides the typical operating system
testing done in the past, we designed and executed addi
tional test cases specifically for the discless cluster config
urations. Test clusters were set up to run a networking test
scaffold at various stress levels. The HP-UX 6.0 system
achieved 120 hours of continuous high-stress operation
without a system crash.

The dynamic reconfiguration capability also enhances
cluster reliability. When a discless cnode crashes, the rest
of the discless cnodes will continue to function unaffected.
This requires extensive crash detection and recovery in the
operating system. However, the entire cluster will cease to
operate if the server with the root file system crashes. To
ensure detection of and recovery from LAN cable discon
nections without affecting other cluster operations, a cable
break detection mechanism has been incorporated into the
system. Refer to the article "Crash Detection and Recovery
in a Discless HP-UX System" on page 2 7 for more details.

Acknowledgments
The technology for the discless capability started as a

distributed HP-UX (called DUX1) project at HP Laboratories
in Palo Alto. This research resulted in a prototype im
plementation of distributed HP-UX that was developed at
the Information Software Operation in Cupertino, Califor
nia and the System Software Operation in Fort Collins,
Colorado. DUX incorporated a fully distributed file system
and many advanced distributed operating system features.

I would like to acknowledge the many people who made
the HP-UX 6.0 system a reality. It is not possible to list all

the names here so the list is limited to the core operating
system teams.

Xuan Bui and his kernel group: Drew Anderson, Jack
Applin, Doug Baskins. Paul Stoecker. Paul Perlmutter.
Pamela Marchall. Joe Cowan and his kernel group: Bruce
Bigler, Dave Gutierrez, Bob Lenk, Jack McClurg, Bill McMa-
hon, Perry Scott, Rober Quist. Ken Martin and his system
integration group: Stuart Bobb, Paul Christofanelli, Jim
Darling, Steve Ellcey, Bill Mullaney, Bruce Rodean, Kim
Wagner. Marcel Meier and his kernel group: Debbie
Bartlett, Mike Berry, Barbara Flahive, Ping-Hui Kao, Army
Randel, Fred Richart. Bonnie Stahlin and her program man
agement and usability/test group: Rich Dunker, Lois Gerber,
Dave Grindeland, Mike Steckmyer, Ron Tolley. Donn Terry
and his commands and libraries group: Jer/ Eberhard, Gayle
Guidry Dilley, Rob Gardner, John Marvin, Rob Robason,
and Peter van der Steur.

In addition I would like to acknowledge the California
contingent: Ching-Fa Hwang, Joel Tesler, Sui-Ping Chen,
Chyuan-Shiun Lin, Doug Hartman, Jeff Glasson, Mike
Saboff, and Ed Sesek.

I would especially like to acknowledge John Romano
from Logic Systems Division for his early realization that
DUX was a must requirement for his HP 64000 market, and
Ching-Fa Hwang and his team at HP Labs that built the
original DUX: Joel Tesler, Chyuan-Shiun Lin, John Worley,
Sui-Ping Chen, Parviz Afshar, Curt Kolovson, and Ray
Cheng. Their continued moral support for this project was
invaluable.

Steve Boettner, Bill Eads, Gary Ho, Eric Neuhold, and
Mike Kolesar provided management support. Finally, a
special thanks to Sandy Chumbley, then System Software
Operation manager, for sticking with us all the way.

Reference
1. Ching-Fa Hwang, J. Tesler, and Chyuan-Shiun Lin, "Achieving
a One-System View for Distributed UNIX Operating Systems,"
L/niForum 1987 Conference Proceedings.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

A Discless HP-UX Fi le System
by Debra S. Bart let t and Joel D. Tesler

THE MOST OBVIOUS REQUIREMENT of any discless
system is a file service capability. All files must be
stored on a file-serving node since the discless nodes

normally would not have a local file system. The goal of
a single-system view for an HP-UX discless cluster imposes
an additional requirement â€” the file system should appear
the same from all nodes in the cluster.

Several changes were made to the file system portion of
the standard HP-UX kernel to support discless operations.
These changes were made with the requirement of main
taining stand-alone HP-UX semantics and file system per
formance in a discless environment. Elements of the file
system that were modified include: file system I/O, named
FIFOs, file locking, and pathname lookup.

The discless file system operates in conjunction with the
remainder of the kernel and other file systems. In particular,
the discless system is designed to work together with the
Sun Microsystems Network File System (NFS), which pro
vides transparent access to files on remote machines in a
heterogeneous environment. The discless file system de
sign is such that it enhances the functionality of both file
systems rather than requiring the user to choose between
them.

To understand the discless file system, the reader should
be familiar with the standard HP-UX file system. Fig. 1
explains several common file system terms used through
out the remainder of this article.

System Appearance
The simplest way to implement a discless system is to

partition the server's discs into multiple subdiscs. Each
subdisc would be allocated to one client. The client would
treat that disc as if it were local, except that all I/O would
be performed over the network rather than directly to disc.
While this solution does eliminate the need to attach a disc
to each CPU, it fails to meet many of the other needs of a
discless system. It is still necessary to provide just as much
disc space as it would be if each machine had its own
physical disc. Such a system would also provide no file
sharing; each machine would have its own set of files.
Finally, each file system would need to be independently
administered.

Since the above approach has many problems and little
benefit, it is rarely used. Instead, a common approach to
implementing a discless file system is to provide each node
with a small root file system physically located at the disc
server. This root file system is private to the node owning
it, and contains enough files to boot up the system. After
booting, the node issues remote mount requests to mount
other shared file systems from the disc server. A remote
mount is similar to a normal mount in that it mounts one
file system under a directory in another file system. How
ever, the file system being mounted is remote, and is usu
ally shared by several clients. Typically some form of re

mote file service is used to access the files in a transparent
manner.

This approach solves several of the problems of a discless
file system, but there are still some limitations that make
it unsuccessful in meeting the goals of the HP-UX discless
system. Each node still has its own root file system, violat
ing the single-system view. It is possible that the various
root file systems will differ from one another. In particular,
the disc server's root file system is likely to differ signifi
cantly from the client file systems. Each root file system
must be independently administered, eliminating the pos
sibility of single-machine administration. Finally, each
machine must independently perform the remote mounts.
It is possible that different machines will perform different
mounts, leading to inconsistent views. Even if the system
administrator tries to keep the views the same, it is neces
sary to guarantee that all updates to the mount table are
propagated to all machines, a task that is error-prone.

In the HP-UX discless system, we have chosen instead
to have a single root file system, residing at the disc server
(also referred to as the root server). All nodes in the cluster
(hereafter referred to as cnodes) share the same root.
Whenever a file system is mounted at the root server, all
other cnodes are notified that the mount has taken place.
When a new cnode joins a cluster, it inherits the complete
mount table from the server. Since the same mount table
is used globally, we refer to it as a global mount table. By
sharing the root and the mount table, we provide a one-sys
tem view. A user can sit at any cnode and perceive the
same file system. A system administrator has only a single
file system to administer, and need not worry about prop
agating changes between cnodes.

Providing a global file system is not sufficient to provide
a single-system view. It is also necessary to guarantee that
the semantics of file system access throughout the cluster
are identical to the semantics used when accessing the files
on a stand-alone HP-UX system. Commands to manipulate
files must remain the same, the system call interface to the
operating system should be unchanged, and applications
should not need to know whether they are running on a
discless cnode or on the disc server. Furthermore, the
semantics used to access files from several cnodes should
be the same as if all the accessing programs were running
on the same cnode. For example, if one program is writing
data to a file, a program reading from that file should see
the data immediately after it is written, regardless of
whether the reader is on the same cnode as the writer.

Context Dependent Fi les
The one-system view presented by the discless system

has been stressed. Every cnode has the same view of the
file system layout, and sees the same files. While this is
an ideal situation, there are a few cases where this is actu
ally not the ideal behavior. As an example, consider an
application that can make good use of a floating-point co-

10 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

processor if it is present, but can run with floating-point
libraries if necessary. Some cnodes may have the coproces
sor and others may not. It is necessary that the application
be able to run on both. While it is possible to link the
program with a library that checks for the coprocessor and
performs the correct operation for each cnode, this would
be inefficient and would not take advantage of the com
piler's built-in floating-point code generation capabilities.
What is really wanted is two versions of the program: one
compiled with the coprocessor code and one compiled
without. The user should not need to determine which
version to run, but should be able to give the same program
name on either type of machine, with the operating system
determining the correct program to run. Although there
will not be an actual one-system view, since users on dif
ferent machines will see different programs, there will ap
pear to be a one-system view, since a single program name
will attain the same functionality with only a difference

Root Directory

Directories

Files

(b)

Fig. 1. Standard HP-UX f i le system. HP-UX uses a h ierarchi
ca l f i le system. One specia l type of f i le is a d i rectory, which
conta ins a l is t o f f i les . These f i les may themselves be d i rec
tor ies, or they may be simple f i les. The top directory of a f i le
sys tem i s ca l l ed the roo t , and i s s ign i f i ed by / . A d i rec to ry
may be empty, (a) shows a miniature HP-UX f i le system. The
root d i rectory contains three director ies, etc, b in, and users.
Etc contains two files, passwd and Â¡nit. When writing a file name,
the components are separated by slashes, for example /etc/inÂ».
I t i s poss ib le to a t tach o ther f i le systems by mount ing them
on a d i r ec to r y , (b) shows a second f i l e sys tem con ta in i ng
user f i les mounted under /users. Once the mount takes place,
the second f i le system can be accessed as i f i t were par t o f
the first, e.g., /users/ethel/myfile.

in performance.
Another case where each machine may need a different

file is when the file describes the machine configuration.
For example, the file /etc/intttab describes, among other
things, the terminals connected to the CPU. Each CPU may
have a different set of terminals and need a different version
of the file. Although it would be possible to modify the
format of these files, or to rename them to include the
cnode name, various programs depend on the format of
the file and would need to be changed if the format or
name changes. This could potentially include customer-
written programs. Instead, we would like to supply a mech
anism for automatically selecting the correct version of
/etc/inittab based on the CPU requesting it.

To solve these problems, we have introduced a mecha
nism called a context dependent file (CDF), based in part
on the hidden directory mechanism used in the Locus sys
tem developed at the University of California at Los
Angeles.1 Each cnode has a set of attributes, defined as the
cnode's context. The attributes describe the type of
hardware (68010 vs 68020, floating-point processor, etc.)
and the cnode's name. A context dependent file consists
of a specially marked directory named after the file is made
context dependent. This directory is called a hidden direc
tory, for reasons that will become obvious. Within the hid
den directory are entries named after the attributes used
for selecting the file. When a hidden directory is encoun
tered during a pathname translation, the system searches
the directory for an entry that matches one of the attributes
of the cnode's context. If it finds one, it automatically "falls
through" the hidden directory, selecting instead the match
ing file. An example may make this clearer.

Fig. 2 shows how /etc/inittab can be set up as a CDF. Fig.
2a shows how the file would normally appear within the
/etc directory. Suppose that a cluster has three cnodes
named athos, porthos, and aramis. The CDF would be set up
as shown in Fig. 2b. The + after inittab indicates that the
directory is specially marked as hidden. It is not actually
part of the directory name. If a user on athos tries to open
/etc/inittab the system will actually open the file athos within
the directory. To the user on athos, the file system appears
exactly as shown in Fig. 2a. The user on porthos would also
see a file system that appears as in Fig. 2a, although the
contents of /etc/inittab would be different. Thus, under nor
mal circumstances, the directory is hidden.

Occasionally, the system administrator will wish to see
all the contents of the hidden directory. In this case, a
special escape mechanism is provided. If a + is appended
to the CDF name, it will refer to the directory itself rather
than falling through based on the context. Thus, a system
administrator on porthos could modify the inittab belonging
to aramis by editing /etc/inittab+/aramis. The pathname /etc/init
tab + refers to the hidden directory itself whereas /etc/inittab
refers to the machine's own version, in this case porthos.

File System I /O
The standard HP-UX file system buffers I/O requests to

increase file system performance. The buffer cache is com
posed of buffer headers which contain pointers to the actual
data. The buffer header data structure also contains a block
number and a pointer to a vnode (a data structure describing

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

a particular file). The block number and vnode pointer are
used to identify any block of data pertaining to the file
system. When a user makes a read request to the system,
the file system first checks to see if that particular block
of data is already in the buffer cache. If it is in the buffer
cache, then the data can be transferred to the user without
incurring the overhead and time it takes to read the data
from the disc drive. Likewise, if a user makes a write re
quest, the system will buffer the data and write it to the
disc at a later time. This allows the system to buffer write
requests into a block size and thus minimize the number
of disc writes.

This design of the buffer cache presents some problems
when dealing with the discless environment. If each cnode
has its own buffer cache, then there is no longer a unique
buffer in the cluster's memory for a particular block on the
disc. This can lead to synchronization problems. If a user
on cnode A writes to a file and if a user on cnode B is
reading from that same file, then the data written by cnode
A may not be seen by cnode B.

This synchronization problem can be avoided by
eliminating the buffer cache on the client cnodes. However,
this would create performance problems. The HP-UX disc-
less solution is to implement a compromise. Whenever
possible, the discless cnode uses the local buffer cache
(asynchronous I/O). When synchronization problems may
arise, then the discless cnode bypasses the local cache and
reads or writes directly to the server (synchronous I/O).
The server always uses its buffer cache.

The determination of whether a data request should be
synchronous or asynchronous is calculated on an indi
vidual file basis. Each currently referenced file in memory
is represented by a data structure called an inode. Part of

F i g . 2 . E x a m p l e o f c o n t e x t d e p e n d e n t f i l e s , (a) D i r e c t o r y
structure for /elc/\mttab.(b) Directory structure for /etc/inittab with
CDFs.

this data structure contains some fields called cnode maps.
There is a cnode map that describes which cnodes have
this file open and a reference count for each site that has
it open. Likewise, there is a cnode map that describes which
cnodes have this file open for write and a reference count
for each cnode that has it open for write. These cnode maps
are maintained on the server node only. Whenever a file
is opened, the referencing cnode's identifier is added to
one or both of its cnode maps depending on whether the
file was opened for reading or writing. When the open
condition is added to the cnode map, a file system al
gorithm calculates whether this file should be in synchro
nous or asynchronous mode. If there are no cnodes that
have the file open for writing or if the file is being opened
for writing and no other cnode has the file open, then the
file remains in asynchronous mode. However, if opening
this file in the requested mode causes more than one cnode
to have the file open with at least one cnode having it open
for writing, then the file is switched to synchronous mode.
In switching the file to synchronous mode, the system re
quests that all writing cnodes flush their write buffers to
the server and notifies all open cnodes that the file is now
to be switched to synchronous mode. The file remains in
synchronous mode until a cnode closes the file and that
action causes either no more writing cnodes or there is
only one cnode with the file open. A cnode using the re
cently closed file will be notified that it can now switch
back to asynchronous mode on the next read or write re
quest to the server.

In a standard HP-UX system, the buffers associated with
a file may stay in memory even after the file has been
closed. Thus, if a process reopens that file and makes a
read request, it can use the data that is already available
in the cache. In a discless environment, this mechanism
will not work. For example, suppose cnode A opens a file,
reads from the file, and closes the file. Then cnode B opens
the file, writes to the file, and closes the file. Now cnode
A reopens the file. The buffers at site A no longer contain
the correct data because cnode B has modified the data.

To take advantage of buffer caching and avoid this syn
chronization problem, there is now a version number as
sociated with each file. When a file that was in asynchron
ous mode and has been written to is closed, the version
number is changed on the server and at the cnode that
closed the file. When the file is reopened and the inode is
still in memory on the requesting cnode, then the old ver
sion number is checked with the current version number.
If the version number is the same, then the old buffers can
be used. However, if the old version number is less than
the new version number, then the old buffers are invali
dated.

Another consideration with buffering in a discless envi
ronment has to do with disc space allocation. In a standard
HP-UX environment, when a write request is made, the
system first checks to see if there is enough space on the
disc for the write request. If there is not enough space left
for the request, then the write fails with an error message.
In a discless environment, it would help performance if
each write request did not have to go to the server to ask
for a disc block number. However, if it did not do this,
then a user might think that a write has succeeded, but by

12 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

the time the actual asynchronous write operation goes to
the server, it may fail because of no disc space. To avoid
this problem, which does not occur on stand-alone systems,
a nearly-full-disc algorithm has been established. The al
gorithm is based on knowing the number of total buffers
in the cluster. Once the disc gets to the point where it does
not have enough free disc space for all buffers, it notifies
the discless cnodes. After this point, whenever a discless
cnode makes a write request that would require space on
the disc, it makes the write synchronously to the server.

FIFO Files
In standard HP-UX, named FIFO files, also known as

named pipes, are a mechanism for processes on the same
machine to communicate with each other. Each process
opens the same named FIFO file. Then each process uses
the read and write system call to send and receive informa
tion to and from other processes. The discless implemen
tation extends this concept so that processes on different
cnodes can communicate via the same named FIFO file.

The in-memory inode for a named FIFO file contains
specific fields related to that FIFO file. The specific infor
mation associated with a FIFO file consists of the read
count, the write count, the current read pointer, the current
write pointer, and the number of bytes in the current FIFO
file. The FIFO file is maintained as a circular 8K-byte buffer.
On the serving cnode, the inode contains cnode maps
which specify the cnodes using the FIFO file. If only one
cnode is using a particular named FIFO file, then the FIFO
file specific information is maintained on the cnode that
is actually using the named FIFO file. This improves per
formance, because the cnode does not have to communicate
with the server every time it accesses the FIFO file. If
another cnode opens that same FIFO file, the server recog
nizes that there is now more than one cnode using the
FIFO file. The server then requests that the current cnode
that is using the named FIFO file send all of its FIFO file
specific information and data to the server and that from
now on it send its read and write requests to the server. In
this way, the server acts as the focal point for all communi
cation between the cnodes.

L o c k f
The discless implementation of file locking maintains

the full standard HP-UX semantics. HP-UX provides a byte-
level locking mechanism for regular files. There are advis
ory locks and enforced locks. Advisory locks can be used
as semaphores between processes. If a file region has an
enforced lock, then only the process with the lock can read
from that region or write to that region.

Advisory locks are implemented with the lockf or fcntl
system call. These system calls allow a user to inquire if
there is a lock on the file, to test and lock a region, to lock
a region, and to unlock a region. In the nondiscless version
of lockf, file locks for an open file are kept in the inode
structure. In a discless environment, the inode can be on
more than one cnode at any given time. Thus, it must be
decided where the locks will reside for a file so that
everyone will know about them. One possibility is to keep
all locks on the server. This is a simple implementation;
however, it has the disadvantage that if a cnode has a file

open with locks, then all inquiries must go to the server.
The implementation that was chosen is to have each cnode
keep the locks that were originated by that cnode and to
have the server keep track of both the local and remote
locks. Thus, if a cnode with a lock on a remote file makes
a lock inquiry, the lock will be found on that cnode and
it will not be necessary to send a message to the server.

If a file has enforcement mode locks on it, then each read
or write system call must check to see if another process
currently owns a lock in the specified read or write region.
If another process does own a lock, then the requesting
process must wait until the region is unlocked. When
checking for other processes, it is only necessary to check
on the serving cnode when a file is opened by more than
one cnode and there are enforced locks on that file. The
same mechanism used for keeping track of file-open re
quests for asynchronous and synchronous file I/O is used
in this situation as well.

In the standard HP-UX version of lockf, deadlock preven
tion checks are done before granting a lock to avoid poten
tial deadlocks. The basic deadlock detection algorithm is
as follows. The code first looks at the status of the process
that owns the lock. If the process is not waiting or is waiting
for something other than a file lock, then there is no dead
lock. If the owning process is waiting on a file lock, a search
is initiated using the lock this process is waiting on. If the
search finds the lock owned by the calling process, then a
potential deadlock has been found.

In a discless environment, there are more potentials for
deadlock. Therefore, the deadlock detection algorithm was
enhanced to account for these situations. The differences
for finding deadlocks are the result of three conditions.
First, processes in the waiting chain may be distributed
throughout several cnodes. Second, a process may be sleep
ing on a lock or may be waiting for a cluster server process
on the root cnode that is itself waiting on a lock. Third,
more than one process may simultaneously try to wait on
a given lock as a result of concurrent deadlock searches
happening on more than one cnode.

Pathname Lookup
An important job provided by the file system portion of

the kernel is the translation of a user-specified pathname
into its location on the actual disc file system. For example,
in the open system call, the user specifies the file name to
be opened such as /dir1/dir2/dir3/file. The system then inter
nally translates each component of /dir1/dir2/dir3/file until it
has found the inode number representing /dir1/dir2/dir3/file.
The system then reads this inode from the disc to determine
its characteristics and the location of its data blocks. Many
of the system calls pass a pathname. Examples of pathname
system calls are open, creat, stat, link, and exec.

For the discless implementation, the pathname lookup
code was modified. First, the code recognizes whether any
component of the pathname is remote, that is, it belongs
to a file system physically attached to another cnode. If
the pathname is remote then the code sends the entire
remaining pathname to the serving site.

To reduce the number of messages that must be com
municated between the server and the requesting client,
the pathname lookup code was also modified to send not

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

only the pathname, but also all the necessary information
to complete the system call while it is still operating on
the serving site. This mechanism is table driven. Associated
with each pathname lookup system call there is an opcode
and a structure which describe the request size, the reply
size, the function on the client side that will package the
required information, the function on the server side that
will perform the requested operation, and the function on
the client side that will unpack the request.

For example, the opcode for open is 1 . Its packing function
is open_pack(). Its serving function is open_serve(). Its unpack
ing function is open_unpack(). The function open_pack() estab
lishes the mode to be used for opening the file and the file
mode to be used if the file needs to be created. The function,
open_serve() handles the requirements for the opening, such
as permission checking on the file and creation of the file
if necessary. The function open_unpack() allocates an inode
for the file, marks it as asynchronous or synchronous, and
opens the device if it is a device file.

Interactions with NFS
In addition to the discless product, another form of re

mote file sharing is available with the HP-UX 6.0 system,
namely NFS. NFS provides the ability to mount remote file
systems. This raises a couple of questions. First, why are
both NFS and the discless system needed and why can't
discless be based on NFS? Second, given that both systems
exist, how do they interact?

NFS is a de facto industry standard for sharing files
among heterogeneous machines running different operat
ing systems. Being general-purpose, however, it tends to
impose constraints. For example, the network protocol
used with NFS needs to be able to deal with routing. Also,
to keep NFS simple, it does not obey full UNIX semantics.
For example, it does not provide file synchronization. Fi
nally, NFS uses a remote mount model, preventing a true
single-system view. The discless system is designed for a
cluster of machines with a high degree of sharing. It pro
vides a single-system view within a cluster, but does not
provide any access to machines outside the cluster. Because

it has a specialized purpose, it can be optimized for that
purpose. For example, because it only operates over a single
LAN, it uses a very-low-overhead networking protocol with
minimal need for error detection and routing. Also, the
discless system maintains full HP-UX semantics including
all UNIX semantics.

Since both NFS and the discless system exist within the
same system, they need to coexist, preferably in a mutually
beneficial manner. Indeed, each system complements the
other. A cluster of workstations can replace the traditional
single time-shared machine, with the workstations sharing
the view of the file system, just as users at terminals on a
single machine share that view. In the same manner that
a user can move between terminals on a time-shared
machine without noticing a difference, a user can move
between workstations in a discless cluster without noticing
a difference. NFS can then be used to access machines
outside the cluster, just as it can be used from a time-shared
machine to access other machines. To maintain the single-
system view within the cluster, the NFS mounts must be
global in the same manner that local mounts are: when one
cnode mounts a remote NFS file system all other cnodes
must see that mount also.

Acknowledgments
Sui-Ping Chen, Barbara Flahive, Ping-Hui Kao, Curt

Kolovson, and Fred Richart all contributed to the develop
ment of the discless distributed file system. Sui-Ping
worked on context dependent files, Barbara worked on lockf
and nonpathname related system calls, Ping-Hui and Curt
worked on pathname lookup and pathname lookup related
system calls, and Fred worked on mount and buffer man
agement. Mike Berry and Fred Richart developed the dis
tributed test tools and helped write the distributed test
suites for the file system.

Reference
1. G. Popek and B. Walker, The Locus Distributed System Archi
tecture, MIT Press, 1985.

14 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Discless Program Execution and Virtual
Memory Management
by Ching-Fa Hwang and Wi l l iam T. McMahon

MANY DISTRIBUTED SYSTEMS based on the
UNIX operating system offer some form of remote
file access capability. However, only a few of them

provide discless workstation capability, particularly in the
area of paging, swapping, and execution of programs over
a network. Almost all the remote file access systems assume
a well-defined client/server model. Some of them have been
implemented in a machine or system independent fashion
and adopted as industry standards for porting to different
vendors' systems. Discless workstations, on the other hand,
have been offered only as proprietary systems up to this
point. It is unclear at this time if any implementation will
be successfully adopted as an industry standard.

The disparity between the remote file access and remote
program execution implementations can be attributed to
several things. Unlike the UNIX file system which has a
well-defined and machine independent structure to facili
tate the definition of a client/server model, the implemen
tation of virtual memory (VM) for paging, swapping, and
execution of programs over a network is not isolated from
machine architecture. For example, 4.2BSD and AT&T Sys
tem V are two primary bases for most vendors' UNIX im
plementations, but their virtual memory implementations
are based on quite different machine architectures, and
their performance characteristics are tuned to their native
machine architectures. This creates more difficulties in de
fining a client/server VM model for implementing paging,
swapping, and execution of programs over a network.

The key technical challenges for implementing paging,
swapping, and execution of programs over a network in
an HP-UX environment include: preservation of the be
havior and semantics of existing program types (such as
preloading versus demand paging), efficient and flexible
global swap device management, and performance that is
good enough to justify the cost of discless workstations.
This paper describes some of the design issues and our
solutions in overcoming these technical challenges.

Overview of the HP-UX Discless Cluster
To support the one-system view, an HP-UX discless clus

ter has one global file system. The file system on the server
node supplies all the program files that can be executed
from any node (called cnode) in the cluster â€” as trans
parently as if they were executed on one system running
the standard HP-UX operating system. To complete the
one-system view, it should be possible to execute program
files from standard HP-UX releases of the past on an HP-UX
discless workstation without a recompilation. This back
ward compatibility applies to the various types of loading,
paging, and swapping mechanisms available in the stan-

UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries.

dard HP-UX environment. Loading refers to bringing a pro
gram from the file system and setting up the appropriate
process control and memory mapping structure for program
execution. Swapping refers to copying some of the process
control structure and all the remaining pages to or from a
swap disc. Paging means copying some of the referenced
pages of a program to or from a swap disc.

For the discussion in this paper, an HP-UX discless clus
ter may consist of two kinds of cnodes: (1) swap servers
with local swap devices to provide swap space to their
clients, and (2) swap clients without local swap discs. A
swap server can also be used just like a client cnode. The
swap server/client relationship is analogous to the file
server/client relationship. The former describes swap space
and device services and the latter file services. The common
swap space pool is shared equally among all clients of a
swap server (including itself as the local client). The com
mon swap space can be expanded to multiple discs by
using the HP-UX command swapon to add more swap discs.
A swap client can be dynamically added and removed from
the server without bringing down the entire cluster for
swap space or disc reconfiguration. The server dynamically
allocates swap space to its clients when needed and deal
locates it when not needed. On detecting the failure of a
client site, the server automatically returns the space allo
cated to the failed client to the common swap space pool.

The features mentioned above are considered design ob
jectives for supporting the one-system view and achieving
the high performance requirement for HP-UX discless clus-

â€¢Execution
Type

Execution Characteristics

Non-
sharable

Demand
Paging

407
410

Programs

413
Programs

Demand
Paging Process B

Q Page

File System
Discs

(b)

Fig . 1 . (a) S tandard HP-UX program types and the i r execu
t i o n p r o (b) L o a d i n g b e h a v i o r o f t h e d i f f e r e n t p r o
gram types.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

ters. However, several simplifications and restrictions were
placed on HP-UX 6.0. Specifically, there can be only one
swap server per cluster and the swap server must be the
same cnode as the root/file server. As an option, a nonroot
cnode is allowed to have local swap discs for improving
local swapping performance. In this instance, only the spe
cific cnode has access to the local swap disc.

Program Execution

To help understand the complexity of handling program
execution and the interactions between the file system and
virtual memory in a discless environment, we use the fol
lowing scenario to illustrate the interaction in a stand-alone
standard HP-UX environment. The scenario describes what
happens externally in the user environment and internally
in the system when an application program called foo is
updated. In the rest of this paper the term "update," when
used in the context of program or executable files, refers
to the point at which an existing executable file is replaced
with a new version of the program.

To begin the scenario, a programmer has just completed
a new version of foo with the file name of foo. new, and is
ready to release it while some users may still be in the
midst of executing the old foo. Internally the system may
have kept the program data and control information in
several places, depending on the exact stage of execution.
For example, the program file in the file system on disc
may or may not have been fully brought into memory for
execution, and part or all of the program may have been
paged or swapped to a swap disc to free the memory for
other process executions.

To release the new foo, the programmer types in a mv
foo.new foo command. The HP-UX system will detect that
the program is currently busy for execution and therefore
reject the command by returning an error (ETXTBSY). Not
until the last user has completed the execution of foo will
the programmer be allowed to update foo. When the system
detects that no other user is executing foo it will honor the
mv command by copying from foo.new to foo as a normal file
system operation. While doing this, the system will also
invalidate all the memory pages that may still have cached
data of the old foo. If a user tries to execute foo before the
mv replacement operation is finished, the system will pre
vent execution since foo is in an inconsistent state.

In the HP-UX discless cluster, our goal was to preserve
the features described in the scenario to support the one-
system view and to satisfy performance requirements. This
required us to consider that a program being executed may
have parts paged or swapped out to the swap discs of the
swap server or cached in the memory of different cnodes.
In addition, the program may be requested for update;
therefore, it was necessary for us to consider mutual exclu
sion as explained later. Many of the standard HP-UX inter
nal mechanisms and algorithms are not adequate for han
dling these situations, so enhancements and new algorithms
were added to handle the discless environment.

P r o g r a m L o a d i n g S w a p p i n g P a g i n g
In the standard HP-UX system, when programs are com

piled or loaded (through cc or Id commands) the control

options 407, 410, or 413 (octal) can be included in the
command string to designate the loading, swapping, and
paging characteristics of the program. A 407 program re
quires each process invocation to have its own copy of the
program in memory and not be shared by multiple process
es. 410 and 413 programs can be shared among multiple
processes to save memory space. 407 and 410 programs
need to be loaded in their entirety from the file system
before the execution can begin, while a 413 program can
be loaded in by pages on demand (i.e., page fault). The
loading of a program file in its entirety from the file system
for execution is handled through file system I/O via the
buffer cache, while the paging activities, either with the
file system discs or the swap discs, use device I/O directly,
bypassing the file system and buffer cache (see Fig. 1).

To maintain the identical behavior and semantics of the
three program types for backward compatibility and perfor
mance, the discless file system provides a mechanism for
bringing in remote program files from the file server for
execution. We also implemented a remote device access
mechanism that allows devices at a remote cnode, or the
device server, to be accessed over the network. This remote
device mechanism provides the necessary mechanism for
handling paging I/O directly with either the remote file
system discs or the remote swap discs. These two mecha
nisms provide a means for loading and/or paging the three
program types.

Mutual Exclusion with Fi le Update
In the standard HP-UX system, executable files are usu

ally in one of two mutually exclusive states: update and
execute. A file can be brought from disc to memory for
either updating or execution by one or more processes, but
never for both updating and execution at the same time.
However, a file can still be opened for reading while in
either state. Before allowing the execution of a program,
the system internally checks that no process is opening the
file to write to it. Likewise, when a process is ready to open
the file for writing the system also checks to see that the
file is not being executed by any process before it enters
the update state.

In a discless environment maintaining mutual exclusion
is more complex because the processes that want to execute

Interleaved
Mapping Swap Devices

Tables (swdevt)

L o g i c a l A d d r e s s P h y s i c a l A d d r e s s

~
Address
Mapping Swap Discs

sical Disc
k Address I

Physical I
Block Address

Swap Disc
Driver

Fig. 2. Mapping f rom logical address to physical d isc b locks
on the swap d iscs in s tandard HP-UX.

16 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

or update the file may come from multiple cnodes in the
cluster. Therefore, mutual exclusion must be enforced in
the context of the entire cluster. To address this issue, the
root server was selected as the place to enforce and coordi
nate mutual exclusion for the files it serves. For each file
being referenced or executed, the file Â¡node, which is an
internal data structure containing a description of the file,
contains entries called cnode maps. The cnode maps are
used to track program execution and program file updates.
The cnode map for execution keeps track of the cnodes in
the cluster executing the program and keeps a reference
count of the number of instances of execution of a particular
program at each cnode. The execution cnode map and the
write (update) cnode map together provide the root server
with the necessary information to enforce mutual exclu
sion. For more information about the inode and cnode maps
for file updates refer to the article "A Discless HP-UX File
System" on page 10.

Client Caching for Performance
In the standard HP-UX system, caching for program

execution is provided to improve execution performance.
When a process is terminated or when its pages are paged
or swapped to a swap device, the memory pages are freed
but also marked as reclaimable. This denotes that these
pages can be reactivated if the data on the pages is refer
enced again before the pages are allocated to other pro
grams. Like the buffer cache for minimizing file system
I/Os, reclaimable pages are intended to minimize I/O over
head for paging and swapping. The effect is especially sig
nificant when a file is repeatedly executed by one or more
processes.

To maintain cache consistency, when a program file is
updated, the system automatically invalidates the file's re-
claimable cache pages left from previous executions. This
ensures that no future executions of the same file will get
out-of-date data from the reclaimable cache pages. Simi
larly, when a file is to be executed by a process, any file
data remaining in file buffers resulting from delayed or
asynchronous file system writes will be flushed to disc
first. This is necessary to ensure that when the program is
paged in directly from discs, the file on the disc is up to
date.

The standard HP-UX system keeps cached data around
as long as possible. Flushing file buffers or invalidating
reclaimable pages is always delayed until it is absolutely
needed to maintain system consistency. This is the kind
of optimization policy that we wanted to keep for HP-UX
discless clusters. However, cache consistency in a discless
environment is much more complicated than in the stan
dard HP-UX system because buffers for file updating can
potentially exist on multiple cnodes, and reclaimable pages
for an executing program file can also exist on multiple
cnodes. To maintain cache consistency in a discless envi
ronment we had to ensure that:
â€¢ For program file updates, all reclaimable pages for a

particular file are invalidated throughout the entire clus
ter.

â€¢ Before a 413 program enters the execute state, all the file
buffers associated with the program file are flushed over
the network to discs at the server.

To improve performance further an extension is included
in our reclaimable page invalidation mechanism. When a
file is updated, instead of starting a global operation to
invalidate all the reclaimable pages on all cnodes, the in
validation is individually handled and deferred for each
cnode until that cnode is ready to execute the file again.
Basically, we include a version number in the in-memory
Â¡nodes at both the server and the clients. The version
number is incremented in the inode at the server whenever
the file is closed for update, but is incremented at a client
only when the client is ready to access the file. When a
client is about to execute a file, the version number of the
file at the server is compared with that at the client. Only
when the two numbers are identical will the local reclaim-
able pages at the client cnode be kept for possible reuse.
All the other cases will cause these reclaimable pages at
the client cnode to be invalidated.

Swap Space Management

In the standard HP-UX system information about swap
discs is set up at boot when the system is reconfigured,
and is kept in the swap device table (swdevt). By default,
swap space is first set up on the root disc and other discs
can be added by the use of the swapon command. The infor
mation in the swdevt data structure is used to build the
system swap map which is used to represent and keep
track of the pool of available swap space (see Fig. 2). Swap
space is interleaved among all the swap discs, and when
swap space is allocated, the first chunk of swap space is
taken from the first swap disc in the swdevt, the second
chunk of swap space is taken from the second swap disc,
and so on.

When a process needs swap space it grabs it from the
system swap space pool. When a page is paged out to the
disc the logical address in the swap space pool is mapped
onto a physical disc block using the information in the
swap devices table. When a process requests swap space

Cl ients Swap !

Swap Disc

Global
Swap
Space

Fig . 3 . The swap space i s phys ica l l y loca ted on the server
and is a l located to the c l ient cnodes in chunks.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

and there is no more space in the swap space pool the
process is killed or an ENOMEM error is returned to the
process.

Design Considerat ions
One of the primary considerations in designing the re

mote swap mechanism for the HP-UX 6.0 system was to
maintain as much of the current interface as possible. We
wanted the swap device table to continue to specify the
swap discs, and the use and availability of swap space to
be represented by a swap map. Efficiency was important,
so we had to consider methods to minimize the number
of requests for swap space made from a client cnode. If the
swap maps were maintained only on the server all requests
for swap space would be a remote request, whereas if each
cnode maintained its own swap map it would only need
to make a remote request when its local swap map indicated
that it was out of swap space. For these reasons two new
concepts were introduced: the global swap space and the
local swap space. The global swap space represents the
total amount of swap space that is allocated to all clients
and exists on the root server. The local swap space is the
portion that is allocated to a particular cnode. Each cnode
has a local swap map which is used to map from the local
swap space to the global swap space (see Fig. 3). Efficiency
was also considered in determining the granularity of re
quests for swap space. In the HP-UX 6.0 system we adopted
a wholesaler/retailer allocation scheme. The swap server,
functioning as a wholesaler, allocates the swap space in
large chunks (in megabytes) to its clients; each client in
turn allocates the space (in tens or hundreds of kilobytes)
to each local process.

Another must objective was to allow dynamic reconfig
uration of the cluster without bringing the entire cluster
down. We did not want the cluster to be wasteful of space,
and a fixed, permanent allocation of swap space to every
cnode would have been very wasteful. This meant that
allocation of swap space to a client had to be dynamic and
that swap space had to be returned when not used or when
a cnode crashed or rebooted.

We wanted to provide a way to limit the amount of swap
space a cnode can consume and also to provide a way to
ensure that a minimum amount of swap space was always
available. Other design questions that were raised but not
implemented in the HP-UX 6.0 system were whether one
cnode should swap to more than one swap server and
whether a cluster should support more than one swap
server.

Local and Global Space Mapping
To understand how paging and swapping works in a

discless environment it is necessary to understand the di
vision between local and global swap space, and how the
local swap space maps into the global swap space. A new
data structure called a chunk map was established to rep
resent the global swap space. The chunk map exists on the
server only and its size and initial swap space information
are derived from the swdevt at the server as had been done
with the swap map in the standard HP-UX system. Each
entry in the chunk map represents one chunk of swap space
on the disc. Mapping from chunk map address to disc block

is done by using the swdevt as it is done in the standard
HP-UX system when mapping from the swap map to the
disc block. The information maintained in the chunk map
consists of the chunk size, the number of the cnode owning
the chunk, a bit to indicate if the chunk is valid, and a bit
to indicate if the chunk is allocated (see Fig. 4). The sizes
of all chunks are defined by a system global variable called
dmmax. The number of the cnode that owns a particular
chunk is kept as a sanity check and for crash recovery. The
valid bit is set when a swapon is done and the chunks on
the new swap disc become available for swapping. The
allocated bit is set when a chunk is assigned to a cnode.

It is still necessary to complete the mapping from local
swap space to global swap space. This is accomplished
through the use of a data structure called a chunk table
which exists on each client cnode. Since the swap discs
are located at the server the chunk table acts as a logical
swdevt for the client cnodes and provides the first step in
the mapping from the local swap map to the global swap
space on the server (see Fig. 5). Each entry in the chunk
table represents one chunk of space in the local swap map.
Conversion from a logical swap address to a chunk table
entry is done by dividing by dmmax. Each entry in the chunk
table contains the chunk size, a chunk map index, a valid
bit, and a reference bit. The chunk size is the same as the
size of the corresponding chunk map entry. The chunk
map index is a pointer to the corresponding entry in the
chunk map on the server. The valid bit indicates if the
entry is valid (and hence represented in the local swap
map), and the reference bit indicates if it is being used by
any process. The chunk table is maintained at every cnode
including the swap server. The chunk table allows the swap
map to be more easily maintained at each cnode. The refer
ence bit provides the information to return swap space
from a cnode that is not using it.

The mapping from a client's local swap map to disc
blocks on the server can be briefly summarized as follows.
When a request is made from a client cnode to send some
data to swap, the system converts the logical address in
the local swap map to an index into the chunk table (divi-

Chunk Map
1 = Chunk Is Avai lable

f o r A l l o c a t i o n ^

C h u n k O w n i n g V a l i d A l l o c a t e d
S i z e C n o d e * B i t B i t

Interleaved
Mapping

Compute
Disc Block

Swap Disc
Driver

1 = Chunk Is
Allocated

to a Cnode

Physical
Address

Fig . 4 . The chunk map en t ry .

18 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

sion by dmmax) and an offset (the remainder). The entry in
the chunk table yields the index of the chunk map entry
at the swap server. This index and the offset are sent over
to the swap server along with the data. On the swap server
the system takes the chunk map index and offset and uses
the rules for interleaving swap space and the information
in swdevt to generate the disc block number for the request.
The request is then sent to the disc driver for that device.

Allocat ing Swap Space
When a process requests swap space and does not find

any in its local swap map the process is not immediately
killed or an error returned. Instead, the process makes a
remote request to get more swap space from the global
swap space pool. The swap server allocates another chunk
to this cnode and the cnode adds an entry for this chunk
to its local swap map and grants the process's request.

When a process makes a remote request for another
chunk of swap space it goes to sleep at that point. It is then
possible for another process to come along and request a
piece of swap space and go to sleep. This could result in
much more swap space being requested than is needed
because client cnodes allocate swap space to local pro
cesses in sizes that are much less than the chunk sizes from
the server (i.e., 10 or 100 kilobytes versus several mega
bytes). To prevent this from happening, a lock was intro
duced to serialize the requests. When the first remote re
quest is made the lock is grabbed and is not released until
the additional swap space is added to the local swap map.
When each of the other processes acquires the lock, each
one reevaluates whether there is sufficient swap space

available.

Returning Swap Space
One of the design decisions was to allow a cnode to

return swap space that it is not using. However, it is not
efficient for a cnode to return swap space immediately
since it may just turn around and request more space. To
prevent this type of thrashing, the reference bit and a
daemon process are used to check for unused chunks. If
an unused chunk is found, the reference bit is cleared. On
the next invocation of the daemon, if the chunk is still
unused, then it is returned to the swap server; otherwise
the reference bit is set. The daemon is set to run once every
30 seconds, so unused swap space is returned between 30
seconds and one minute after it becomes unused.

When a cnode is removed from a cluster either by crash
ing or by being rebooted, it is necessary to return the swap
space to the swap server. This happens when recovery is
done for that cnode on the swap server. Recovery is very
simple for swap space. When recovery is conducted on the
swap server the system routine simply goes through the
chunk map, and when it finds an entry that was allocated
to the crashed cnode it marks that entry as being available
again (allocate bit = 0). Crash recovery is discussed in the
article "Crash Detection and Recovery in a Discless HP-UX
System" on page 27.

Control l ing the Amount of Swap Space
Two configurable parameters are provided for controlling

the amount of swap space allocated to a cnode. These are
MINSWAPCHUNKS and MAXSWAPCHUNKS. MINSWAPCHUNKS

Client Cnode

Local Swap Map Chunk Table

C h u n k C h u n k M a p V a l i d R e f e r e n c e
S i z e I n d e x (C M ,) B i t B i t

Logical
Address

Compute Chunk
Table Index (CTj)

and Offset

Chunk Table
Entry at CT,

Send Swap
Request to

Server

Swap Disc
Drivers

Swap Discs Containing Global Swap Space

Fig . 5 . The re la t ionsh ip be tween
the local swap map and the chunk
t a b l e o n a c l i e n t c n o d e a n d t h e
chunk map and swap device table
on the server.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

specifies the minimum number of chunks of swap space a
cluster can have even when the space is not actively used.
It is the amount requested at boot and it is never returned.
It ensures that a particular cnode will have at least that
amount of swap space. MAXSWAPCHUNKS specifies the great
est number of chunks of swap space that a cnode can ever
have.

Summary
In summary, the HP-UX 6.0 system provides a fairly com

plete implementation for HP-UX discless program execu
tion and virtual memory management. Among the features
provided to this end are backwards compatibility for
executable files, remote swap services, and HP-UX seman
tics for executable files. New mechanisms are included to
minimize performance degradation over a network.

The Design of Network Funct ions for
Discless Clusters

by David O. Gut ierrez and Chyuan-Shiun Lin

WITHIN AN HP-UX DISCLESS CLUSTER, the ker
nel of the client and server machines uses a sim
ple, fast, and reliable network protocol to com

municate through a single IEEE 802.3 10-Mbit/s local area
network (LAN). The discless protocol is based on the re
quest/reply model and its interface to the HP-UX operating
system is specially tailored for efficient data transfer. To
become a viable product, a discless system must provide
a level of performance comparable to that of systems with
local discs. Measurements on HP 9000 Model 350s show
that remote file I/O throughput performance of the HP-UX
6.0 discless implementation using an HP 7958A Disc Drive
is 91% of stand-alone performance in read operations and
87% of stand-alone performance in write operations when
transferring large files. This performance level is achieved
by a low-overhead network protocol, efficient network buf
fer management, cluster server processes, and carefully im
plemented read/write algorithms.

A cluster consists of a single file server and a number of
discless client machines connected by a single LAN cable
or several cables connected by LAN bridges, hubs, or re
peaters. Multiple clusters may exist on the same cable.
Each node of a cluster is called a cluster node (cnode) and
has its own hostname and internet address. The central
file server is called the root server (shortened to server in
this paper) and is where all file systems and disc storage
reside. The operating system software is designed to handle
up to 255 client machines and each cnode is assigned a
number from 1 to 255. The kernel network functions map
the cnode number to the appropriate source/destination
address.

The discless network protocol is designed specifically
for the HP-UX discless kernel and not for general-purpose
network communication. Experimentation indicates that
packet loss on a single local area network is rare, and by

limiting the design scope to providing intracluster network
service on a single local network, we can function with a
simple network protocol. The discless network functions
and the kernel functions are closely tied together to
minimize the path length for sending and receiving mes
sages. General-purpose networking services are still avail
able throughout the discless cluster to provide standard
communications with the outside world.

A major source of communication overhead in normal
network operations is copying data between network buf
fers and user buffers. It is important to minimize such copy
operations. In most network systems, messages are copied
from an operating system buffer into network software buf
fers and then into the network I/O hardware buffers. In the

Messages

Operating
System
Buffer

Network
Software

Buffer

Network
Hardware

Buffers
1

(a)

Messages

Operating
System
Buffer

Messages

Network
Hardware

Buffers

(b)

Fig. 1 . Reducing network communicat ion overhead, (a) Typ
i ca l message copy ing scheme fo r ne twork commun ica t ion ,
(b) Disc/ess implementat ion.

20 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX discless implementation, data is copied directly
between operating system buffers and hardware buffers,
thus eliminating one level of copy operation. These differ
ent copying schemes are illustrated in Fig. 1.

Performance measurements on a pair of HP 9000 Model
350 client'server machines indicate that our simple discless
protocol and the buffering scheme have enabled us to meet
the established performance goals for discless machines.
To understand the dis tr ibut ion of overhead among the
operating system and network functions, the kernel was
instrumented, and the processing time spent in the kernel
and network functions on the server during read and write
operations was measured. To compare the implementation
of two distributed systems on the same machine the perfor
mance and overhead profile of the Network File System
(NFS) functions was also measured under the same condi
tions. NFS provides transparent access to remote files in a
heterogeneous network. The performance results are dis
cussed on page 24.

Overview of the Network Funct ions
The network functions are designed only for the discless

kernel, performing intracluster kernel-to-kernel communi
cations and linking the client cnodes with the disc facilities
on the server. Users can still use the general-purpose net
work facilities such as the ARP A/Berkeley services, HP's
NS network services, and NFS to access resources both
within and outside a cluster. Since the discless cluster
provides a single-file-system view, users have no need to
use any of the general-purpose network functions such as
ftp, rep, or NFS to access resources within the same cluster.
Intracluster remote process execution can be achieved by
using the functions remsh, rlogin, or rt.

The discless network protocol coexists with other gen
eral-purpose protocols. The discless messages conform to
the IEEE 802.3 link level protocol header format. Fig. 2
shows the relationship between the discless network pro
tocol and the NFS protocol stack. The discless implemen
tation and other general-purpose protocols share the same
network hardware and device driver. Sit t ing above the
driver level, the discless network functions are completely
independent of other network functions. The network func
tions use the cnode number and the link level address of
the LAN card for source/destination addresses. The map
ping of cnode number to the l ink level address of each
cnode's LAN card is kept in the root server's cluster config
uration file. If a machine has multiple network I/O cards,
only one can be used for discless communications.

In the current implementat ion, the cl ient and server
machines are all HP 9000 Series 300 machines. Therefore,
the protocol does not need to translate the data representa
tions from one machine's format to another. The design is
ex tens ib le to accommodate he te rogeneous mach ines
within a cluster.

Discless Message Interface Funct ions (DM Layer)
The discless message interface functions provide the in

terface between the HP-UX kernel functions and the HP-UX
discless protocol. To send a message, an HP-UX kernel
function (e.g., read or write) sends a request to a network
function called dm_send. The parameters fordm_send include

the destination cnode number, the message buffer, an op
tional outbound data buffer, an optional inbound data buffer,
a set of control flags, and the function to be called when
the reply is received back at the client. Fig. 3 shows the
activities involved in processing a message at the client
cnode and at the server, using the discless request/reply
protocol. These activities and the discless protocol are de
scribed in the following sections.
Message Buffers. A network message may contain a small
message buffer and, optionally, a large data buffer. The
message buffer holds the commands and their associated
parameters. If the request/reply message includes a large
data block (e.g., a file system block), then the data buffer
is used. The discless buffer management functions main
tain their own pool of message and data buffers.

Before a kernel routine can send a request message it
must allocate a message buffer. The discless buffer manage
ment functions provide facilities for allocating a buffer
chain depending on the size of the request, and for filling
the buffers with commands and parameters. Buffer manage
ment functions are discussed in detail on page 23.
Inbound/Outbound Data Buffers. When a file block is writ
ten to the server, the kernel write function includes the
file system buffer as the outbound data buffer in the send
call. For a file read the kernel read function will preallocate
the file system buffer for receiving the remote file block
and include the file buffer in the send call's inbound buffer
parameter. This guarantees that reply messages will not be
lost or delayed because of buffer shortage problems.
Control Flags. The control flags contain the information
that enables the discless protocol functions to determine
the protocols for delivering the request messages. For in
stance, a client may wait (go to sleep) for a reply or continue
without waiting, thus enabling the discless protocol to sup-

NFS Protocol Stack

Network File
System (NFS)

Remote Procedure
Call (RPC)

External Data
Representation (XDR)

User
Datagram

Protocol (UDP)

Internet
Protocol (IP)

Network Functions

Discless
Message (DM)

Layer

HP-UX
Discless
Protocol

10-Mbit/s Network Interface

10-Mbit/s Controller

Fig. 2. NFS protocol stack versus HP-UX network functions.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

port asynchronous or synchronous-mode I/O operations
when accessing remote files. The client can also specify if
the request is idempotent (repeatable) or nonidempotent.
Idempotent messages and discless protocol are discussed
in more detail in the next section.
Arrival at the Server. When a request message arrives at
the server, the request is either processed as part of a net
work interrupt service function or by a server process, and
then the kernel file system function specified in the com
mand buffer is invoked and the request is executed. After
the request is processed, the server calls a reply routine to
send back to the client the status and, optionally, the
selected file block.
Return to the Client. When the reply message arrives back
at the client machine, a network function directly copies
the reply messages from the LAN card buffer to the preal-
located receive buffers. After the reply message is fully
reassembled in the receive buffers, a network function
wakes up a sleeping request process (if it had been placed
in the wait state), delivers the reply message, and returns
to the kernel function that made the send call. For asyn
chronous operations, the network also releases the request/
reply messages automatically. The control flow diagrams
in Fig. 4 show the flow of messages between client and
server.

Discless Network Protocol
The discless network protocol is based on a simple re

quest/reply model. For each request message, the serving
cnode sends back a reply message to the requesting cnode.

There is no acknowledgment for receiving the request;
instead, the reply is used as the acknowledgment. On an
IEEE 802.3 network the maximum packet size is 1514 bytes,
and it may take up to 6 packets to transmit a maximal-sized
discless message (a IK-byte message buffer plus an 8K-byte
data buffer). Since messages are rarely lost in the local area
network, the protocol does not need to acknowledge each
individual packet. By using the reply message as the
acknowledgment for the multipacket messages, it reduces
a significant amount of overhead in protocol handshakes
used to prevent message loss during transmission.

As mentioned above, there are two types of messages:
idempotent (repeatable) and nonidempotent. These mes
sage types determine the sending/receiving request/reply
protocol between the client and server cnodes. Fig. 4 shows
the relationship between these two types of messages. For
idempotent messages the requesting cnode continues to
transmit requests until a reply is received from the server.
The nonidempotent requests are processed by the server
exactly once and the server repeatedly transmits replies
until the client acknowledges the reply. This protocol pro
vides excellent performance and helps handle lost mes
sages.

For idempotent messages, when the reply is sent to the
client, the server releases both the request and the reply
messages. If the reply is lost, the client machines will re
transmit the request and repeat the request/reply cycle
again. If the same request arrives at the server just after the
requested operation is finished but before the reply is re
turned to the client the request is considered a duplicate

Kernel File
System
Functions

Client Cnode

1. Al locate message
buffers.

2. Call send function.

Discless
Message
Interface
(DM-Layer)
Kernel

1. Build message buffer
chain and fill
buffers.

2. Preallocate reply
buffers.

Discless
Protocol
Layer

Network
Driver

1 . Determine message
protocol.

2. If required put the
requesting process
in the wait state.

3 . Disassemble message
into IEEE 802.3
packets.

4. Handle lost requests.
5. Send request retries.

Hw_send function.

Server Cnode

Execute request.

1. Process request with
either a CSP or an
interrupt routine.

. Determine which
fi le system function
to call.

1. Reassemble request
message.

2. If not enough
resources send NAK.

3. Handle duplicate
requests.

4. Handle lost replies.

^ â € ¢ H

Handle network
interrupt.

Kernel Filej
System
Functions

Server Cnode

1 . Allocate reply
buffers.

2. Call reply function.

Client Cnode

Discless
Message
Interface
(DM-Layer)
Kernel

1. Build buffer chain.
2. Fil l reply buffers

with status and
data blocks if
necessary-

Discless
Protocol
Layer

Network
Driver

(b)

1. Send reply according
to established
protocol (idempotent
or nonidempotent).

2. Disassemble reply
Into IEEE 802.3
packets.

^ ^ m

Hw_send function.

Process reply.

1 . Wake up request ing
process if it is in the
wait state.

2. Determine which
kernel fi le system
function to call.

1. Reassemble reply
message.

2 . Send back
acknowledge ACK
for nonidempotent
message.

Handle network
interrupt.

F ig . c l i en t a con t ro l f l ow , (a) Or ig ina t i ng a reques t f rom the c l i en t and rece iv ing a reques t
a t the server , (b) Send ing a rep ly f rom the server and rece iv ing a rep ly a t the c l ien t . CSP =

c luster server process.

22 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

and is ignored. For the nonidempotent requests the server
cannot release the request and reply messages until the
client acknowledges that the reply has been received.

Some requests take an indefinitely long time to com
plete â€” for example, reading from or writing to a locked file.
A request of this type (called a slow request) is indicated by
the arrival of duplicate requests before the operation re
quested is finished. To eliminate the unnecessary retries,
the serving cnode sends back a special acknowledgment
to the requesting cnode whenever a slow request is de
tected. Upon receiving such an acknowledgment, the re
questing cnode stops retrying. Since the client stops re
transmitting slow requests, and the reply could be lost, we
use the nonidempotent request protocol to handle the reply
messages of slow requests.

To handle lost message problems, the requesting cnodes
retransmit the request forever at intervals of 2, 3, 4, 5, ...,
5 seconds until the reply is received. Similarly, the server
cnode retransmits the reply messages of nonidempotent
requests every half second until the acknowledgment is
received. The retries continue until the crash detection
function detects that the destination cnode is down and
aborts the requests and retries.

Messages can be lost in a receiving cnode for two reasons:
the LAN card's I/O buffer has overflowed or there is a
shortage of discless networking resources such as network
ing buffers, data buffers, or protocol table slots for keeping
track of messages. Since the resources for the reply mes
sages are preallocated, the lost message problem will not
happen to the requesting cnode. To prevent excessive mes
sage loss on a heavily loaded server, the serving cnode
sends back a special negative acknowledgment message
(NAK) to the requesting cnode whenever it fails to allocate
any network resource for a new request. The message send
ing functions on the requesting cnode delay sending new
requests or retries to the server cnode when a NAK message
is received.

The discless request/reply protocol model provides a re
liable message delivery mechanism. However, some disc-
less kernel functions, such as crash detection and distrib
uted clock synchronization, only need quick access to the
network without the request/reply protocol. These func
tions are not concerned with the lost message problem. To
support such a requirement, the discless protocol provides
a datagram service, which bypasses the request/reply pro
tocol and directly calls the network driver to transmit a
datagram over the network.

Oiscless Networking Buffer Management
A design goal of the discless implementation was to

achieve the highest level of distributed intracluster com
munication possible. Efficient networking buffer manage
ment is critical to achieving this goal. Copying network
data is an expensive operation and manifests itself in vari
ous places. The protocol efforts would suffer if the overall
implementation did not address and attempt to minimize
data copying operations.

The first problem to overcome occurs when the server
receives a write request containing a large data block. In
this case a file system buffer is required, but the standard
HP-UX file system buffer pool cannot be accessed by disc-

less network functions during an interrupt. To solve this
problem, a separate pool of data buffers called fsbuf was
implemented for the discless system. This resource is simi
lar to the standard HP-UX file system buffer pool except
that it is available to discless network functions during an
interrupt. An fsbuf is used only on a serving cnode, and the
pointers for the file system and fsbuf are identical. Therefore,
when the server starts processing a write request we can
simply switch the fsbuf and file system buffer pointers, in
stead of doing a buffer-to-buffer copy.

Double-buffering and data copying operations need to
be minimized for discless buffer management. Towards
this end, the LAN device driver has two special, discless
specific functions that provide the necessary support.
These functions allow the protocol layer to copy data di
rectly between the file system buffers and the LAN card's
hardware buffers, eliminating intermediate buffering oper
ations. The first function handles inbound messages result
ing from read requests, and the second function handles
outbound messages resulting from write requests. For read
requests a file system buffer is preallocated before generat
ing the request to handle the reply data. This helps to
minimize delays in processing reply messages during an
interrupt.

Besides fsbuf, two other data structures used for discless
buffer management are mbuf and cbuf (collectively called
network buffers). The number of these buffers is set at boot.
These resources are the fundamental set of data structures
used for all discless messages. The data structure mbuf was
originally developed by the University of California at Ber
keley as a general-purpose buffer management mechanism.
The complete Berkeley design was deemed unnecessary
for the more limited discless situation. The discless mbuf/
cbuf is superficially similar in many respects to the Berkeley
design but is implemented and used in a different manner.
The networking buffers encapsulate the request/reply mes
sage, which contains the commands and their associated
parameters. The mbuf is relatively small (128 bytes each)

C l i e n t

R e q u e s t
R e t r i e s

S t o p
R e q u e s t s

Client

S e r v e r

R e p l y

R e q u e s t
S e r v e r

> Reply
R e t r i e s

f r S t O P

A c k n o w l e d g m e n t R e p l i e s

(b)

Fig. 4. The re lat ionship between idempotent and nonidempo
tent messages us ing the request / rep ly pro toco l , (a) Idempo
tent . (b) Nonidempotent .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

and sometimes cannot hold sufficient information. In these
situations, the cbuf (1024 bytes each) is used and mbuf will
contain a pointer to the allocated cbuf. For requests that
involve data blocks for reading or writing, the mbuf/cbuf
combination will contain an optional pointer to the fsbuf
for the data block.

Discless Cluster Server Processes (CSP)
There are many existing networking models that deal

with interprocess communication in distributed environ
ments. A common paradigm for such applications is the
server/client relationship. In this model a daemon process
normally listens at some well-known address for requests.
Upon receiving a request for service, a daemon process
forks an image of itself to handle the request. Meanwhile,
the original parent server process resumes listening for
additional connections. Forking the new child process and
context switching from the user to the system environments
are expensive operations, and would be unacceptable for
handling requests in a discless environment.

The discless implementation is also based on the server/
client model, but a different method of handling requests
was developed. The serving cnode maintains a small
dynamic pool of kernel processes called general cluster
server processes (GCSPs). GCSPs avoid the overhead of
forking and still satisfy requests from the client cnodes in
the cluster. These processes can be quickly and efficiently
created, destroyed, and context switched. When a request
arrives at the server a GCSP is allocated from the pool to
handle the request. When a GCSP is run it is locked into
memory and cannot be swapped out. GCSPs are created
from user space when the server is initially configured as
the cluster server. The number of GCSPs is also determined
at this time.
Special Types of CSPs. In general, the discless cnodes do
not require GCSPs. However, certain operations must be
performed by the discless cnode to maintain its member
ship in the cluster, such as synchronizing the mount table
or converting to synchronous I/O on a file. The limited
capability CSP {LCSP} solves this problem. This solitary
LCSP is created when a cnode first joins a cluster.

Most client requests are handled by the GCSPs. However,
in a few instances the server needs to run user-level code
to service a request. For example, the server needs to read
the file-system-resident cluster configuration file to deter
mine whether to grant a client's request to join the cluster.
In such cases the server dynamically creates a user-level
cluster server process (UCSP), services the request, and
then exits. Currently, only a single UCSP has been im
plemented, and it is is used to read the cluster configuration
file mentioned above.
Slow or Indefinite Operations. Certain operations may take
an indefinite amount of time to complete. For example, a
read from a FIFO file could wait indefinitely. During this
waiting period, a GCSP is tied up. If all the GCSPs were
used in such a manner, there would be none available to
service other requests and the system would come to a halt.
One solution would be to dedicate certain GCSPs to slow
operations while others would be available for the fast
operations. In practice, it is difficult or impossible to deter
mine in advance whether an operation will be fast or slow.

For example, it is impossible to distinguish between a write
to a FIFO file and one to a disc without examining the
message and various file system data structures that may
be implicitly referenced. Even if it can be determined that
the access is to a fast device like a disc, the operation could
still take a long time because of system calls like lockf() and
other system interactions. For the discless implementation,
a more reliable mechanism was chosen. Whenever a GCSP
is invoked it sets a time-out, the duration of which is depen
dent on the number of free GCSPs. If the GCSP completes
its assigned task before the time-out period, it clears it.
Otherwise, a replacement GCSP is created and the slow
GCSP is set to terminate itself upon completion. This en
sures that an adequate pool of GCSPs is maintained.

Performance Measurement Resul ts
The environment chosen for evaluating the discless im

plementation for this paper was a completely isolated two-
cnode discless cluster. Both the root server and the discless
cnode were identically equipped, 16M-byte HP 9000 Model
350 Computers. The server used an HP 7958A Disc Drive
for both the file system and the swap areas. After the disc-
less cnode was remotely booted over the LAN, all unneces
sary processes were killed on both machines. The root
server had four GCSPs running and standard default-con
figured kernels were used. Both systems were rebooted
after every benchmark to ensure that no data was cached
from a previous run that might affect the current bench
mark.

Sequential Write Statistics (10M bytes transferred)

* A I I t h r o u g h p u t n u m b e r s a r e t h e r e s u l t o f a v e r a g i n g
1 0 da ta t r ans fe r s .

Sequential Read Statistics (100M bytes transferred)

Fig . 5 . HP-UX Ser ies 300 re lease 6 .2 d isc less versus NFS
throughput stat ist ics, (a) Throughput for sequential writes, (b)
Throughput for sequent ia l reads.

24 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Two benchmarks were run from the discless cnode. The
first benchmark performs repetitive sequential reads, using
various block sizes, of a 10M-byte file located on the root
server's file system. The file is read ten times, resulting in
a total of 100M bytes transferred. The second benchmark
performs sequential writes, using various block sizes, to a
file on the server's disc. The writes continue until a 10M-
byte file has been written. For both benchmarks the user
process allocates an incore buffer of the specified block size.
This buffer is repetitively read into or written from. No
intermediate files are created by the benchmarks.

For comparison, the benchmarks were run in completely
discless and discless-plus-NFS environments. The NFS en
vironment was established by mounting from the discless
client the root server's test and data directories across an
NFS mount point. By executing the benchmarks with the
source and target files crossing the NFS mount point, NFS
protocols are used and a clean separation from the other
wise discless environment is achieved. The benchmark
executables were small and there was enough RAM on both
systems to avoid swapping. For this scenario, four NFS
block I/O daemons (biods) were run on the client and four
network file server daemons (nfsd) were run on the root
server.

In this way a situation was established for comparing
two different distributed networking implementations. The
HP-UX discless implementation uses special-purpose net
working protocols, buffer management functions, and
CSPs, whereas NFS is designed for a heterogenous multi-
vendor environment and uses a different protocol stack
and general-purpose HP networking and buffer manage
ment functions.

benchmarks for the discless and NFS protocol paths. They
are compared to stand-alone results of running the same
benchmarks on just the root server (i.e., no networking
involved). The throughput for the discless system with this
environment is encouraging. The client was able to read
at a rate of approximately 389K bytes/s or 91% of the stand
alone rate for this disc drive. The write statistics are also
encouraging, achieving a rate of approximately 363K bytes/s
or 87% of the stand-alone numbers. The root server's file
system buffer cache for this experiment was only 2.4M
bytes, so few if any cache hits occurred.

The more general-purpose NFS networking path was able
to achieve rates of approximately 309K bytes/s on reads,
or 72% of the stand-alone rate. The NFS write statistics are
less encouraging, averaging only 61K bytes/s or 15% of
stand-alone. This can be directly attributed to the lack of
delayed asynchronous writes in the standard implementa
tion of NFS. Comparisons between discless and NFS writes
are somewhat meaningless, since they represent different
design methodologies.

Given that the benchmarks were tightly controlled, re-
peatable, and run on identical hardware, it can be safely
stated that the overall throughputs for this experiment seem
to favor the discless implementation. Performance mea
surements are very application dependent. These bench
marks do not address large-cluster performance and the
resultant clusterwide throughputs. The data should only
be considered within the context of the established exper
iment. Different hardware, disc drives, and numbers of
discless cnodes all play a role in evaluating clusterwide
performance. It is beyond the scope of this paper to address
these issues.

Throughput Results
Fig. 5 represents the throughput of the read and write

'These perfor are for the latest HP-UX Ser ies 300 re lease, 62 The NFS throughput per for
mance in re lease 6.2 is much bet ter than re lease 6.0 There are no s igni f icant d i f ferences
in the releases. read or wr i te throughput performances between the two releases.

Kernel Measurement Method
To improve our understanding of the throughput data

for the benchmarks, the server's kernel was instrumented
and statistics were gathered and examined in great detail.

Functional Area Breakdown of Time Spent in the Server's Kernel
for an NFS Read

Funct ional Area Breakdown of Time Spent in the Server 's Kernel
for a Discless Read

(a) (b)
'This is t ime spent in the kernel idle loop wait ing for such things as disc I /O.

Fig . read us ing server measurements by func t iona l a rea , (a) NFS read o f 100M by tes us ing
8K-byte b locks, (b) D isc less read of 100M bytes us ing 8K-byte b locks.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

At every clock tick (every 20 ms on an HP 9000 Series
300), the system sampled the processor's program counter
(PC), the active process identifier (PID), the type of process
(CSP versus regular), and other system parameters. The
samples were written to an incore kernel buffer, extracted
from the buffer by a user-level process, and then written
to disc. The data was postprocessed by associating the sam
pled program counters with specific kernel procedures.
The incremental cost imposed on the system by the
monitoring actions was minimal, approximately one fifth
of one percent of all the time spent in the kernel. The data
was postprocessed on another machine after the entire bench
mark was completed. Each benchmark was repeated ten
times, and the results were completely consistent. The post-
processed data was segmented into separate kernel func
tional areas: byte copy (bcopy), disc I/O, LAN device driver,
file system, networking protocol stack(s), and buffer man
agement.

As a result of using a 20-ms sample rate, some level of
confidence with the derived numbers was required. A 95%
statistical confidence level was chosen and upper and
lower The confidence intervals were calculated.1 The
confidence intervals were derived on the basis of the
number of observed clock ticks in each kernel functional
area as a function of the total number of samples taken.
All numbers were rounded up to three decimal places. The
95% confidence intervals were derived as follows:

P = (functionaLarea_ticks) / (totaLsample_ticks_N)
Lower Bound L = P - 1.96 * sqrt ((P * (I - P))/N)
Upper Bound U = P + 1.96 * sqrt ((P * (1 - P))/N)

Discless Server Kernel Functional Area Prof i les
Fig. 6 shows the profiles for the functional areas mea

sured in the server's kernel. The profiles show a read bench
mark (executed from the client) using both the discless and
NFS protocol paths to transfer 100M bytes of data in 8K-byte
blocks.

The NFS write strategy does not make allowances for
delayed asynchronous writes, while the HP discless im
plementation does. Since the HP discless and NFS client
write strategies are so different, it seemed unnecessary to
present data that could not be realistically compared.

An enlightening set of observations can be extracted from
the server's kernel profiles compared with the client
throughput results. Of all the time spent in the server's
kernel routines, byte-copying data (bcopy) is by far the
largest consumer of CPU resources. This is predominately
the CPU cost of copying data to or from the LAN card's
hardware buffers and the target networking buffers.

The next interesting set of numbers shows the amount
of kernel time spent in performing discless protocol and
buffer management functions: 4.95% and 1.39% respec
tively, with a combined elapsed time of 10.96 seconds.
Comparing these numbers with the more general-purpose
NFS path, we get 15.29% for the NFS protocol stack and
5.87% for buffer management with a combined elapsed
time of 45.54 seconds. These comparisons must also be
weighted by acknowledging that the entire lOOM-byte read
took 247 seconds for the discless system and 441 seconds
for the NFS path.

The combined total of the discless specific components â€”
protocol, buffer management, CSPs, and DM layer â€” ac
counts for 10.73% of the server's total kernel time, or an
elapsed time of 13.36 seconds. This is only 41% of the time
spent in just the NFS protocol stack to accomplish an equiv
alent transfer of data.

Conclusions
High-level algorithms play a key role in the performance

of distributed systems. Special-purpose networking pro
tocols, server processes, and network buffer management
routines must all play together in the design of such a
system. Good performance requires not only a system view
of the goals, but also an efficient implementation of the
design.

Special-purpose designs like the HP-UX discless im
plementation have their advantages and disadvantages.
The advantages are considerable in the context of a closely
knit work group where a single-system view, high-speed
intracluster communication, and transparent sharing of
files and access of data are extremely important. As long
as the special-purpose design allows a peaceful coexistence
and complete interconnectivity with the outside world via
standard and evolving networking services (ARPA/Ber-
keley, NFS, etc.), the user is provided with a powerful
combination of capabilities. It is only in the more limited
context of wide-area connectivity for discless cnodes that
the special-purpose design shows disadvantages. Specifi
cally, the inability to operate across a gateway limits the
range of interconnectivity possible. It is this type of situa
tion that places undesirable limits on the design of discless
systems and tends to hinder their performance.

Acknowledgments
Special acknowledgments are extended to the following

individuals for their considerable contributions: Joel Tesler
for his efforts in CSPs, DM, and protocol slow requests,
Ching-Fa Hwang for slow request and initial project man
agement, Bob Lenk for CSPs, Bruce Bigler for DM, Joe
Cowan for project management, Doug Baskins for kernel
instrumentation, and Ray Cheng for early protocol pro
totype.

References
1. P.Z. Peebles, Jr., Probability, Random VariabJes and Random
Signal Principles, McGraw-Hill, 1980.

26 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Crash Detection and Recovery in a
Discless HP-UX System

by Annette Randel

HP-UX DISCLESS CLUSTERS depend on close, ker
nel-to-kernel communication across a local area net
work to maintain high performance and transparent

file system access. This kernel-to-kernel communication
relies on state information maintained on all nodes of the
cluster. When a cnode is removed from the cluster because
of an expected or an unexpected failure, this kernel state
information must be cleaned up to reflect the new cluster
configuration. Because this state information is at a very
low level in the HP-UX implementation, failure to clean
up state information after a crash can cause other cnodes
in the cluster to hang indefinitely, waiting for the crashed
cnode to complete a transaction. This is unacceptable, and
therefore, prompt and reliable detection and cleanup of
crashed cnodes are required at the kernel level.

For the purpose of this article, a crash or failure can be
defined as the removal of a cnode from an HP-UX cluster.
Two types of crashes or failures can occur on a cnode in
a cluster: an expected failure or an unexpected failure. An
unexpected failure may be caused by a hardware failure,
a loss of power, or a software failure. When an unexpected
failure occurs, the failing cnode may be unable to notify
other members of the cluster of its demise. An expected
failure occurs when a system is intentionally and properly
shut down by the operator. During an expected failure, the
cnode being shut down should notify all other cnodes that
it is leaving the cluster. Reliable detection of both expected
and unexpected failures provides the HP-UX system with
resiliency in the face of an unexpected failure as well as
dynamic reconfiguration around an expected failure.

There are four general requirements for crash detection
and recovery in HP-UX clusters. First, it is required that
the operating system maintain HP-UX semantics in the face
of a failure. This requires that file system consistency and
reliability be maintained, even though a cnode is removed
from the cluster. Second, it is required that a consistent
view of the cluster membership be maintained from all
cnodes. A third requirement is that the detection of a
crashed cnode and the recovery of that cnode's resources
be transparent to users of other cnodes in the cluster. This
means that no user action is required and the performance
impact on the user is minimized. Finally, it is required
that the rest of the cluster be resilient in the face of a client
cnode failure. This means that the failure does not cause
a chain reaction of failures in other cnodes and that no
data loss occurs on nonfailing cnodes. The exception to
this requirement is the root server cnode. Because client
cnodes cannot recover from the failure of a root server
cnode, a root server failure will cause all nodes in the
cluster to fail.

Crash Detection
Because of the state dependent nature of communication

in HP-UX clusters, cnode failures must be detected quickly
to prevent long system delays on functioning cnodes need
ing resources tied up by the failed cnode. In addition, fail
ures must be recognized before allowing the failed cnode
to rejoin the cluster. If the failed cnode were allowed to
rejoin the cluster before crash recovery had taken place,
valid state information could be improperly cleaned up,
or invalid state information could be acted upon by the
newly clustered node (e.g., it could respond to the retry of
a request sent before the failure occurred). Neither is accept
able.

The crash detection mechanism must also ensure a con
sistent view of cluster membership for all cnodes in the
cluster. All cnodes maintain their own cluster status table,
and, while most cluster communications occur between
the root server cnode and client cnodes, there are some
kernel messages that are passed from one client cnode to
all other cnodes. State information for these messages must
be cleaned up on the client cnodes as well as on the root
cnode after a failure occurs.

One final requirement of the crash detection mechanism
is that it must never incorrectly declare a nonfailed cnode
to have crashed, even in the face of a LAN failure. This
requirement conflicts somewhat with the requirement to
detect unexpected crashes quickly, and multiple detection
mechanisms are employed to fulfill all the requirements.
Detection Mechanisms. Five different mechanisms are em
ployed to detect both unexpected and expected cnode fail
ures reliably in a minimal period of time:
â€¢ The failing cnode broadcasts a datagram indicating its

expected failure.
â€¢ The server and each client cnode exchange status mes

sages.
â€¢ When the server detects a cnode failure, it informs the

cluster by broadcasting a reliable message.
â€¢ If a failed cnode attempts to rejoin the cluster before its

failure has been detected, the clustering operation will
be postponed until the crash recovery has been com
pleted.

â€¢ LAN cable failures are detected, and the crash detection
mechanism is disabled until the LAN is correctly config
ured. This prevents cnodes from being incorrectly de
clared failed because of LAN cable failures.
When all of these mechanisms are used together, they

provide reliable detection of both expected and unexpected
failures within a reasonable period of time. A more detailed
description of each mechanism and their interactions is
presented below.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

Broadcast Failure Datagrams. When an expected failure
or an orderly shutdown occurs, the failing cnode cluster-
casts (broadcasts to the entire cluster) a failure datagram.
This tells the other cnodes that it is about to shut down
and that no further communication from this cnode should
be expected. Since this message is a datagram, we cannot
depend on cnodes receiving this message. The failure data
gram is an attempt to get the word about the failed cnode
out quickly, rather than a reliable information mechanism.
Server/Client Status Messages. To detect both expected
and unexpected crashes reliably, the server and client ex
change status messages. This message exchange occurs
only when there has been no communication with a cnode
for a given period of time. A state transition model (see
Fig. 1) is used to track communication with other cnodes
and to determine when a given cnode can no longer be
contacted. This state transition model is based on an inter
nal data structure, the cluster status table, which maintains
a given cnode's view of the status of the entire cluster. A
cnode entry in the cluster status table may be in one of the
following states:
* ACTIVE: A message has recently been received from this

cnode.
* ALIVE: No messages have been received from this cnode

in several seconds.
* RETRY: A message has not been received from this cnode

in several seconds, and we are currently requesting status
information from this cnode.

->' FAILED: This cnode has failed. If executing on the root
server, al l cnodes have not yet been informed of the
failure.

â€¢ÃÂ» CLEANUP: This cnode has failed, and its resources are
being recovered.
INACTIVE: This cnode has never joined this cluster, or it
has failed and recovery is complete.

Every time a message of any type is received from an
ACTIVE, ALIVE, or RETRYing cnode, that cnode's status is
updated to ACTIVE in the cluster status table. Every few
seconds a kernel-level status checking process is executed
which downgrades the status of each cnode according to
its current state (see Fig. 2). On the root server cnode, this
process downgrades the status of all cnodes. On discless
nodes, however, this process only affects the state of the root
server cnode. States are affected by this process as follows:
â€¢. ACTIVE: Downgraded to ALIVE.
â€¢ AL IVE: Downgraded to RETRY.
â€¢ RETRY, FAILED, CLEANUP, and INACTIVE: No change.

A status of ALIVE or RETRY may be upgraded at any time
to a status of ACTIVE by the receipt of a message from that
cnode.

When the status checking process downgrades a cnode's
status from ALIVE to RETRY, it also sends a status request
message to the cnode whose status is being downgraded.
The status request messages are based on the datagram
service. Datagrams are fast, but unreliable, so they must be
retried manually. To do this, another process, the retry
status request process is executed every second (See Fig.
3). This process determines, via a global variable if any
cnodes are currently in the RETRY state. If there are none,
this process simply exits. If, however, one or more cnodes
are in the RETRY state, then the retry status request process
searches the cluster status table for the RETRY cnode entries.
When a cnode in the RETRY state is found, a retry counter
is incremented for that cnode, and another message request
ing a status update reply is sent. When a cnode whose retry
counter has exceeded its maximum is found, that cnode is
considered to have failed. However, before declaring the
cnode as failed, the LAN failure detection mechanism, de
scribed below, will be invoked.

When a cnode receives a status request message, a status

Message Received from

CSP = Cluster Server Process
Recei' Fig. 1 . Sfafes of crash detect ion

and recovery .

28 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

reply message, also based on the datagram service, is im
mediately sent in reply. This message is also unreliable
(i.e., not retried by the networking service), and the crash
detection mechanism relies on retries from the requester
to cover lost messages.
Server Broadcast Failure Mechanism. The broadcast fail
ure datagram mechanism is unreliable, and because the
server/client status message exchange does not inform the
entire cluster of a failure, another mechanism is needed to
ensure that the entire cluster is aware of a cnode failure.
The mechanism used for HP-UX is a reliable failure mes
sage which is clustercast (broadcast to the entire cluster)
by the root server.

The root server broadcasts the failure message from the
crash recovery mechanism. In the recovery process on the

Fig . 2 . Crash detec t ion : s ta tus check ing process.

root server cnode, if a cnode has a status of FAILED, then
the root server broadcasts a message to all other cnodes
informing them of the failure. The recovery mechanism
uses a single process to clean up the resources of all failed
cnodes. This process is serial, and because multiple cnode
failures may occur simultaneously or close together, the
recovery process cannot sleep waiting for the cnodes to
reply. If it were to do so and if one of the cnodes that had
not yet replied were to fail, then the root server would be
deadlocked, because the recovery process would be waiting
for a failed cnode that would never reply and whose re
sources would never be recovered. The crash recovery
mechanism is discussed in more detail on page 30.
Failure Detection at Boot. As mentioned, a failure must be
detected and recovered before the failed cnode can be al
lowed to cluster (rejoin the discless cluster). Since all clus
ter requests are directed to the root server, the root server
can block the cluster request until all recovery is complete.
When a cluster request is received from a cnode whose
status in the cluster status table is currently ACTIVE, ALIVE,
or RETRY, the server process handling the cluster request
sets the status of the requesting cnode to FAILED and invokes
the recovery process.

Race conditions between the clustering process and the
recovery process are prevented by not allowing more than
one cnode to join the cluster at one time and by not allowing
the joining process to continue until the recovery process
has been completed.
LAN Failure Detection. Because detection of unexpected
cnode failures is based on the exchange of status messages,
an undetected LAN failure could be misinterpreted as a
cnode failure if messages could no longer be received from
a given cnode.

If a LAN failure were misinterpreted as a cnode failure,
it would cause all cnodes on the failed LAN to panic (ex
perience a system crash) because of loss of contact with
the root server. The root server must detect the failure of
a client cnode to ensure that resources held by the failed
cnode are released, but it is less obvious why a client cnode
must detect the loss of contact with the root server, espe
cially when the only result is for the client cnode to panic.
The client cnode must detect loss of contact with the root
server because it is possible that, because of a hardware
failure of some sort, the client cnode has become deaf (in
capable of receiving messages) to the network. If a deaf
cnode were allowed to remain in a cluster, it would con
tinue to send requests to the root server, which would
continue to mark the cnode as ACTIVE, even though the
cnode could not participate in the cluster. This means that
the deaf cnode could tie up cluster resources indefinitely,
hanging the cluster. Therefore, client cnodes must panic
on loss of contact with the root server to ensure that they
are not tying up cluster resources.

A LAN failure is detected by running the LAN card
hardware diagnostics from a LAN card driver level. These
diagnostics are invoked by the retry status request process
previously described, just before setting a cnode's status
to FAILED. If the LAN card diagnostics indicate a LAN fail
ure, a warning message will be displayed on the system
console and the cnode's status will be upgraded to ALIVE.
The process of downgrading all cnodes' status to RETRY,

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

running the LAN diagnostics, and upgrading all cnodes to
ALIVE will be repeated until the LAN failure is repaired.
All file system access from discless nodes will hang until
the LAN is corrected, and it is possible that the root server
cnode will hang waiting for a resource held by one of the
isolated cnodes. Once the LAN failure is corrected, the
system will continue normally.

The LAN card hardware diagnostics cannot detect a LAN
failure that occurs on the other side of a LAN bridge. If a
cluster is spread across such a bridge, a LAN failure (such
as a break in the cable) on one side of the bridge will cause
all discless cnodes on the other side of the bridge to lose
contact with the root server and panic.

Crash Recovery
Once a cnode failure has been detected, crash recovery

is invoked. Recovery from the crash of a cnode requires
that certain cluster resources being used by that cnode be
released and cleaned up so they can be used by other nodes
in the cluster. There are four basic resources that need to
be cleaned up in the discless HP-UX system:
â€¢ File system data structures (inode)
â€¢ Swap space
â€¢ Process ID blocks
â€¢ Discless networking data structures.

In the current release, the root server maintains most of
the cluster's resources, so most of the recovery function
occurs on the root server. Discless networking resources
are necessary on all cnodes, however, so crash recovery is
invoked clusterwide with the root server performing most
of the work.

A separate recovery function is called for each basic re
source to be cleaned up after the failure of a cnode. The
general tasks performed by each function are described
below.
File System Recovery. When a failure occurs, the crashed
cnode may have file system resources locked up, or those
resources may be in an inconsistent state. Each currently
referenced file (including named FIFO files, directories,
and regular files) in memory is represented by a data struc
ture called an inode. There are two situations where file
system cleanup must be performed after a cnode fails, both
of which must be performed on the inode:
1 The file is locked by the failed cnode, either via a kernel

inode lock or by a lockf(2) or fcntl(2) call. An inode lock is
indicated by two fields in the inode, one that indicates
that the inode is locked and another that indicates what
cnode is responsible for the lock. If the file is locked by
the failed cnode, then the recovery routine unlocks it.
A lock created by lockf(2) or fcntl(2) is indicated by a lock
list in the inode structure. If the lock list indicates that
the file is locked by the failed cnode, then the recovery
routine frees the lock.

â€¢ A cnode map field in the inode indicates that the file:
n is being referenced by the failed cnode
n is opened by the failed cnode
n is opened for write by the failed cnode
a is a FIFO file opened for read by the failed cnode
n is a FIFO file being executed by the failed cnode.
A cnode map field in an inode is a table that maintains

a count for each cnode in the cluster. Cnode maps only

Yes
Increment Retry

Counter for this Cnode

Check for LAN
Cable Fai lure

Status = FAILED

Start
Recovery

CSP

CSP = Cluster Server Process

Fig. 3 . Crash detect ion: re t ry s ta tus request process.

30 HEWLETT-PACKARD JOURNAL OCTOBER -

© Copr. 1949-1998 Hewlett-Packard Co.

appear in Â¡nodes on the root server. Five different types of
cnode maps may be present in an Â¡node, one for each of
the cases listed above. The recovery function checks each
applicable cnode map (there is no point in checking the
FIFO read count if the file is not a FIFO file) and, if the
cnode map entry for the failed cnode is nonzero, then the
appropriate action (e.g., closing the FIFO file or releasing
the text segment) is taken, and the cnode map entry is
cleared.

The file system recovery function looks through the
memory-resident inode table and cleans up each inode that
was being used or referenced by the failed cnode.
Swap Space Recovery. The swap space recovery function
looks through the table of allocated swap space on the root
server cnode and releases any swap space that was allo
cated to the failed cnode.
Process ID Recovery. In the discless HP-UX system, the
root server cnode acts as a process ID (PID) allocator to
guarantee unique PIDs throughout the cluster. The process
ID recovery function goes through the PID allocation table
on the root server cnode and marks any PIDs allocated to
the failed site as available for use.
Discless Networking Recovery. Three basic discless net
working resources must be cleaned up when a cnode
crashes: cluster server processes (CSPs), networking state
information on outstanding requests to other cnodes, and
outstanding requests from other cnodes.

CSPs acting on behalf of the failed cnode are killed by
a routine that scans the table of active CSPs for those with
a cnode ID field matching the failed cnode. All such CSPs
are sent a signal indicating that they should abort the cur
rent process. Since it may take some time for all the CSPs
to abort, this routine is reinvoked until it does not find any
CSPs acting on behalf of the failed cnode. The CSP cleanup
routine also removes requests for CSP service by the failed
cnode from the CSP service queues.

Networking resources for requests to the failed cnode
and for remote requests being serviced on behalf of the
failed cnode must be recovered. The list of outstanding
networking requests is scanned, and all requests destined
for the failed cnode are marked undeliverable. Retries on
these requests are stopped, associated resources are freed,
and a local reply is generated. Requests being serviced on
behalf of the failed cnode are cleared, and replies to these
requests are stopped and all associated resources are freed.

The Recovery Mechanism
When a failure is detected, a cluster server process (CSP)

is invoked in the kernel to execute the recovery functions.
This process will be referred to as the recovery CSP. When
more than one failure occurs simultaneously, or when a
failure occurs while the recovery CSP is still cleaning up
a previous failure, the same CSP is used to clean up the
resources of all the failed cnodes. The cleanup of each
failed cnode's resources is done serially. This means that
we cannot allow any recovery function to sleep waiting for
a resource that may be held by another cnode that may
have failed, or we risk a possible deadlock situation.

To prevent this potential deadlock situation, each recov
ery function can return an error code that indicates that it
was blocked from completing cleanup of a cnode because

Have
- "All Cnodes in"

Cluster Status Table
- B e e n C h e c k e d '

Yes

Yes
Clean Up Networking State Information on

All Outstanding Requests from Failed Cnode

Yes

Executing
Cnode the Root

Server

No Status =
CLEANUP

Kill All CSPs Associated with Failed Node

Execute Remaining Recovery Functions

Were
All Recovery

Functions
Successful

No

S t a t u s = I N A C T I V E

Decrement Number of Failed Cnodes

Fig. 4. Genera/ crash recovery mechanism (recovery CSP).

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

of a locked resource. When such an error code is returned,
the failed cnode is not marked as cleaned up and the recov
ery functions will be rescheduled for that cnode after the
recovery CSP has had an opportunity to execute the recov
ery functions on other crashed nodes in the cluster.

In addition, to prevent another deadlock situation, we
must always guarantee that a CSP will be available to exe
cute the recovery function. This is done by allowing the
recovery function to be executed by a special CSP called
the limited CSP. This CSP is limited because it only exe
cutes processes that are necessary to maintain membership
in the cluster. None of the processes that are allowed to
execute on the limited CSP should cause the limited CSP
to sleep indefinitely waiting on a failed cnode. Therefore,
we can always assume it will eventually become available
for use in crash recovery. The recovery functions can also
be executed on a general CSP if one is available.

The mechanism for crash recovery (see Fig. 4) is closely
tied to the crash detection mechanism. Both use the state
transition model (see Fig. 1) based on the cluster status
table. To execute the recovery mechanism, a CSP is invoked
by the crash detection function unless one is already run
ning. This CSP checks a global variable, set up by the crash
detection function, to see if there are any failed cnodes. If
there are failed cnodes (there is always at least one on the
first pass), then the process looks through the cluster status
table searching for cnodes with a status of FAILED or
CLEANUP (for the first pass for a given cnode, its status is
always FAILED). When such a cnode is found, all outstand
ing kernel networking requests from the failed cnode are
cleaned up. This must be done before the failed cnode's
CSPs can be successfully aborted. The failed cnode's CSPs
must be aborted before any other cleanup can be done to
ensure that these CSPs do not make changes after the re
source recovery has been executed.

If the failed cnode has a status of FAILED, then a discless
cnode will update the failed cnode's status to CLEANUP.
On the root server cnode, however, the root server will
notify all discless cnodes of the failure and wait for all
clustered cnodes to respond to this notification before it
updates the failed cnode's status to CLEANUP.

The recovery CSP will then attempt to kill all the CSPs
serving requests on behalf of the failed cnode. If all such
CSPs have been killed, and if the failed cnode's status is

now CLEANUP, then the rest of the cleanup functions will
be invoked. Otherwise, the recovery CSP will return to the
top of the loop and search the cluster status table for the
next failed cnode. If the cleanup functions are successful,
then the cnode's status will be updated to INACTIVE and
the global count of failed nodes will be decremented. How
ever, if some cleanup function was blocked from complet
ing because of a potential deadlock situation, then the
cnode's status will remain at CLEANUP and the recovery
functions will be reexecuted for this cnode on the next
pass through the cluster status table.

When a pass of the cluster status table is complete, the
recovery CSP once again checks the global count of failed
cnodes. If this count is nonzero, then the cluster status
table is rescanned and the recovery algorithm above is re
peated. When there are no more cnodes left in the FAILED
or CLEANUP state, the recovery CSP terminates. When the
recovery CSP terminates, the resources of all failed sites
have been recovered and normal execution continues.

Summary
Crash detection and recovery are an important part of

making HP-UX clusters dynamic and resilient. Fast and
reliable detection of failures allows users to add and remove
cnodes dynamically without affecting users on other
cnodes. LAN cable failure detection allows changes in the
LAN configuration to be made without shutting down the
cluster. Different mechanisms work together to make crash
detection and recovery in HP-UX clusters both reliable and
fast.

Acknowledgments
Chyuan-Shiun Lin and Joel Tesler (then of HP Labs) did

the initial design and implementation of crash detection
and recovery on which the final implementation is based.
Dave Gutierrez did the design and implementation of the
LAN failure detection mechanism and was very helpful in
the refinement of the networking resource recovery. Bob
Lenk, Debbie Bartlett, Barb Flahive, and Fred Richart were
all a great help in the refinement of various areas of resource
recovery. Mike Berry and Fred Richart developed distrib
uted, coordinated failure simulations, which were invalu
able in the testing of this functionality.

32 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

B o o t M e c h a n i s m f o r D i s c l e s s H P - U X

by Pe r r y E . Sco t t , John S . Ma rv i n , and Robe r t D . Qu i s t

THE IMPLEMENTATION OF A DISCLESS WORK
STATION requires three distinct services: a remote
file system, a remote swapping capability, and the

ability to load and initialize the operating system from a
remote source. All of these services are implemented for
the HP-UX 6.0 system with the goal of maintaining a single-
system view. For the boot mechanism this means that al
though the operating system and its loader are on a remote
system (i.e., the root server), a user can power up any work
station in a cluster and get the same boot sequence that is
experienced with a stand-alone system. A stand-alone sys
tem is a workstation that uses a local disc for booting and
file system operations. This article describes how the stan
dard HP-UX boot mechanism works, and the modifications
made for the HP-UX 6.0 discless implementation.

Overview
The major modules and interfaces involved in the HP-UX

system boot mechanism are shown in Fig. 1. Fig. la shows
the boot components for a conventional stand-alone HP-UX
system and Fig. Ib shows the components for a discless
configuration. The following sequence outlines what hap
pens when a discless workstation is powered on and booted.
A more detailed description of these steps and the compo
nents shown in Fig. 1 is given later.
â€¢ After power-up, the boot ROM searches for and assigns

an input device (keyboard) and an output device (dis
play) to use as a console.

â€¢ The boot ROM checks for and tests interface cards, RAM,
and other internal peripherals. It then displays the infor
mation shown in the left side of Fig. 2. This is called
self-test.

â€¢ The boot ROM loader polls all supported mass storage

C o p y r i g h t 1 9 8 7 ,
H e w l e t t - P a c k a r d C o m p a n y .
A l l R i g h t s R e s e r v e d .

: L A N 2 1 , h p x y y y
1 H S Y S H P U X Ã ¯
1 D S Y S D E B U G) S * s t e m
1 B S Y S B C K U P Files

â€” Server Host Name
BOOTROM Rev . C
B i t Mapped D isp lay
M C 6 8 0 2 0 P r o c e s s o r
M C 6 8 8 8 1 C o p r o c e s s o r
K e y b o a r d
H P - I B
R A M 1 5 7 2 7 0 4 B y t e s
H P 9 8 6 2 5 (H P I B) a t 1 4
H P 9 8 6 4 3 (L A N) a t 2 1 0 8 0 0 0 9 0 0 A B C D

S E A R C H I N G F O R A S Y S T E M (R E T U R N T o P a u s e)
R E S E T T o P o w e r - U p 1 H

F i g . 2 . A t y p i c a l s c r e e n t h e u s e r s e e s d u r i n g t h e b o o t
process.

devices and LANs connected to the computer for an
operating system, and the message SEARCHING FOR A SYS
TEM (RETURN To Pause) appears on the display (see Fig. 2).
If the user strikes the keyboard during self-test the boot
ROM assumes the user wants to control the selection of
the operating system to boot. This is called the attended
mode. When this is done a list of available operating
systems appears on the right side of the display (see Fig.
2). The user selects a system by entering one of the two
character codes (e.g., 1H). If a key is not struck the boot
ROM loader automatically selects the first bootable sys
tem it finds. This is called the unattended mode.

B o o t
A r e a

S e c o n d a r y
L e a d e r

S t a n d - A l o n e S y s t e m

B o o t R O M L o a d e r a n d S e l f - T e s t

Boot ROM Read Interface

D e v i c e U s e r
D r i v e r s I n t e r f a c e

(a)

File
Sys tem

(b)

Server

user boot SYSHPUX
Secondary

Loader
O t h e r L A N

D r i v e r s D r i v e r

LAN

Discless Workstation
Boot ROM Loader

and Self-Test
Boot ROM Read Interface

L A N O t h e r U s e r
D r i v e r D r i v e r s I n t e r f a c e

Fig. 1 . (a) The major components
involved in the boot process for a
s t a n d - a l o n e H P - U X s y s t e m , (b)
The major components involved in
the boot process in a d isc less en
vironment.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Once the operating system is chosen (assume 1H) the
boot ROM retrieves the secondary loader from the server
and loads it into RAM on the discless cnode. Control is
then transferred to the secondary loader.

â€¢ The secondary loader retrieves the operating system (e.g. ,
/hp-ux) from the server, loads it and transfers control to
the operating system.

â€¢ The operating system initializes the discless kernel.
The first five steps in this sequence are called the boot

ROM phase, and the last two steps are called the secondary
loader phase and the HP-UX initialization phase, respec
tively.

Except for searching the LAN connection and loading
the secondary loader from the server, these same actions
also take place when a stand-alone HP-UX system is booted.
The difference is that the stand-alone system accesses files
directly from its local disc instead of going over the LAN.
From the user 's perspective, the boot process looks the
same.

There may be more than one cluster of workstations con
nected to a LAN cable, and therefore more than one server
may exist on the LAN. One of the main features of the
discless boot mechanism is that when a booting cnode is
polling the LAN connection for an operating system it is
able to select the correct server. The mechanism for doing
this is explained later.

Discless Workstation Boot Modules
Boot ROM Loader. The HP 9000 Series 300 boot ROM
loader is one of the boot ROM modules located in EPROM
on the CPU board. After self-test the boot ROM loader ini
tiates communication with the server to retrieve the boot
able system files. During the boot sequence, when the boot
ROM loader finds a LAN interface it broadcasts a server
identify request packet. Typically a cnode belongs to one
server; however, there is the possibility for a cnode to be
configured with more than one server. Each server has a
process called /etc/rbootd listening to the LAN. Based on the
information in the server's configuration file (/etc/clusterconf),
etc/rbootd decides whether to respond with the server's host
name. The host name is then displayed on the cnode's
system console. The process /etc/rbootd, which is discussed
later, is a server daemon that handles communication with
discless cnodes during boot.

For each server responding, the boot ROM loader sends
a file list request packet containing a file number. The file
number is incremented for each file list request sent to a
particular server. As the file names are sent to the request
ing cnode they are displayed on its system console (see
Fig. 2) . This is done unti l the f i le number exceeds the
number of boot file names the server has available to send.
At this point the server responds with a reply packet that
indicates there are no more file names to send. When a
bootable file is selected (e.g., 1H) the boot ROM sends a
request to open the file. This file (e.g., SYSHPUX) is the sec
ondary loader and resides on the server as /usr/boot/SYSHPUX.

In addition to opening the boot file, the boot ROM records
several global variables in RAM that are used by the second
ary loader and the HP-UX kernel. These values include:
â€¢ MSUS (mass storage unit specifier). Information about

the boot device, such as the directory format, device

type, and select code.
â€¢ SYSNAME. The name of the selected operating system

(e.g., SYSHPUX).
â€¢ SYSFLAG2. The name of the processor type on the cnode

(e.g., 68020).
â€¢ LOWRAM, HIGHRAM. The low and high limits of system

memory.
â€¢ F_AREA. A driver scratch area where the LAN link level

address of the server is stored. The link level address is
retrieved from the IEEE 802.3 packet containing the
server's host name.
After the boot file is opened, the boot ROM loader issues

a read request packet to the server to read the secondary
loader into the discless cnode's memory. When the second
ary loader has been loaded, a boot complete packet is sent
to close the boot file and terminate the session. The boot
ROM then passes control to the secondary loader.
Boot ROM User Interface. The displays produced during
boot and the handling of user input are the responsibilities
of the boot ROM user interface modules. When a key is
struck during self-test (attended mode) the interface mod
ule is responsible for assigning the two-character codes
(e.g., 1H, 2B) to each bootable operating system that is
found. All prompts and error messages go through the user
interface routines.
Boot ROM Read Interface. The read interface provides file
open, read, and close facilities to the boot ROM loader and
the secondary loader, and it functions as an interface to
the driver modules. The boot ROM loader uses the read
interface to load the secondary loader, and the secondary
loader uses it to load the HP-UX system.

The read interface operates in either an absolute mode
or a file mode. In file mode, file relative addressing is used
to access files on the server. The booting cnode relies on
the server to resolve the logical address into physical disc
blocks. In absolute mode, device relative addressing is used
and the calling routine is responsible for performing the
logical-to-physical disc block mappings.

For the discless implementation one of the design goals
was to make the read interface to the LAN driver look like
other devices so that existing secondary loaders would not
have to change. The original HP-UX loader was built on
the assumption that i t was always booting from a local
disc; therefore, it uses the absolute mode. The absolute
mode proved impractical for the LAN driver. The HP-UX
secondary loader was modified to recognize nondisc de
vices and use the file mode. We already had secondary
loaders for our BASIC and Pascal workstations which use
the file mode for boot over the Shared Resource Manager
(SRM). The SRM has characteristics similar to the LAN.

Root Server Boot Modules
/etc/rbootd (remote boot daemon), /etc/rbootd is a process that
runs on the root server and handles all of the boot protocol
requests between the server and the discless workstations.
Rbootd uses two files to determine how it should respond
to requests from the discless cnodes: a configuration file
/etc/clusterconf and a boot table /etc/boottab. The configuration
fi le contains the names and l ink level addresses of the
cnodes associated with the server, /etc/boottab contains a list
of boot files available to each cnode in the cluster. Rbootd

34 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

detects when changes are made to either of these files and
reconfigures itself using the new information.

To allow context dependent boot files (files tailored to
the capabilities of the workstation), rbootd emulates the
pathname lookup code used by the HP-UX 6.0 kernel to
handle context dependent files. The emulation is not per
fect since rbootd cannot determine some of the hardware-
specific context (e.g., whether the discless cnode has an
MC68881 floating-point coprocessor installed). Therefore,
hardware-specific context elements are not supported for
boot files. Context dependent files (CDF) are discussed in
detail in the article "A Discless HP-UX File System," on
page 10.

Rbootd supports four levels of error and information log
ging, ranging from logging only fatal errors to recording
the beginning and end of every boot session. The logging
level is set with a command line option.

The communication protocol used by rbootd is based on
a simple request/reply model. When a packet arrives, rbootd
wakes up and processes the packet, usually by sending a
reply, and then goes back to sleep. Requests are queued by
the link level access driver in the kernel. Because queue
space is limited, rbootd uses HP's real-time priority feature
to ensure that boot (especially unattended boot) does not
fail because of dropped packets.

Several boot protocols were investigated for our discless
implementation. The Trivial File Transfer Protocol (TFTP)
was considered, but could not be used. First, the boot ROM
read interface is random-access and TFTP is sequential-
only access. Second, TFTP is built on top of IP, which
would require more code in the boot ROM. Finally, the
boot ROM must obtain a list of file names, which is not
provided by TFTP. We could have worked around many
of these limitations; however, we decided to use a version
of the Remote Maintenance Protocol (RMP) boot capability.
This protocol was already in use within HP and the only

capability missing was the ability to obtain a list of files
from the server. Investigation showed that special interpre
tation of certain fields in the boot request packet would
allow this feature to be implementated.

Rbootd services five types of requests: server identify, boot
file list, boot request, read request, and boot complete. The
boot request, read request, and boot complete packet types
are standard RMP requests. The server identify and boot
file list packet types are extensions to the RMP boot request
packet.
â€¢ Server Identify Request. In the boot ROM phase the disc-

less cnode uses the server identify request to get a server's
hostname. At the same time the server's link level net
work address is obtained from the IEEE 802.3 packet
header sent by the server's LAN driver.

â€¢ Boot File List Request. The boot file list request is sent
by the boot ROM to obtain the names of the files listed
in /etc/boottab. The request packet contains an index
number that is used by rbootd to respond with the name
of the file. If the number is greater than the number of
files available, rbootd responds with a packet indicating
that there are no more boot files.

â€¢ Boot Request. A boot request opens the requested boot
file and allocates a session number. This session number
is used by the discless cnode for the read request and
boot complete request. Session numbers are used to sup
port concurrent boot requests.

â€¢ Read Request. A read request is used to read a boot file.
The request packet contains an offset and the number
of bytes to be read from the file. This enables the discless
cnode to access data randomly from the boot file. Rbootd
responds with a packet containing the number of bytes
actually read.

â€¢ Boot Complete Request. Boot complete causes rbootd to
close the boot file and deallocate the session number.

Secondary Loader. In a stand-alone system the secondary

Secondary
Loader

File Mode

Secondary
Loader

Secondary
Loader

Absolute Mode File Mode

File System
Parsers Bookkeeping

Abso lu te Mode F i l e Mode

Bookkeeping

Boot ROM Read Interface
o p e n r e a d

Boot ROM Read Interface read

Boot
Request

Discless Stand-Alone Discless Stand-Alone

Absolute Mode

Bookkeeping

Root ROM read Interface close

Boot
Complete
Request

Discless Stand-Alone

(a) (b) (c)

F i g . 3 . f i l e l o a d e r c o n t r o l f l o w o n d i s c l e s s a n d s t a n d - a l o n e s y s t e m d u r i n g a) a f i l e o p e n ,
b) a t i le read, and c) a f i le c lose.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

loader resides in Logical Interchange Format (LIF) in the
first 8K bytes of the boot disc. It is transferred to memory
by the boot ROM interface routines at the end of the boot
ROM phase. The purpose of the secondary loader is to load
the /hp-ux a.out file (i.e., the HP-UX operating system) into
low memory and execute it . Fig. 3 shows the secondary
loader 's flow of control and the processes involved for
discless and stand-alone loading situations. The open(),
read(), and close() routines emulate the behavior of the HP-
UX system routines by the same name, and provide the
secondary loader with an interface to the boot ROM read
interface open, read, and close routines. The file system
parser is a routine that understands the HP-UX file system
structure and is responsible for resolving HP-UX path
names during a boot file open in the absolute mode. Book
keeping functions include the activities performed to keep
track of data being transferred from disc (for instance, keep
ing a count of the number of blocks and current file offset
and size, or processing partial or multiblock data transfers).

The secondary loader starts the loading process by exam
ining the LOWRAM variable to determine the load point for
the HP-UX kernel, and then uses the variable MSUS to de
termine the boot device. The name of the boot file is re
trieved from the variable SYSNAME and the boot file name
is translated to an HP-UX pathname and the open() routine
is called. For instance, the boot file SYSHPUX is translated
to /hp-ux.

The open() routine selects either the absolute or the file
mode of the open operation depending on the type of boot
device. For local boot the file system parser resolves the
HP-UX pathname by using the boot ROM read interface
read routine to perform pathname lookup. For a remote
boot, as in the discless situation, the LAN driver is invoked
through the boot ROM read interface open routine and a
boot request is sent to the server where it is processed by
rbootd.

The read() routine makes the same selection as the open()
regarding absolute or file mode and uses the boot ROM
read interface read routine to access the drivers. For abso
lute mode the loader uses the bookkeeping function to keep
track of character counts, number of blocks read, and block
addressing. For the discless situation a read request is sent
to the server to be processed by rbootd. The read() operation
results in transferring the selected operating system (/hp-ux)
to the discless cnode's memory. The loading sequence for
the operating system proceeds as follows: first the /hp-ux
a.out header, which contains the sizes of the text, data, and
uninitialized data areas, is read into a temporary area, and
then the file /hp-ux is read into memory in two read calls,
one for text and one for data.

When the operating system is loaded the close() routine
is called. For the discless situation this results in a boot
complete request being sent to rbootd. For the stand-alone
situation the loader does some internal bookkeeping with
out call ing the boot ROM. When the close operation is
complete the secondary loader transfers control to the HP-
UX kernel.

Kernel Debugger Considerat ions
The above process changes slightly if SYSDEBUG is cho

sen instead of SYSHPUX. The kernel debugger is loaded just

like the HP-UX kernel. When the debugger is started, it
opens the a.out file /SYSDEBUG to find its relocation informa
tion, then moves itself into high RAM, adjusting all of its
jump points. It then adjusts the HIGHRAM boot ROM vari
able, effectively protecting itself from being overwritten.

The debugger uses the secondary loader open(), read(),
and close() routines, which are left in high RAM. After the
user selects the kernel to boot, the debugger loads the HP-
UX kernel like the secondary loader loads the HP-UX ker
nel.

HP-UX Discless Kernel Init ial ization
The HP-UX discless kernel finds its server's LAN card

address in the boot ROM F_AREA. This value is used to
initialize several discless kernel pointers, which effectively
turns on the discless message interface. The discless mes
sage interface provides the protocol for communication
between a discless workstation and the server. The discless
message interface is described in detail in the article "The
Design of Network Functions for Discless Clusters" on page
20. Once the discless message layer is operational the disc-
less cnode sends a cluster request message to the server.
The cluster message contains the discless cnode's LAN
address, which is used for security purposes, and its kernel
release number, which is used to prevent server or client
kernel mismatch.

The server validates the discless cnode's request by com
paring the cnode's LAN address against the list kept in
/etc/clusterconf. If it is not there the request is rejected.
Likewise, the request is rejected if the kernel release num
bers do not match. Otherwise, the server broadcasts a mes
sage to the rest of the cluster and the discless cnode is
admitted. The server then sends a message to the cnode
that contains the current system time, a description of the
rest of the discless cnodes in the cluster, and the ID of the
cnode's root and swap servers. At this point, the discless
cnode can use the root server's file system, and control is
passed to the /etc/init program. The discless file system is
used to execute programs started by /etc/init, and kernel ini
tialization is complete.

Acknowledgments
The authors would like to thank the following individu

als who contributed to the discless boot mechanism: Anny
Randel for her work on the original /etc/rbootd design and
prototype, David O. Gutierrez for his patient explanation
of the HP-UX LAN driver, discless messages, and kernel
initialization, and Joe Cowan for project management in
bringing together the resources to complete the discless
boot mechanism.

36 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Discless System Configuration Tasks

by Kimber ly S. Wagner

GOING FROM A GROUP of stand-alone machines to
a clustered environment is not a particularly dif
ficult task, but because of the large number of steps

required to configure the system, an automated tool called
reconfig is provided with the HP-UX discless system to
simplify the process. Reconfig enables the system adminis
trator to set up the cluster server node and add or delete
cluster nodes (cnodes) as necessary.

Reconfig was originally developed for the HP 9000 Series
200 and 300 Computers' HP-UX 5.1 operating system. The
tool contains a collection of monotonous and terse system
administration tasks within a user-friendly menu-driven
environment. Basic tasks such as setting up user access
to the system and reconfiguring kernels can be easily ac
complished. With the advent of discless workstations in a
clustered environment, changes were made to enhance the
original reconfig tool.

Cluster Setup
For creating a cluster configuration, the minimum system

includes an HP 9000 Model 350 for the root server with at
least 8M bytes of RAM, at least a 130-Mbyte disc drive,
and the HP-UX 6.0 operating system (or later). The setup
process begins by running /etc/reconfig, and when the main
menu This selecting the option Cluster Configuration. This
selection will bring up the menu shown in Fig. 1, which
shows the four values required to set up a cluster server:
the server node name, the link level LAN address, the in
ternet address, and the number of cluster server processes
(CSPs).
Cluster Node Name. The server's cnode name is the sys-

Reconfig â€” Set Up a Cluster Environment

Root Server's Cluster Node Name:
LAN Card's Link Level Address:
NS-ARPA Internet Address:
Min. # of Cluster Server Processes: 4

Root Server's Cluster Node Name?

tern's hostname and it is used to identify the server cnode
within the cluster. All discless cnodes refer to the root
server by this name.
LAN Card's Link Level Address. Each LAN interface card
has a unique link level address. This value is set by the
factory and cannot be changed. Reconfig will display the
address for each LAN attached to the system. If there is
only one LAN card on the system its address is used by
default; otherwise, one of the available cards must be
selected using the NEXT, PREVIOUS, and SELECT softkeys.
NS-ARPA Internet Address. The internet address enables
communication with other networks and uniquely indenti-
fies the server within a network. The internet address is
not required for discless interaction, but provides a mini
mal NS-ARPA networking capability within the cluster to
handle remote process execution for system administrative
tasks. If a value is automatically displayed, that value is
the internet address associated with the cnode name that
already exists in the system's /etc/hosts file.
Cluster Server Process (CSP). The CSP is a special process
that is used to handle interprocess communication in a
discless envrionment. Except for one limited CSP (LCSP)
which exists on each discless cnode, all the other CSPs
exist on the server. The default value is 4 and the amount
entered will be the minimal number of CSPs running at all
times. If more CSPs are needed they will be created auto
matically. For an in-depth discussion of CSPs see the article
"The Design of Network Functions For Discless Clusters"
on page 20.

When all the entries in the menu have been entered
reconfig will tell the user what it is about to do to build the
system and then ask if the user wants to continue. A yes
will cause reconfig to begin configuration. Reconfig performs
five steps in transforming the stand-alone system to a clus
tered environment. The steps are done in a particular order,

Fig. 1. Reconf ig menu tor creat ing a cluster environment.
F ig . 2 . Par t ia l sys tem mode l fo r the server cnode. "Server "
is the cnode name g iven to the root server .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

so if an error occurs during the process, the user can correct
the problem and then reexecute reconfig from where it left
off. Generally, each step in the process will complete with
out error unless certain required files and/or directories are
missing. The activities that take place at each step, are as
follows:
â€¢ Context dependent files (designated by a + appended

to the file name) are created for the cluster and root server
based upon a predetermined system model (see Fig. 2).
Context dependent files (CDF) are used to describe the
various attributes (e.g., machine type, coprocessors) of
a particular cnode. For more information on CDFs see
the article "A Discless HP-UX File System" on page 10.

â€¢ A fully loaded root server kernel is built. The directory
/hp-ux is turned into a CDF and the new version of the
kernel resides in /hp-ux+/<cnode_name>. Cnode_name is the
name entered earlier for the cluster node name.

i The NS-ARPA files for remote process execution are set
up and an entry is made for the root server for the follow
ing files: /etc/hosts, /etc/hosts.equiv, and $HOME/.rhosts (root's
home directory).

â€¢ The and configuration file /etc/clusterconf is created and
the following information is entered in the file for the
root server: the root server's cnode name, the server's
link level LAN address, and the number of CSPs to start
at boot.

â€¢ The re file, which initiates the boot service for the discless
cnodes, is modified to state which LAN device file to
use if the default LAN device file is inappropriate.

â€¢ Reboot system.

Adding and Delet ing Cnodes
Once the root server of the cluster has been set up, disc-

less cnodes can be added or deleted at will by running
/etc/reconfig and selecting the Cluster Configuration option from
the main menu. If the root server has already been set up
(e.g., /etc/clusterconf exists), reconfig will present two menu
choices for adding or deleting discless cnodes.

Adding a Cnode
The input required for adding a cluster node is similar

to that required for initial cluster setup: the cnode name,
an in ternet address , and the l ink level address of the
cnode's LAN card. Each discless cnode always runs exactly
one limited cluster server process (LCSP) so there is no
need to prompt for the number of cluster server processes.
The process for adding a cnode is similar to that for setting
up the clustered environment on the root server. The four
steps are as follows:
â€¢ Context dependent files are created for the new discless

cnode based on the system model for client cnodes (see
Fig. 3).

â€¢ A minimally loaded discless cnode kernel is built .
The directories /hp-ux+/<cnode_name> and /etc/conf/dfile+/
<cnode_name> are created.

â€¢ NS-ARPA files for remote process execution are set up
for the discless cnode. The files /etc/hosts, /etc/hosts.equiv,
and SHOME/.rhosts (root's home directory) are modified
to include the new cnode.

â€¢ The to configuration file (clusterconf) is modified to
include an entry for the discless cnode. The entry in
cludes the new cnode's name and i ts l ink level LAN
address.

Removing a Discless Cnode
Only the discless cnodes can be removed with reconfig.

All that is required to remove a discless cnode with reconfig
is the cnode name. The menu shown in Fig. 4 is used to
select the cnode to be removed. There is an option to re
move or not to remove all CDFs associated with the cnode.
Unless there is a good reason for leaving the CDF elements
around, the CDFs should be removed when the discless
cnode is removed. The cnode removal process involves the
following steps:
â€¢ Remove the ability to do remote process execution by

deleting the entries for the cnode from the NS-ARPA
files /etc/hosts.equiv, and SHOME/.rhosts. The cnode name
and its associated internet address remain in the file
/etc/hosts for later use.

â€¢ Remove the entry in the cluster configuration file (/etc/
clusterconf) for the deleted cnode.

Fig. 3 . Par t ia l system model for a c l ient cnode. "Cnode?" is
the cnode name g iven to the new d isc less cnode.

Reconfigâ€” Remove a Discless Cluster Node

C l u s t e r N o d e N a m e : C n o d e t
R e m o v e C l u s t e r N o d e S p e c i f i c C D F ' s : N o

The cluster nodes currently defined within your cluster are:

C n o d e t C n o d e 2 C n o d e S

C luster Node Name?Â» Cnode l

N e x t P r e v i o u s H e l p I S e l e c t I P r Â « v
Menu

Fig. 4. Reconf ig menu for delet ing a cnode.

38 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

If requested, remove all context dependent file elements
of the form : <file>^ <cnode_name>.

Conclusion
The Reconfig tool provides features that make the tasks

of setting up and maintaining an HP-UX discless cluster
much easier. In addition, the time required for reconfigura
tion is much lower with Reconfig than it would be to ad
minister each system individually. This is one of the advan
tages of the HP-UX discless system.

Acknowledgments
Special thanks go to Stuart Bobb and Dave Grindeland

for their usability testing efforts, and to Paul Christofanelli
and Paul Van Farowe for their invaluable NS-ARPA net
working assistance.

Small Computer System Interface
The SCSI standard is the newest interface for the HP 9000
Series 300 family of HP-UX workstations. It offers improved
per formance, s impl ic i ty in des ign, a wide cho ice o f
control ler chips, and wide acceptance in the UNIXÂ®
communi ty

by Paul Q. Perlmutter

DURING THE PAST FEW YEARS manufacturers of
small computer systems and intelligent peripheral
devices realized the need for an industry standard

I/O interface for their systems. This interest resulted in the
Small Computer System Interface (SCSI) standard. HP in
troduced an SCSI interface in April of 1988 for a family of
high-performance disc drives. The SCSI standard is the
newest interface for the HP 9000 Series 300 family of HP-
UX workstations. It offers improved performance, simplic
ity in design, a wide choice of controller chips, and most
important, wide acceptance in the UNIX community. Mar
keting data predicts that by mid-1989, approximately one
half of all UNIX workstations will have an SCSI interface.
This article provides an overview of the SCSI standard and
the implementation of SCSI on the Series 300.

What is SCSI?
The Small Computer System Interface â€” or SCSI â€” is an

intelligent, general-purpose I/O bus. The entire spectrum
of requirements for SCSI is specified in one document:
ANSI committee standard X3.131. This standard defines
the physical layer, the logical interface layer, and the device
command set level for peripherals used with small comput
ers. SCSI is very popular partly because all levels were
UNIX is a reg is te red t rademark o f AT&T in the US A and o ther count r ies

designed and specified together, resulting in an I/O system
that is integrated in a consistent and homogeneous style.

A critical design goal for SCSI was to provide the host
computer with device independence within a certain class
of peripheral devices. For direct-access drives (i.e., discs)
this means the features that distinguish different discs are
hidden from the software. The disc dependent characteris
tics such as the disc geometry, timing, protocol, and feature
set are elements that make a disc less compatible. SCSI
tries to hide these elements from the software without com
promising product performance or quality. This signifi
cantly simplifies the development of the disc software
driver, and enables the software to achieve a high degree
of autoconfigurability. It also improves plug-and-play pos
sibilities between different vendors' disc drives. For in
stance, many disc drive manufacturers have developed
command sets that have many common features. SCSI ex
tracts the common ingredients, of these command sets and
creates an industry standard format, command syntax, and
command set. To simplify addressing, SCSI discards the
older 3-vector addressing mode (sector, track, cylinder) and
adopts the simpler single-vector addressing mode. In
single-vector addressing, the disc is viewed as a logical
single-dimensional array of blocks, and the software merely
specifies the block offset from the beginning of the device.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

This approach serves to bring divergent disc-like peripher
als such as write-once-read-many optical discs (WORMs),
CD ROMs, and flexible discs much closer together.

The Series 300 interface card (host adaptor in Fig. 1)
uses the Fujitsu MB87030 controller chip to interface to
the SCSI bus. This chip simplifies the software interface
to the bus. It contains an 8-byte FIFO buffer, and provides
DMA, asynchronous, and sychronous methods of data
transfer.

Our SCSI disc driver is very flexible and highly autocon-
figurable. Almost no assumptions are made about the disc.
When a command first accesses the device, the driver
checks to determine if the disc is alive (test_unit_ready com
mand), then asks who it is (inquiry command), and finally,
asks the disc drive for two basic geometric parameters: the
logical block size in bytes, and the size of the drive in
logical blocks. These two values are saved in the buffer
header associated with the device, and are used for the
duration of the transaction.

The SCSI Bus
Only two devices are allowed to communicate on the

SCSI bus at any time. Up to eight devices can be connected
to the bus and a unique SCSI ID bit (0-7) is assigned to
each device. One of the devices must be the host or initiator.
When two devices communicate on the bus, one acts as
the initiator and the other acts as the target. The initiator
(usually a host system) originates an operation (e.g., read
or write) and the target (e.g., disc controller) performs the
operation. This operation is similar to the HP-IB talker/
listener protocol. An SCSI device usually has a fixed role
either as an initiator or a target. However, some devices
can perform both roles. A typical SCSI configuration is
shown in Fig.l.

An important assumption made by SCSI forces the target
to drive the bus phases, and the target is allowed to discon
nect from the bus when it anticipates a significant delay
during data transfer. This fundamental assumption allows
multiple drives to be active simultaneously, enhancing
total bus bandwidth. The idea is this: since we can have
only one initiator and one target active at any given time,
we do not want a device to tie up the bus unless data is
actively being transferred. Thus, devices are allowed to
disconnect while internal-only activities (such as seeks or
command parsing) are occuring. Typically, after a com
mand has been transferred, a device will disconnect while
it parses and decodes the command, seeks to the appro
priate cylinder, and prepares itself for data transfer. In ad
dition, if in the middle of a data transfer the drive antici
pates dead time (such as a seek to a spared track), the
device will get off the bus to allow other peripherals to
access the host. As soon as the target is ready to resume
data transfer, it can actively arbitrate for the bus (when the
bus is free) to reattach to the host. The disconnect/reconnect
option in SCSI can boost overall system performance.

SCSI Bus Signals
The SCSI bus consists of eighteen signal lines. Nine are

used for control and nine for data. The control signals are
used to establish the logical bus phases (discussed in the
next section) for the SCSI bus protocol, and control the

transfer of data. These bus signals are shown in Table I.

Signal

Table I
SCSI Bus Signals

Description

REQ (Request) Data handshake line:
requests data byte on bus.

ACK (Acknowledge) Data handshake line:
acknowledge data byte on bus.

(Busy) Indicates the bus is busy.

Driven by
H o s t T a r g e t

X

B S Y

S E L

I/O

(Select) Used during selection and
reselection to establish communication
link.

X

X

(Input/Output) Indicates direction
of data flow on the data bus. If I/O is true
the flow is from target to initiator.

MSG (Message) Indicates the data on bus
is a message (only valid if C/D asserted) .

C/D (Control/Data) Determines whether
control or data information is on bus.

X

X

X

X

A T M (A t t e n t i o n) R e q u e s t s m e s s a g e o u t X
phase (initiator has message for target).

R S T (R e s e t) H a r d r e s e t o f a l l d e v i c e s . X X

In addition there are 8 data lines and one parity line that
are driven by both devices.

SCSI Bus Phases
The SCSI architecture defines eight distinct bus phases

that define the logical characteristics of the SCSI bus:
Â» BUS FREE phase. Indicates when no SCSI device is ac

tively using the bus.
s ARBITRATION phase. Allows one SCSI device to gain con

trol of the bus.
â€¢ SELECTION phase. Allows an initiator to select a target.
â€¢ RESELECTION phase. Allows the target to reconnect to

the initiator.
; COMMAND phase. Allows the target to request command

information from the initiator.

Magnetic
Tape

40 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ DATA phase. Provides data transfer between the initiator
and the target.

Â» STATUS phase. Provides status information from the
target to the initiator.

â€¢ MESSAGE phase. Allows the transfer of messages between
the initiator and the target.
The first four phases allow devices to contend for access

to the bus and establish the physical data path between
the initiator and the target. The last four phases are called
the information transfer phases because they are used to
transfer data and control information over the data lines.
The SCSI bus can never be in more than one phase at any
given time. However, all devices can arbitrate for access
to the bus. The following is a simple example of phase
sequencing during a disc transaction:

Phase

B U S F R E E
A R B I T R A T I O N
S E L E C T I O N
M E S S A G E O U T
C O M M A N D

M E S S A G E I N

B U S F R E E

A R B I T R A T I O N
a n d R E S E L E C T I O N
M E S S A G E I N
D A T A I N o r O U T
S T A T U S
M E S S A G E I N
B U S F R E E

Comments

No device on bus.
Initiator (host) arbitrates for bus.
Host establishes contact with target.
Host identifies itself to the target.
Host issues command (e.g. , read or

write).
Target indicates it will disconnect

and then drives the bus to
BUS FREE.

Target is detached from the bus
while a seek is in progress.

Target is read and reestablishes
a link to the host.

Target identifies itself to host.
Data is transferred.
Target reports on transfer status.
Command complete (done).

Bus Access Phases
BUS FREE Phase. This phase indicates that no device is
using the bus and that it is available for use. BUS FREE is
detected by the BSY (busy) and SEL (select) signals being
false.
ARBITRATION Phase. Arbitration allows a device to gain
control of the bus to initiate a transaction such as a data
transfer, or to send a message or command. To gain control
of the bus, a device (the initiator) first checks to see if the
bus is free. If the bus is free the device asserts the BSY
signal and sets its own device ID on the data lines. If more
than one device is contending for the bus, the device with
the highest priority gains access to the bus. The device that
loses arbitration starts all over again and the device that
wins asserts the SEL signal to end arbitration.
SELECTION Phase. After a device has gained control of the
bus the SELECTION phase is entered by selecting the target
device for the transaction. Target device selection is ac
complished when the initiator sets the data bus lines to
the OR of its SCSI ID bit and the target's SCSI ID bit, and
asserts the ATM signal. The target will respond by asserting
a MESSAGE OUT phase requesting an Identify message from
the initiator. The Identify message establishes the physical
data path between the initiator and the target. The initiator

replies with a message indicating to the target whether it
can handle target disconnection, and it determines if the
target can handle synchronous data transfer. If an SCSI
implementation does not support messages the target will
go directly to the COMMAND phase.
RESELECTION Phase. When the target decides to disconnect
from the bus temporarily, the RESELECTION phase is used
to reestablish connection with the initiator to continue a
transaction. The target device disconnects to free the bus
for other devices to use when it anticipates a significant
delay during the next data transfer. For instance, during a
disc I/O operation the disc can disconnect from the bus
while it switches heads, does a seek, or empties its control
ler's buffers. Before disconnecting from the bus, the target
sends the messages Save Data Pointers and Disconnect to the
initiator. The Save Data Pointers message tells the initiator to
save the pointers to the current locations in its memory
where the data is being transfered. The pointers are restored
when the target reconnects to the initiator. When the target
is ready to resume data transfer it must wait for BUS FREE,
arbitrate for the bus, and then reselect the initiator. In imple
mentations where there is no ARBITRATION phase the RE-
SELECTION phase cannot be used. This also implies that
the target device is not allowed to disconnect from the bus.
Series 300 and Bus Access. The Fujitsu chip controller
used on the Series 300 interface card provides a very flex
ible SELECT command. For the host (initiator) to arbitrate
and select a target, the host first writes the target ID bit to
the TEMP register on the chip, and then issues the SELECT
command to the chip. The chip handles the ARBITRATION
and SELECTION phases, and will interrupt with one of three
possible conditions:
â€¢ Command complete interrupt (selection completed).

This indicates that the arbitration was successful and
the target device responded to the SELECTION phase.

â€¢ Command complete interrupt (arbitration for the bus
failed).

â€¢ Time-out interrupt (the target device did not respond,
possibly because the device was powered off, or the de
vice at the bus ID is not present).

Information Transfer Phases
The information transfer phases are used to transfer data

or control information over the data lines. These four log
ical phases are distinguished by three control lines: MSG,
C/D, and I/O (see Table II).

Table I I
SCSI Informat ion Transfer Phase Coding

Control Line Phase Direction of Transfer

An important characteristic of SCSI is that the target
drives the three control lines, and therefore controls all

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

changes from one information transfer phase to another.
The initiator can request a MESSAGE OUT phase by asserting
ATM. The initiator might use this feature to gain the attention
of the target under special circumstances. For instance,
suppose the host has decided that some type of catastrophic
failure has occurred during the DATA phase (e.g., a parity
error). The host (initiator) will assert ATM, and when the
target recognizes the ATN condition, it switches the bus
phase to MESSAGE OUT and allows the host to send a mes
sage. When this situation occurs for the Series 300 an Abort
message is sent that tells the target to clear the current
command and all status and data buffers, and allow the
bus to go to BUS FREE immediately. The host may then
attempt to retransmit the entire transaction or issue an error
to the process that made the transaction request.

The REQ/ACK signal lines provide the handshake protocol
used to control the asychronous and synchronous transfer
of information during the information transfer phases. Each
REQ/ACK handshake allows the transfer of one byte.
Asynchronous Data Transfer. The target uses the I/O signal
to control the direction of transfer. If I/O is true the direction
is from target to initiator (e.g., read), and if I/O is false the
direction is from initiator to target (e.g., write). Fig. 2 illus
trates the REQ/ACK handshake protocol which is repeated
for each byte transferred. The SCSI asynchronous data rate
is 1.5 Mbytes/s.
Synchronous Data Transfer. Asynchronous data transfer
is the primary mode available in SCSI. However, synchro
nous data transfer is possible during DATA IN and DATA OUT
if before transfer the initiator and target agree to this mode.
When the synchronous mode is established the devices
also agree on a minimum period between REQ and ACK
signals and the maximum REQ/ACK offset. The REQ/ACK
offset is used to determine the number of REQs the target
will send in advance of the number of ACKs received from
the initiator. During synchronous transfer the target does
not wait for the ACK signal from the initiator before sending
the next REQ signal to send or receive the next byte. The
target will continue in this loop until the specified REQ/ACK
offset. It will then compare the number of REQs with the
number of ACKs to verify that all data has been transfered.
The SCSI synchronous data rate is 4 Mbytes/s.
COMMAND Phase. When the target is ready to accept a com
mand from the initiator it will drive the SCSI bus to COM
MAND phase. The initiator will then send a command such
as a read or write to the target.
DATA Phase. When data flows from the target to the host,
we refer to this as the DATA IN phase, while DATA OUT indi
cates that data is going from the host to the target. This is
the only information transfer phase that allows the synchro
nous data transfer option described above. For all other
phases data must be transferred asynchronously.
MESSAGE Phase. When the MSG line on SCSI is asserted
the data on the bus is interpreted as message bytes. Like
the DATA phases, MESSAGE IN indicates that the target is
sending a message to the host, while MESSAGE OUT indicates
the message is going from the host to the target. Message
bytes are used to help establish and coordinate the environ
ment for data transfer. For instance, the Identify byte sent
by the host during MESSAGE OUT identifies the host to the
target and also indicates to the target whether it can handle

disconnects and reconnects during data transfers. In a simi
lar way, the target sends the host a Disconnect message
to alert the host that it will immediately disconnect from
the bus and drive the bus to BUS FREE. Messages are usually
single bytes, but under certain situations are multiple bytes.
For instance, extended messages are sent by the initiator
to the target to determine whether synchronous transfer
is feasible, and if so, to establish the synchronous data rate.
During a transaction the MESSAGE OUT phase is initiated
by the target in response to the ATN signal.
STATUS phase. The STATUS phase enables the target to in
form the intitiator of the status of a transaction. After the
target has completed a data transfer it sends one status byte
back to the initiator. If the target sends a zero, the transac
tion completed normally. A nonzero status indicates that
the target has additional status to send.

In the Series 300 implementation, if the status byte re
turned by the target is nonzero, we always request extended
status. The RequesLSense command provides complete
diagnostic results of the previous transaction.

In addition to bad status, other types of problems may
occur. The Fujitsu chip may report parity errors or
hardware errors that occurred during a transfer. Another
error occurs when a time-out occurs. Whenever any hard
ware activity is initiated, a timer is started, and if the timer
times out we assume a hardware failure has occurred.

Our error recovery philosophy is to give most transac
tions a second chance and no more. For instance, if at any
point during a transaction a parity error occurs or a timer
times out we always retry the transaction. We do not try
again after a failure on the retry. The only exception to this
second-chance rule is when the target reports through ex
tended status that it could not recover from a drive error.
In this situation we assume that the device's controller is
smart enough to retry the transaction itself.
Series 300 and Information Transfer. The controller chip
provides three methods of data transfer:
â€¢ Manual transfer. The host processor controls handshake

lines.
â€¢ Hardware transfer with fast handshake. The chip con

trols the data transfer and the processor feeds the bytes
to the controller's buffers.

â€¢ Hardware transfer with DMA.
Manual transfer is currently used for transferring mes

sages and status bytes over the SCSI bus. The fast hand
shake option of the Fujitsu chip is used for transferring
commands, while the hardware transfer with DMA is used
for transferring data buffers. When a DMA channel is un
available, the hardware fast handshake option is used to
transfer data buffers.

A Disc Transact ion
The following discussion summarizes the interactions

that occur in the operating system (HP-UX), in the disc
driver, and on the SCSI bus when a typical disc transaction
is performed.

A disc transaction starts with a disc I/O request from the
file system or other higher-level portion of the operating
system. The request is passed to the driver via a buf header.
This structure includes such information as the system
device identifier, the data buffer address in memory, the

42 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

block offset on the disc, and the byte count of the buffer.
The system device identifier encodes the major and minor
numbers that are used by the UNIX system to specify spe
cial device files. The major number selects the appropriate
device driver (in this case SCSI) and the minor number
specifies the select code, bus ID, and unit number. The
block offset on the disc is the logical offset viewing the
disc as a linear array of blocks. The byte count given in
the buf must be converted to a block count appropriate for
that device.

When the system begins to service the I/O request and
the driver gets permission to use the interface, the driver
goes through the ARBITRATION and SELECTION phases to
gain access to the disc. The disc (now the target) responds
with a MESSAGE OUT and gets the Identify message rrom the
host tells Through the Identify message the driver tells
the disc whether it can handle disconnect and reconnect
during subsequent DATA phases. The driver asserts the ATN

line to maintain the MESSAGE OUT phase and determines
whether the disc is capable of synchronous data transfer.

Once the environment for data transfer is established,
the driver issues to the disc the 6-byte or 10-byte command
(COMMAND phase) that designates whether the operation is
a read or write. When the disc receives the command it
sends Disconnect and Save Data Pointers messages to the host,
and then disconnects from the bus. The driver frees the
interface for other processes to use while the disc is busy
processing the command. The disc controller decodes the
command to determine if it is a read or write operation,
and then causes the physical mechanism to perform a seek
operation. When the disc is ready to start the data transfer
it reselects (RESELECTION) the host and data transfer begins.
The disconnect (MESSAGE OUT), reconnect (RESELECTION)
and data transfer (DATA IN, DATA OUT) phases may happen
several times during the transaction. When all the data has

Target

I

Set Data
Lines

Initiator Target

Read Data Lines

^^â€¢â€¢â€¢â€¢â€¢B

Change or Release
Data Lines

(a) Read (target to init iator, I /O signal = true) (b) Write (init iator to target, I /O signal = false) Fig. 2. REQ/ACK handshake protocol .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

been transferred, the status (STATUS phase) is sent to the
host.

A requested data transfer may be broken into a series of
shorter requests based on the device's requirements. The
target device drives the bus phase and the host must be
prepared for a phase change anywhere during a data trans
action. Typically phase changes occur on logical block
boundaries, but this is not guaranteed, and no assumptions

can be made by the host when the phase change may occur.
A typical transaction is shown in Fig. 3.

Conclusion
Our objective in implementing SCSI on the Series 300

was to provide an industry standard interface that added
flexibility, expandability, and improved performance to
our product family. Our customers wanted to use peripher-

44 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

als unavailable from HP. and in some cases. SCSI enables
them to do this. As an example, CD ROM support came
without any change in the driver. Other customers hoping
for plug-and-play compatibility wanted to buy inexpensive
peripherals to lower their system cost. Here caution is
necessary. SCSI does not automatically imply plug-and-
play compatibility. SCSI merely sets up some basic frame
works for hardware and software designers. Options and
vendor-specific commands are plentiful. Within com
mands there are frequently vendor-specific fields or op
tions. In hardware, SCSI allows two different types of trans
fer, single-ended for short distances and differential for
longer distances, which are incompatible. SCSI allows a
variety of connectors and cabling. With this type of variabil
ity, any two devices may not be mutually compatible.

Perhaps the greatest advantage afforded by SCSI is its
simplicity in design. This goal is admirably achieved. It
simplifies the design and development of software drivers,
and most important, it expedites testing and system integra
tion.

Acknowledgements
The SCSI product on the Series 300 was to some extent

a "grass roots" effort. My thanks to John Byrnes as the key
person in helping to get the project off the ground. Adding
a second disc interface to the long tradition of HP-IB was
not easy and John worked hard in achieving this success.
Evan James came onto the SCSI project as product market
ing manager and turned out to be a tremendous success in
keeping the project moving and balancing the lab's require
ments with those of marketing. Evan and John did an excel
lent job driving the team to get the job done.

Thanks to Shaw Moldauer for slipping an SCSI interface
into the Model 319 almost undetected and thanks to Dave
Kinsell for designing the Model 350 board.

The debugging of the software during critical moments

(0. 1. or more
Data Packets)

Disc
Transaction

Physical
Block

Physical
Block

Physical
Block

(One or More Physical Blocks)

F i g . 3 . D a t a p a c k e t s f o r a t y p i c a l d i s c t r a n s a c t i o n o n t h e
SCSI bus. The Command packet contains the informat ion for
sett ing up the environment for data transfer. Information such
as the identity and the Synchronous messages are contained in
this packet.

in its life cycle was helped by Steve Wolf and Drew Ander
son. The bugs that are found when hardware and software
are being developed simultaneously are sometimes very
difficult to contend with. When megabytes of data are flow
ing over the bus every second and only one or two bytes
are occasionally wrong, it is a challenge beyond belief.
Steve's help at some of these moments of despair was in
valuable.

People who are able to straddle that magical wall that
separates hardware from software are special people to HP
indeed. I was fortunate to work with an excellent team.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

X: A Window System Standard for
Distr ibuted Computing Environments
The X Window System al lows appl icat ions running in
d i f ferent envi ronments and on d i f ferent machines to
communicate h igh qual i ty , graphica l user in ter faces over
a network.

by Frank E. Hal l and James B. Byers

The X WINDOW SYSTEM has emerged as the indus
try standard for supporting windowed user inter
faces across a computer network. It was originally

developed at the Massachusetts Institute of Technology
(MIT) as part of Project Athena, a large research project
investigating networks of computing systems from multiple
vendors. MIT has facilitated the acceptance of X as a stan
dard by placing it in the public domain, distributing the
standards definition documents and the source code of
sample implementations for public use for a nominal fee.

The X Window System is network transparent, which
means that an application running on one vendor's com
puter can display a high-quality, graphical user interface
to a user sitting either at that same system or at another
computer across the network, perhaps made by a different
vendor. The location of the application's target display is
not material to the application, and is determined by a
parameter when the application is run.

X is virtually independent of the underlying hardware
and operating system. The X software adjusts for differ
ences in display or computer architecture automatically as
the packets of interactive graphical information are ex
changed between application and display according to a
well-researched, efficient protocol. This protocol forms the
heart of the X Window System standard. Since applications
participate in this protocol through a standard programmat
ic interface library, applications written to the X library
are highly portable to other computer systems that support
X.

These features combine to make the X Window System
a significant enabling technology that allows application
developers, end users, and computer hardware vendors to
explore the possibilities of the distributed computer envi
ronment relatively unencumbered by proprietary barriers
that have prevented such seamless integration in the past.
For application developers, X promises easier porting,
which can allow them to reach a wider market while spend
ing less time on porting and more time on writing better
software. For end users, X promises more and better soft
ware, and more choice in hardware.

Accordingly, support for X has gained rapid momentum
among hardware vendors. HP was among the very first
computer manufacturers worldwide to sell X as a product

"The X Window System is a t rademark of the Massachuset ts Inst i tu te of Technology.

when in March 1987 it began shipping the X Window
System for HP-UX, HP's version of the UNIXÂ® operating
system. X is now publicly endorsed as a standard by over
40 computer vendors in the U.S.A., Europe, and Japan,
including virtually every major manufacturer of UNIX
work-stations.

The increasing power of the distributed computing envi
ronment, as demonstrated by the other articles in this issue,
makes X a very timely technology. It has integrating impli
cations for the areas of user interface, graphics, and net
working. It also presents new challenges for addressing the
emerging distributed computing market.

In this paper, we will compare the architecture of X to
conventional window systems, and describe the industry
efforts to support X as a standard.

The Basics of Window Systems
A window system is a low-level set of interactive

graphics primitives that provide an application with effi
cient means to create, manipulate, and destroy communi
cation regions or windows on the user's display.1 The ap
plication uses the primitives to send simple graphics or
multifont text in color or black and white to the window.

The basic unit out of which the window system builds
both text and graphics is the pixel, which is the smallest
directly accessible graphical element of the display, usually
a very small squarish dot. On a monochrome display the
pixel's value can be represented by a single bit. On a color
display, the pixel contains an integer color value consisting
of multiple bits, depending on the color depth of the dis
play. For high performance, the pixels are typically ac
cessed by memory mapped I/O techniques. Displays of this
type are generally referred to as bit-mapped displays.

The window system allows an application to own many
windows on the bit-mapped display at the same time, and
several applications to share access to the display simul
taneously. The window system provides such basic output
functions as clipping, drawing, text placement, color map
management, and output multiplexing to multiple win
dows. It provides basic input functions by collecting and
routing to the appropriate applications any events received
from the user's input devices, which typically consist of
at least a keyboard and a pointing device such as a mouse.
This allows the applications to share the input devices

46 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

without having to engage in explicit arbitration among
themselves.

Since user interface style is an evolving field, it is desir
able that the window system remain free of a specific user
interface policy so that it can efficiently implement alterna
tives. For example, the methods by which the user employs
the input devices to direct the placement, movement, siz
ing, and shuffling of windows on the display, or to desig
nate which window shall receive keyboard input, is a ques
tion of user interface policy that can be delegated to a
higher level of software called a window manager. Simi
larly, the window system need not contain specific user
interface components such as menus or scroll bars. These
style building blocks can be delegated to a higher level of
software called a user interface tooikit. Finally, the window
system should not unduly restrict the type or number of
simultaneous terminal emulators through which the user
accesses window-dumb applications that were written to
talk with a serial terminal. The ideal window system is
able to support a wide variety of possible window mana
gers, toolkits, and terminal emulators.

These items often accompany a window system and oc
casionally become entangled with its design. We will return
to these items in more detail below with regard to window
system architecture.

Convent ia l Window Systems
Conventional window systems allow window applica

tions to access the display device directly through calls to
the operating system kernel, which is often extended to
facilitate arbitration of display resource conflicts and win
dow system communication. These applications must
therefore reside on the local system.

A schematic of a conventional window system architec
ture is shown in Fig. 1. Here window applications A and
B, linked with the window system library, share access to
the display while terminal-based application C, which nor
mally talks to a serial terminal, appears through a window
provided by a terminal emulator module for backwards
compatibility with the time-sharing environment. While
the terminal emulator must reside locally, C may reside
either locally or on a remote system that has been accessed
through a network service that simulates a serial connec
tion. In either case, C has no knowledge that it is talking
to anything other than an ordinary serial terminal. User
operations to shuffle and arrange the visible windows are
provided by the window manager module, which is tightly
coupled to the kernel and communicates with the window
system library code linked with each window application.

The window manager and terminal emulator modules
are often so closely integrated with the window system
that alternatives cannot easily be substituted. User interface
components such as scroll bars or menus, while they may
be present in the window manager and terminal emulator,
are often not available to the application developer.

Conventional window system architecture is more varied
and complex than this simple diagram can indicate. For
example, the window manager and terminal emulator may
be completely implemented in the kernel, or window man
agement may be supported by redundant code linked with
the window system library into each application.

While conventional window systems were a great leap
forward from the terminal-based time-sharing environ
ment, their greatest problem in a distributed computing
environment stems from their greatest strength, which is
the direct display access that they provide for applications.
Since this requires that window applications reside locally
with the display, they cannot be accessed on a remote
system. To access a remote application the user must go
through a terminal emulator, thereby dropping back to the
previous era's user interface paradigm.

Conventional window systems are therefore inherently
limited in the distributed computing environment by their
stand-alone, non-networked design.

The X Window System
The principal feature that distinguishes X from a conven

tional window system is its network transparency.2 The X
Window System allows window applications, or clients,
to access the display only through the display server, which
is a separate process that arbitrates resource conflicts and
provides display, keyboard, and mouse services to all
clients accessing the display. X can support a spectrum of
hardware displays ranging from small monochrome units
to advanced graphics systems with up to 32 bits of color
per pixel.

The client and the display server exchange information
only by means of the X Window System protocol which
can be implemented via any reliable byte stream. In the
HP-UX implementation of X, as in most others, this byte
stream is implemented as a socket, which is a logical data
connection between two processes on the network. Clients
may reside locally with the display server, or on a remote
system across the local area network (LAN). A performance
optimization bypasses physical LAN access when the client
and display server are local to each other.

Because the client program and the display server are
two separate entities, the target display can be specified at
the time an application is run. The client program is indif
ferent. It sends out X protocol commands, which the net
work services route to the target display server, which then
executes the command.

Terminal
Application

B J J W i n d o w | I T e r m i n a l
A p p h c a t l o n " I I H H M g M a n a g e r | U E m u l a t o r

W i n d o w S y . , e m | w , n d o w S y s t e m ! Â £ Â £ M Â £ Â £

Operating System Kernel with Window System Extensions

Fig. 1 . Convent ional window system archi tecture.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

Note that the notion of a display server complements the
notion of servers as commonly used in discussions of net
works. Servers on the network provide applications with
access to resources such as files, printers, or computational
power. The display server rounds out that picture by mak
ing a given display on the network available to applications
as a user interface resource.

In Fig. 2, window applications A and B, linked with the
X Window System library, share access to the display while
terminal-based application C again appears through a win
dow provided by a terminal emulator client. User opera
tions to shuffle and arrange the visible windows are pro
vided by the window manager, which is an otherwise ordi
nary client whose function is to communicate with the
display server to provide user interface policy for the user
to manage the display layout. By definition the window
manager does not specify how the user interacts within an
application. In fact, applications can be written to execute
properly with no window manager present. Sometimes this
is desirable.

The window manager, user interface toolkit, and termi
nal emulator are cleanly separated from the X window
system, so the user can substitute an alternative if desired,
or even omit the item. Note that application B has chosen
to use a user interface toolkit, while A has not.

Applications A, B, and C, the window manager, and the
terminal emulator may be either local to the display server
or on a remote system, or in any combination thereof. The
only restriction is that the underlying operating system
must support multitasking if the display server and a client
are to reside on the same system.

For multitasking systems, it is customary for the window
manager and display server to reside locally, and for the
terminal emulator to reside on the system where its termi
nal-based application resides. A single-tasking system can
execute only the display server or a single client at a time.
In this case the display server can be used as a viewport
onto the network. The window manager and all other
clients can reside on computational servers elsewhere on
the network.

The components of the X Window System standard itself
are small in number. At the lowest level, it is simply a
document that defines the X protocol.3 At the programmatic
level, it is a document that describes a standard program
matic interface, or window system library, by which an
application participates in the protocol.4 To facilitate ports
of the X system, the MIT distribution contains source code
of sample implementations of the X library and display
server.

While the X library description distributed by MIT is
defined for access from the C programming language, pro
grammatic interfaces for other languages can be and have
been developed. HP supplies a Fortran bindings package
for the X library as part of its X Window System product.

Window Manager
At the outset, students of window systems sometimes

confuse a window manager with the window system. The
following scenario illustrates the role played by the win
dow manager working in conjunction with the capabilities
of the X Window System. Fig. 3 shows how the display

might look after the activities described in the scenario.
Suppose that the user has just brought up the X Window

System through a script that will later start some client
programs. At this point, only the X Window System is
running, so the display shows only blank background,
which is referred to as the root window. The system cursor,
controlled by the mouse, rests in the center of the display.
When the script starts the window manager for that display,
the appearance of the display does not change. The script
also starts two other client programs at the beginning of
the session. One is a simple clock program that displays
the current time in a corner of the screen. The second is a
terminal emulator that opens a window on the display and
waits for the user to type a command.

When the user presses the right mouse button, the win
dow manager, which has requested the display server to
notify it of all mouse events that occur when the cursor is
directly over the root window, receives a notification of
the event in its input queue. Let us assume that the user
interface policy of this window manager honors a right
button press over the root as a command to present a menu,
the contents of which the user has specified in a start-up
file. In actuality the meaning of this button event could be
changed through the start-up file, which would allow a
left-handed person, for example, to reverse the window
manager's meaning for the left and right buttons.

After notification, the window manager prepares the
menu contents and presents it on the display using a com
ponent from a popular user interface toolkit. Since this
toolkit is also used by many applications, the user is famil
iar with the operation of this type of menu. The title of the
menu is Launch, and it contains the names of the programs
the user most often wants to start up. The user selects a
program name from the menu. The window manager exe
cutes the instructions that the user specified in the start-up
file as corresponding to that selection, which in this case
is to start up a program directed to the local display that
provides the user with a control panel that is used to

Client

Terminal
Application

Application

Network
Services

Network
Services

Network
Services

Network
Services

X Display
Server

U. I . Toolkit = User
Interface Toolkit

Fig. 2. X Window System c l ient -server archi tecture.

48 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

monitor and direct various processes across the network.
The new program establishes contact with the display

server, opens a window on the screen, and draws the con
trol panel. When the user clicks the mouse over the appro
priate buttons on the control panel, a simulation program
begins on a large mainframe computer. The simulation pro
gram sends its graphical output across the network to a
new window that it opens on the user's display.

While watching the simulation, the user uses the Launch
menu to select a program that enables the user to browse
through the contents of a remote file system, and then later
the user brings up an application to read electronic mail.
At this point the screen is too cluttered so the user iconifies
one window by bringing up a menu specific to the window
manager, and selecting the iconify option. This changes the
appearance of the system cursor to indicate that the user
needs to pick the window to iconify. The user does this
by moving over to the terminal emulator window and click
ing on it. The window manager immediately unmaps (re
moves without destroying) the terminal emulator window
from the display, and as a placeholder puts in a convenient
spot on the display a small, named, meaningful symbol of
the application, called an icon. In this way the user also
iconifies the electronic mail program. The user can restore
these windows later and continue interacting with these
applications.

User Interface
User interface toolkits offer the programmer higher-level

tools than the X library with which to program. As an
example, in the X Window System itself there are primi
tives to draw lines, move rectangles of pixels, and so forth.
Toolkits, on the other hand, provide the programmer with
easy ways to create and manipulate useful interactive
gadgets such as menus, buttons, scroll bars, text entry

fields, and so on. These tools greatly reduce the effort that
the programmer must put into creating the user interface
portion of a program.

To promote acceptance of the X Window System as a
standard. HP developed a user interface toolkit based on
X. called Xrlib. and contributed it to the MIT public distri
bution of X Version 10.4 in December of 1986. HP sub
sequently enhanced this toolkit and ported it to the next
revision, X Version 11. It provides a useful set of 13 interac
tive components called field editors, including pop-up
walking menus, panels, scroll bars, title bars, a variety of
buttons, and fields for entering, editing, and displaying
text or graphical data.

Several user interface toolkits have now been contributed
to the MIT public X distribution, offering a wide range of
capability. Perhaps the most significant is Xt which is a
set of low-level toolkit procedures called intrinsics. The
Xt intrinsics were developed in a collaborative effort by
Digital Equipment Corporation, Hewlett-Packard, Mas
sachusetts Institute of Technology, and others. The intrin
sics provide a flexible, powerful foundation upon which
to construct interactive components, such as buttons, scroll
bars, menus, and other items which are collectively called
widgets. The X Consortium has voted to accept Xt as part
of the X standard. HP is developing a useful set of widgets,
based partly on the Xrlib functionality, that has been con
tributed to the MIT public distribution to promote accep
tance of the Xt intrinsics.

Terminal Emulator
The HP X Window System product includes hpterm, a

terminal emulator that approximates an HP terminal, com
plete with softkeys. This allows the HP workstation user
to access a broad range of terminal applications that are
compatible with this generation of HP terminals.

x p c 1 8 9 1 3 i
blrvOUl/xt*â„¢

â € ” (1 Â » 1 9 9 O i

1 7 7 1 0 0 3 : 4 8 : 5 2 t t * i O

1 7 8 1 7 1 - 0 0 3 : 4 8 : 5 4 t l Â » u O

1 6 7 1 4 6 0 0 3 : 0 7 : 5 7 t t y u l

: I S O
a i / x c l o c k

Â » . * [2 2 1 I 0

1 0 0 3 : 0 6 : 2 2 t t u P l

mpanel d

{Button 2

| M a k e m m g r 2 i n s e o s i

| M a k Â « p a n * 2 b r n s a n :

j C h a n g e m m g r 2 u n p o

t Chang* mmgr2 kbd Â¡

F i g . 3 . F i n a l s c r e e n l o r t h e s c e
na r i o p resen ted i n t he t ex t . The
Launch menu and t he menu con
ta in ing the i con i f y command a re
pop-up menus: they are cal led up
by c l ick ing the proper mouse but
ton and go away af ter a select ion
is made. The two icons for the ter
minal emulator and electronic mail
appl icat ions are in the upper r ight
corner.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 49

© Copr. 1949-1998 Hewlett-Packard Co.

The MIT X distribution contains source code for a Digital
Equipment Corporation VT100 and a Tek 4010 terminal
emulator called xterm, which is also included in HP's X
Window System product. It allows applications written for
these older Digital Equipment Corporation and Tektronix
Inc. terminals to be accessed directly from the HP worksta
tion display.

The HP workstation user can activate any number of
these terminal emulators in any combination, choosing the
right one for the application to be accessed.

Support
The 1986 release of X, Version 10.4, was the first version

with multivendor support. While this has allowed solution
creators to begin development of X Window System solu
tions, developers soon recognized that to make X a solid
standard, there was a need for increased capability and
backwards-compatible extensibility of the X protocol to
incorporate new functionality that might arise. This pro
tocol extensibility would allow X to improve without
breaking applications written earlier. Such enhancements
to the design of the protocol, X library, and display server
resulted in Version 11 of X, the sample implementation of
which MIT formally released in March, 1988.

While the technical innovations in X are quite impres
sive, what really sets X apart from other window systems
is its openness as a standard and its broad base of sup
port.5'6'7'8 in coordination with MIT, a consortium of com
panies has been formed to define enhancements and to
divide the engineering effort needed to develop standard
descriptions and sample implementations of those en
hancements. MIT chairs the consortium but the consortium
defines the extensions to X. This should ensure the stability
and broad support of X for the foreseeable future.

MIT and the X Consortium administer the release of the
public-domain X Window System code as well as the con
tributions of the various supporting vendors. In this way
the software and enhancements are available to all in
terested parties at the same time.

X Consortium membership includes HP, Apollo Com

puter Inc., Apple Computer Inc., American Telephone and
Telegraph Co., Control Data Corp., Digital Equipment
Corp., International Business Machines Corp., Sun Micro
systems Inc., Tektronix Inc., and Xerox Corp. This list rep
resents a large segment of computer vendors in the techni
cal market. Software vendors formally supporting the X
Window standard include Adobe Systems Inc. , Applix Inc. ,
and Cognition Inc.

X has been chosen by the X/Open committee, a group
that adopts UNIX operating system standards for a consor
tium of U.S.A. and European computer vendors. Following
this lead, the recently formed Open Software Foundation
has adopted X as its window system standard. Work is also
occurring for formal acceptance of X by other standards
groups.

X is the beginning of a new generation of software and
systems design that takes a significant step forward in the
era of distributed computing environments. A seamless
integration of services in these multivendor environments
now appears possible, allowing the scaling of computers
to their appropriate tasks while maintaining open, produc
tive access to their functions. A standard user interface
style, which would allow the easy porting of users between
computing systems and between applications, may not be
far behind.

References
1. D.S Rosenthal, "Toward a More Focused View," UNIX Review,
June 1986, pp. 54-63.
2. R.W. Scheifler and }. Gettys, "The X Window System," ACM
Transactions on Graphics, Vol. 5, No. 2, 1986, pp. 79-109.
3. R.W. Scheifler, X Window System Protocol, X Version 11, Re
lease 2, Massachusetts Institute of Technology, September 1987.
4. J . X R. Newman and R.W. Scheif ler , Xlib - C Language X
Interface, X Version 1 Ã¯ , Release 2, Massachusetts Institute of Tech
nology, September 1987.
5. "11 Companies Back Windowing Standard," Electronic En
gineering Times, January 19, 1987, pp. 1,16.
6. "The Advantages of X," Computer Graphics World, August
1987, pp. 57-60.
7. "DEC, HP, Nine Others Adopt MIT X Window as Standard,"
Electronic News, January 19, 1987, pp. 1,6.
8. E. Lee, "Window of Opportunity," UNIX Review, June 1988,
pp. 47-61.

50 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Managing the Development of the HP
DeskJet Printer
Forays into unexplored regions of technology are inevitable
in the development of breakthrough products, but they must
be l imi ted and carefu l ly managed.

by John D. Rhodes

THE CREATION OF A HIGH-TECHNOLOGY PROD
UCT is an enterprise that requires the contributions
and skills of many people. The articles on the HP

DeskJet printer in this issue mainly explore the technical
engineering problem solving that is essential to new-prod
uct development. But there is a bigger picture. There is
much more to engineering than solving equations and set
ting up experiments.

In the case of the DeskJet printer, our organization and
planning encompassed all of the functional departments
of HP's Vancouver Division. Our development and manage
ment teams included members from R&D, manufacturing,
marketing, and quality assurance, with special assistance
from personnel and finance.

The core development teams, which worked on the prod
uct from its inception, consisted of about 25 engineers,
split into three project teams â€” firmware, electronics, and
mechanical â€” with a project manager leading each team.
The three core project managers reported to a laboratory
section manager who served to coordinate the entire project.

Within the lab, midway through the development pro
cess, additional teams of two to five engineers were formed.

These teams developed character fonts, emulation soft
ware, and application drivers, and performed extensive
verification and performance testing.

During the first year of development, the core manage
ment team's role was directed towards technical guidance,
resource organization, planning, and progress tracking. In
the second year of development, the management team's
emphasis shifted to coordination and prioritization as the
circle of people involved in the program grew larger, and
as the date for product introduction grew closer.

Our project started with a loose collection of specifica
tions â€” a list describing what features we felt customers
needed â€” tempered by what we felt we could technically
achieve given our time, people, and financial resource
levels. In the broadest sense, the goal of the project teams
was to transform that list into an engineering specification.

DeskJet Printer Features
The HP DeskJet printer, Fig. 1, is a personal-convenience

printer that produces laser-quality output at a price com
parable to other low-cost personal printers. Among its fea
tures are 300-dot-per-inch resolution, merged text and

F i g . 1 . T h e H P D e s k J e t p r i n t e r
produces laser-qual i ty output at a
l o w p r i c e f o r p e r s o n a l c o m p u t e r
users. I t pr ints on standard of f ice
papers.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 51

© Copr. 1949-1998 Hewlett-Packard Co.

graphics, multiple fonts, two slots for font or personality
cartridges, 120-character-per-second letter-quality speed,
built-in cut-sheet feeder for common office paper, desktop
design, and quiet operation.

The DeskJet printer comes with Centronics parallel and
RS-232-D interfaces. It is supported on HP Vectra, Portable,
and Touchscreen personal computers, HP terminals, the
Apple II series, IBM PC/XT, PC/AT, and PS/2 computers,
and compatibles. It is also supported on HP 3000, HP 1000
A Series, HP 9000, and HP 260 systems.

Many applications software packages, such as spread
sheet and word processing programs, support the DeskJet
printer. For other packages, the HP LaserJet Series II printer
driver will work well because the DeskJet printer uses the
HP PCL (Printer Command Language) Level III command
set. An Epson FX-80 driver will also work if used with the
optional HP Epson DeskJet personality cartridge, which
fits into one of the DeskJet printer's option slots.

Technical Chal lenges
The development path is never smooth or level. There

are steep hills and traverses across unexplored territory.
The technical challenges on the DeskJet printer project
were many:
â€¢ Extend the 96-dpi InkJet printing technology to 300 dpi,

keeping the printing speed above 120 cps
â€¢ Ensure that the operation of the ink delivery system is

totally transparent to the user, eliminating the messy
image that inkjet printing had inherited from its early
days

INVESTOR'S UPDATE ESTOR

SHIPPING GOES WILD IN SOUTH PACIFIC

â€¢ :i. nllit finar ia l

South Seas is causing waves
in the shipping world. Unlike
virtually every other shipping
company. South Seas han managed

i sgn ivthd spile
strong dollar and Lower-thai:
freighlralCf.. Fur ihc first quan
ending UD March 31, South Seas

profit nn sales of $117. 1 million.
President Michael Pelei

record-breaking quarter. First i
all, by expanding operations inK
spcciali/ed, price insensitive
commodities like palm uil and n
South Seas has been relatively

ctcd hy the slrong dollar Ã
u n f a v â€¢able e!

Second, South Seas is now
reaping the benefits of long-term
relationships it has developed with
port authorities throughout [he
South Pacific. These relationships
have let South Seas keep its rates
competitive, yet profitable, during

Finally, Mr. Peters said
South Seas had money left over
from funds it set aside last year for
costs associated with the building
and launching of new container

Outlook f or Sales

Spectacular sales for the
first quarter will set the pace for
wha! industry analysts expect will
be a record year f or South Seas.
"South Seas will be the industry
leader by 1990," says Michael
Wong, a vice president at Donova
Kroll&Co. "Their growth strat
egy is sound and their balance

during the current slump in ihe
Shipping industry."

Most analysis forecast si
monlh sales for South Seas at
about Ã2MI million with a profit
reaching slightly over $50 millioi
This will be up aboul 40% from t
year-earlier $35.7 million.

Competitive Factors

Une of Lhc primary factor;
in South Seas success bas been the
company's ability to identify new
market opportunities and then to
establish the dominant position in
thai market. The palm oil trade is
a prime example of this successful
strategy. Since entering the maikc
in 1977, South Seas has beco
key player in the specially shippi

However, LBC Ltd. is
expected to become a more aggres
sive player. The Singapore con-

e I n d i a Ocear

the

Last year, LBC purchased
the ailing Barton Lines. This move
more than doubled LBC's tanker
capacity. Several of these roid-
si/cd lanktrs have been refitted for

to enter service by mid-1986.
So far, the LBC has been

future, that increased competition
can be expected to depress both
prices and margins, but f or the
short term, South Seas contracts
with most of the palm oil industry's
largest producers should instÃlale it
from price volatility.

Joint Ventures?

South Seas is exploring is to
establish joint ven tures with

ral of the producers of these

otbcTransPac/ would he si
South Seas
South Seas would offer iis shipping
capabilities as its snare of the

is holding exploratory talks with
many agricultural export firms.
Another possibility would be to
join with a manufacturing firm.

One company expected to

with South Seas is Mountain View
Fruit. MoQUtain View has seen
demand for its product s growing
sharply in the Japanese market. To

Fig . 2 . A page o f DeskJet p r in ter ou tput .

â€¢ Make this printing technology available on all standard
office papers, eliminating the dependency of inkjet print
ing on special papers

â€¢ Provide these product features in a small-footprint pack
age that does not dominate the desk on which it sits

â€¢ Make this product of traditional HP quality, with relia
bility unrivaled by any other printer

â€¢ Accomplish all of this within a tight development
schedule of 22 months with a design that can be built,
distributed, and profitably sold for a low target price.

Design for Reliabil i ty
The hallmark of a successful project is careful risk man

agement, for tough or recalcitrant problems require inten
sive resources to solve. If the development team is consid
ered as a problem-solving engine, then that engine has a
specific capacity, and for a given complement of engineers,
there is a limit to the number and difficulty of technical
problems the engine can solve in a given time period.

With follow-on products, the design task is that of inter
polating from a well-understood basis, peaking perfor
mance, adjusting features, or reducing costs.

In breakthrough products, the design task must include
solutions that use unfamiliar technologies. It is these forays
into unexplored regions that must be carefully limited to
essential development, since there is little experience to
guide progress or to gauge the potential difficulties. In other
words, the design teams must carefully choose which prob
lems they are going to solve.

An example will help to illustrate this point. Early in
the DeskJet development project, the mechanical design
team elected to use filled thermoset plastic for the major
structural part (the chassis). This decision was based on
experience with similar structural plastic parts in several
HP Divisions. In fact, the material set chosen for the struc
ture and gears was identical to that successfully used in
the PaintJet printer. The DeskJet team sought to reduce its
design load by using an existing and well-understood tech
nology. Or so we thought! The first prototype printers as
sembled from the molded plastic parts showed rapid de
terioration of bearing materials with resultant squeaking,
galling, and seizing â€” often within a few tens of pages. It
turned out that we had exceeded a critical PV (pressure-
velocity) point in the bearing loads. Until solutions were
found (it took several intensive weeks), all design teams
were hampered in their development by a lack of working
prototype printers.

In our laboratory, team techniques are an important con
tributor to rapid progress and reliable design. Development
tasks always have a principal designer and a subsidiary
designer. The principal designer has part responsibility,
while the subsidiary designer is a valued consultant. This
designer pairing is based on interacting part/subsystem
functions. Thus, a web of pairings exists, connecting the
designer teams.

This pairing has several advantages over solitary design.
The synergism of two (or more) designers working on the
same problem is remarkable, and the quality and quantity
of potential solutions is superior. In addition, solutions
always have two committed designers to argue their merits
with the rest of the design team. Furthermore, the principal

52 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

designer has a backup in the event of illness, a trip, or
reassignment to another design task.

We also encourage informal and frequent design reviews.
Typically, these occur when the designers have a concept
worked out that is supported by preliminary analysis. The
designers meet with those who have expertise in the area
(in mechanical designs usually including a procurement
engineer and a manufacturing engineer), and walk through
the design with their peers. It is important that these re
views occur early in the design so ideas and suggestions
can be incorporated easily.

These design reviews occur close in time to the develop
ment of the first crude prototypes. Initially, the early mock-
ups examine a subsystem or specific function, such as pick
ing paper with a platen roller. Later refinements are incor
porated in a product breadboard â€” a working printer that
demonstrates all of the critical subsystem functions.

Test ing the Design
Coincident with the emergence of the prototypes is test

ing. First the basic concept is examined to see if it addresses
all of the design constraints. Next, normal operations are
explored to find where the design is deficient. (It always
is!) Finally, the design limits are probed through acceler
ated tests or abuse testing.

Throughout, the engineer repeatedly cycles through the
test-analyze-fix process. Initial testing yields many easily
discovered defects, which can be quickly resolved with
engineering analysis. Subsequent testing is aimed at improv
ing ruggedness and reliability; these test scenarios usually
require many unit-hours of experience, and the conclusions
must be reached by careful statistical inference.

Compounding the statistical problem is that of securing
representative parts. Much of the initial testing is per
formed with parts from prototype tools or processes. The
design limits are not well-understood at this point, and the
parts are varying because the process is still unstable and
undeveloped. Tolerance analysis of the design is useful,
but not sufficient, since the called-for tolerances must be
satisfied by a production process. Much effort goes on at
this time to allocate the tolerances and allowances between
parts and process.

The final phases of testing involve tests under controlled
conditions by impartial quality assurance engineers. Here,
testing to rigorous HP standards is completed, including
temperature and humidity excursions, shock and vibration
tests, and transportation and use/abuse tests that seek out
the weak links in the design.

Life testing proceeds under accelerated and nonacceler
ated conditions, probing the design for deterioration, wear-
out, and contamination.

In summary, reliable design requires more than theoret
ical design skills and analyses. Although good first-round
designs are an essential foundation, the bulk of the en
gineer's efforts go into executing well-thought-out testing
programs whose intent is to stress the design and uncover
its limitations so that improvements in the subsystems and
the integrated product can be made.

Market Research as a Design Tool

The DeskJet story is f i l led with thoughtful responses to design
cha l lenges, as are many product deve lopment h is tor ies . But in
th is case, the product is a l l the more successfu l because of the
des ign team 's speedy reac t i on to marke t resea rch feedback ,
thus enab l ing the p roduc t to de l i ve r a key benef i t long sought
by customers, but never before achieved.

For severa l years , l ow-end p r in te r cus tomers have been ex
press ing the des i re to have a "pr in ter on my desk, comparab le
in cost to other low-cost personal pr inters, that produces output
l i ke a r e p r i n t e r . " A lmos t w i t hou t excep t i on , i n qua l i t a t i ve r e
search sessions (focus groups) conducted by the HP Vancouver
D iv is ion , ind iv idua l users expressed p re fe rence fo r the conve
nience of their own pr inter , on the desk, for low-volume pr int ing
to support their own work. Although InkJet printers were perceived
by many as unre l iab le , i t was d iscovered that customers rea l ly
judge printers by the benefit they deliver â€” the quality of the out
put.

Thus was bo rn t he DeskJe t concep t . The cha l l enge was t o
use thermal InkJe t techno logy to sa t i s fy tha t commonly heard
wish for an inexpens ive laser pr in ter for the desktop, but to do
so in a way that minimizes the inkjet technology issue and breaks
through the c lut ter of the low-end pr inter market .

The challenge really boiled down to two components: (1) could
the pr in t qua l i t y be made good enough in a shor t enough t ime
and a t t he r i gh t cos t , and (2) how cou ld we commun ica te the
key benefi t of the product, that is, what posit ion should i t occupy
in the mind o f the prospect ive buyer? To measure progress on
the f irst point, early prototypes were taken to more focus groups,
and pr int samples were taken to shopping mal l test s i tes in late
1 986 and early 1 987. The results were discouraging. Even though
we were proud of our ach ievements to date, pr in ter users were
not impressed. Speci f ica l ly , the pr int was not b lack enough and
n o t s h a r p e n o u g h . W e l e a r n e d e x a c t l y w h e r e w e s t o o d o n a
numer ica l scale wi th laser pr in ters, da isy-wheel pr in ters, and a
m a j o r c o m p e t i t o r : d e a d l a s t . T h e p r o d u c t d i d n o t d e l i v e r t h e
des i red " laser pr in ter on my desk."

A f te r severa l months o f in tense work on ink fo rmula t ion and
fon t des ign , the DeskJet p r in te r and pr in t samples were aga in
taken to shopp ing ma l l s fo r tes t ing . The p r in t qua l i t y improve
m e n t s w e r e d r a m a t i c . M a n y r e s p o n d e n t s a s k e d i f t h e o u t p u t
came from a laser pr inter. We f inal ly had what we fel t customers
had been ask ing for . Now the task was pos i t ion ing the product
i n a fash ion to commun ica te the message , i n eve ry th ing f rom
advert is ing to t raining to sales tools to publ ic relat ions ef forts.

A key market research ef fort consisted of extensive telephone
in te rv iews o f over e igh t hundred p r in te r users . I t showed tha t
there is a large segment of users who yearn to own a laser printer
but never real ly in tend to purchase one. They may drop back to
a low-pr iced impact pr in ter , usual ly one of the 24-wi re models ,
because they can' t a f ford or just i fy a laser pr inter . A marketer 's
dream was born: to pos i t ion a low-cost product around the ben
ef i ts of an upscale product. And since the design team had done
an extraordinary job of control l ing cost and keeping on schedule,
the DeskJet pr in ter was brought to market ahead o f the compe
t i t ion a t a pr ice comparab le to o ther persona l desk top pr in ters
that do not del iver laser qual i ty.

The idea of laser-quali ty output for a personal-printer price has
been of e f fec t ive in communicat ing the long-sought benef i ts o f
the product that the DeskJet pr inter received over 26,000 orders
in its f irst month.

A / a n G r u b e
Product Market ing Manager

Vancouver Div is ion

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 53

© Copr. 1949-1998 Hewlett-Packard Co.

Human Factors and Industrial Design of the HP DeskJet Printer

In ref ining the ergonomics of the DeskJet printer, our objective
was to des ign a p r in te r tha t o f fe rs s imp l i c i t y o f opera t ion and
conven ien t access to the user - in te r face areas . In add i t ion , we
st rove to make us ing the pr in ter as in tu i t ive or se l f -explanatory
as possible.

A f te r ex tens ive focus g roup s tud ies and research , i t was de
c ided that DeskJet pr in ter users have four basic pr in ter requi re
ments: high print qual i ty, ease of use, compact size, and afforda-
b i l i ty . In a l l phases of the pro ject , these user needs and human
fac to rs were impor tan t cons ide ra t ions in the dec is ion -mak ing
p r o c e s s . T h e k e y d e s i g n a r e a s t h a t w e r e i m p a c t e d w e r e t h e
paper path, contro l panel , pr in thead, setup, and swi tches.

The paper path is the most obv ious ly d i f fe rent feature o f the
DeskJet printer. I t is based on the concept of "front in, front out."
T h i s c o n c e p t i s b o t h c o n v e n i e n t f o r t h e u s e r a n d e f f i c i e n t i n
design, effectively contributing to the small footprint of the printer.
Load ing and un load ing pape r r equ i r e no unnecessa ry ad jus t
ments to a l ign the paper o r se t i t up fo r feed ing . The paper i s
s imply set in p lace and al l feeding and al igning are done by the
printer automatical ly.

The control panel is the most often used feature on the printer.
As such, i t needs to be wel l thought out and executed. Simpl ic i ty
in funct ion is impor tant , but s impl ic i ty in appearance is equal ly
impor tant . I f the cont ro l pane l looks compl ica ted, even though
i t isn ' t , the user wi l l perceive i t to be complex and may be int imi
dated.

The keys on the DeskJet control panel are divided by size and
co lor in to two groups. The pr imary group cons is ts o f four bas ic
funct ion keys that are regular ly used, whi le the secondary group
cons is ts o f fou r keys occas iona l l y used fo r spec ia l f unc t ions .
Color and LED annunciators prov ide a v isual l ink between func
t ional ly associated deta i ls , a l lowing the operator to make quick
visual associat ions rather than having to study the control panel.
Font cartr idges that are accessed through the control panel carry
the same theme o f v isua l assoc ia t ion th rough the use o f co lo r
and LED annunciators.

A long th i s same l i ne o f reason ing , we know tha t the look o f
the pr in ter cont r ibutes to the user 's percept ion of i ts va lue. For
example, smal l s ize may s ignal the observer that the product is
l o w - e n d , p e r h a p s e v e n c h e a p . W h e n o n e d e s i g n s a c o m p a c t
pr in ter , spec ia l a t tent ion must be pa id to deta i ls and s ty l ing so
tha t a compac t p r in te r i s s t i l l pe rce ived as a p r in te r o f va lue .

Thus, detai l development and the calculated addit ion of a cosmet
i c ou tpu t - t ray cover he lp improve the user ' s percep t ion o f the
combined pr ice and per formance va lue.

Focus g roup s tud ies and feedback f rom cus tomer war ran ty
re turn cards revea led that cus tomers were o f ten cr i t i ca l o f the
m e s s a n d i n c o n v e n i e n c e a s s o c i a t e d w i t h c h a n g i n g r i b b o n s ,
pr intwheels, and pr int cartr idges. With this in mind, we designed
the DeskJe t p r in te r so tha t the p r in t ca r t r idge and paper pa th
are easy to access and require a minimum of handl ing or special
care.

The paper path is accessible by simply l i f t ing the paper output
t ray and cover . The access door can then be opened to expose
the ent i re paper path.

The print cartr idge is loaded into the printer by insert ing i t into
the carr iage and rotat ing i t forward. There is no secondary latch
ing operat ion. Car t r idge main tenance is accompl ished through
the use of an in terna l pr iming pump which is actuated f rom the
contro l panel . Once the pen is insta l led, i t is not handled again
unti l i t is replaced.

We a lso fe l t t ha t access to the D IP sw i t ches and the power
swi tch was impor tan t . There fore , we located them on the f ron t
panel.

In keeping wi th our ease-of-use object ive, we instal led a user
instruction label under the access door. The purpose of this label
is twofold. First , i t al lows the user to hook up the pr inter and put
i t in to operat ion, and second, i t p rov ides a ready re ference for
basic reconf igurat ion.

In a broad sense, ease o f use app l ies not on ly to the pr in ter
bu t a lso how e f f i c ien t ly the pr in ter uses the work sur face. The
object ive is to make the footpr in t as smal l as poss ib le, but that
is not the only issue. What real ly needs to be considered is the
pro jected area of the pr in ter on the work sur face. This inc ludes
paper trays, connectors, and so on. To make the DeskJet pr inter
as compact as possib le we did two th ings. Fi rst , we stacked the
inpu t and ou tpu t paper b ins and second , we recessed the I /O
connectors . The pr in ter can now be p laced wi th the rear pane l
against a wal l .

Don McCle l land
Product Design Engineer

Vancouver Div is ion

Acknowledgments
Thanks to Tom Braun, the DeskJet section manager,

whose drive and insights guided the entire project, Bob
McClung, under whose capable management the elec
tronics team delivered their reliable, high-performance de
sign without ever being on the critical path, and Mark
DiVittorio, whose firmware team simultaneously satisfied
the requirements of two printer projects. Special thanks to
Susan Hoff, the DeskJet project coordinator, for her great
skills in maintaining documentation order in the midst of
development chaos, and to our model makers, who contrib

uted valuable suggestions and worked many hours of over
time producing the mechanical prototypes of the printer.
Special credit goes to all the members of the design team
for their enthusiastic dedication to the development of the
DeskJet printer and its predecessor projects. Finally, I want
to acknowledge the outstanding contributions of Bill Bus-
kirk and Niels Nielsen of our Corvallis InkJet Components
Operation, without whose professional and personal com
mitment we could never have effectively coupled the de
velopment of the printer and printhead.

54 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Development of a High-Resolut ion
Thermal InkJet Printhead
The HP DeskJet pr inter 's 300-dot-per- inch resolut ion is
fundamental to i ts abi l i ty to produce laser-qual i ty output .

by William A. Buskirk, David E. Hackleman. Stanley T. Hall, Paula H. Kanarek, Robert N. Low, Kenneth
E. Trueba, and Richard R. Van de Pol l

IN THE SPRING OF 1984, Hewlett-Packard introduced
the HP Thinkjet printer1 with its replaceable thermal
inkjet printhead. This was a revolutionary concept that

validated the use of inkjet printing in a low-priced printer.
The resolution of 96 dots per inch was better than that of
the existing 9-wire printers (72 dots per inch), and provided
better-formed characters.

The resolution was determined by two limiting factors.
Lower resolution would have required larger drop volumes,
which are difficult to eject, and the limitations of orifice
plate contruction prevented higher resolutions from being
achieved. The required drop volume at 96 dots per inch
was minimized by the use of a specific paper, which spreads
the ink and produces large dots.

In the summer of 1987 the next generation of Hewlett-
Packard's thermal inkjet technology was introduced in the
PaintJet Color Graphics Printer.2 In addition to providing
color output, this printer offers improved text print quality
at a resolution of 180 dots per inch, almost twice that of
the Thinkjet printer. Because of the possibility of paper-
induced variations in color, the inks in the PaintJet print-
heads were also optimized for use with a specific paper.
This ensures colors that are brilliant and consistent.

In parallel with the development of the PaintJet print-
head at HP's San Diego Division, another team was busy
at work at the InkJet Components Operation in Corvallis,
Oregon and at the printer division in Vancouver, Washing
ton. Market research indicated that an inexpensive printer
that could produce letter-quality output at an acceptable
speed on commonly available office papers would be suc
cessful. Daisy-wheel printers were slow or expensive, and
laser printers were rapidly redefining the meaning of letter-
quality. The new products that were expected to meet this
need were the 24-wire dot matrix printers. This led to the
goal for the HP DeskJet printer design team: laser-quality
output on "plain" paper for about the same price as the
new 24-wire printers. Again, an increase of almost two
times in resolution, from 180 dots per inch to 300 dots per
inch, was required.

The higher dot resolution offered some real challenges
to the technology. To print high-resolution characters at
speeds greater than those typical of lower-resolution print
ers, drop ejectors must operate at a higher frequency. For
tunately, higher resolution requires smaller drop volumes
and smaller drops are easier to fire at higher frequencies.

A por t ion o l th i s paper appeared in the Japan Hare /copy '88 Advance Pr in t ing o l Paper
Summaries Copyr ightÂ© 1988 The Society of Electrophotography of Japan.

Higher resolution also requires that each drop ejector be
fired more times during the life of a printhead. This required
the development of improved thin films that could better
withstand the cavitation of the collapsing vapor bubble.

Higher-frequency operation creates more residual heat.
The low-thermal-conductivity glass substrate used in the
Thinkjet printhead is not capable of removing this in
creased heat from the resistor area. For the PaintJet and

Fig. 1 . The 300-dot-per- inch pr int car t r idge for the HP Desk
Jet printer.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 55

© Copr. 1949-1998 Hewlett-Packard Co.

DeskJet printheads, silicon was chosen for its excellent
thermal conductivity. It had the additional benefit that
commercial wafer handling and processing equipment was
readily available.

In the Thinkjet printhead design, the orifice plate resolu
tion was limited to 96 dots per inch. In the DeskJet print-
head, 300 dot-per-inch resolution was achieved by separat
ing the nozzles into two columns and removing the resistor
separator barriers from the orifice plate. These barriers are
now provided by a polymer, which is applied over the thin
films and patterned before the orifice plate is attached.

Fig. 1 is a photograph of the DeskJet printhead.

Ink and Paper
If existing printing technologies are examined, it is clear

that no current office product actually prints on the incred
ible variety of paper stocks found in the typical business
office. Duplicator machines require a paper capable of ab
sorbing solvents, mimeographs need rough papers to im
prove the feed characteristics of the sheets and prevent
binding, electrophotography requires papers capable of ac
cepting a pigmented thermoplastic, and writing requires
cotton bond papers for superior quality, whiteness, and
absorption of inks from pens. Any paper manufacturer will
point out that there is no such thing as "plain" paper.

As a consequence, one of our first tasks in developing
the DeskJet printer was to determine the types of papers
that would be considered the target for the product. Sam
ples of papers from throughout the world were collected.
Members of the ink development team visited paper com
pany development laboratories, and joint work in under
standing the mechanism of ink penetration into paper
began. It became clear that thermal inkjet pens print in a
manner very similar to that of fountain pens. The ink is
placed upon the surface of the paper (in this case through
the expulsion of a droplet) and it then both evaporates and
penetrates to make a permanent mark. It was also found
that the penetration rates of inks into paper vary widely.
Papers with low penetration rates generally have high ink-
jet print quality, while those with very high rates have
degraded print. In fact, the paper designed for the Thinkjet
printer was found to provide extremely poor print quality
with inks that looked promising on normal office papers.

A plain-paper inkjet ink must satisfy several criteria. The
drying time of the ink needs to be short enough to allow
the customer to handle the page during the time of printing
without unnecessary care. The ink needs to provide a dark
image similar in optical density to that of the best elec
trophotography. Fading needs to be unnoticeable in stan
dard office environments. Acceptable print quality needs
to be obtained on a wide variety of papers, such as copy
and bond papers. The ink needs to be consumer-safe and
pose no chemical risk to users of the printer. Materials
compatibility demands that the ink be designed to avoid
corrosion of or chemical attack on the printhead and
printer.

From experience with the Thinkjet printer, it was appar
ent that achieving quality print on plain papers would be
challenging. The mixture of glycol and water used as a
vehicle in Thinkjet ink is designed to be ejected from an
uncapped printhead and form an acceptable dot on inkjet

paper. The ink is therefore designed to avoid a hard plug,
or clogging of the nozzles, as evaporation of some of the
ink components takes place. In the case of the new DeskJet
printhead, it was determined that the appropriate solvent
mixtures would not remain liquid if the nozzles were left
uncapped for an extended time. For this reason, a capping/
service station as discussed in the article on page 62 was
required. Improved print quality on bond papers was first
established through the observation that as the concentra
tion of glycol in an ink is decreased, the shape of the dot
formed on paper becomes more regular. At the same time,
the total area of the dot decreases. By increasing the reso
lution to 300 dots per inch and modifying the ink solvent
system, an optimized solution was achieved.

About this time in the project, the target paper set became
better defined. It was determined that print quality on bond
papers was important, but equal interest was developed in
standard copy papers. From more than 300 reviewed
worldwide, a set of eight papers was selected to represent
the spectrum of print quality for the ink and printhead.
The ink was reformulated and optimized to improve copy-
paper print quality without reducing the time to the first
misdirected dot (clogging of the nozzles). The dye loading
was adjusted to provide an optical density equivalent to
that of the HP LaserJet printer on high-quality papers.

Ink Manufacturing
Currently, HP manufactures its own ink for the DeskJet

printer. This involves a moderate-scale manufacturing
facility and several state-of-the-art process steps. The ink
is tested both during and after manufacture using an HP
5880 Gas Chromatograph and an HP 9000 Series 300 work
station to observe the solvent composition. Dye purity is
tested using an HP 1090 Liquid Chromatograph and a Series
300 workstation, and absolute concentration is measured
using an HP 8450 UV/Vis Spectrophotometer. Viscosity,
surface tension, conductivity, pH, and specific ion concen
trations are monitored as well.

Nozz le

T h i n - F i l m R e s i s t o r N i cke l P l a t e

P h o t o s e n s i t i v e
P o l y m e r

F i r i n g C h a m b e r S i l i c o n S u b s t r a t e

Fig. 2. Crass sect ion of an InkJet nozzle.

56 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

F i r i n g C h a m b e r D e s i g n
The basic printhead structure for HP thermal inkjet print

ers consists of a resistor surrounded by an ink channel,
with both elements closely aligned to an exit nozzle (Fig.
2). When a resistor is heated, the adjacent ink is vaporized
to create a drive bubble. This forces an ink droplet out
through the nozzle. After the droplet leaves and the bubble
collapses, capillary force draws ink from the feed channel
to refill the nozzle. Each DeskJet printhead has 50 of these
structures (Table I).

Table I
HP Thermal InkJet Printhead Evolution

The early prototypes of the DeskJet printheads were de
signed for use with a specific inkjet paper. When printheads
were first filled with plain-paper ink, they exhibited erratic
performance and produced poor-quality print. Our testing
showed that this was because of the lower viscosity of the
new ink, which decreased the amount of fluid damping
present in the printhead structure.

In an underdamped system, fluid rushes back into the
inkjet nozzle area so rapidly that it overfills the nozzle,
creating a bulging meniscus. The meniscus then oscillates

10.50 / is

J \ J \ J \ J

about its equilibrium position for several cycles before set
tling down. A finite-difference fluid dynamics simulation
shows that the meniscus configuration can have a dramatic
effect on drop ejection (Fig. 3). Extra fluid in the bulging
meniscus (Fig. 3a) adds to the volume of the emerging drop,
while a retracted meniscus (Fig. 3b) reduces the volume
of the drop. Fluid acceleration during bubble growth varies
inversely with meniscus height, causing emerging drops
to pull off-axis (Fig. 3c) or flare out (Fig. 3a).

An obvious approach to improving the damping of the
system is to increase the fluid resistance of the ink refill
channel. The easiest way to do this is to lengthen the chan
nel. Fig. 4 shows damping for the initial channel length
and Fig. 5 shows damping for a channel twice as long.
Doubling the channel length yields a small increase in
damping but the system now oscillates with a longer
period. This means that a longer wait is required before a
second drop can be fired, resulting in a reduced operating
frequency. Fig. 5 also shows that the longer barriers reduce
fluid interactions or cross talk between neighboring noz
zles. Cross talk has an effect on the meniscus position,
which in turn modulates drop ejection.

An alternative way of increasing the resistance of the
channel is by decreasing the channel cross section (Fig. 6).
This structure is well-damped and has a quick response.
This means that a second drop can be fired immediately
upon refill, resulting in a high-frequency system with well-
controlled drop volumes. The decreased cross section also
reduces system cross talk.

Many other problems had to be resolved to obtain an
optimized printing structure. Computer modeling provided
insight into areas where direct measurement was difficult.
It also allowed evaluation of different structures without
actually building them. Fig. 7 shows a simulated drop run
ning into a residual droplet of spray left by a previously
fired drop. This event would have been extremely difficult

0 / x s

(a) (b) (c)

Fig. 3. meniscus of the meniscus configuration on the ejected drop, (a) A bulging meniscus adds
to the vo lume of the drop, (b) A re t racted meniscus reduces the vo lume of the drop, (c) F lu id

acceleration during bubble growth causes emerging drops to pull off -axis or flare out as in (a).

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 57

© Copr. 1949-1998 Hewlett-Packard Co.

to record in a direct experiment.

Ink Barrier
Channeling ink flow from the main ink feedslot to each

firing chamber and preventing interference from adjacent
firing chambers required the development of a new barrier
material. It needs to act as a spacer between the orifice
plate and the energized thin-film resistor, and be capable
of producing straight firing chamber walls. The barrier ma
terial chosen to perform these functions is a polymer which
is first photodefined and then cross-linked to make it im
pervious to water-based inks.

The barrier material (Fig. 8) is typically 26 micrometers
thick, with its smallest lateral dimension measuring ap
proximately 35 fj.m. A typical printhead consists of 25 op
posed, individually spaced firing chamber pairs with a
central main ink feedslot. Since the ink is heated by re
peated firings of the resistor, it is imperative that the barrier
material withstand ink and heat exposure for the life of
the printhead. From a manufacturing standpoint, the mate
rial chosen for the barrier has to be cost-effective and man-
ufacturable in high volume.

The polymer selected was not available in the thickness
necessary for inkjet use. In addition, it was designed to
image features on the order of 75 to 100 Â¿on with a tolerance
on the order of 50 to 75 /am. In the DeskJet printhead, the
minimum feature opening is approximately 35 /Â¿m and has
a much tighter tolerance. The technology had to be ex
tended to produce these features on a consistent basis.
Vendor-recommended process parameters were therefore
investigated on a step-by-step basis, and a new production
process was developed.

The polymer is applied to the silicon wafer by hot roll
lamination. It is then exposed using an integrated circuit
proximity aligner and chromed glass masks.

A conventional, scaled down, vertical developer is used
to develop the laminated and exposed wafers. Additional
developer and rinse solution filtration had to be added to
eliminate the transfer of small particulate matter from wafer

Active Bore

Time

Time

Fig . 5 . F lu id damping and cross ta lk for tw ice the in i t ia l ink
channel length.

to wafer in the development step.

Orifice Plate
The orifice plate material (gold-plated nickel) is the same

as that used in the 180-dpi PaintJet printhead. The higher-
frequency operation and tight drop volume control needed
for the DeskJet printer placed additional importance on
orifice diameter tolerance. Particulate and chemical con
tamination controls were found to be keys to achieving the
desired yields in manufacturing.

HP Laboratories had a major impact on the manufactura-
bility of the orifice plate by conceiving a high-resolution
electroplating process. This new process was transferred
to the InkJet Components Operation early in its develop
ment and completed there. The resultant orifice plates have
a very well-controlled orifice diameter.

Assembly Evolut ion
There are many differences between the DeskJet print-

head and the Thinkjet printhead manufactured by the same
HP Division. The DeskJet printhead has an interconnect
that is perpendicular to the paper path (this removed sig-

Active Bore

Time

Fig. 4. Fluid damping and cross talk for the ini t ia l ink channel
length.

F ig . 6 . Decreas ing the channel c ross sect ion prov ides good
damping, a qu ick response, and min imal c ross ta lk .

58 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

nificant paper handling problems for the product design
group). It has a larger ink containment volume for higher-
resolution plain-paper printing. Its ink containment system
uses a foam sponge, like the HP PaintJet printhead. High-
precision alignment of the nozzle assembly to the plastic
parts is required. The printhead installation method is dif
ferent and more user-friendly.

This more-complex design made it necessary to reinvent
almost every assembly process. The new printhead has
30% more mechanical parts and three times as many adhe
sives as the Thinkjet pen. A substantial increase in align
ment precision was required as well to meet print quality
objectives. The stacked-structure design (Fig. 9) is condu
cive to automated assembly.

Precision Al ignments
Three similar precision mechanical alignments are per

formed in the course of assembling the printhead. The
orifice plate is aligned to the wafer, the singulated head is
aligned to the plastic body, and the flexible interconnect
circuit is aligned to the bonding pads.

In each of these alignment operations, parts handling
varies significantly, but the scale and precision of the mo
tions are very similar. For this reason, the fundamental
framework of the three aligners is identical, with minor
modifications to end effectors and software as required. By
leveraging the design over the three different machines,
engineering costs were significantly reduced.

Two generations of mechanical aligners have been de

signed to accomplish these three alignments. The first fam
ily of aligners provided equipment on a fast-track schedule,
and at relatively low cost. These aligners were ven- labor
and skill intensive, and were prone to a significant amount
of downtime, inherent in a fast-track design. The current-
generation aligners effectively eliminate the design defi
ciencies of the first generation. They are completely auto
matic and operate an order of magnitude faster.

Interconnect Technology
To provide connections from the printer to the printhead

resistors, conductors must be routed away from the nozzle/
paper region and fanned out to a manageable 1.5-mm spac
ing. In the Thinkjet printhead, this objective is satisfied by
simply extending the substrate far from the resistors. This
did not provide a cost-effective solution for the DeskJet pen.

Many conventional interconnect technologies were in
vestigated to perform this task, including gold and
aluminum wire bonding and gang TAB (tape automated
bonding). These processes were dismissed because of high
welding temperatures, bumping of the bond pads, wire
loop heights, or speed. The technology chosen was single-
point tape automated bonding. TAB tape is a copper circuit
printed on polyimide tape with cantilever beams extending
beyond the tape perimeter. The beams are ultrasonically
welded to pads on the die.

A standard gold-wire bonding machine was modified
both in hardware and software to accommodate the process.
The major bonding parameters of force, time, and ultrasonic

. 0 0 M s Q 1 0 . 5 0 p s

15.50 /JS

\

0

o
Fig. spray previously simulation of a drop running into a residua/ droplet of spray left by a previously fired

drop. This event would have been ext remely d i f f icu l t to record in a d i rect exper iment .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 59

© Copr. 1949-1998 Hewlett-Packard Co.

007180 30KV 120um

F ig . 8 . Pho tom ic rog raph o f DeskJe t p r i n thead f i r i ng cham
bers and ink barr ier .

energy are program controlled to give the greatest operating
window possible using a destructive beam pull test as the
major process control parameter. Repeatability of flex cir
cuit targeting required that the bonding machine have a
pattern recognition system that aligns automatically with
out operator intervention (see article, page 91).

The bonding machines were further modified to accomo-
date a pallet transfer conveyor line where pens are automat
ically loaded, located, bonded, and then released to the
next assembly process station. Production volumes were

achieved by paralleling two bonders with a shuttle connec
tion and having the host computer supply both bonders
with pallets. This parallel arrangement also allows one
bonder to be taken off-line for maintenance without stop
ping the entire production line.

Using the TAB circuit for the interconnect allows the
silicon die size to be minimized, since the die only needs
to be large enough to ensure sufficient gluing surface be
tween the die and the plastic printhead body. The TAB
method also cuts the die/interconnect cost by an order of
magnitude.

After bonding, the beams are encapsulated to provide
both a mechanical barrier and chemical resistance to the
ink.

The printer interconnect design is quite similar to that
of the Thinkjet printer, with a few subtle differences dic
tated by the modified geometry. It uses a bumped flex cir
cuit in the printhead carriage.

Tool ing and Process Chal lenges
The experience obtained from the Thinkjet printhead

development showed that this technology could not be
automated until its many processing steps were well-
understood. With this in mind, assembly methods that
would allow automation to be added incrementally were
sought. An asynchronous line was selected because it pro
vides tremendous flexibility in tooling and process de
velopment. The line was erected a full year before produc
tion release. Prototype tools were installed on the line to
evaluate assembly strategy, process flow, referencing tech
niques, and tooling methodology.

As more refined tools were developed, they were in
stalled on the line and debugged before removing the old
tooling. This provided a steady stream of prototype print-
heads to the development team. In the latter stages of de
velopment, several thousand prototype printheads per
month were consumed in printhead and product qualifica
tions. This volume of printhead production was instrumen
tal in rapid training of the production personnel on a multi-
shift operation. It also provided a critical volume of print-
heads necessary for debugging the assembly process and
tooling.

Using a pallet transfer line concept, the number of mech-

Printhead

Plast ic Cap

\
Foam Sponge (w i th ink)

P last ic Body
F i g . 9 . E x p l o d e d v i e w o f t h e
DeskJet pr int cartr idge.

60 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

anisms required for the tools is minimized. Printheads are
handled on a fixtured pallet and presented to the tool or
operator by means of off-the-shelf lifting and locating mech
anisms. Workstation frames are made out of standard
aluminum extrusions that bolt together and can be easily
reconfigured to meet changes. This concept also allows the
relocation of tooling to meet changes in the process flow
with no impact to the product schedule. During the first
six months of production, eight assembly tools were relo
cated and 14 newly upgraded ones were added. Initially,
a majority of the workstations required a full-time operator.
Many of these have now been replaced with upgraded and
automated tools. The goal is to be fully automated before
the end of the first year of volume production.

Because the printhead design was not a simple evolution
of the Thinkjet pen design, a significant fraction of the total
printhead development effort was spent in the develop
ment of assembly tooling and processes for the DeskJet
printhead component assembly line.

Reliabil ity Testing
In the development phase, printheads were continuously

tested for adherence to specifications. At the beginning of
the project, overall goals for reliability were set. At each
transition point from one project phase to the next, the
confidence level for meeting these goals was increased.

The DeskJet printhead is designed to be consumable, so
the concept of annualized failure rate does not apply to it.
Therefore, the reliability goals specify the percentage of
printheads that pose no start-up problems to the customer
and have no uncorrectable print quality failures before the
ink has been used up. Goals also exist for the maximum
number of correctable print quality defects over the life of
a printhead and for the number of customer interventions
(primes) required to correct any defect.

To evaluate start-up problems, testing was performed to
the standard HP environmental specifications. Many of the
specifications are not applicable to the printhead alone, so
printheads were tested as part of the printer system testing.
These real-life tests were completed early enough in the
printhead's development to allow time for corrections to
be made. Testing for print quality degradation over the
temperature and humidity range posed an interesting prob
lem. The paper could not tolerate the environmental ex
tremes specified for the printhead and printer. Sheets of
paper would stick together, causing misfeeds. Special pro
cedures were developed to verify printhead operation at
the extreme conditions.

A major focus of the testing went into verifying the relia
bility of the printhead over its life after it was inserted into
a printer. A test that simulates actual customer use was
developed. A sample page of mixed text and graphics was
used as the standard page. A customer print job was defined
as 15 pages of this pattern and the printheads were run out
of ink printing jobs. The operators running the tests inter
vened as customers would to correct any print quality de
fects that occurred.

Initial life testing on modified plotters began early in the
printhead's history when printers were not available. While
these tests pointed out major printhead problems, the sub
tle problems that customers were likely to see were not

apparent until DeskJet system printing was performed.
Once printers were available, printheads for these life tests
were obtained from actual production lots and tested on a
daily basis.

Test results were at times difficult to evaluate. Print qual
ity defects and failures were not always attributable to the
printhead or printer alone, but rather to the interaction
between them. An extensive failure analysis system was
developed to trace and sort out the underlying problems.

Acknowledgments
It is important to note that the authors listed represent

a small portion of the people who worked on the DeskJet
printhead. The entire team was extremely dedicated,
spending many long days in developing tools and processes
and in understanding the operation of the printhead. There
was a high degree of cooperation between all of the divi
sions involved. HP Laboratories provided process research,
processes were leveraged from and jointly developed with
the San Diego Division, and significant and detailed design
trade-offs were jointly developed with the Vancouver Divi
sion. Two people in particular need to be mentioned: Frank
Cloutier, who was the R&D manager from the beginning of
the Thinkjet printhead development through most of the
DeskJet printhead development, and Cheryl Katen, who
was the DeskJet printhead program manager. Their support
and direction were fundamental to the success of this pro
gram.

The authors would like to thank Bill Knight, Judy
Layman, Marzio Leban, Jim Pollacek, and Shell Whit-
tington for their contributions to this article.

References
1. Hewlett-Packard Journal, Vol. 36, no. 5, May 1985, entire issue.
2. Hewlett-Packard Journal. Vol. 39, no. 4, August 1 988, pp. 6-56.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 61

© Copr. 1949-1998 Hewlett-Packard Co.

Integrating the Printhead into the
HP DeskJet Pr inter
The printhead support systems provide signals to energize
the ink-firing resistors, electrical connections to the pen, a
carriage to hold and move the pen, and elements to protect
and mainta in the pen.

by J . Paul Harmon and John A. Widder

THE HP DESKJET thermal inkjet printhead requires
a higher level of support from the printer than earlier
generations. There are more nozzles to drive, they

have to be driven faster, and more electrical connections
have to be made to the head. Smaller nozzles with fast-dry
ing, plain-paper ink require protection to prevent the head
from drying out and mechanisms to recover nozzles that
have clogged. And like earlier disposable thermal inkjet
printheads, a carriage is needed to move the printhead
across the paper.

Several overall design constraints guided the design of
the printhead support systems. Each element had to meet
the longevity goals set for it, perform its task, be robotically
assemblable, and be low in cost. To meet the last two goals
our project attempted as much as possible to design the
carriage mechanism for top-down assembly and minimum
part count.

Head Drive Electronics
The printer circuitry to interface with the printhead is

located on a printed circuit board mounted on the carriage
mechanism. Two custom ICs on the board drive the print-
head, with each 1C driving half (Fig. 1). Each driver 1C
contains two 4-to-l 3-line decoders and has four address
inputs, which are shared by both decoders in the 1C, and
two enable inputs, one for each decoder. The four address
inputs indicate which of the thirteen outputs of each de
coder will be turned on if its enable input is selected.

The decoder architecture only allows four dots to be fired
at a time. It is necessary to minimize variations in the
energy dissipated in the printhead thin-film resistors to
maintain good print quality, so we did not want varying
voltage drops across the commons between the power sup
ply and the printhead when firing resistors. This requires
that there be a separate common for each resistor when
several are energized simultaneously. Fifty commons
would have been impractical from a cabling standpoint,
and one would have been been impractical from a timing
standpoint, so as a good compromise, four commons are
provided. Since only four nozzles can be fired at a time,
decoders are used to minimize the number of connections
between the main board and the head driver board.

It takes approximately 120 microseconds to fire all 50
nozzles in letter-quality mode. The distance moved during
this time could produce a noticeable skew in the column,

so the nozzle positions in the head are skewed to compen
sate. The cycle time for dot firings is cut in half when
printing in draft mode (at twice the normal speed) so that
the skew compensation is correct at both speeds. The noz
zles are fired in reverse order when printing backwards.

There are three other functions on the head driver board.
The first of these is the continuity test circuit. This circuit
monitors the voltage drop across resistors in series with
the printhead commons to determine if current flows when
a driver is activated. A comparator monitors the voltage

+ 19.8V

T o
M a i n

P r i n t e d
C i r c u i t

A s s e m b l y

F l e x C i r c u i t
t o P r i n t h e a d

+19.8V

Fig. 1 . Two custom ICs on a carr iage-mounted printed circuit
board dr ive the DeskJet pr in thead.

62 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

drop across each series resistor, and its output goes low if
the current through the printhead is high enough. The com
parator's output is monitored by the microprocessor on the
main board during self-test, and it will print out the num
bers of any nozzles that have bad continuity. This allows
the user to determine whether a nozzle failure is caused
by a resistor failure in the printhead.

In addition to the fifty drive lines and four commons
going to the printhead, there are two sense lines that are
used for encoding a printhead ID. These lines are mask-pro
grammable on the printhead, and they will be used in the
future to sense different types of printheads that might be
installed in a printer. These ID sense lines normally connect
to two of the printhead drive lines so that when the drive
line is pulled low, the sense line connected to it will also
go low. If the sense line is open, however, it will not go
low when the drive line is activated. In this way, the printer
can detect whether the ID sense lines are open. The two
ID sense lines are wire-ORed together and a single line is
fed back to the microprocessor on the main board.

An optointerrupter mounted on the head driver board
detects the presence of paper in the paper path. A vane
with a window normally rests in a position where the in
frared light from an LED in the optointerrupter shines
through the window in the vane and is detected by a photo-
transistor. When paper is in the paper path, the vane moves
up so that the light from the LED is blocked and the photo-
transistor is turned off. The output of the phototransistor
is fed back to the main board, where it is detected by the
microprocessor.

Printhead Energy Window Budget
The amount of energy dissipated in the thin-film resistors

of the printhead is critical to both print quality and print-
head reliability. If too little energy is delivered to the print-
head, the print quality will be poor. On the other hand, if
too much energy is delivered to the printhead, the print-
head life will be reduced. There is a narrow window where
good print quality is achieved without adversely impacting
the printhead life.

There are several factors that can impact the amount of
energy dissipated in the thin-film resistors when they are
energized. The amount of energy dissipated in the resistors

E= I2R,,tfir,

where

I =
(V . - V s a t)

(R t f + R t r a c e + R s o u r c e + R e a p)

(1)

(2)

Rtf is the printhead thin-film resistance, Vs is the head
supply voltage, Vsat is the driver saturation voltage, R,race
is the stray resistance on the head driver board, flex circuit,
and printhead, Rsource is the resistors in series with the
printhead commons, Rcap is the effective series resistance
of the head power supply output capacitor, and tfire is the
time during which current flows through the printhead.
Variations in any of these parameters will cause the energy
dissipated in the printhead to vary. To complicate matters

further, the energy required to produce good print quality
(the turn-on energy) varies from printhead to printhead.

In addition to specif ying tight tolerances on components,
two specific measures have been taken to minimize param
eter variations and then- effects. The first step is incorpora
tion of temperature compensation into the head driver ICs.
The ICs are designed so that the temperature coefficient of
the output saturation voltage tracks the temperature coeffi
cient of the output storage time, so that as the saturation
voltage increases, decreasing the dissipation in the drivers,
the storage time also increases, increasing the dissipation.
The temperature variations of these two parameters cancel
each other, resulting in zero variation in energy with driver
temperature.

The second step taken to minimize energy variation is
the use of resistors in series with the printhead commons.
As mentioned previously, source resistors are placed in
series with the printhead commons to sense current flowing
through the printhead. The principal reason for having
these resistors, however, is to minimize the variation of
applied energy with changes in printhead resistance. The
change in energy dissipated in the printhead resistors when
their resistance changes is at a minimum when the sum of
all other resistances in the circuit is equal to the resistance
of the printhead resistors. The sum of the other resistances
is not quite equal to the printhead resistors, but having the
source resistors helps reduce the change in printhead
energy when the printhead resistance changes.

Monte Carlo Model
Normally, a conservative designer will use worst-case

analysis to ensure that a design will perform satisfactorily
under all conditions. However, selecting head drive circuit
parameters to ensure that all printheads receive the
minimum required energy under worst-case conditions
would have resulted in a nominal energy high enough to
shorten the life of the printhead. Since the variables affect
ing the energy delivered to the printhead are independent
of each other, it was recognized that the probability of
worst-case conditions occurring is very small. We decided

Fig. the For interconnecting the printer and the printhead, the
DeskJet pr in ter uses a bumped f lex c i rcu i t on the carr iage.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 63

© Copr. 1949-1998 Hewlett-Packard Co.

to use Monte Carlo analysis to determine the nominal cir
cuit values. Monte Carlo analysis uses a statistical approach
to determine the distribution of a variable based on the
distributions of its constituent parts.

The first step in Monte Carlo analysis is the creation of
a model of the circuit. In our case, this model is the equation
for printhead energy given in equations 1 and 2, along with
equations based on the various printhead process parame
ters that affect turn-on energy. The second step in Monte
Carlo analysis is determining the distributions of the vari
ables in the model. In our analysis, a normal (Gaussian)
distribution was assumed for all but two of the variables.
These two variables are printhead resistance and printhead
turn-on energy, which we test during the head assembly
process. If a printhead is outside of preset limits on either
of these parameters it is discarded, resulting in a normal
distribution with the tails of the distribution cut off.

Once the model has been constructed and the distribu
tions of the model variables are known, simulations can
be run to determine the distribution of the variable of in
terest. We were interested in monitoring the distribution
of the ratio of applied energy to turn-on energy, which is
a key indicator for both print quality and reliability. The
simulation involves "building" a printer and printhead by
picking parameter values at random using their distribu
tions, calculating the applied energy and turn-on energy
using those values, and tracking the distribution of the
ratio of these two energies. The two truncated distributions

are easily simulated by checking the parameter values after
they have been selected and before they are used in the
model. If a parameter's value falls outside the allowable
limits, that value is discarded and a new value is calculated.
This process allowed us to set the nominal energy high
enough that virtually all printheads and printers will work
together, while keeping the nominal energy low enough to
avoid impacting printhead life.

Printhead Interconnect
For the HP Thinkjet printer, HP developed a bumped

flex interconnect technology that has proved very success
ful in practice. After examining other alternatives for the
DeskJet printer, the design team settled on the same basic
design expanded from 12 connections to 56. In the Thinkjet
printer, the connections are made to gold-plated pads on
the glass chip that contains the resistors that fire the drops
of ink at the paper. For the DeskJet printer, a silicon chip
with 56 of these connections would have been too large to
be cost-effective. In addition, the large chip would have
placed unacceptable constraints on paper path design, be
cause it has to lie almost in a plane with the nozzles, which
have to be very close to the paper.

After careful analysis, a design employing gold pads on
a tape automated bonding (TAB) flex circuit was executed
(see article, page 55). The TAB circuit pads attach to the
chip pads and the TAB traces fan out to the bottom of the
printhead, where they are contacted by the bumped flex

Wiper

InkJet Printhead

(Ra ised so tha t
Serv ice Stat ion
componen ts can be
vieued. Normally
l oca ted on t he cap .)

Purge Locat ion

Sled
L a p

Peristal t ic Pump

F i g . 3 . D e s k J e t p r i n t e r s e r v i c e
stat ion assembly.

64 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

circuit on the carriage, which is shown in Fig. 2. Using
this technology brings the pen cost to an acceptable level
and frees paper path design considerably, because the inter
connections, though actually larger in area, can be wrapped
around to the bottom of the pen where they are out of the way.

Pen Maintenance
One of the major challenges the project team faced was

making trade-offs associated with printhead maintenance.
Since the head was being developed concurrently with the
printer there were many unknowns. Constant contact with
HP's InkJet Components Operation (where the printhead
designers reside) was maintained and proved invaluable
to the creation of a successful product.

The product had five main objectives for printhead
maintenance:
â€¢ Prevent the nozzles from drying out
â€¢ Keep paper dust off the nozzles while not printing
â€¢ Wipe off any paper dust that might accumulate during

printing
â€¢ Provide a location for purging viscous plugs from the

nozzles before beginning print
â€¢ Provide a method for the user to clear a dried-out or

plugged head without taking the pen out of the printer.
The service station that accomplishes these objectives is

shown in Figs. 3 and 4.
A rubber cap that seals to the orifice plate is provided

to protect the nozzles. This cap prevents the nozzles from
drying out and covers the nozzles while they are inactive,
keeping them from being covered with paper dust. The cap
is brought into contact with the printhead by a combination
of carriage motion and ramps molded into the dc servo
motor mount. The ramps raise the cap as the carriage goes
to its parked position.

An elastomer tube attached to the underside of the cap
provides a long diffusion path while venting the cap. The
diffusion path maintains high humidity in the cap. The
venting prevents the cap from acting as a bellows and blow
ing bubbles into the nozzles as the head comes to rest on
the cap. The tube also serves as a primary component in
the peristaltic pump used to service the printhead. If the

nozzles are dried out (from sitting in a desk drawer un
capped, for instance) or a stubborn piece of paper dust is
clogging nozzles, the user can actuate this pump to draw
about 0.05 ml of ink from the head. This flushes the nozzles
so the head can be returned to service.

The mechanism that performs the pump function with
the tube is located near the end of the tube. The DeskJet
pump employs only one roller rather than the traditional
three that are usually used for peristalsis. This allows the
tube to be vented to atmosphere when the pump is not
operating without the need of a separate vent in the system.
Ink from the pump is dumped into an absorber located in
the bottom half of the printer, from which it evaporates.

A soft rubber wiper is built into the printer as a means
of clearing from the nozzles any paper dust that might
accumulate during printing. The paper dust is scraped into
pockets on either side of the printhead. Thus, every time
the printhead is changed, the accumulated paper dust is
thrown out with the old printhead.

Since printhead service is an ancillary function of the
printer, low cost was an absolute must. This was achieved
by implementing a minimal-part-count passive design.
There are no motors dedicated to printhead maintenance.
The pump is powered through a carriage-actuated transmis
sion using the paper drive motor, and the cap is automat
ically engaged when the carriage comes home after print
ing. As much as possible, elements required for these func
tions are integrated with structural elements of the chassis.
Thus, a peristaltic pump is molded into the main frame
and the capping function is achieved with ramps molded
into the dc servo motor mount.

The design team was aided in making this integration
by HP ME Series 10, 1 a computer-aided design tool from
HP, which was effectively used to study interactions at an
early phase of the project. The DeskJet mechanism team
was one of the first sites in the corporation to begin using
ME Series 10. 2 (The plastic part on the cover of the May
1987 Hewlett-Packard Journal is the main chassis for the
DeskJet printer.) The geometries of many of the parts in
the product contain inputs from more than one engineer.
Managing ongoing development of parts when so many are

Fig. 4 . Photograph of the serv ice s tat ion. F ig . 5 . DeskJet pr in ter car r iage wi th pr in thead.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 65

© Copr. 1949-1998 Hewlett-Packard Co.

multifunctional and have several designers is made easier
when ME Series 10 is available.

Carriage
The DeskJet printhead provides 300-dpi resolution. Tak

ing advantage of this resolution requires a mechanism ca
pable of locating the printhead accurately. Keeping track
of tolerances was unusually important in the design of the
printhead carriage, which is shown in Fig. 5.

The interconnect described above is contained in the
carriage. Good connection between the printhead and the
head drive circuit requires between three and five pounds
of force. This load level is sufficient to deflect thin plastic
parts more than can be tolerated, and here a problem was
realized. The top-down manufacturability requirement al
lows little space for carriage alignment points. Carriage
acceleration goals require relatively thin walls in the car
riage structure for low mass. Thus, little plastic can be used
for interconnect load support points. Since these points
are also the head alignment points, stiffness is vital in
whatever structure is used. To convince ourselves that it
was indeed possible to satisfy these requirements, a linear
static finite element model was created using HP-FE, and
the carriage design is based on the results of that computer
model. Several members of the team participated in the
design of the carriage during various phases of its develop
ment and ME Series 10 was extremely useful in handing
off the geometry from engineer to engineer with a minimum
of documentation.

Carriage bearing life was also a concern. The DeskJet
carriage employs molded-in-plastic bushings riding on a
polished steel rail. This is both a cost-saving measure and

a way to minimize carriage-to-shaft tolerances. The design
is laid out to prevent undue bearing loads caused by cock
ing. The success of this design was proved early in the
development cycle by an accelerated test bed, which ran
ten carriages to over twice the projected printer life.

Helping the customer intuitively understand how to in
stall a printhead was another design goal for the carriage.
Several days of brainstorming and many failed designs led
to the current implementation, which in one test was rated
by users as being easier to use than the power switch. A
funnel-shaped chute to drop the pen into, mating geometry
between the printer and the printhead, and color coding
all play a role.

Acknowledgments
The head driver 1C was designed by Pat Byrne and Dan

Nguyen at the HP Santa Clara Technical Center, and Chuck
Jarvie was responsible for procurement. Mark Lund de
veloped the continuity test circuitry. Henry Flournoy and
Bill Royce at the HP San Diego Division helped specify the
head driver 1C characteristics and developed the idea of
using was resistors. Early carriage conceptualization was
done by Dave Pinkernell. The DeskJet mechanism team is
indebted to Brian King for his work on carriage development.

References
1. W. Kurz, et al, "State-of-the-Art CAD Workstations for Mechan
ical Design," Hewlett-Packard JournaJ, Vol. 38, no 5, May 1987,
pp. 4-15.
2 . P . pp. "Alpha Si te Evaluat ion of ME Series 10," ibid , pp.
30-33.

66 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

DeskJet Pr inter Chassis and Mechanism
Design
One mechanism moves the carriage while another uses a
s ing le motor to p ick , feed, and e jec t paper and pr ime the
pen. The polycarbonate chass is suppor ts everyth ing.

by Larry A. Jackson, Kieran B. Kelly, David W. Pinkernell, Steve O. Rasmussen, and John A. Widder

THE CHASSIS OF THE DESKJET PRINTER is an injec
tion molded plastic part that supports the mechan
ical and electrical systems (Fig. 1). Besides meeting

its own objectives, the chassis design helps accomplish
some of the overall objectives for the printer. Part count is
minimized by the large amount of functionality built into
this single part, and ease of assembly of the other parts to
the chassis is a feature of the design. Both factors help
reduce the cost of the printer.

Two important criteria for the chassis design were mate
rial selection and tooling. The material needs to be very
good structurally, have good dimensional stability, and
help dissipate electrostatic charge created by the paper
motion. It also needs to be a good bearing material and a
good snap material. Requirements for the tooling are that
it be simple, fast, and durable (i.e., good for 200,000 parts).

The chassis is designed as one large part that takes the
place of many parts and functions as the main structure
for the printer mechanism. The chassis also integrates many

of the functions of the printer.
The following is a list of the part attachment details of

the chassis:
â€¢ Pressure plate spring locators
â€¢ Pressure plate location and bearing surface
â€¢ Adjustable wall and lever location and bearing surface
â€¢ Pinch roller location and bearing surface
â€¢ Drive roller location and bearing surface
â€¢ Transmission location and bearing surface
â€¢ Gear train location and bearing surface
â€¢ Paper motor screw holes
â€¢ Head driver cable and ferrite core location and holding

snap for core
â€¢ Belt tensioner assembly location

Head driver board location and retaining snap
s Prime pump bottom and location for the other parts of

the pump
â€¢ Right wall retaining snaps
â€¢ Motor cable routing details

Fig . 1 . The DeskJe t p r in te r chas
s is is a complex in ject ion molded
par t that takes the p lace o f many
p a r t s a n d s e r v e s a s t h e m a i n
s t r u c t u r e f o r t h e p r i n t e r m e c h a
nism.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 67

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Flex cable retaining detail
â€¢ Preloader assembly and location detail
â€¢ ESD clip and carriage rod retainer location detail
â€¢ Carriage rod location detail
â€¢ Carriage guide and paper guide location and screw hole
â€¢ Pump tube location.

The following are functional details of the chassis:
â€¢ Paper path guide surface
â€¢ Part of the input paper tray
â€¢ Envelope loading guide and surface
â€¢ Details for six grommets that mount the mechanism to

the case parts
â€¢ Right corner separator used for picking a sheet of paper
â€¢ Details to reference the mechanism to the assembly pal

let.
As the assembly of the product begins, a pin for the paper

drive motor gear cluster is pressed in, pump tubing is put
in place, and the head driver cable with its ferrite core is
snapped into place. The chassis is placed on a pallet which
locates on details within the chassis. The chassis then
travels down the assembly line on a belt and all the other
parts are assembled to it.

Material and Tooling
The material selected for the chassis is a polycarbonate

with a 15% milled carbon fiber filler. This material is di-
mensionally stable and structurally strong enough to hold
up well in the operating environment. The carbon filler
helps conduct electrostatic charges from other parts and
the chassis itself to ground. The material also works very
well for the snap details that retain various parts and makes
assembly easy. With the proper selection of mating part
materials, the chassis material wears very well.

Even though the chassis is complex, the injection mold
ing tool is fairly simple, containing only two slides and a
few shutoffs. The tool is made from P20 steel, which is

about as easy to machine as aluminum, but much more
durable. Because the part is fairly big and complex we
opted to build two gating systems into the tool, so it can
be filled by a single sprue or four pin gates. As the initial
parts were molded we used the single gate, but with experi
ence, better parts were formed using the four-pin-gate system.

During the design and development of the chassis, four
or five engineers were able to work on the part at the same
time. There were at least two reasons for having more than
one engineer involved. First, the engineers were working
on parts that would eventually mate to different parts of
the chassis, so it made sense for them also to develop the
chassis details to fit their mating parts. Second, since the
chassis is complex (fourteen E-size sheets are required to
describe it), it was the pacing part in the schedule. To
shorten the schedule, other engineers helped do some of
the cross sections and dimensioning so the chassis could
be tooled sooner. This multiple-engineer design was made
possible by the HP ME Series 10 CAD system.1

Paper Handling System

In the design of the DeskJet paper handling system, the
primary goals were to pick a single sheet of paper from the
input stack, present it to the print cartridge with the preci
sion demanded by the 300-dot-per-inch resolution specifi
cation, and eject the sheet to an output bin. These goals
were to be accomplished with a reliable, compact, and
easy-to-use mechanism, and for minimum cost.

The worldwide market for this printer requires that the
paper handling system work equally well with papers of
different sizes (U.S.A. A-size and legal-size and metric A4),
weights (U.S.A. basis weights of 16 to 24 pounds), compo
sitions (photocopier through fine cotton bond), and tex
tures (smooth through rough). In addition, the system must
work equally well in a variety of environmental conditions,

PRINT CARTRIDGE

PLATEN

PAPER OUTPUT BIN

-CARRIAGE GUIDE

PINCH ROLLERS

OUTPUT RAIL

ENVELOPE INPUT SLOT

CHASSIS

DRIVE ROLLER

PAPER INPUT STACK
(SHOWN HALF FULL)

(SHOWN IN THE DOWN POSITION)

 - P A P E R P A T H

Fig . 2 . DeskJet p r in te r paper hand l ing mechan ism.

68 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

with temperatures ranging from 10Â°C thru 40Â°C and relative
humidities ranging from 10% to 70%. It should be no sur
prise that the engineering properties of paper change signif
icantly across those ranges. It was also a goal to allow the
user to hand-feed envelopes to satisfy occasional needs.

A major constraint on the paper handling system comes
from the use of inkjet technology. The ink is sprayed onto
the paper wet, and requires a short drying time before it
can be handled. As a result, the printed surface cannot be
touched by either the printer mechanism or by another
sheet of paper until the ink is dry. If it is touched too soon,
the ink may smear or blot.

The paper handling system has three major functions:
the picking of a single sheet of paper from the input stack,
the movement of that sheet past the print cartridge, and
the ejection of that sheet into an output bin. Fig. 2 shows
the elements of the system.

Paper Pick
The goal that the printer be easy to use requires that

paper be easy to load and that adjustments for the various
sizes be minimal and simple. Paper is loaded into the front
of the printer by selecting the appropriate width (typically
once in the lifetime of the printer), sliding the backstop of
the paper input tray out, inserting up to 12.7 mm (approx
imately 100 sheets) of paper into the tray, and sliding the
backstop forward until it is against the back of the stack
of paper. There is a small tab on the inside of the backstop,
12.7 mm off the floor of the paper input tray, which pre
vents the backstop from being fully seated if more than
12.7 mm of paper is inserted. This gives instant feedback
to the user if there is too much paper. The adjustment for
paper width is accomplished by moving a two-position
(U.S. A. /metric) front-panel lever to the appropriate posi
tion. The lever is attached to a sliding wall on the left side
of the paper input slot. The sliding wall, a fixed wall on
the right side, and a plate on the bottom form the paper
input tray. The adjustment for paper length is accomplished
by sliding the paper input tray backstcp forward until it
just touches the stack of paper in the input tray. To accom
modate normal cutting tolerances (Â±0.7 mm) and environ
mentally induced tolerances (Â±2.0 mm), the left wall of
the paper input tray is equipped with a spring-loaded
guide, which takes up this tolerance and encourages the
stack of paper to press against the fixed right wall. The
right wall is used as an edge reference between the paper
and the printer. The printer logic circuits expect the edge
of the paper to be at that position and command the print
cartridge to begin printing at a point just past it (allowing
for an appropriate margin).

The plate that forms the bottom of the paper input tray
is pivoted and spring-loaded such that, if unrestrained, the
edge supporting the top of the paper (the edge inserted into
the printer first) would pivot up. The plate is held down
by a cam on the right side which rotates on demand from
the transmission (described later). As the cam rotates, the
plate rotates about its pivot and the top edge of the input
stack of paper rises. The top sheet is simultaneously forced
into the drive roller and into two corner separators, one at
each top corner of the sheet. The drive roller is a set of
three medium-soft rubber rollers (one each near the right

and left edges of the paper and one centered) on a single
shaft, which is rotating whenever a sheet of paper is being
picked. When the top sheet of paper comes in contact with
the rotating rubber drive roller, it is pulled forward and
wraps around the drive roller. To ensure that only one
sheet is picked, the corners of the sheet are forced to buckle
over corner separators. This buckling force acts as a restrain
ing force on the sheets of paper in the stack. Because the
coefficient of friction between the drive roller and the top
sheet is greater than that between the following sheets, and
because the normal force is the same, the drive roller can
impose enough force to overcome the buckling on the top
sheet only. Because of the difficulty in modeling the en
gineering parameters of various papers in various environ
mental conditions, the geometry of these corner separators
(essentially small triangles of plastic overlapping the cor
ners of the sheet) was optimized by building a prototype
printer with screwdriver-adjustable corner separators. This
model was tested with the various papers and under the
various environmental conditions until the best geometry
was obtained. While the geometry selected is not radically
different from the original design, this testing and adjusting
improved the range of reliable picking considerably. Fi
nally, after the sheet is picked, the cam continues to rotate
and forces the plate, which is supporting the input stack
of paper, down and away from the drive roller.

Envelopes are loaded manually by the user, bypassing
the automatic pick system. The user simply presses the
Load Envelope buttons on the keypad. This starts the drive
roller rotating. The user then inserts an envelope into a
convenient slot until it contacts the drive roller. The en
velope follows the same path as an automatically picked
sheet of paper.

Paper Motion
The key component of the paper motion system is the

drive roller. Paper wraps around this roller as soon as it is
picked and remains in contact with it until it is ejected to
the output bin. The diameter of the drive roller is ground
to the precision required to maintain the 300-dot-per-inch
print resolution, and it is important that the paper remain
in intimate contact with it. Two sets of deformable pinch
rollers, one located after the pick zone and one located
near the print zone, and a set of leaf springs located im
mediately before the print zone, ensure this intimate con
tact. The goal of minimum cost motivated this single-roller
design, but the conflicting requirements for paper pick and
precise paper feed complicated the design process. Pick
rollers are generally soft, which makes the diameter dif
ficult to control, while feed rollers are generally hard and
much easier to control. This dilemma was resolved by using
a large-diameter roller (the absolute diametrical tolerance
is relatively constant over a wide range of diameters, so
the percentage tolerance is reduced as the diameter is in
creased) and by careful selection of the roller material and
hardness.

As the paper feeds around the drive roller and ap
proaches the print zone, it is pushed into a sheet-metal
platen and forced to peel off the drive roller and through
a slot formed by the platen and a parallel piece of sheet
metal, the carriage guide. The bow caused by this change

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 69

© Copr. 1949-1998 Hewlett-Packard Co.

in direction stiffens the paper considerably and forces it
to lie flat against the platen. The platen is spring-loaded
against the carriage guide so that the printable surface of
any thickness of paper will be touching the bottom surface
of the carriage guide and will be parallel to the platen. This
is very important with inkjet printing technology, because
the distance from the print cartridge to the paper (nomi
nally 1.0 mm) must be carefully controlled over the entire
print zone (8 inches wide by 1/6 inch deep). Using the
carriage guide as a reference, the carriage is able to reference
the print cartridge accurately to the paper. The printable
surface of the paper is not .touched by the printer after
entering the print zone, and the quality of the document
is protected while the ink dries.

While the printer logic circuits can assume that one edge
of the sheet of paper is referenced to the right wall of the
paper input tray, no similar assumption can be made about
the top and bottom edges of the sheet. The out-of-paper
switch is located so it can detect both the top and bottom
of the sheet and signal the logic circuits. The switch is
located between the pick zone and the print zone and con
sists of a lever which trips an optical switch when paper
is present. Noting when paper is first detected, and when

it is subsequently absent, and knowing the distance from
the out-of-paper switch to the print zone, the logic circuits
can calculate the location of both edges of the sheet. Fur
thermore, because paper is detected well before it enters
the print zone, the unprintable region at the top of the sheet
is limited only by minimal tolerances. The unprintable
region at the bottom of the sheet is somewhat more limited
by the distance between the leaf springs and the print zone
because the paper cannot be driven precisely after it passes
these springs, but this distance is small.

Paper Eject
After the sheet of paper is printed, the ink is wet for a

short while and must dry undisturbed, or it will smear or
blot. Rather than wait for each sheet to dry before starting
the next, the mechanism includes a one-sheet buffer which
allows the first sheet to dry undisturbed while the next is
printed. This is accomplished by sliding the sheet onto a
set of output rails as it is being printed. When the sheet is
complete, the transmission selects the eject cycle, which
rotates the platen down, releasing the paper from between
the carriage guide and the platen. As the platen reaches
the bottom of its rotation, two tabs press against mating

TRIGGERS (3)

DETENT
SPRING

CLUTCH
GEARS (3)

PINION GEAR

Fig. power mechanisms Exploded view of the transmission, which supplies power to three mechanisms
f rom a s ing le motor . (Right) Assembled t ransmiss ion.

70 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

tabs on the output rails, pushing them back from under
the sheet of paper. Suddenly unsupported, the paper drops
into the output bin to dry. By the time the following sheet
is printed and dropped, this first sheet will be dry. When
the print job is complete, the output will be stacked in the
output bin, conveniently facing the user.

Prototypes were built with fixed output rails that did not
pull back from under the paper, and in most cases, the
paper dropped into the output bin successfully as soon as
it was no longer pinched between the carriage guide and
the platen. With certain particular graphics patterns, and
under certain environmental conditions, however, heavy
bars of wet ink would swell the paper slightly, effectively
forming stiffening ribs in the paper. This reinforced paper
was stiff enough to support itself with the minimal support
offered by the fixed output rails, and the paper would not
drop. While this result was rare and not disastrous (the
following sheet would knock the troublesome sheet either
into the output bin or onto the floor), the moving rails
eliminated the problem completely.

Transmission

The DeskJet printer is designed with low cost in mind.
One of the ways of keeping costs down is to get the
maximum use out of the motors. Three mechanical opera
tions are required of the DeskJet mechanism in addition to
positioning the paper and the printhead. First, the pressure
plate must be raised and lowered to load a sheet of paper
into the print zone. Second, the platen needs to be rotated
down and the output rails opened to eject a sheet into the
output tray. Finally, the peristaltic pump is operated to
prime the pen. A low-cost multiplexing device to supply
power for these three independent operations from one of
the motors was a design goal of the DeskJet mechanism.

There are several constraints placed on the design of this
multiplexing transmission. Minimal cost is a primary con
straint. Cost must be below the cost of adding additional
motors, clutches, or solenoids and be sufficiently lower in
cost to warrant the added development costs. Laser-quality
print requires that loads placed on the carriage servo be
minimal, so the paper drive motor is the motor of choice

for supplying power for the three operations mentioned.
The carriage motor can be used, but only as an actuation
device with light loads. This constraint takes some of the
burden off the development of the carriage servo system.

Another constraint on the design of the multiplexing
transmission is that, because the paper motor must accu
rately position the paper while paper is in the print zone,
no additional loads are allowed on the paper motor while
printing. A final constraint is to implement the design with
out the use of additional electronic components such as
sensors, switches, or solenoids. This constraint is intended
to keep costs down and can be removed if that appears to
be the lowest-cost alternative.

The DeskJet transmission provides the desired function
ality within the constraints listed. Power is delivered to
each of the three systems through three gear trains. The
transmission takes the power from a gear driven by the
paper motor and transfers it to one of the three gear trains.
The selection of a particular gear train is done by an actuator
on the printhead carriage. The eject operation occurs after
printing is complete. The priming sequence is used before
printing starts, and the paper load operation is timed to be
complete before the paper is positioned for printing.

Transmission Design
The transmission consists of five parts plus the carriage

actuator (Fig. 3). The five parts are a segmented pinion
gear, a clutch gear, a follower, a trigger, and a detent spring.
The carriage actuator consists of a spring with an effector
attached to its end.

The segmented pinion gear consists of three gear seg
ments placed next to one another, one for each gear train.
One of these gear segments meshes with a gear driven by
the paper drive motor. The gear segments are spaced apart
with axial hubs. Two of the hubs are offset from the gear
centerline to act as cams. The follower rides on these two
cam hubs. The carriage actuator slides along the upper
surface of the follower. The follower has three arms, one
for each gear train. Each arm has two ledges, an upper
ledge and a lower ledge. These ledges are used to position
the triggers at the limits of their travel when not actuating
a gear train.

7.5Â° "TIN-CAN"
STEP MOTOR

16 TOOTH
PINION GEAR

96 TOOTH
DRIVE GEAR CLUSTER REDUCTION GEAR

60 TEETH AND 18 TEETH

2.037 INCH DIA /
DRIVE ROLLERS (3)

TOTAL GEAR REDUCTION 20:1 Fig . 4 . Paper d r i ve moto r assem
bly.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 71

© Copr. 1949-1998 Hewlett-Packard Co.

There is one clutch gear for each gear train (three total).
The clutch gear teeth have a face width that is twice as
large as the gear segments on the pinion gear. These two
gears are positioned so the pinion gear segment uses only
one side of the clutch gear. The clutch gear has several
teeth cut away so the pinion gear cannot drive the clutch
gear. For the pinion gear to drive the clutch gear, the clutch
gear must be engaged by an external driving element, which
is supplied by the trigger (discussed further below). Once
the clutch gear has engaged the pinion gear, the clutch gear
is driven for one revolution. At that time, the missing teeth
prevent the clutch gear from continuing. The clutch gear
is detented into position by the spring.

The final part of the transmission is the trigger. There is
one trigger for each gear train (three total). There are three
details on the trigger. At the top is the ledge, which the
carriage actuator uses to lift the trigger and engage the
clutch gear. At the bottom is the hook, which mates to a
detail on the clutch gear. The third detail is a ledge in the
middle of the trigger. This ledge is used by the follower.
When the follower is at the upper limit of its travel, the
trigger is lifted to pull the clutch gear into its detented
position. When the follower is at the lower limit of its
travel, the trigger is pulled down to ensure that it will hook
the clutch gear as it completes its cycle.

The transmission activates a specific gear train when
actuated by the carriage. The gear train remains in motion
for one revolution of the clutch gear. The system is self-
initializing and requires no additional electronic input
beyond the two motors. The components described met
cost requirements. An additional feature of the design is
that additional gear trains can be driven by adding one
more clutch gear and trigger per gear train.

Paper Drive Motor

The objective for the DeskJet printer's paper drive motor
and gear train was to attain laser-printer quality at 300 dots
per inch with a quiet, low-cost, high-torque, easy-to-assem-
ble drive system.

In the investigation phase, many drive systems were as
sembled and evaluated. We first attempted to use a small
1.8-degree hybrid step motor commonly found in disc
drives. The advantage of this drive was the high torque
and high precision inherent in the hybrid step motor. Un
fortunately, this system did not meet our needs because of
the large amount of mechanical vibration the motor pro
duced when overdriven. The motor had to be overdriven
with a high voltage drive to deliver the large amount of
torque necessary to drive the printer. For reasons of man-
ufacturability, the printer has many loose-fitting snap-
together parts. These loose parts amplified the motor's vi
bration so much that it sounded like a fire alarm. Since
the DeskJet printer is supposed to be silent, we decided to
switch to a permanent-magnet, 7.5-degree "tin-can" step
motor. The advantages of the tin-can motor are low cost
and no vibration, but with the sacrifice of resolution and
accuracy.

Since the resolution of low-cost tin-can motors is limited
to 7.5 degrees per step, we were forced to use a high gear
reduction to attain the 300-dots-per-inch accuracy require

ment. With the printer's large 2.04-inch-diameter drive
roller, the gear reduction that yields 1/300 inch per step is
40:1. At 40:1, the step motor would have to rotate at 600
full steps per second to feed paper at the minimum desired
form-feed rate. With tin-can motors, the available torque
drops off rapidly with increasing speed, preventing the use
of the 40:1 gear reduction. The compromise was to use a
20:1 gear reduction that yields 1/150 inch stopping resolu
tion, and to use the firmware to shift the dots in the print-
head to achieve the 1/300-inch drop placement resolution.

The final gear layout is illustrated in Fig. 4. One advan
tage of this drive system is the large diameter of the drive
roller feeding the paper. The linefeed error because of run
out of the drive roller and drive gear is relatively small
because the error is inversely proportional to the drive
roller diameter. This allows us to use inexpensive methods
for manufacturing the roller. The biggest disadvantage to
this system is its high susceptibility to runout in the tin-can
step motor shaft. The error caused by shaft runout is:

Error = A / (FIM/2)sin(0)d0

where A is a constant taking into account the gear reduction
and drive roller diameter, and FIM is the full indicator
runout of the shaft and pinion. This function is maximum
at 6 = TT radians. Unfortunately, the trade-off between
speed and resolution forced us to design a gear train that
rotates the motor shaft TT radians for a standard 1/6-inch
linefeed. Therefore, we had to work with the motor man
ufacturer to minimize the large amount of runout inherent
in tin-can step motors.

Problems and Solut ions
Using one motor to pick paper, prime the pen, eject paper,

and accurately position the paper required some design
trade-offs. The motor has to supply a high torque at slew
speed to drive all these functions. Life testing with the first
molded parts revealed that the torque required to operate
the paper-pick cam increased rapidly with time. The motor

Custom 1C

H-Bridge
Driver

Encoder

F ig . 5 . B lock d iag ram o f the ca r r iage se rvo sys tem fo r the
DeskJet pr inter.

72 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

would stall after only 100 pages of print. The increase in
torque was caused by wear between the plastic chassis
posts and the nine plastic gears in the paper-pick gear
system. After testing many different material combinations,
we finally were able to come up with a combination of
carbon, glass, Teflon, and silicon fillers for polycarbonate,
polypropylene oxide, and acetal plastics that would not
cause an increase in torque.

To measure and evaluate the linefeed errors, a vision
system was developed. This allowed us to measure dot
placement accuracy down to Â±0.0002 inch, which is neces
sary when attempting to evaluate a system with linefeed
errors below 0.002 inch. The vision system allowed us to
determine the periodic nature of the errors and pinpoint
which gear was causing a problem. For example, a large
error would occur every time the follower in the transmis
sion reversed direction. The fluctuation in the torque load
caused the drive roller shaft to lift up in its sloppy bushing,
thereby preventing the drive roller from rotating the proper
amount. The solution was to design in a preloader spring
that keeps the shaft preloaded in one position within the
bushing.

Qual i ty Assurance
Since at least ten different tolerances can affect the

linefeed accuracy, a method of monitoring the linefeed had
to be implemented in production. The error is measured
twice daily and plotted on control charts to ensure that the
DeskJet printer maintains its laser-quality print.

Carriage Motion Control

The decisions made in selecting and designing the mo
tion control systems for the DeskJet printer reflect the over
all goals for the printer. The primary goal, excellent print
quality with 300-dot-per-inch resolution, requires precise
knowledge of the carriage position and the ability to posi
tion the paper precisely. Cost goals required that parts costs
be kept to a minimum, and the need for silent operation
dictated the use of quiet motors.

Carriage Motor
A brush-type dc servo motor fit our requirements best

and was chosen to drive the DeskJet printhead carriage. A
hybrid step motor was considered, but a servo motor was
chosen instead, for two reasons. The first reason is the
relatively silent operation of the servo motor, which is
important for desktop operation. The second reason is that
the encoder needed to control the servo motor can also be
used to provide position information for firing the print-
head, ensuring accurate dot positioning over varying
operating conditions. A brush-type servo motor was chosen
over a brushless motor for its lower cost.

Carr iage Mechanical Hardware
The DeskJet printhead rests in a carriage that slides on

a stainless steel rod. Paper is fed along the bottom of a
sheet-metal guide and the carriage slides along the top of
the guide, so the spacing between the printhead and the
paper is controlled. The carriage is held against the guide
by gravity. The carriage motor is mounted on the right side

of the chassis and drives the carriage via a toothed belt and
pulley. The pulley has 21 teeth and a tooth pitch of 0.08
inch/tooth, giving it a circumference of 1.68 inches.
Mounted under the motor is an encoder with 504 slots
which, over 1.68 inches, give the encoder an effective res
olution of exactly 300 dots per inch. This allows the en
coder output to control the firing of the printhead.

Carriage Servo Electronics
Most of the electronics required to control the carriage

servo are contained within the custom CMOS 1C described
on page 77. The principal components of the servo are a
timer that sets the servo sampling rate, a quadrature de
coder and 16-bit up/down counter that convert the two
outputs of the encoder into a position that can be read by
the microprocessor, and a pulse width modulator that con
verts an eight-bit output from the microprocessor into a
pulse train with a duty cycle proportional to the processor
output (Fig. 5).

The printer's Z80 microprocessor is interrupted by the
timer, causing the microprocessor to read the carriage po
sition out of the up/down counter. The microprocessor then
applies a control algorithm to the position and computes
an output, which goes to the pulse width modulator. The
output of the pulse width modulator drives a high-power
monolithic H-bridge driver, which drives the carriage

Phase (degrees)

+ 180

+90

- 9 0

- 8 0 180

(a)

1 0 0 1 0 0 0

Frequency (Hz)

Phase (degrees)

+ 180

+ 9 0

- 9 0

- 8 0
10 20 100

4 - 1 8 0
1 0 0 0

(b) F r e q u e n c y (H z)

Fig. 6 . Loop gain o! the low-gain pr in t ing servo, (a) Uncom-
pensated. (b) Compensated.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 73

© Copr. 1949-1998 Hewlett-Packard Co.

motor. Pulse width modulation is used to drive the motor
for its high efficiency. This keeps the power dissipation in
the drivers low, eliminating the need for heat sinks or fans.
The pulse width modulator operates at 19.2 kHz to prevent
it from generating audible noise in the motor.

Servo Performance Requirements
The main goals for the carriage motor control system are

accurate velocity and positioning control. It is important
to have good velocity control while printing to maintain
the print speed while also maintaining good print quality.
If the carriage speed drops while printing, the throughput
of the printer will decrease and printing will take longer.
If the carriage speed increases while printing, the maximum
fire rate of the printhead can be exceeded and print quality
will suffer. Good position control is necessary to move the
carriage to the correct position before starting to print and
to stop the carriage in the correct position.

A velocity control servo would have provided good ve
locity control while printing, but it would not have pro
vided the positioning capability we desired. A position
control servo gives us the ability to position the carriage
accurately, and also gives us more accurate control of the
carriage velocity while printing. A velocity control servo
will have a small steady-state velocity error, but a position
servo has zero steady-state velocity error.

Use of a position control servo does introduce problems
that would not occur with a velocity servo, however. The
first problem occurs when moving at a constant velocity.
In a velocity control servo, the reference is a constant veloc
ity. When using a position control servo, the reference is
a constantly changing position, and the change in the po
sition reference divided by the time between servo samples
is equal to the desired velocity. The other problem created
by a position control loop is the introduction of a dc pole,
which makes compensation of the servo more difficult.

Physical Plant Model
The motor/carriage system is modeled as a second-order

system, with perfect coupling between the motor shaft and
the carriage. The transfer function for the motor/carriage
system is:

Kp = 4Kenc/(2-7i)

where Kp is the encoder gain in counts/radian, and Kenc is
the encoder line count in lines per revolution. The encoder
outputs go to the position counter, which keeps track of
position and is read by the microprocessor when it is inter
rupted by the timer.

The pulse width modulator amplifier is also modeled as
a simple gain,

Ka = Vs/Kpwm,

where Vs is the motor supply voltage and Kpwm is the pulse
width modulator count corresponding to 100% duty cycle
(full output).

The loop gain without the controller is the product of
the three models,

M (s) = (2KtKencVs)/(TrKpwJ
s((sL + R)(sJ + D) KeKt)

This system has three poles. The first is at zero and is
caused by the integration of velocity to position. The other
two poles are located at about 4 Hz (the "mechanical" pole)
and 225 Hz (the "electrical" pole).

Gain (dB)

+ 80 T

+ 4 0

- 8 0

Phase (degrees)

+ 180

+90

- 9 0

180
1 0 1 0 0

Frequency (Hz)

1000

V(s)
_

(sL + R)(sJ + D) + KeKt

w h e r e t h e v o l t a g e f r o m t h e p u l s e w i d t h m o d u l a t o r
amplifier, V(s), is the input and the shaft velocity, W(s), is
the output. K, is the torque constant and Ke is the voltage
constant of the motor (these variables are equal when MKS
units are used), L is the motor terminal inductance, R is
the motor terminal resistance, J is the system inertia, and
D is the system damping. However, this is a position servo
loop, so

s((sL + R)(sJ + D) + KeKt)

where the position, O(s), is the integral of the velocity.
The encoder is modeled as a simple gain,

- 8 0

Phase (degrees)

+180

+90

- 9 0

1 0 7 6 1 0 0

Frequency (Hz)

- 1 8 0
1000

Fig. 7. Loop gain of the h igh-gain posi t ion ing servo, (a) Un-
compensated. (b) Compensated.

74 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Stabil i ty and Sampling
The design goal for stability of the servo was 30Â° of phase

margin. The process of sampling adds an additional phase
shift to the loop. That phase shift is modeled as

= e s

where T is the sampling period. The phase shift at any
given frequency increases as T increases, so it is desirable
to keep the time between samples as short as possible to
minimize the phase shift caused by sampling. The system
microprocessor has many other tasks to perform while
printing, so the amount of time that can be dedicated to
servicing the servo is very limited. This requires that we
limit the closed-loop bandwidth to obtain the phase margin
that we require, and also limits the dc gain of the servo.
Fortunately, when printing we want good velocity control,
but precise positioning accuracy is not as important (we
still know the position accurately, however). At those times
when we do want to be able to position the carriage more
accurately (e.g., when positioning the interposer arm in
the transmission) the printer is not printing, so we can use
some of the processor bandwidth that would ordinarily be
used for processing dot data for servo control instead. This
led us to implement a two-servo system: one for printing
and the other for positioning.

Servo Design Methodology
Lead-lag compensation is used for both servos. A pole

and a zero are placed at equal ratios above and below the
desired crossover frequency to maximize the phase margin.
The compensation was designed using classical control
theory in the continuous domain and then converted to
the discrete domain.

The Z80 microprocessor does not have much arithmetic
capability, so an iterative design process was used to keep
the compensation algorithm as simple as possible. The
compensator transfer function was converted to a discrete
control algorithm using a bilinear transform with prewarp-
ing at the crossover frequency, and then the coefficients
were truncated to make the arithmetic easy. The new al
gorithms were then converted back to the frequency do
main and compared to the original goals. This process re
sulted in simple algorithms that meet our performance
requirements.

Low-Gain Algorithm for Print ing
The low-gain servo operates at a sampling frequency of

300 Hz to minimize the demand on processor bandwidth
when printing, while maintaining good velocity and posi
tion control. The design goals were for a crossover fre
quency of about 24 Hz (required for the low sampling rate)
with at least 30 degrees of phase margin. The actual cross
over frequency is about 20 Hz and the phase margin is
about 54 degrees (Fig. 6).

High-Gain Algorithm for Posit ioning
A higher sampling rate (about 1200 Hz) is used when

positioning the carriage in the transmission or in the service
station. The higher sampling rate allows a wider servo
bandwidth and higher gain, which in turn allows more
accurate positioning. The initial design goal for the high-
gain servo was a crossover frequency of about 72 Hz and
30 degrees of phase margin. The compensated loop gain
for the algorithm actually implemented has zero dB gain
at about 76 Hz, and has about 33 degrees of phase margin
(Fig. 7).

Acknowledgments
Paul Harmon, Bill Huseby , Kevin Moon, and John Rhodes

assisted with the design of the mechanism. Randy Krauter,
Vance Stephens, and Bob Stavig provided manufacturing
engineering support. Gene Frederick was responsible for
plastic part tooling. Jeff Ward was responsible for sheet
metal tooling, carriage motor procurement, and various de
sign concepts. Jim Burruss at HP's Vancouver Division and
Steve Witte and Mark Majette at HP's San Diego Division
provided valuable advice and assistance in the develop
ment of the DeskJet servo.

Reference
1 . W. Kurz, et al, "State-of-the-Art CAD Workstations for Mechan
ical 1987, Hewlett-Packard Journal, Vol. 38, no. 5, May 1987,
pp. 4-15.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 75

© Copr. 1949-1998 Hewlett-Packard Co.

Data To Dots in the HP DeskJet Pr inter
A microprocessor-contro l led custom 1C manipulates dot
data to provide double-width, half-width, compressed, half-
height , draf t -qual i ty , bold, under l ined, and ta l l characters,
and graphics, too.

by Donna J . May, Mark D. Lund, Thomas B. Pr i tchard, and Claude W. Nichols

THE BASIC FUNCTION of the HP DeskJet printer is
to transform input data into tiny ink dots on a page.
The DeskJet printer offers high-quality characters

in a variety of algorithmic character enhancements. As a
result, the data must be transformed by a number of pro
cesses before being sent to the printhead.

Microprocessor and Custom 1C
The first few of the processes are performed by a Z80

microprocessor. These processes include receiving the data
from the data communications hardware (RS-232-D or
parallel), parsing and formatting the data, and translating
this data into the form required by the hardware. At this
point in the transformation, a custom coprocessor 1C deter
mines the pattern of dots to be printed and generates the
printhead firing signals required to print the dots.

DeskJets Character Set
The first process of interest in this transformation is the

character set mapping. For the DeskJet printer to meet the
needs of an international market it has to support a number
of different character sets. These character sets include HP
Romans (from which 13 ISO substitution character sets
can be obtained), PC-8 (IBM character set), PC-8 Denmark/
Norway, ECMA-94 Latin 1, and Legal. To maximize the
number of character sets that can be stored and formatted,
it was decided to combine all of these character sets into
a single character set, eliminating all duplicate symbols.

To represent any of the 309 unique symbols in these five
sets, 9 bits are required. This is wasteful of precious storage
in an 8-bit environment. However, many of the 309 symbols
contain a component that can be found in other symbols.
Examples of such components include diacritical marks
and segments of line-drawing characters. By further reduc
ing the 309 symbols to unique components it is possible
to achieve a symbol set of 256 components, with no symbol
reduced to more than two components. The resulting com
ponent set, known as DeskJets, can be used to create any
of the 309 symbols. A symbol that consists of two compo
nents is known as a compound character. Special hardware
ORs the two components together so they can be printed
in a single pass. Thus, any one of the 2,240 symbols con
tained in the 18 character sets can be represented by at
most two DeskJets characters. Character set mapping in
volves determining which character from the DeskJets set
(or character components, for compound characters), is
equivalent to the requested character from the requested
set (HP Romans, PC-8, etc.). Because the DeskJets set can

provide five character sets from one, there are fewer fonts
for the user to purchase and fewer fonts to be supported.

Character ROM Data Storage
Without any sort of character ROM compression, Desk-

Jet8's 2, 240 symbols would require about 1M bytes of ROM
per font. The above-mentioned DeskJets reduction in the
number of characters actually stored in ROM and a further
zeros byte compression on the ROM data result in practical
DeskJet character ROM sizes of approximately 30K bytes.

In the zeros byte compression scheme, a flag byte is as
sociated with each column of a character. The flag byte
denotes which bytes of the 50-bit column are nonzero (con
tain at least one dot to be printed). Only the nonzero bytes
are stored, reducing the amount of ROM required.

300-dpi Characters on a 600-dpi Grid
Although the DeskJet printhead can only fire each nozzle

at the rate of 300 dots per inch, characters are designed on
a horizontal grid of 600 dpi. By restricting dots within a
row to being at least 1/300 inch apart, the printhead firing
limits are not exceeded.

Fig. 1 shows the improvement gained by doubling the
horizontal placement opportunities. Some of the al
gorithmic enhancements, which will be explained later,
result in dot patterns with dots only 1/600 inch apart in a
dot row. A cleanup circuit in the custom 1C removes any

5 10 15 Â¿0 Â£5 JO 35 40 45 50 55 60 10 15 Â¿u Â¿5 30 35 40 45 50 55 60

Fig . 1 . Charac te r appearance is improved by doub l ing the
opportunit ies for dot placement, (lef t) Posit ioning on a 1/600-
inch gr id, (r ight) Posi t ioning on a 1/300- inch gr id.

76 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

The DeskJet Printer Custom
Integrated Circuit

Even a very fas t m ic roprocessor wou ld no t have the t ime to
per fo rm a l l o f the requ i red charac ter enhancements and o ther
dot manipulat ions at the 300-dot-per- inch resolut ion of the Desk
Jet printer. So instead, a relat ively slow, inexpensive. 4-MHz Z80
processor is used to contro l a large custom 1C.

Approx imate ly 85% o f the log ic in the cus tom 1C is there to
handle the dot data, as descr ibed in the accompanying ar t ic le .
The 1C a lso hand les ser ia l and para l le l da ta communica t ions ,
controls many logic funct ions required by the paper and carr iage
motors, provides t imer functions to the Z80. and performs several
external chip selects.

Contained within an 84-pin plast ic leaded chip carr ier package
is logic la id out as two standard cel l b locks, as shown in Fig. 1,
and a la rge custom 50-b i t w ide data path cor responding to the
50 nozzles of the printhead. There are approximately 80,000 f ield
e f fec t t rans is tors in a d ie measur ing 6 .8 mi l l imeters by 7 .6 mi l
l imeters. A h igh-densi ty CMOS process is used to fabr icate the
chip. Gate widths are 1 .2 micrometers.

Thanks to exce l len t des ign too ls and good commun ica t ions
and cooperation among al l involved, the f irst-pass si l icon passed
the comp le te se t o f t es t vec to rs w i thou t mod i f i ca t i on , and no
tu rna rounds were requ i red to ge t the 1C in to p roduc t ion . The
custom 1C was total ly designed and is current ly tested and man
ufactured within Hewlett-Packard.

Acknowledgments
Many peop le were necessary fo r the success fu l comp le t ion

of the DeskJet pr inter custom 1C, but special thanks go to Greg
Hil lman, Ray Pickup, Bob McClung, Daryl Anderson, Paul Liebert,
Paul Krueger, Tim Brown, Liz Myers, Phi l Wingebach, and Chuck
Jarvie.

Tom Pr i tchard
Development Engineer

Vancouver Div is ion

Fig. 1 . The custom 1C in the DeskJet printer is a coprocessor
tha t hand les do t man ipu la t ions , da ta commun ica t ions , and
var ious logic, control , and t imer funct ions.

dots that exceed the limits, since they cannot be fired by
the printhead. and even if they could, would result in too
much ink on the paper. This dot dropout is performed after
all requested enhancements have been applied to the dot
pattern.

The dots in Fig. 1 are smaller, relative to the charactei
size, than the actual dots. This is to make the dot positions
easier to see at the 1 /600-inch spacing. Fig. 2 shows the
character of Fig. 1 with the actual dot-to-character propor
tions.

Algori thmic Enhancements
The link in this process between the firmware and the

custom 1C is a buffer in RAM, referred to as an image buffer.
The firmware translates the character information into the
form required by the custom 1C and places it into the image
buffer. The custom 1C accesses the information by direct
memory access.

The way in which information is arranged in the image
buffer allows the dot data of two separate characters to be
ORed together and printed in a single print pass. This fea
ture is used to print compound characters, overstruck
characters, and characters that partially overlap. It is also
used in the algorithms for half-width and double-width
characters.

Double-Width Algori thm
The simplest way to generate double-width characters

is to repeat each column of dots. So a character consisting
of columns A, B, and C (1/600 inch apart) could be printed
as AABBCC to double its width. However, the cleanup
circuit, which eliminates dots that are too close together,
would drop out the second A column, the second B column,
and the second C column, since all the dots in these col
umns are 1/600 inch away from the identical dots in the
previous columns. The result would be the original three
columns spaced 1/300 inch apart, which would typically
leave gaps within the character. The algorithm used in the
DeskJet printer takes advantage of the ability to OR two
characters in the image buffer together. It ORs the simplest
case, AABBCC, with the same pattern shifted by one column:

A A A + B B B + C C C

The result, after the dot dropout, consists of column A,
the OR of columns A and B, the OR of columns B and C,
and column C, all 1/300 inch apart. This produces a more
filled-out character than the simple algorithm.

Half-Width Algorithm
Similarly, the easiest way to generate a half-width charac

ter is to drop out every other column. The DeskJet printer
avoids this loss of data by ORing every two columns to
gether. In the image buffer, this is done by ORing a "charac
ter" that consists of the odd-numbered columns of the orig
inal character with a "character" consisting of the even-
numbered columns. To illustrate, consider a character with

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 77

© Copr. 1949-1998 Hewlett-Packard Co.

columns A, B, C, D, and E. The odd-numbered columns,
A, C, and E, would make up one "character" and the even-
numbered columns, B and D, the other. The result would
be:

OR
A
B

C
D

A + B C + D E
By preserving all of the dot data, a higher-quality charac

ter can be achieved.

Compressed-Width Algor i thm
Compressed characters, 16.67-pitch, are generated by

printing only selected columns of the characters. The col
umns to be printed are selected by the font designers, and
these columns are flagged in the character ROM data. When
the hardware reads the dot data for a compressed character,
it ignores any columns that are not flagged. To achieve the
best-looking compressed characters, the dot patterns of the
original characters must be designed with this algorithm
in mind.

Half-Height Algorithm
In the half-height algorithm, the hardware ORs every two

consecutive rows together and prints the character with
the bottom half of the printhead. This algorithm produces
a higher-quality character than one that throws away every
other row.

Applying the half-width algorithm along with the half-
height algorithm is useful for characters that are to be sub
scripts or superscripts. The subscript or superscript mode
alone merely causes the characters to be printed 1/12 inch
below or above the text line; the height and width of the
characters are not altered. Using the half-width and half-
height modes for superscripts and subscripts, the charac
ters appear more balanced in size in relation to the rest of
the text.

Draft-Quality Algorithm
The draft-quality mode available on the DeskJet printer

5 1 0 1 5 2 0 2 5 3 0 3 5 - 1 0 4 5 5 0 5 5 6 B

Fig. 2. The dots in Fig. 1 are reduced in relat ive size to show
do t p l acemen t more c l ea r l y . Th i s shows the ac tua l p ropo r
tions.

doubles the print speed from 120 cps to 240 cps. In letter-
quality mode, 120 cps, the character columns are printed
1/600 inch apart. Since the printhead travels twice as fast
in draft-quality mode, the distance between columns is
doubled to 1/300 inch. Instead of simply printing every
other column of the characters, the hardware ORs every
two columns together after any other algorithmic processes
have been applied. Besides increasing the throughput, draft
mode uses less ink because of the greater distance between
columns.

Bold Algorithm
The hardware can generate two levels of bold characters.

The level to be used is specified in the character ROM for
each font, and the firmware communicates this information
to the hardware through the image buffer. The lighter bold
is used for smaller fonts and the darker bold for larger
fonts. For the lighter bold, the hardware adds one dot per
row, spaced horizontally at 1/300 inch, to the trailing edge
of each character, resulting in a slightly wider and darker-
looking character. For the darker bold, the hardware adds
two dots instead of one, as shown in Fig. 3. This algorithm
produces a result similar to a daisy-wheel printer, where
a character is printed, the horizontal position is moved

AA
Fig. 3. Normal and dark bold characters. (Top) Dots reduced
in s ize. (Bottom) Normal dot s ize.

78 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

DeskJet Printer Font Design

In the pr int ing business the pr inted page is the resul t that the
cus tomer sees and fee ls . I t s look measures the qua l i t y o f the
information i t contains. On the DeskJet pr inter project, pr int qual
i ty was one of the highest pr ior i t ies, and hence, major emphasis
w a s p l a c e d o n c h a r a c t e r d e s i g n , s p a c i n g , a n d i n k - o n - p a p e r
characterist ics.

W i th t he agg ress i ve schedu le , pa ra l l e l des ign e f f o r t s we re
going on in al l areas: mechanism, font design, f i rmware, pr int ing
character ist ics, and f inal adjustments to the pr inthead speci f ica
t ions. This created moving targets for quality and implementation,
mak ing des ign f l ex i b i l i t y a r equ i r emen t f o r ach iev i ng qua l i t y
goals.

The head technology a l lows a 50-dot , 300-dpi ver t ica l resolu
t ion. The repet i t ion rate al lows the pr int ing of every other dot in
the horizontal direction with a 600-dpi resolution. With the 0.004-
inch dot size, this half shift capabil i ty is very beneficial in smooth
ing the arcs , rad i i , and nonver t ica l ang les o f wh ich charac ters
are composed. F ig. 1 , a b i t map of a capi ta l S in Times Roman
Ital ic, shows an example. By composing the outl ine of the charac
ter f i rs t and then f i l l ing the center , opt imum character def in i t ion
is ach ieved. Unfor tunate ly , dur ing the deve lopment p ro jec t no
au tomat ic f i l l i ng a lgor i thms were ava i lab le , and th is was done
manual ly for over 300 dots in an average 12-point character .

The fon t /charac te r ed i to r we have used is a home-des igned
system, in i t ia l ly wr i t ten in BASIC and rewri t ten in C for HP 9000
Models 350 and 320 workstat ions. The system provides dot-edi t
ing capabi l i t ies , character compi l ing , ROM and sof t font gener
ation, and screen-visible algorithms (bold, half size, compressed,
and bo ld ha l f s ize) us ing w indowed menus and a mouse. A f te r
a character edi t , a pr inted page can be avai lable in two minutes
for 30K bytes of information. This quick user feedback is essential
when making minute deta i l changes.

A t ta in ing overa l l page qua l i t y i s a p rogress ive p rocess . We
u s e d D i t y p o g r a p h e r s a l o n g w i t h a n i n t e r n a l V a n c o u v e r D i
vision team to cr i t ic ize our output and develop typesett ing goals.
The external consultants proved very beneficial in that they were
unaware o f the l im i ta t ions o f the techno logy and the p roduc t .
Their opin ions great ly ra ised our understanding of pr int qual i ty .

Fig. 1 . Half-shif t dot posit ioning helps font designers smooth
the arcs, radii, and nonvertical angles of characters, as shown
by th is b i t map of a Times Roman I ta l ic S.

Major improvements in word and charac ter spac ing , charac ter
des ign , and con t ras t have been made and these w i l l become
more evident in later DeskJet pr inter products.

Acknowledgments
John Igno f f o , Rob in Mur ray , and Ju l i e M ixon we re key i nd i

v iduals on the team that developed the DeskJet pr inter fonts.

Bruce Yano
Project Manager

Vancouver Div is ion

slightly, and the character is printed again. Because the
DeskJet printer is an inkjet printer, multiple-pass printing
would put too much ink on the paper. With the DeskJet
algorithm, the amount of ink is controlled.

Underlining
Besides containing information about character data, the

image buffers can contain auto-underline information. The
custom hardware allows the firmware to specify any com
bination of the bottom 12 nozzles of the printhead to be
used for an auto-underline. HP's Printer Command Lan
guage (PCL) defines two basic types of underline â€” fixed
and floating. Floating underlines are specified in the
character ROMs on a font-by-font basis. This allows for
underlines of the optimum thickness and vertical place
ment for each font. Fixed underlines are independent of
the font used. They provide a uniform underline when
fonts with different floating underlines are to be underlined
with a continuous underline. Besides being able to select
fixed or floating underline type, a user can select single or

double underlining. From the user's request and the infor
mation in the character ROM, the firmware determines the
pattern to be used for the selected underline and communi
cates this information to the hardware through the image
buffer. It also communicates the horizontal positions at
which to start and end the underline. The hardware ORs
the underline pattern with any character columns that fall
in the same horizontal region.

Tall Fonts
A feature provided by some of the optional font cartridges

is tall fonts. These are fonts that have a point size greater
than the height of the printhead (12 points). This means
that these characters must be printed with two print passes
separated by a paper advance. All of the algorithmic en
hancements described above can be applied to these fonts.

Graphics
Different data manipulation is required for graphics than

for text. PCL specifies that graphics data be received in
horizontal raster row format, yet the printhead needs data

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 79

© Copr. 1949-1998 Hewlett-Packard Co.

in a vertical column format. This is accommodated by the
firmware's rearranging the received bytes and sending them
into a custom 8-bit-wide-by-50-bit-high memory array. This
array can both shift bytes up and shift 50-bit-high data
sideways. Graphics vertical resolutions lower than 300 dots
per inch are achieved by repeating data entry into the mem
ory array for multiple rows, causing a vertical expansion
of the graphics data. Similarly, low horizontal resolutions
are achieved by repeating data reads out of the memory
array for multiple columns, causing a horizontal expansion.

Printing
Once the firmware has put all the necessary information

for a print pass in the image buffer, the printing can be
done. The carriage velocity is controlled by the firmware,
while a physical position register is updated by signals
generated by a position encoder on the carriage motor. The
carriage position determines when the columns are to be
fired. Columns are typically fired every 139 microseconds.

Printhead Considerat ions
The firing elements on the printhead are arranged in two

columns spaced 10/300 inch apart. The 25 firing elements
in each of these columns are spaced 1/150 inch apart ver
tically. The two columns are skewed vertically with respect
to each other by 1/300 inch, so the result is 50 dots that
are 1/300 inch apart vertically. A 25-bit-wide, 20-bit-long
shift register cell is located in the custom 1C to delay the
firing of the trailing column of firing elements so that the

two columns end up being printed at the same horizontal
location.

One final manipulation of the column of data is needed
before printing. The printhead is electrically organized as
four groups of 12 or 13 resistors. One interconnect pad is
used for each firing element and one for each of the banks.
This configuration allows only one resistor from each bank
to be fired at a time. The custom 1C divides the 139-micro-
second column time into 13 periods, and fires up to four
resistors at a time. The orifice holes on the printhead are
slightly staggered from two true columns to account for
the positioning error caused by this sequential firing.

Summary
From data to dots, all of this processing provides DeskJet

printer users with a wide variety of enhancements that
yield high-quality print. From the internal Courier 10-pitch
set alone, a user can select one of 18 character sets (includ
ing the 13 ISO sets), one of four pitches (normal, half-width,
double-width, or compressed), normal or half-height, nor
mal or bold weight, and one of three vertical placements
(normal, superscript, or subscript). Since all of these
characteristics can be applied in any combination, the in
ternal font alone can be used to generate 864 different fonts.

Acknowledgments
All of the people involved in the DeskJet printer project

contributed in some way to the success of the data-to-dots
process. Particular mention goes to Mark DiVittorio for his
role in guiding the decision-making process.

80 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Firmware for a Laser-Qual i ty Thermal
InkJet Printer
The firmware resident in the HP DeskJet printer is divided
in to gener ic pr in ter code and pr in ter spec i f ic code. An
opt ional car t r idge provides Epson FX-80 emulat ion.

by Mark Hudson, Neff Vittorio. Brian Cripe, Claude W. Nichols, Michael S. Ard, Kevin R. Hudson, and David J. Neff

THE DEVELOPMENT PROCESS for the firmware in
the HP DeskJet printer represents a departure from
the traditional firmware development process at

Hewlett-Packard's Vancouver Division. Before the DeskJet
project, the process for developing firmware for printing
products was tolerably simple. All of the firmware was
written in assembly language for the host processor of a
single dedicated product. When another printer was to be
developed (possibly with a different microprocessor) the
firmware was totally rewritten and reuse was nil. All the
tools used (editors, assemblers, and debuggers) were resi
dent on HP 64000 Logic Development Systems, and other
tools were virtually nonexistent.

The feature set of the DeskJet printer matches HP's PCL
(Printer Command Language) Level III. Capabilities include
printing graphics at 75 to 300 pixels per inch, mixing mul
tiple type styles and sizes on a given page, performing
enhancements such as holding and underlining, download
ing RAM-resident fonts, and printing letter-quality and
draft-quality text. This command set had not been im
plemented previously in a high-volume product at the Van
couver Division. Given the DeskJet printer's ability to print
at a very high resolution of 300 dpi and the objective of
providing a very high level of formatting, we felt that a
new approach was required.

A high-level language, C, was chosen to implement the
DeskJet feature set, with the target processor being a Z80
microprocessor. The firmware is basically split into two
categories: code that implements the generic feature set,
called generic printer code, and code that interacts with
the custom electronics and mechanism, called product spe
cific code. Both segments of the code set are almost entirely
written in C, although there is a small amount of assembly
language code that performs paper motor control and pro
vides feedback for the servo in the carriage velocity control
system. This was necessary because these functions have
to be done quickly and in real time.

This separation of generic printer and product specific
code allows the generic printer code to be shared with
another product, the HP RuggedWriter 480, an impact
printer. The resolution, use, and functionality of the two
products are quite different, but splitting the code into two
parts paves the way not only for code sharing between
these products but also for reuse of the generic printer code
in products of the future. As an experiment, the generic
printer code was ported to a different processor architecture
under development. This effort was completed in approx

imately two months. The majority of defects found in the
firmware of new products can now be expected to occur
in the product specific code, since the generic printer code
has been reused and is in a mature state. In addition, the
engineering resources required to do products of the future
should be reduced.

The development of the DeskJet printer code was facili
tated by an HP 9000 Series 500 computer system. The HP-
UX operating system provided access to a number of tools
that were otherwise unavailable. This system also allowed
updated versions of the working code set to be made avail
able to all the designers for integration of the generic printer
code and the printer specific code. Operating in the UNIXÂ»
environment also allowed extensive use of DTS, an in-
house HP defect tracking system, to track defects as they
occurred and were resolved. On the DeskJet project, defects
were tracked from the breadboard phase through to man
ufacturing release. Originally, the system was used to track
software defects, but eventually, separate tracking was also
done on the electronic and mechanical defects that were
found in various phases of testing.

Generic Printer Code

Responsibilities of the generic printer code include pars-
The HP-UX operat ing system is HP's vers ion ot AT&T's UNIX System V.2 wi th extensions.
UNIX countries. a registered trademark of AT&T in the U.S. A and other countries.

AS A7 A6 AS A4 A3 A2 A1

Bytel

B8 B7 B6 B5 B4 B3 B2 B1

Byte 2

AS

A7

A6

AS

A4

A3

A2

A1

t
Byte 1

B8

B7

B6

B5

B4

B3

B2

B1

Byte 2

F i g . 1 . C o l u m n v e r s u s r a s t e r g r a p h i c s f o r m a t . C o l u m n
graphics bytes are pr inted in consecut ive 8-bi t columns. Ras
ter bytes are pr inted as rows of b i ts .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 81

© Copr. 1949-1998 Hewlett-Packard Co.

Slow-Down Mode

A common problem exper ienced by many pr inter users is that
some app l i ca t i ons fo r t he MS-DOS8 opera t i ng sys tem have a
tendency to d is regard the MS-DOS sys tem pr in te r va lues . Par
t icular ly annoying is when an appl icat ion ignores the paral lel I /O
t ime-out retry value. This value can be changed by the MS-DOS
command MODE LPTU.P, which inst ructs the system to cont inu
ously retry al l t ime-outs on the paral lel port .

To prevent t ime-outs, the DeskJet pr inter paral lel I /O f i rmware
inc ludes a mode known as s low-down mode. Th is mode is auto
mat ica l ly invoked when data received over the para l le l I /O por t
f i l ls the input buffer of the DeskJet printer to within 60 characters
of i ts capaci ty . In s low-down mode, the DeskJet pr in ter accepts
on l y one by te o f da ta pe r second f rom the hos t , and the hos t
wi l l not t ime out . As data is removed f rom the input buf fer to be
pr in ted, s low-down mode is ex i ted and data once aga in Â¡s ac
cepted as fast as the DeskJet pr in ter can handle i t .
MS-DOS Â¡s a U.S registered trademark of Microsoft Corporat ion.

Claude Nichols
Development Engineer

Vancouver Div is ion

ing of PCL data, PCL level III + page formatting, dynamic
memory management for the page buffer, and font support.
The printer specific code is responsible for any special data
formatting required by the print engine, for mechanism
control, for management of the keys and lights on the con
trol panel, and for I/O.

Supporting both the DeskJet printer and the RuggedWrit-
er printer with a common set of firmware was a challenge
because of the many differences between the two printers.
The DeskJet printer's main contributions are high-resolu
tion graphics, powerful font support, and data formatting,
while the RuggedWriter printer emphasizes speed and
paper handling.

Generic Pr inter Operat ing System
The generic printer code is broken up into independent

processes such as the parser and the page formatter. Most
processes are written such that when they are called they
will take some data out of their input buffer, process it,
place some data in their output buffer, and return.

Process control is performed by the MCP (master control
program) which is a minimal operating system designed
to support processes without adding significant execution
time overhead.

The MCP maintains a table of active processes. The
scheduling algorithm implemented by the MCP simply in
vokes each process in the table in a round-robin fashion.
The MCP has no ability to wrest control from a process
that has been invoked. Processes are responsible for volun
tarily relinquishing control.

In the normal sequence of events, the MCP calls a pro
cess's entry point, the process finds its input data and turns
it into output data, and then the process returns control to
the MCP. For example, when the parser is called, it attempts
to read bytes from the input buffer until it has parsed a
string of printing characters or a complete PCL escape se

quence. It then sends out a token representing the data and
returns to the MCP.

In addition to returning, a process can give up control
by calling the MCP function Suspend. The Suspend function
saves the state of the process stack and returns to the
scheduling loop of the MCP. To reinvoke a suspended pro
cess, the scheduler restores the stack of the process and
executes what looks like a return from the call to Suspend.

Suspending takes much more time and RAM than return
ing, so processes are encouraged to return whenever possi
ble and use Suspend sparingly. Most processes suspend for
one of two reasons. The first is that they have created some
output data but there is insufficient room for it in the output
buffer. In this case they must suspend and wait for a down
stream process to create room in the output buffer. The
other reason is that the input data stream has dried up
unexpectedly. For example, the parser will suspend if it
runs out of input data in the middle of an escape sequence.

Another feature provided by the MCP is that processes
can be dynamically added to and deleted from the process
table. This is called process activation and deactivation.
For an example of why dynamic process activation is useful
in a printer, consider the self-test process, which is respon
sible for creating the data for a printing self-test. This pro
cess is deactivated until the user explicitly requests a print
ing self-test, at which time it is activated.

The Z80 implementation of the MCP in the DeskJet
printer requires approximately 1500 bytes of ROM and 350
bytes of RAM. Approximately 85% of the code is written
in C with the other 15% in Z80 assembly language.

Parser
One of the responsibilities of the generic printer firmware

is the interpretation of printer commands sent in the form
of PCL escape sequences. The parser translates these escape
sequences into tokens, which are used by the page formatter
to indicate functions to be performed. The parser deter
mines whether an escape sequence is syntactically correct.
The parser does not place product specific limits on the
values used in the escape sequences. The product specific
limits are evaluated by printer specific code at a later time.
The parser receives data from a printer specific code func
tion so that the details of I/O and data communication
buffering are left under printer specific code control.

Another responsibility of the parser is the handling of
graphics data. PCL graphics data is sent in horizontal raster
format. The parser must store the data in a manner that
facilitates removal of the data for printing in a vertical
format. Furthermore, the data may be transferred to the
printer in one of three different modes. Two of these modes
involve data compaction and the parser must expand the
data to the uncompacted form.

Page Formatter
The DeskJet feature set includes many PCL Level III and

IV commands for positioning to any arbitrary point on a
page. However, because of potential ink-smearing prob
lems, the DeskJet mechanism does not support backing up
paper. Because of these two requirements, the generic
printer code includes a page formatter, which is responsible
for sorting all of the data before printing.

82 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

For cost reasons, the DeskJet printer only contains
enough RAM to hold about 20% of a typical page, which
is fundamentally incompatible with the need for a page
formatter. The solution implemented in the DeskJet printer
is a RAM-limited page formatter. The firmware is written
as a page formatter that attempts to process all of the data
on a page before sending off any of the page to be printed.
However, if the formatter runs out of memory while pro
cessing a page, it sends off the data that is highest on the
page (closest to the top) to be printed. The result is that
the DeskJet feature set supports backward positioning for
applications such as creating superscript characters, but it
does not support full, random page addressing. This com
promise requires DeskJet drivers to perform most of the
vertical sorting of the data before it is sent to the printer,
while still allowing features such as superscript characters
to be easily accessed.

Data in the page buffer that can be printed with a single
pass of the printhead is kept on a linked list, sorted by
horizontal position, known as a task. Each task also has a
header which is used to link all of the tasks on a page,
sorted by vertical position.

Because data is typically received for a page in top-to-bot
tom, left-to-right order, it was found that the page buffer
could be built much faster by keeping the lists sorted in
reverse order. Thus the lowest task on a page is kept at the
head of the task chain and the rightmost data of a task is
kept at the head of the task. This organization means that
most data is inserted into the page buffer at the head of
the first task, which considerably reduces the time spent
searching through the buffer for a place to insert the data.

Font Support
PCL classifies fonts by a set of font attributes such as

height, pitch, and stroke weight (boldness). Escape se
quences sent to the printer can be used to specify desired
values for each of the font attributes. Because the user can
request any combination of font attribute values at any
time, the firmware cannot rely on the fact that the requested
font actually exists in the printer.

For example, the user may request a 12-point, 10-pitch
font even if the only fonts available are 12-point, 12-pitch
and 14-point. 10-pitch. In these cases, PCL specifies that
the printer must perform a prioritized closest-fit algorithm
to select a font. PCL specifies both the priority of the attri
butes and the rules used to determine closest fit. hi the
above example, the 12-point. 12-pitch font would be
selected because pitch has a higher priority than height.

The generic printer select-font implementation must
meet several requirements. The first is that it must handle
the large number of fonts that can be stored or generated
by the DeskJet printer. A second constraint is that there is
no standard set of algorithmic font enhancements. For
example, the DeskJet printer can algorithmically generate
half-height characters and the RuggedWriter printer can
italicize characters. Therefore, the select-font code cannot
take advantage of a known set of font enhancements. The
final requirement is that the select-font algorithm must be
fast. Some printer drivers do foolish things such as force
a select-font operation to occur for every character, so time
spent in the select-font process can quickly reduce the
throughput of the printer.

To satisfy all of these requirements, at power-up a printer
specific code function (not part of the generic printer code)
builds tables in RAM that describe all of the available fonts.
There is one table for each of the font attributes. For exam
ple, there is a pitch table and a height table. An attribute
table contains one entry for each of the unique values avail
able for that attribute. Along with the attribute value, the
entry specifies ID numbers for all of the fonts that can
supply that value.

The following are examples of these tables:

Algorithmic enhancements:

- half-height
-half-width
-double-width

Available fonts:

font 1 - 12-point, 12-pitch
font 2 - 14-point, 10-pitch
font 3 - 7-point, 24-pitch

(c)

Fig. printer FX-80 Epson FX-80 printer output, (b) Output of HP DeskJet printer with Epson FX-80
emulat ion car t r idge for same input , (c) Output of another pr in ter wi thout scal ing abi l i ty .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 83

© Copr. 1949-1998 Hewlett-Packard Co.

Pitch table:

5-pitch - font 2
6-pitch-fontl
10-pitch-font2
12-pitch-fontl,font3
20-pitch-font2
24-pitch-fontl,font3
48-pitch-font3

Height table:

3. 5 point -font 3
6 point- font 1
7 point -font 2, font 3
12point-fontl
14 point -font 2

To select a font from these tables, the select-font code
first initializes an eligible list with the IDs of all of the
fonts in the printer. It then processes the highest-priority
attribute by examining all of the available values, choosing
the closest match, and then forming a new eligible list by
a logical AND of the old eligible list and the list of fonts
that provide the chosen value. This process is repeated for
each of the font attributes in the order of priority specified
by PCL.

The implementation of this algorithm uses bit strings for
both the eligible lists and the lists of font IDs in the tables,
so the AND step of the algorithm is very fast.

Epson FX-80 Emulation Cartridge

The Epson FX-80 Emulation Cartridge was developed to
maximize support of the DeskJet printer on existing soft
ware applications.

The DeskJet printer's native escape sequence or com
mand set is HP's PCL (Printer Command Language). Prom
inent software vendors were preintroduced to the capabil
ities of the DeskJet printer command set to allow adequate
time for them to support the printer before its introduction.
There was still a major concern for those users who had
previously purchased software or were using applications
not targeted for preintroduction support.

Since the HP LaserJet II printer also implements the PCL
command set and has the same basic print resolution of
300 dots per inch, an extensive effort was mounted to verify
support of the DeskJet printer by software applications that
have LaserJet drivers. Information about such support on
a large number of software packages, including limitations,
has been documented and included within the DeskJet
Owner's ManuaJ. There was still, however, a concern for
existing applications that do not support either the LaserJet
printer or the DeskJet printer.

To support the DeskJet printer on applications without
LaserJet or DeskJet support, a decision was made to develop
a cartridge that provides emulation of an escape sequence
standard that has long been in existence and is commonly
supported by software applications. Although Epson FX-80
emulation provides support on the multitude of existing
applications as intended, it should be noted that the func
tionality of the FX-80 does not provide optimal support of
all the features offered by the DeskJet printer. The FX-80
emulation support strategy is a backup strategy, not an
attempt to maximize feature access and control of DeskJet
capabilities.

The remainder of this article reviews two key elements
in the firmware development of the FX-80 Emulation Car
tridge. The first portion discusses how a major challenge,
providing graphics aspect ratio compliance between an

emulated printer and a target printer of greatly dissimilar
base dot densities, was met. The second portion describes
how an aggressive development schedule was attained
while leveraging from a partitioned high-level-language
firmware design that was also under development.

Graphics Emulat ion
Besides supporting the command set, fonts, and features

of the Epson FX-80 printer, it was important for graphics
output to be dimensionally correct despite differences in
DeskJet and FX-80 resolution. For graphics output, the Desk
Jet printer is a 300-dot-per-inch (vertically and horizon
tally) raster device. In contrast, the Epson FX-80 is a col
umn-oriented graphics device with a vertical resolution of
72 dpi and selectable horizontal resolutions of 60, 72, 80,
90, 120, and 240 dpi. Fig. 1 shows the difference between
column and raster formats.

Current inkjet products emulating Epson printers sup
port graphics only in their native resolutions. Without some
sort of printer driver customization, the resolution differ
ences result in incompatibilities in both size and aspect
ratio (see Fig. 2). To attain graphics output from the DeskJet
printer that matches the FX-80 printer's using a standard
Epson printer driver, incoming graphics data is scaled (to
match resolution and aspect ratio) and rotated to DeskJet
raster format.

When the resolution of the target device (the DeskJet
printer in this case) is finer than that of the emulated device,
scaling can be done simply by approximating the emulated
dots with multiple target device dots. A simplified exam
ple, where the horizontal and vertical resolutions of the
emulated system are equal and scaling error is neglected,
is shown in Fig. 3. The horizontal or vertical expansion
for an emulation dot can be determined by the following
generalized equations:

dt = (Se + St/2 - E(n))/St

E(0) = 0

E(n = Std, - Se

dt is the number of target system dots to produce. S, is the
number of units per target system dot. Se is the number of

Emulated Dot Target System
Approximation

Fig. that When the resolution of a target printer is finer that that
o f a n e m u l a t e d p r i n t e r , s c a l i n g c a n b e d o n e s i m p l y b y a p
p rox ima t i ng the emu la ted do ts w i th mu l t i p l e t a rge t dev i ce
dots.

84 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

units per emulation dot, which may be different in the
horizontal and vertical axes. E(n) is the cumulative scaling
error.

As an example, take the case of scaling to an emulation
resolution of 72 dpi vertically and 90 dpi horizontally. Use
a convenient virtual resolution of 10800 units/inch â€” the
least common multiple of the target system resolution and
all emulated resolutions â€” so that only integer arithmetic
is used. Thus, S, = 10800/300 = 36 units/dot, and
Se = 10800/90 = 120 units/dot for the horizontal expan
sion or Se = 10800/72 = 150 units/dot for the vertical ex
pansion. Given this, each column of graphics can be ex
panded as it is received using the generalized scaling equa
tions above.

In practice, it is desirable to eliminate the use of multiply
and divide instructions to increase speed, which is critical
when handling large amounts of graphics data. Fortunately,
the equations can easily be reduced to algorithms requiring
only addition and subtraction. The number of target dots
on one axis for an emulation dot, dt> is determined by
repetitively adding St to the constant St/2 - E(n) until the
result exceeds Se. A target dot is output at each addition
step. The next error term, E(n + l), is simply the result of
the additions minus Se.

Continuing with the example, Fig. 4 shows the result of
converting two rows of column graphics to DeskJet resolu
tion and raster format.

For throughput enhancement, the emulation takes ad
vantage of the fact that the vertical scaling is just duplica
tion of the raster rows. Dots are not scaled vertically until
the complete graphics line has been scaled horizontally.
The reason for this is that once the horizontal scaling is
done, the vertical scaling is simply a matter of copying the
raster rows a given number of times, which is much faster
than bit-by-bit scaling. This cannot be done with the hori
zontal scaling since scaled dots can cross byte boundaries
horizontally. Another speedup involves trapping out white
space â€” dot positions that are unused. Since the raster buf
fer is always cleared before it is used, blank emulation dots
or whole columns do not have to be scaled into the buffer;
only the position for the next dot or column needs to be
calculated. Throughput is increased for any image that has
at least 5% white space. The more white space, the greater
the throughput gain.

The emulation allows users to replace the built-in charac
ters with characters of their own design. User-defined
characters are downloaded by specifying each column of
the character, in the same manner as column graphics data
is sent. Because the download data is sent assuming Epson
FX-80 resolution, it must be scaled before printing, the
same way graphics is scaled. In fact, any downloaded
character is printed as graphics. Pica, elite, and compressed
character pitches are produced by changing the horizontal
scaling factor. Other enhancements such as bold, ex
panded, superscript, and subscript characters are added
by manipulating the character data before printing.

Mechanism Compensat ion
Even though the scaling algorithm can map all of the

FX-80 resolutions to the DeskJet printer's 300-dpi resolu
tion, there still exists a mismatch between the resolution

of the paper and printhead placement in the DeskJet printer
(1/300 inch) and the Epson vertical resolution (1/72 inch).
Because of this, the mechanism error must be synchronized
with the scaling process. This is done by monitoring the
page position to detect when vertical positioning will move
the paper 1/300 inch too far because of roundoff. When
such a move is predicted, the scaling routine produces an
extra row to compensate. The table below shows how mech
anism and scaling positions are reconciled when scaling
columns of eight bits.

Virtual Position Mechanism Position Rows Produced
(1/10800 inch) (1/300 inch)

0
1200

2400

3600

4800

0(0.0)
33(33.33)
66(66.67)
100(100.0)
133(133.33)

33
33
33
34
33

Leveraged Emulat ion Cartr idge Design
The Epson emulation cartridge was highly leveraged

from the DeskJet PCL code and the RuggedWriter Epson
LQ-1000 emulation code. Over 85% of this code is written
in C and the software architecture is partitioned into blocks
with well-defined interfaces. These factors allowed the
Epson cartridge development to meet a very aggressive
schedule. Only eight engineer-months were required for
software engineering. The total project time was four
months.

As mentioned earlier, the DeskJet firmware is partitioned
into major blocks. The parser, key panel handler, DIP con
figuration switch handler, and self-test modules all send
tokens to the formatter. The formatter receives these tokens
and builds tasks for the task processor. For the Epson emu
lation cartridge, the LQ-1000 parser was leveraged from
the RuggedWriter firmware and the rest of the code was
leveraged from the DeskJet firmware. Although the indi
vidual token handlers needed to be modified to handle the
different parameters and their meanings, the formatter's

C o l u m n D a t a A f t e r S c a l i n g a n d R a s t e r i z a t i o n

AS
A 7
A 6
A 5
A 4
A 3
A 2
A1

B 8
B 7
B 6
B 5
B 4
A 3
B 2
B1

A S A 8 A 8 A 8 A 8 B 8 B 8 B 8 R o w 1
A 8 A S A S A 8 A S B 8 B 8 B 8 R o w 2
A 8 A S A S A S A 8 B 8 B 8 B 8
A 8 A S A S A S A S B 8 B 8 6 8
A 7 A 7 A 7 A 7 A 7 B 7 B 7 B 7

B y t e 1
B y t e 1

A 1 A 1 A 1 A 1 A 1 B 1 B 1 B 1 R o w 3 3 , B y t e 1

R o w 3 3 , B y t e 2

Fig. 4. The resul t of convert ing two rows of column graphics
to DeskJet resolut ion and raster format.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 85

© Copr. 1949-1998 Hewlett-Packard Co.

task management code was kept intact. Since the key hand
ler, dip handler, and self-test modules send PCL tokens,
these modules had to be modified to send the correspond
ing Epson tokens whenever possible, but a few PCL tokens
and their handlers had to be preserved to allow for func
tions that had no analogous Epson function (for example,
the draft-mode key on the DeskJet printer).

Monitor ing Changes in Leveraged Code
The Epson cartridge was under development in parallel

with the DeskJet firmware. Although the DeskJet code was
the starting point for the Epson code, many changes had
to be made throughout the code to send the appropriate
Epson tokens and to perform the proper font selection be
havior needed for Epson emulation. Typically a particular
routine had several lines of code added or deleted to handle
the specific needs of Epson emulation.

While the DeskJet code was being changed to incorporate
Epson emulation, the DeskJet code was also being enhanced
or changed to fix defects. Some of these changes needed
to be incorporated into the Epson version, but some of the
changes were PCL specific and had no relevance to the
emulation project. To monitor these changes, a tool named
difftree was created to make the tracking process semiauto
matic.

difflree is a UNIX shell script based on the standard diff
utility, which finds differences in specified source files in
a directory and all subdirectories and creates a parallel
directory structure containing files of the differences. In
other words, diff finds differences between all source files
in particular directory trees. It also logs situations when a
source file or subdirectory is in one directory tree but not
the other.

For example, the DeskJet project has a directory structure
of:

/ p r o j e c t s / d e s k j e f s o u r c e

and the Epson project has a structure of:

/projects/fx80/source

and the subdirectories of source in both of the projects are
largely the same, difftree can be run on the entire source tree
or on selected subtrees. In practice, we ran difftree on
selected subtrees of the code, since certain modules (e.g.,
the parser) were totally different. For the sake of this exam
ple, however, assume difftree was run on all source trees. A
third directory name was supplied to contain the differ
ences. A fourth directory name was supplied to contain a
tree of expected or "OK" differences (explained below).
Hence, difftree could be run by entering:

d i f f t ree /p ro jec ts /desk je t / sou rce /p ro jec ts / f x80 /sou rce /p ro jec ts / f x80 /d i f f s
/ p ro jec t s / f x80 /okd i f f s

This which the directory /projects/fxSO/diffs/source which
contains all the differences. The diffs tree has files of the
same names as the files compared in the source and desti
nation trees. Hence, if deskjet/source/fileA is different from
fx80/source/fileA, there will be a file fx80/diffs/source/fileA which

contains the differences.
The most useful feature of difftree is its okdiffs directory

tree, which is passed as a fourth directory tree parameter
to difftree. When difftree finds differences between two files
it compares these differences with a file of the same name
in a corresponding okdiffs directory tree. If there is a file in
this okdiffs tree of the same name as the files being compared
and if this okdiffs file is identical to the differences just
found, the differences file is purged. Hence, if a difference
is detected and the reason for the difference is an intended
divergence in the code, the difference file is simply moved
manually to the okdiffs tree and difftree will no longer create
a difference file (until one of the files changes again).

Manual involvement was still required to identify the
need for incorporating changes in the DeskJet code into
the Epson code, and to determine the best way to make
the changes (add the Epson modifications to the new Desk
Jet code or the DeskJet modifications to the Epson code),
difftree, however, provided a quick semiautomatic way to
keep the Epson code up to date with the DeskJet code.
During the last two months of the Epson project, difftree was
run an average of once per week. Incorporating and testing
any changes typically required only half a day of one en
gineer's time each week.

As long as the directory structure of the Epson code was
kept the same as the DeskJet code, difftree performed quite
well. At times, for various reasons, the DeskJet code had
its directory structure rearranged. This required an analo
gous manual rearranging of the Epson directory trees to
use difftree.

Although difftree is not totally automatic and requires
human decision to decide which differences are irrelevant
and which differences need to be addressed, it has proved
to be an extremely useful tool. In our opinion it is unreason
able to expect a totally automatic solution, since human
judgment is required to decide which changes need to be
incorporated into leveraged code.

Acknowledgments
The DeskJet software development team also included

Martin Hash and Donna May. The authors would like to
acknowledge their efforts and patience in the development
of the software and their ability to adapt to a major change
in the development process.

86 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Robotic Assembly of HP DeskJet Pr inted
Circuit Boards in a Just- in-Time
Environment
A h igh-speed mach ine p laces most o f the sur face mount
components whi le a v is ion-gu ided robot p laces smal l
components and p last ic leaded ch ip car r iers .

by P. David Cast

THE VANCOUVER DIVISION of Hewlett-Packard
designs and manufactures personal workstation
printers. Advances in printer design and more effi

cient use of printed circuit board space have made major
contributions to improving the printers' price/performance
ratio. The number of printed circuit boards in each printer
has declined significantly, reducing both size and material
cost.

The printed circuit boards in the HP DeskJet and Rugged-
Writer 480 printers are hybrid boards composed of a mix
ture of surface mount and through-hole components. As
sembly of these boards is done on an automated high-vol
ume assembly line capable of processing the boards for
both printers in a mixed-mode production environment.
This robotic printed circuit board assembly system is care
fully designed to fit into the Vancouver Division's just-in-
time (JIT) manufacturing system.

A component mix of many small surface mount compo
nents coupled with a few large odd-shaped parts is a key
factor in the design of the surface mount assembly line. A
high-speed pick-and-place machine is used to place the
majority of the small components. The remaining odd com
ponents are placed by the slower but more flexible robot
workcell. The line is designed to allow mixed-mode pro
duction of different products with a minimum batch size
of one. Each printed circuit board is automatically iden
tified by the robot. Board loading information is communi
cated automatically to the robot controller via an RS-232-D
connection to an HP 9000 Model 320 Computer.

Manufacturing Strategy
A just-in-time manufacturing philosophy has been effec

tively implemented at the Vancouver Division over the
past five years. Work-in-process inventory has decreased
dramatically since the implementation of the JIT system.
The throughput time to process a complete printer from
start to finish has dropped from over one week to less than
four hours. On-line inventory space has been reduced to a
level that allows twice the value-added shipments from
the same floor space.

In a JIT system, demand for each subassembly exists only
when the subsequent assembly creates the demand. Pulling
a finished printer from the end of the line ultimately creates
the demand for each preceding subassembly. For this

reason, JIT production is termed a "pull" environment,
with each assembly pulling the production from the previ
ous workstation.

Extensive cooperation with the R&D design team is a
requirement for products destined for automated assembly.
Often the addition of a small feature that has no effect on
the product's function or part cost can greatly simplify the
automatic assembly of the product. Design changes made
to improve manufacturability by automated equipment
generally simplify hand assembly as well.

Robustness and flexibility are important features for au
tomated assembly equipment used in a JIT environment.
In a serial-flow JIT assembly line, the failure of any piece
of equipment will cause the entire production line to stop.

The robot workcell described below is designed to learn
the location of all important points in the work envelope

Fig. 1 . Robotic workcel l used to bui ld DeskJet pr inted circui t
boards.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 87

© Copr. 1949-1998 Hewlett-Packard Co.

DeskJet Printer Design
for Manufacturability

The need t o m in im i ze t he DeskJe t p r i n t e r ' s t ime t o ma rke t
meant that a smooth product ion ramp was as cr i t ical to the intro
duc t i on as mee t i ng the o the r p ro jec t checkpo in t s . Des ign fo r
manufac tu rab i l i t y was c ruc ia l to bu i ld ing qua l i t y p roduc ts and
meet ing the requi red product ion rates.

Product Design
The foca l po in t o f the e f fo r t was de f in ing the manufac tu r ing

p rocesses . Once th is was done , we de f ined the boundary con
dit ions that the design team had to meet. We decided on primari ly
sur face mount techno logy fo r p r in ted c i rcu i t assembly , and se
quent ia l , s ing le -p lane assembly us ing a conveyor l ine fo r top-
level assembly. This enabled us to write guidelines for the design
ers to use in designing the product. The manufactur ing engineer
ing team was ass igned a t the t rans i t ion o f the pro jec t f rom the
i n v e s t i g a t i o n p h a s e t o t h e l a b p h a s e . O f c o u r s e , i t w a s a l s o
necessary for the designers to expand their hor izons to consider
the manufacturabil i ty along with the functionali ty of their designs.
F rom the beg inn ing o f the p ro to type phase , we bu i l t a l l o f the
un i ts on the f ina l manufactur ing l ine. Th is enabled us to debug
the manufactur ing processes in para l le l wi th the product .

Part Design
W e u s e d t h e s a m e t a c t i c s f o r p a r t d e s i g n , i d e n t i f y i n g p a r t

processes ear ly and then des ign ing to match these processes,
ass ign ing a procurement eng ineer ing team at the beg inn ing o f
the lab phase , and us ing f ina l par t p roduc t ion p rocesses f rom
the f i rst prototype on.

When we reached the p roduc t ion p ro to type phase , ou r man
ufacturing organization and our suppliers had buil t over 500 units
and had found and cor rec ted many o f the typ ica l s ta r t -up prob
l ems . We have me t ou r p roduc t i on t a rge t s t o da te , and have
sat is f ied the requi rement to have ample uni ts avai lab le for sh ip
ment at introduct ion.

D o n H a r r i n g
Procurement Engineer ing Manager

Vancouver Div is ion

using sensors mounted in the robot end effector. This fea
ture has paid for itself many times over by greatly decreas
ing the reconfiguration time when adding or changing part
feeder locations. A complete robot changeover has been
accomplished in four hours with the aid of the self-teaching
features incorporated into the robot software.

Use of Automated Equipment in a J IT Environment
It should be pointed out that automated assembly and

JIT manufacturing are two entirely separate ideas. Each can
be implemented independently of the other. By no means
does one imply the other. Some of the most successful JIT
assembly lines employ little or no automated assembly
equipment. Highly automated factories exist that operate
strictly in a traditional batch-type production climate with
large work-in-process inventory levels. A key step in the
Vancouver Division's manufacturing strategy is to integrate
automation into the JIT environment.

Automation for automation's sake usually results in au
tomating waste and the production of scrap material. To
avoid this, each automation project is considered on the
basis of improving quality, lowering production costs, and
eliminating difficult or tedious manual tasks.

The precision assembly tolerances of Â±0.005 inch re
quired for surface mount component placement makes this
task difficult or unattainable in a manual workstation. A
decision was made early in the robot workcell design to
employ a machine vision system to ensure the placement
accuracy required for zero-defect assembly. Quality levels
have improved significantly since the implementation of
the automated surface mount placement line.

The Robot Workcel l Hardware
A two-phase process is used to place surface mount com

ponents onto printed circuit boards. A high-speed pick-
and-place machine places all components whose size and
packaging are compatible with the machine parameters.
The larger PLCC (plastic leaded chip carrier) and SOIC
(small-outline integrated circuit) components, which do
not fit the size and packaging requirements of the high
speed machine are placed by the robot workcell. Several
components are available in packaging compatible with
either the robot or the high-speed machine. These parts
can be switched to either machine to balance the machine
cycle times for changes in product mix.

The robot workcell (see Figs. 1 and 2) consists of a Seiko
RT3000 robot and controller, a machine vision system, a
printed circuit board conveyor system, electrical intercon
nect hardware, and control computers. The workcell ac
commodates up to 16 tube-type parts feeders. Each feeder
has space for up to four tubes, dependent on the component
size. One machine operator is able to run the entire surface
mount placement and solder assembly line. The operator's
main task is to place printed circuit boards screened with
solder paste on the input conveyor of the high-speed place
ment machine. The operator is also responsible for filling
the component feeders as they are emptied. All placement
operations and the movement of printed circuit boards be
tween machines occur automatically.

An adjustable-width printed circuit board conveyor sys
tem connects the two pieces of placement machinery.
Boards are moved along the conveyor using antistatic belts
which grip the outer edges of the boards. The belts are
driven by step motors controlled by the Model 320 host
computer. The workcell design will allow a second robot
to be put in place as capacity and product mix needs dictate.
Conveyor control and electrical interconnect for the second
robot are already in place.

Pressure sensitive safety mats are used to guard the front
and rear of the robot work envelope. These mats have
proven effective in maintaining a safe zone around the
robot while still allowing access and visibility. Facade
plates mounted on both sides of the workcell guard against
dust and enhance the aesthetics of the production environ
ment. The facades are easily removed to allow access to
electrical interconnect hardware.

Automat ic Transfer of Component Loading Data
Component placement coordinates are downloaded di-

88 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

rectly from the printed circuit design computer system to
the controllers of the placement machines. This capability
greatly simplifies prototype builds of new boards and revi
sions to existing boards. Prototype builds, which previ
ously were done manually, can now be run through the
standard placement assembly line with minimal impact on
production throughput.

Robot Operat ing Sequence
Boards arriving at the robot loading position of the con

veyor are detected by a reflective sensor. The width of the
loading section of the conveyor is narrowed to hold the
board for component placement. This approach eliminates
tooling pins and other associated tooling fixtures, but re
quires some extra software development to accommodate
the lower-tolerance board fit in the clamped conveyor. A
combination of vision and board graphics supporting the
extra software overcomes the looser fit at a considerable
savings in tooling costs.

The robot initializes the I/O lines and begins a search for
the reflective "landing pad" located on the leading edge of
each board. Printed circuit board design guidelines specify
that all new boards will have a landing pad located at the
same coordinate along the leading edge of the board. A
reflective sensor in the robot end effector locates the reflec
tive pad. Along with the coordinates of the clamped con
veyor edges, the landing pad provides a reference point for
the robot to locate critical board artwork details.

In the next step the reflective sensor is used to read a
binary code incorporated into the board artwork, which
tells the board type. The ID code dimensions and location
are specified for all new boards. In most cases the compo
nent type and location coordinates can be called directly
from the robot controller memory. When prototyping a new

board, the robot will query the host computer for the file
that contains component loading data.

Feeder locations and part parameters (number of leads,
part height, etc.) reside in a data base in the robot controller
memory. The component data base also contains vision
system parameters necessary for the camera to identify and
evaluate each part. The vision system will reject any part
that does not have the proper number of leads. This feature
has proven very successful in guarding against placing
parts with bent or contaminated leads.

When the robot controller has identified the board loca
tion and type, the component loading sequence begins.
The loading program was specifically developed so that
the same program can load any board after the board has
been identified by the robot. The board ID code points to
a file that contains the loading information for each board.
This file includes the number of components, the type of
component, the feeder number, and the location of each
component on the board.

Each part is picked from its feeder using a vacuum nozzle
in the robot end effector. Each feeder is turned on for a
fixed time before and after each pick. Feeder control is
through the Model 320 host computer. Four robot input/
output lines are used to send control signals to the host
computer for each of up to 16 feeders. Each part is moved
over an upward looking camera which takes a machine
vision image of the part. The part centroid and rotation are
calculated from the reflections of the lead tips. A screening
algorithm is used to block out the center section of the part
and avoid confusion between the part leads and the writing
that appears on the bottom of the part.

While the vision system computer is processing the part
offsets, the robot moves to the ideal placement location.
The robot arm adjusts for the x, y, and theta (rotational)

Fig. done Ser ies drawing of the robot ic workcel l . The design was done on an HP ME Ser ies 10
CAD system. Th is drawing was pr in ted on an HP DeskJet pr in ter .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 89

© Copr. 1949-1998 Hewlett-Packard Co.

Fabricated Parts Tooling Plan

The fabr i ca ted par ts too l ing p lan fo r the HP DeskJe t p r in te r
was des igned to m in im ize too l deve lopment t ime and the reby
decrease the t ime to market . E lements of the p lan were:
â€¢ Priorit izing part design by tooling lead t ime so as to complete

a l l o f the fabr icated par ts on the same date
â€¢ Init iat ing tool quotations using preliminary drawings
â€¢ Using overnight mail service to convey prints to suppl iers
â€¢ Compress ing quotat ion cyc les to ha l f the normal ly a l lowed

t ime by work ing wi th our suppl iers to queue quotat ions
â€¢ Complet ing al l the paper work necessary to order the tool ing

before receipt o f quotat ions so too ls could be ordered wi th in
a day of rece ip t

â€¢ Using soft tooling for noncrit ical parts and hardenable grades
of tool steel for others, which al lowed for easier modi f icat ion

â€¢ Us ing a manufac turer o f molded par ts too l ing fo r our case
p a r t s a n d c h a s s i s w i t h a l e a d t i m e h a l f t h a t o f t h e n o r m a l
suppl iers

â€¢ Minimizing the use of multicavity tooling on plastic parts, reduc
ing lead t ime and t ime to rework too ls

â€¢ Developing mul t ip le manufactur ing processes in paral le l on
h igh- r isk manufactur ing par ts , w i th one of the processes u l t i
mately chosen for i ts certainty of producing acceptable parts

â€¢ Using multistage stampings rather than progressive dies, thus
bo th decreas ing too l deve lopment t ime and a l low ing fo r the
addi t ion of extra operat ions

â€¢ Manufacturing both first articles (the first tool test cycle parts)
and pro to type bu i ld par ts a t the same t ime

â€¢ Using suppl iers to perform f irst art ic le inspections instead of
do ing them in-house

â€¢ Achieving measurement corre lat ion at an ear ly phase to de
c rease par t measurement d iscrepanc ies and a l low us to use
stat is t ical measurement data suppl ied by the part manufactur
ers to determine part qual i ty .

Jef f Ward
Manufactur ing Engineer

Vancouver Div is ion

offsets specified by the vision system and presses the part
into the solder paste. When all parts have been placed, the
robot signals the conveyor control program to unclamp the
board and move the board onto the exit conveyor. The fully
populated boards exit directly from the robot workcell into
the paste cure oven.

Workcel l Design
An HP ME Series 10 computer-aided design (CAD) sys

tem was a key factor in the successful completion of the
workcell design project. Design proceeded from a rough
layout drawing, and each piece was added to the ME Series
10 drawing as the layout proceeded. Detailed drawings
required for the fabrication of each piece of custom
hardware were generated from the layout drawing after the
layout was frozen. The importance of having a layout draw
ing that includes both the electrical and mechanical
hardware cannot be overemphasized. The additional accu
racy of the CAD tools leads to significant quality improve
ments and time savings in any complex design project. The
integration of electrical interconnects and safety systems
is greatly enhanced by including these features in a single
layout drawing.

Acknowledgments
The success of this project would not have been possible

without the contributions of many people. Special thanks
to Marc Hartquist, Britt Freund, Ken Wade, and Rick
Hughes for their participation in the workcell development
team.

90 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

CIM and Machine Vision in the Production
of Thermal InkJet Printheads
Machine v is ion systems for DeskJet pr in thead product ion
range f rom open- loop go/no-go systems to process
ver i f icat ion systems to complete ly in tegrated process
control systems.

by Mark and Huth, Robert A. Conder, Gregg P. Ferry, Brian L. Helter l ine, Robert F. Aman, and
Timothy S. Hubley

MACHINE VISION was first introduced to the HP
inkjet production process in the original Thinkjet
printhead assembly area. It was recognized then

that some objective measure of the quality of each printhead
was needed. With the installation of the first print quality
evaluation system came the recognition that many other
processes could be monitored as easily. This led to machine
vision applications that inspected for leaks, evaluated the
quality of the special paper required for the first Thinkjet
printhead, checked alignment of parts, inspected incoming
material, and verified glue pattern completeness.

The experience gained in these first applications proved
that much useful information could be retrieved by visual
inspections. The original concept of simply rejecting parts
that didn't pass inspection was replaced by an inspection
scheme that shut down the line if more than three print-
heads were found bad. An extension of this process moni
toring, collecting print quality data for each printhead,
began to close the loop between inspection and process
control. Tying this print quality data to the wafer and orifice
plate lot numbers allowed the process engineers upstream
from the final assembly area to see the effects of varying
parameters. Without machine vision and the automatic link
to the data collection system, this wouldn't have been fea
sible. Operator inspection and entry from a keyboard would
not only have been cumbersome, but also prone to the sub
jective differences between operators in measuring the
darkness of the print or the sharpness of a line. By inter
connecting the vision system with the rest of the computer
systems, another link was forged in the overall computer
integrated manufacturing [CIM) strategy.

Another category of vision system applications is the
complete integration of the measurement data into the pro
cess. Applications in this category include the alignment
systems used in placing the head assembly on the printhead
body, aligning the interconnect circuit to the head assem
bly, and aligning the orifice plate to the substrate. These
three vision system applications are discussed in more de
tail later as the head attach machine, the TAB (tape auto
mated bonding) attach machine, and the orifice attach
machine.

The process involvement of vision systems varies, as
shown in Fig. 1. Vision system applications have evolved
from totally open-loop go/no-go test systems, through pro

cess verification type systems, to completely integrated
process control applications. Examples of all of these
categories are implemented throughout the DeskJet print-
head production area.

Preassembly TAB Circuit Inspect ion
On the left side of Fig. 1 is the go/no-go type inspection

of incoming material for the TAB preparation machine.
Here the only process monitoring function is to keep a
count of how many bad parts the system has found.

Briefly, the task of the TAB prep machine is to present
good TAB circuits to the TAB attach station. TAB circuits
are the flexible interconnect circuits used on the DeskJet
print cartridge. The machine can be divided into three
parts: mechanical, programmable logic controller, and vi
sion engine. The TAB circuits come from the vendor in
tape form on a reel and need to be blanked (separated).

The primary objective of the vision engine is to check
for bent beams with a tolerance of about 40 micrometers.
These beams are TAB bonded to the substrate of the thermal
inkjet head. A major challenge for this vision project was
determining the camera configuration. The Nyquist criter
ion says that for a minimum resolution of 40 /xm, one would

Process Monitoring Functions

n â€¢s.
c

o.

<

~ c

Ã̄

B
I

I Â¡ Ã‰
0 1 C
= - i 1 . 5 "

- - D

o i
tn
i-

Vision System Applications

Fig. 1 . Machine v is ion system appl icat ions have vary ing de
g rees o f p rocess invo lvement , shown here inc reas ing f rom
left to right.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 91

© Copr. 1949-1998 Hewlett-Packard Co.

Whole Wafer Assembly of Thermal InkJet Printheads

The cha l l enges o f assemb l ing the new the rma l I nkJe t pens
h a v e b e c o m e g r e a t e r a s p r i n t h e a d d e s i g n a r c h i t e c t u r e s a n d
a l ignment resolut ions have become f iner . In addi t ion, customer
demands requ i re h igh-vo lume capac i ty and low-cos t p roducts .
For DeskJet pnnthead manufactur ing, meet ing these chal lenges
required new assembly techniques and tools. As a result of close
work between manufactur ing engineer ing and R&D, a l lowances
for new assembly techniques were made in the printhead design,
w i thout degrad ing pr in thead per formance. The most s ign i f icant
new assembly technique is ca l led whole wafer assembly .

The materials used to bui ld an InkJet pr inthead Include a thin-
f i l m p r o a n d a m e t a l o r i f i c e p l a t e . T h e s u b s t r a t e s a r e p r o
cessed on a si l icon wafer and the orif ice plates are manufactured
I n shee t f o rm and I nd i v i dua l pa r t s a re t hen exc i sed f r om the
sheet. The basic requirements for assembly of the pr inthead are
a l ignment and bond ing o f the o r i f i ce p la te to the th in - f i lm sub
st rate. Before whole wafer assembly, each substrate was d iced
out of The parent wafer before the orif ice plate was attached. The
whole wafer assembly technique bypasses the d ic ing operat ion
and mounts the or i f ice p late to each substrate before d ic ing the
wafer . The method s impl i f ies mater ia l handl ing and par t or ienta
t i on , as a l l t he subs t r a tes a re on one wa fe r . Who le wa fe r as
s e m b l y a n d m a c h i n e v i s i o n h a v e m a d e a s s e m b l y o f t h e n e w
InkJet pens a ful ly automated process.

Product Design
The DeskJet pr in thead des ign is schemat ica l ly fa i r ly s imple .

The pr in thead Is made up of a thermal pr in thead, a f lex or TAB
(tape automated bonding) c i rcu i t , and an Ink conta iner or pr in t -
head body . The thermal p r in thead Is approx imate ly 5 mm by 7
mm by 0 .5 mm th ick and Is made f rom a s i l i con wafer tha t has
b e e n p l a t e d a n d p h o t o c h e m l c a l l y e t c h e d t o p r o d u c e 5 0 I n d i
v idua l res is to rs used in the genera t ion o f the Ink d rop le ts . An
or i f i ce p la te w i th 50 nozz les to match the res is to r loca t ions Is

accura te ly a l igned to the subs t ra te and bonded In p lace . Th is
pr inthead assembly is then al igned and bonded to the pr inthead
body. Tight assembly tolerances are necessary to meet the pr int
qua l i ty requ i rements . Fur thermore, assembly cos ts need to be
kept at a minimum, requir ing high-volume automated assembly.

Assembly System Descript ion
Two d i f fe ren t assembly sys tems were deve loped around the

whole wafer process. These are named the orif ice attach machine
and the head at tach machine. The or i f ice at tach machine al igns
and bonds an o r i f i ce p la te to each d ie l oca t i on on the wa fe r .
After the wafer is ful ly populated with orif ice plates It Is sawn into
indiv idual pr intheads. Then the head at tach machine al igns and
bonds each pr in thead to a pen body.

A l ignments of the respect ive pr in thead par ts are prov ided by
high-precision posit ioning tables buil t Into the assembly systems.
T h e s e p o s i t i o n i n g t a b l e s p r o v i d e t h e r e q u i r e d a s s e m b l y a c
curac ies a long wi th par t or ienta t ion and t ransfer , a l ignment ad
jus tments , and bond ing mot ions . Each sys tem a lso inc ludes a
vision system which provides the means to determine component
par t misa l ignments . The misa l ignment measurements are sent
to the al ign control ler , which adjusts the posi t ion tables to al ign
the two component parts. Substrates are suppl ied to the system
In whole wafer form and a l l assembly of the pr in theads Is done
before the wafer is sawn apart . The or i f ice plates are fabr icated
in i t ia l ly In sheet form. The sheet Is mounted to a low- tack tape
and stretched over a metal f i lm frame. The sheet Is then broken
to separate the individual ori f ice plates. The frame provides easy
hand l ing o f the or i f i ce p la tes and the mount ing tape ho lds the
individual orifice plates In their original configuration. Fig. 1 shows
or i f ice plates being removed from the low-tack mount ing tape In
the or i f ice a t tach machine. The sheet Is pos i t ioned to a l low for
the au tomat ic p ick ing o f each or i f i ce p la te by a vacuum chuck
as shown. The camera Is used to determine the locat ion o f the

Fig. 1 . Ori f ice plates being removed from the low-tack mount
ing tape in the or i f ice at tach machine.

F i g . 2 . An o r i f i ce p l a te be ing op t i ca l l y a l i gned t o a who le
wafer in the or i f ice at tach machine.

92 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

or i f ice sheet . F ig 2 shows an or i f ice p late held above the wafer
and be ing a l igned to a subst ra te o f the wafer . In th is pos i t ion ,
the vis ion system can determine the relat ive misal ignment of the
two par ts and make ad jus tments to b r ing them in to the p roper
a l ignment for bonding.

The individual substrates of the wafer and the or i f ice plates of
the sheet come to the system having been previously inspected
and mapped. The mater ia l maps te l l the system which parts are
good and may be se lec ted for assembly . Another advantage o f
t he who le wa fe r , who le shee t p rocess i s t he ease o f l oad ing
mater ia l in to the sys tems. S ince i t i s c ruc ia l to know where a l l
the indiv idual parts are located for assembly, i t is an advantage
to handle these parts in their whole states. The wafer's substrates
are s t i l l in who le wafer fo rm, so the i r locat ions are known to a
f r ac t i on o f a m ic rome te r . The o r i f i ce p l a te l oca t i ons a re a l so
known. This feature a l lows the system to know where a l l o f the
ind iv idua l par ts are located wi th in to lerances suf f ic ien t fo r the
system to run automat ical ly.

The basic operat ion of the or i f ice at tach machine is to p ick a
good o r i f i ce p l a te o f f t he moun t i ng t ape , ho l d i t ove r a good
substrate of the wafer, inspect the relative offsets of the two parts
opt ical ly , adjust for th is misal ignment, and bond the plate to the
subs t ra te . Opera t ion con t inues in th i s fash ion un t i l e i the r the
o r i f i ce p la tes have been dep le ted o r t he subs t ra te wa fe r has
been ful ly populated with plates. After the wafer is ful ly populated
wi th or i f ice p lates, the wafer is mounted to low-tack tape and a
meta l f rame and then sawn into ind iv idual head assembl ies.

The fi lm frame with all of the head assemblies sti l l intact is then
l oaded i n to t he head a t t ach mach ine . F ig . 3 shows the sawn
head assembl ies loaded in to the head a t tach mach ine wa i t ing
to be p icked of f by a vacuum chuck in the same manner as the
or i f ice plates were picked of f by the or i f ice at tach machine. The
p icked head assembl ies are subsequent ly a l igned and bonded
to an ink jet pen body. With the head assembl ies loaded into the
system in this fashion, the head attach machine also real izes al l
o f the advan tages o f the who le wa fe r p rocess , i nc lud ing easy
mater ia l hand l ing , par t c lean l iness , mapp ing capab i l i t i es , and
so on.

V i s i o n S y s t e m
To meet the assembly to le rances and vo lumes requ i red , the

human operator needed to be taken o f f the assembly l ine . The
human eye , even i f a i ded w i t h a m i c roscope , canno t r e l i ab l y
a l ign p ro o r i f i ce p la tes to the subs t ra tes A lso , because o f p ro
cess ing l im i ta t ions , the assembly to le rances cannot be met by
mechan ica l a l ignment means . The demand fo r h igh- reso lu t ion
al ignment, fast cycle t imes, and high rel iabi l i ty, required the use
of a v is ion system. The product des ign inc ludes opt ica l targets
processed onto the or i f ice plates and the substrates. The vis ion
system hardware and a lgor i thms determine the of fsets between
the targets of the two parts and report these offsets to the assem
bly equipment . The assembly equipment makes the appropr iate
pa r t ad jus tmen ts t o a l i gn t he two pa r t s and then bonds t hem
together. Af ter the parts are bonded together, the v is ion system
i nspec t s t he f i na l a l i gnmen t and upda tes t he wa fe r map w i t h
pass/ fa i l data which is used in subsequent processes.

An addi t ional benef i t of the v is ion system is i ts mult i ro le capa
bility. It is also used as a process monitor for adhesive dispensing.
The adhes ive mus t be d i spensed in p rec i se l oca t ions and vo l
umes onto the substrate. The vision system monitors the location
and vo lume of the d ispensed adhes ive dur ing the pr in thead as
sembly process.

Computer Integrated Manufacturing
A signif icant advantage of whole wafer assembly is i ts compati

bi l i ty with computer integrated manufacturing (CIM). Al l materials
dest ined for inkjet pr inthead assembly are inspected during their
respective fabrication steps and this data is attached to individual
pa r ts to genera te a map o f good and bad par ts . C IM p rov ides
t he assemb ly sys tems w i t h t hese maps , and ca r r i es upda ted
map f i les to the next assembly systems. Since al l substrate and
orif ice plate locations are mapped, this information remains intact
as long as the wafer or or i f ice sheet remains unseparated. The
chance fo r e r ro rs i s reduced because no fu r the r i nspec t i ons ,
separate sor t ing , or paperwork are requ i red. In add i t ion , s ince
the ind iv idua l i nk je t p r in theads a re no t removed f rom the f i lm
f rames, the map data is updated f rom the or i f ice at tach system
f i les and the head a t tach sys tem uses the updated map.

Conclusions
The new assemb ly techn ique o f a t tach ing mechan ica l pa r t s

to a whole wafer before d ic ing has so lved many manufactur ing
p r o b l e m s . I t h a s b e e n p o s s i b l e t o u s e s o m e o f f - t h e - s h e l f
ha rdware because o f t he s im i l a r i t i es o f t h i s p rocess to t hose
found in the semiconductor industry. Mater ia l handl ing problems
have been kep t t o a m in imum by hand l i ng on l y who le wa fe r s
and sheets of or i f ice plates. Part qual i ty and cleanl iness have im
proved over manua l a l ignment because o f the s imp l i f ied par ts
h a n d l i n g t e c h n i q u e . C y c l e t i m e s h a v e a l s o b e e n r e d u c e d b e
cause par ts hand l ing is kept to a min imum. F ina l ly , a major ad
vantage of whole wafer assembly is the abi l i ty to use CIM as an
a s s e m b l y t o o l a n d a v o i d a l l o f t h e p r o b l e m s a s s o c i a t e d w i t h
manua l i nspec t i on , so r t i ng , and accoun t i ng . The who le wa fe r
assembly techn ique, when coup led w i th p rec ise pos i t ion ing ta
bles, CIM, and a vision system, has proven to be a very important
factor in the successful manufacturing of the DeskJet printhead.

B o b A m a n
Manufactur ing Engineer

InkJet Components Operat ion

F ig . 3 . InkJe t p r in theads be ing removed f rom the low- tack
mount ing tape in the head at tach machine.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 93

© Copr. 1949-1998 Hewlett-Packard Co.

need to sample every 20 /am. The area to be inspected is
7700 by 7100 Â¿im. The part can be presented to the camera
within a Â±250-/am tolerance. Because the lens aberrations
are greater at the periphery of the lens, twenty percent is
added to the area to be inspected. The area is then 9000
by 8400 /am. This means that the camera resolution should
be 450 by 420 pixels. At the time of this project, cameras
such as this were very expensive, so an alternative was
required.

The area to be inspected is two strips on the top and
bottom edges of the area described above. These areas mea
sure 7700 by 1300 micrometers each. If two cameras were
used, they would need a resolution of 450 by 75 pixels,
still difficult to obtain. If the area were split once more,
the area for one camera would be 3900 by 1300 /am, requir
ing a camera resolution of 225 by 75 pixels. At this resolu
tion, a 256-by-240-pixel system with four cameras can be
used. The fields of view for one and four cameras are shown
in Fig. 2.

The last vision challenge was to put the four cameras
into an area measuring 7700 by 7100 micrometers! One
possible solution is to put the four cameras at four differ
ent places along the tape. The solution chosen was to use
two cameras and move the tape a short distance to present
the second half of the part to the cameras. The pictures
are not "reassembled," but each picture is analyzed and
only information about the status of that particular corner
is passed along in a part tracking routine within the
machine.

Postwrap TAB Inspect ion
The last process through which the TAB circuit goes is

wrapping onto the back wall of the printhead body, where
it is staked into place. The centers of the pads on the TAB
circuit are required to be within 250 /am of a location rela
tive to the printhead body fiducial marks. The problem
comes when the part is presented to the camera with a
tolerance of Â±250 /am. Only a perfect part would pass any
type of inspection! If the printhead body fiducial marks
could be seen at the same time as a pad, then the location
of the pad could be determined. This would be possible
only through a complicated calibration procedure which
could easily drift.

Through a mechanical fixture, the fiducial marks can be

| 1

9 0 0 0 A * m

-3900 /n Â±40 Aim

Fig . 2 . Overa l l and s ing le-camera (lower le f t) f ie lds o f v iew
for the TAB prep machine.

translated to a location near a pad. A translated fiducial
mark can be located within Â±50 /am of the ideal pad loca
tion, but still only within Â±250 /jon relative to the field of
view of the camera. A hole in a plate much like a bombsight
was developed. The hole was larger than the pad plus the
tolerance. The idea was to find the center of the pad relative
to the center of the bombsight. Unfortunately, insufficient
light came through the bombsight to illuminate the pad,
so the bombsight gave birth to the idea of a fiducial mark
on a piece of glass. This was found to be the appropriate
solution.

Encapsulant Placement Inspect ion
To the right of the open-loop tester in Fig. 1 are shown

the inspections for adhesive and encapsulant placement.
These are tied a little more into the process control, since
multiple failures shut down the line until an operator ver
ifies and corrects the problem.

An encapsulant is used to cover the TAB circuit beams
and exposed substrate. Conflicting requirements cause its
placement to be critical. For a vision system these toler
ances are not difficult to check.

B a c k g r o u n d
P e a k

F i g . 3 . A m a c h i n e v i e w o f a d h e
s ive on the pen body and the cor
responding gray scale histogram.

94 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

The first encapsulant used was clear, having almost the
refractive index of air. This meant that the encapsulant
could not be seen by man or machine. Various dyes were
added to the encapsulant to improve its contrast with the
surrounding part. While the color contrast was sufficient
for a human to see it, the black and white vision system
required luminous contrast.

A fluorescing dye was found to be most successful.
Fluorescence has the advantage of emitting light that is
coming only from the object of interest. The ultraviolet
light that causes the dye to fluoresce is not visible to the
camera. The part is processed in a dark chamber to enhance
the encapsulant even more.

Once the encapsulant was made to fluoresce, the vision
algorithms became fairly straightforward. They follow very
closely the algorithms used in the adhesive inspection sys
tem.

Adhesive Inspection
Structural and tack adhesives are used on the printhead

to bond the head assembly to the plastic body. A vision
system is used on the assembly line to verify the position,
shape, and quantity of the structural adhesive bead and
the presence of the tack adhesive on the plastic body before
a head assembly is attached.

Fig . 4 . Edge-enhanced adhes ive
image and hor izontal prof i le.

Acquiring the image of the structural adhesive is not
difficult. It is light-colored and opaque, and the contrast
with the black printhead body is good. This good contrast
allows use of an adaptive threshold technique, which has
been found useful in many applications. This technique
involves using a histogram, which is a distribution plot of
the number of pixels at each discrete gray level within the
image. The histogram for an image of the structural adhe
sive on the black plastic body has a major peak at the lower
(dark) gray levels and a major peak at the upper (light) gray
levels (see Fig. 3). Statistical methods are used to find the
valley between these two major peaks, and this valley rep
resents the optimal threshold for binarization. This
threshold technique is a very powerful tool because of its
ability to adapt to changing lighting conditions.

Once the image is segmented by binarization, the area
of the structural bead is calculated and compared with
predetermined limits. If the area is acceptable, complete
ness of the rectangular pattern is determined using run-
length encoding and blob labeling techniques to assure that
the pattern forms a closed loop.

The final test of the structural adhesive involves an in
teresting use of filtering to calculate the centerline of each
of the four legs of the rectangular pattern. A gradient filter
operation is performed on the binarized image, and in the

Fig . 5 . 700% area f i l l tes t w i th a
w e a k n o z z l e a n d t h e c o m p u t e d
ver t ica l pro f i le showing the weak
nozzle as a smal l peak.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 95

© Copr. 1949-1998 Hewlett-Packard Co.

resulting image, the edges of the adhesive pattern are high
lighted (Fig. 4). A profile, which is a distribution plot of
the sum of the gray levels of all pixels in any row or column,
is computed for the edge-enhanced image, resulting in dis
tributions containing peaks that correspond to the locations
of the adhesive boundaries. These peak locations are used
to calculate the centerline and width of each leg of the
adhesive bead.

The adhesive inspection process goes one step beyond
simple part inspection by incorporating some of the process
control into the station. A running yield is calculated from
the results of the last ten parts inspected, and if that yield
drops below an acceptable level, the line is stopped and
an operator is alerted. The number of occurrences of each
failure mode is displayed at the inspection station so that
appropriate action can be taken by the operator to bring
the dispensing process back into control.

Final Print Quality Inspection
The last open-loop inspection to be discussed is perhaps

the most important application of machine vision on the

production line. The quality of the printhead is judged by
objective measures that can be traced back to attributes
defined in the original specifications of the printhead de
sign. However, by the very nature of this inspection, it can
only tell how well the printhead performs after the fact.
The loop was closed by the installation of a data collection
scheme that is used to track the effect of a change in system
parameters. For more information see "Production Print
Quality Evaluation of the DeskJet Printhead," below.

The primary objective of the print quality inspection
station is to verify the health of every nozzle of the print-
head. This means sufficient drop volume to sustain com
plete area fill and accurate dot placement for sharp edge
acuity.

The most easily delectable print quality defect is uneven-
ness or banding over a character. Its causes range from
slightly varying drop volumes to completely missing noz
zles. To detect the full range of banding defects, the vision
engine makes extensive use of profiling techniques com
bined with peak detection algorithms to locate defects rel
ative to the gray scale level of the image. This reduces the

Production Print Quality Evaluation of the DeskJet Printhead

The DeskJet pr in thead's drop e ject ion capabi l i ty is evaluated
a t the end o f the p r in thead assembly p rocess . Th is eva lua t ion
p rocess has two ma in goa ls : f i r s t , t o sc reen ou t de fec ts , and
second, to p rov ide process feedback .

Product ion Screen
Printheads shipped from the product ion l ine, when instal led in

t he p r i n te r , mus t mee t o r exceed cus tomers ' expec ta t i ons fo r
p r i n t has A f i ne l y honed p r i n t qua l i t y eva lua t i on p rocess has
been deve loped to ensure tha t p r in theads meet the i r m in imum
accep tance leve ls . P r in t qua l i t y can eas i l y and repea tab ly be
evaluated by t ra ined operators and/or machine v is ion.

A wea l t h o f expe r i ence was ga ined f r om the Th inkJe t p r i n t
qual i ty evaluation effort which evolved into a machine vision print
qua l i t y t es te r on t he Th inkJe t p r i n thead assemb ly mach ine .1
Th ree the l essons l ea rned f rom th i s endeavo r were : f i r s t , t he
obv ious , tha t o r i f i ce p resence had to be ver i f i ed , second, tha t
a rea f i l l (b lackout) had to be eva luated, and th i rd , tha t spec ia l
test patterns were needed to highl ight specif ic pr inthead process
fai l condit ions.

R&D had establ ished a pr inthead external reference speci f ica
t i on the wh ich ou t l i ned the expec ted ope ra t i ng w indow o f t he
pr inthead. Early pr int qual i ty evaluat ion techniques concentrated
on spec i f ic metr ics to ver i fy the ERS. Parameters such as drop
vo lume and ve loc i ty , dot d iameter and p lacement , and spray a l l

S t a r t u p 1 0 x 5
Stairstep

B l a c k o u t V e r t i c a l M i s c .
L ines

25%

had their own test procedures which gave quant i tat ive measures
fo r exper iments des igned to tune the pr in thead fabr ica t ion pro
c e s s . t o f o r t h e p r o d u c t i o n e n v i r o n m e n t , R & D ' s e f f o r t s t o
measure pr in t qua l i ty needed to be genera l ized to ach ieve pro
duc t i on cyc l e t imes and p roduce measu res t ha t we re l ess r e
moved f rom customer expectat ions.

The f i r s t p roduc t i on p r i n t qua l i t y t es te r s we re mod i f i ed HP
7550A Plot ters wi th special pr int engines. These simulated pr int
ers a l lowed us to develop test characters and exhaust ively exer
c ise the pr in thead. Our f i rs t tes ts invo lved f ive pages of s t ress
pr int ing at low and high frequencies and duty cycles. Each page
had three sets o f test character pat terns which were evaluated
and reco rded . A l l de fec t i ve o r i f i ces were no ted and comp i led
for the pr inthead lot.

Quickie Pattern Development
The Quickie pat tern of test characters (Fig. 1) was developed

to evaluate a pr inthead in an open-loop product ion environment.
It consists of an initial 25% area fil l pattern that serves as a startup
burst test clear any viscous plugging, fol lowed by a series of test
characters: 10 by 5 stairstep, blackout, vert ical l ines, miscel lane
ous pat terns for deve lopment , 25% area f i l l , 50% area f i l l , and
f inal ly odd-even stairstep. The or iginal R&D pr int qual i ty metr ics
evo lved in to the p resen t aud i t tes ts wh ich run on a samp le o f
pr intheads f rom each lot .

P8Y8

P93S

F ig . 1 . Samp le Qu ick ie pa t t e rns
for DeskJet pr inthead print quai i ty
evaluation.

50% Odd

96 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

The order o f the tes t charac te rs tu rned ou t to be impor tan t ,
espec ia l l y when eva lua t ing p r in theads tha t had marg ina l d rop
volume.

Evaluation Hierarchy
The Quickie pattern provides the framework for developing an

eva lua t ion h ie ra rchy . Th is h ie ra rchy p rov ides bo th a s tandard
te rmino logy and common eva lua t ion c r i te r ia to ass ign one fa i l
mode per pr inthead. Table I l is ts the h ierarchy of test character
evaluation and the associated fai l modes. Two addit ional benefits
from only hierarchical approach are: first, that a fail mode not only
descr ibes i t se l f bu t a lso imp l ies tha t a l l p rev ious modes were
passed, and second, that the consistent terminology al lows track
ing of fai lures through any possible yield improvement rework or
reclaim processes.

Table I
Test Character and Fai l Mode Hierarchy

Hierarchy

1
2
3
4
5
6
7
8
9

10
11
12
13

Test Character

Blackout
Blackout
Blackout
10x5 Sta i rs tep
1 0 x 5 S t a i r s t e p
1 0 x 5 S t a i r s t e p
1 0 x 5 S t a i r s t e p
10x5 Sta i rs tep
10x5 Sta i rs tep
10x5 Sta i rs tep
Vertical Lines
Vertical Lines
Vertical Lines

Fail Mode

Depr ime
Vertical registration
White bar
Not present
Extra orifice
Misaimed
Weak orif ice
Jack frost South
Jack frost North
Starvation
Trajectory
Satellites
Spray

M a c h i n e V i s i o n P r i n t Q u a l i t y T e s t e r s
The Quickie pat tern evaluat ion hierarchy was extended to the

machine vision print quali ty testers. These testers employ an X-Y
tab le to move tes t med ia under a p r in t i ng p r in thead and then
register the test characters under a camera for Â¡mage capture
and analysis. Str ict adherence to the evaluat ion hierarchy al lows
s imp le r cor re la t ion and acceptance l im i t se t t ing . The mach ine
v is ion a lgor i thms are d iscussed in the accompanying ar t ic le .

Process Feedback
The funct iona l i ty o f a pr in thead is moni tored to a l low feedback
to the fabr icat ion and assembly process. To mainta in assembly
process control , fa i l mode data for each pr inthead (ident i f ied by
b a r c o d e) i s c o l l e c t e d b y t h e m a c h i n e v i s i o n p r i n t q u a l i t y
evaluator.

Process Monitoring
Certain fail modes are tracked. When an out-of-control situation

i s de tec ted , the opera to r i s no t i f ied . Present ly mon i to red a re :
e lec t r i ca l opens (th i s p rov ides feedback on the TAB bond p ro
cess or the quality of the tester interconnect), deprimes (feedback
on the foam insert ion and ink f i l l) , and vert ical registrat ion (feed
back on the pr in thead head a l ignment to the p last ic body) .

Reference
1 . R. Manufacturing "Three Cameras Look at InkJet Pen Production," Manufacturing Systems.
August 1987.

Timothy S. Hubley
Manufactur ing Engineer

InkJet Components Operat ion

sensitivity to variations in lighting and contrast across the
field of view.

If profiling is performed parallel to any lighting trends
in the image, the trends are removed. Once the profile
(either horizontal or vertical) of the image has been deter
mined, peaks can easily be located which represent sharp
and significant changes in the gray scale range over the
row or column. For example, given a 100% area fill charac
ter in the field of view as shown on the left in Fig. 5, the
image is analyzed. Since the printhead moves from left to
right, any banding will appear as a horizontal white gap
in the blackout. The vertical profile of the image seen on
the right in Fig. 5 is the summation over all columns for
each row. Using this image, it is easily observed that the
nozzle that is not firing creates a very large peak that can
be detected as a failure. The height of this peak compared
to the highest edges of the profile also reveals the whiteness
of the band relative to the white paper background.

A status code for every printhead is placed in the CIM
data base. Additional process information can be provided
for monitoring and calibration.

Alignment Machines
In the development of the DeskJet printhead manufactur

ing processes, three critical alignment processes were iden
tified as being best accomplished by integrating machine
vision into a closed-loop alignment process. The orifice

attach machine, head attach machine, and TAB attach
machine, contain a system controller that uses the vision
processor as a tool to gauge the relative alignment of two
parts. Then the parts are moved into better alignment before
being tacked together. The design of the machines also
allows for an inspection of the parts after they are assem
bled. The inspection does not affect the assembly cycle
time because the vision inspection processing occurs in
parallel with the transfer of new parts into the alignment
area. For a more detailed report of the mechanics of these
machines see "Whole Wafer Assembly of Thermal InkJet
Printheads," page 92.

Orif ice Attach Machine
The function of the orifice attach machine is to align and

tack a singulated orifice plate onto a substrate that is still
in wafer form. The process involves picking an orifice plate
and transferring it to an assembly position directly above
the substrate. The vision system then determines the mis
alignment between the two parts and the tables beneath
the wafer move the substrate into better alignment with
the orifice plate.

A major challenge in the development of the orifice at
tach processes was the design of the optics system to ac
quire the images of the alignment targets. The desire to
resolve the location of the targets within several microme
ters with a 256-by-256-pixel vision system dictated the use

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 97

© Copr. 1949-1998 Hewlett-Packard Co.

Fig . 6 . TAB at tach mach ine f ie ld o f v iew.

of a unique field of view for each set of alignment targets.
Locating the optical axis of one field of view within one
quarter of an inch of another (the part target spacing) was
a design challenge in itself. The conflicting requirements
of high resolution and relatively large depth of field, com
bined with the need for axial lighting and a large front
focal length to satisfy mechanical mounting constraints,
required a custom lens set. The same lens design and
mounting configuration are used at different magnifica
tions for the head and TAB attach machines.

The vision process for this application involves an in
teresting variation of the adaptive thresholding techniques
described in the adhesive inspection application. A histo
gram of the gray level image is again used as a tool to help
determine the best threshold for binarization, but there are
now targets with a specific geometry. The targets form an
image that looks like a dark ring on a light background.
Since the area of the ring is constant, the number of pixels
in each column of the histogram starting with the dark end
can be summed until the nominal area value is reached.
The gray level value at this point is the optimal threshold
for binarization.

The feature extraction portion of the process is relatively
straightforward and is accomplished by calculating the cen-
troid of the nearly concentric targets. Run length encoding
and blob labeling techniques are used to segment and sort
the targets after binarization.

Head At tach Machine
The function of the head attach machine is to align and

tack a substrate/orifice-plate assembly onto the plastic
body. The process involves picking a head assembly off a
film frame and transferring it to an assembly position di
rectly above the plastic body. This process is unusual be
cause the vision system is used to gauge the position of
the head assembly only. Alignment targets molded into the

plastic body can be discerned by human operators during
a manual alignment process, but do not provide enough
contrast to be reliably located using a vision system. In
stead, a mechanical sensing method was chosen to deter
mine the location of the plastic body. The vision algorithms
for finding the position of the head assembly are identical
to those used in the orifice attach machine. The machine
controller calculates the relative offset and moves the parts
into alignment.

TAB At tach Machine
The TAB attach machine is an automated alignment sys

tem that aligns and tacks the TAB circuit to a head/body
assembly. The system is integrated into the assembly line,
handling two printhead bodies per pallet and receiving
tested TAB circuits directly from the TAB prep machine.

The vision process involves determining the relative
alignment between the substrate targets and the TAB circuit
lead tips adjacent to these targets as shown in Fig. 6. The
first step is to build a window around the nominal location
of the substrate target. The algorithm uses adaptive thresh
old, binarization, and segmentation to determine the cen-
troid. Based on this centroid location, a second window is
built over the original image in the pad area, and a second
binary threshold is determined using a histogram, which
optimizes the contrast between the TAB leads and the pads.
Binarization, blob sorting, and moments calculations with
in this window are used to determine the location of the
desired TAB circuit lead tip.

Once both the lead tip position and the targets are found,
the table moves to correct any misalignments. Just before
the part moves out of the station, a final picture is snapped.
This takes 1/30 second. As the part leaves the station the
vision system calculates the final true alignment and stores
the information for future reference. In this instance, a
closed-loop inspection is used to get the part into alignment
and the CIM connection is made from the final inspection
data.

Conclusions
The use of vision systems in the assembly of the DeskJet

printhead has had many benefits. Verification of the quality
level of the printheads produced is probably the most un
derstandable. In addition, the process verification and part
inspections have improved the quality of the printhead.
Improvements in the process are only possible with the
data to show where the problems are or how well a process
has been performed. The TAB prep, TAB placement, encap-
sulant, and adhesive inspection systems satisfy the first
level of an open-loop system.

Print quality inspection is on a level that begins to close
the feedback loop by connecting data paths in the CIM
format. The three attachment machines are tied even tighter
in the CIM architecture using immediate feedback to direct
the placement of parts. All levels of machine vision appli
cations have shown their worth in helping to produce a
high-quality printhead.

Acknowledgments
Thanks to Larry Hubby of HP Laboratories, who served

as optics consultant and designer.

98 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Economical , High-Performance Optical
Encoders
These high-resolution optical encoders are inexpensive and
easy to install, making closed-loop motion control feasible
in high-volume, extremely cost-sensi t ive appl icat ions.

by Howard C. Epstein, Mark G. Leonard, and Robert Nicol

A HIGH-RESOLUTION, HIGH-SPEED printer like the
HP DeskJet printer1 needs an electronic ruler to
know where it is on the page. For this function, the

DeskJet printer uses a separately available HP product, the
HEDS-9000 Shaft Encoder Module (Fig. 1). The version of
this two-channel position sensor in the DeskJet printer pro
vides 2000 marks (500 cycles) per revolution and gives
direction information. The module facilitates a large reduc
tion in the cost of servo motion control and is one reason
the DeskJet printer is able to provide high-quality, speedy
printing at a low price. Special geometries in the emitter/de
tector system and a "designed for manufacturability" ar
chitecture are key to the high performance and low cost of
this transmissive optical encoder.

This article describes key elements of the module's de
sign, manufacturing strategies, and performance. The box
on page 100 presents the "Basics of Optical Incremental
Encoders." The box on page 105 discusses how the module
was made into a dust-resistant enclosed encoder with a
self-contained code wheel, the HEDS-5500. A convenient
gap-setting system allows quick assembly of the HEDS-
5500 on a customer's motor with no special tools.

Background
An earlier HP shaft encoder, the HEDS-5000, was re

ported on in October 1981. 2 The emitter/detector modules
discussed in that article formed the basis for a family of
encoding products that included a 1000-cycle-per-revolu-
tion encoder with index pulse and a panel-mounted digital
potentiometer.

Building on the base of the earlier technology was a
significant advantage in the HEDS-9000 design. Several
veterans of the previous development led the product def
inition stage for the new module. The team also learned
from a disciplined process of talking to users and potential
users of encoders. Most engineers at the end of a design
project have said to themselves, "I know what I would like
to try next time." This team had their chance.

Market Research
Customers were generally satisfied with the performance

and reliability of the HEDS-5000 encoder kits, but several
producers of office automation products said they needed
a revolutionary change in price and assembly methods.
The HP Thinkjet printer, for example, uses an open-loop
step motor for driving the print carriage. A closed-loop
system would have offered increased speed and graphics

quality, but the added cost of an encoder (about the cost
of the drive motor) was too great for the target market.

The purchase price of an encoder is not the only concern.
Encoder characterist ics can determine motor selection
criteria. An encoder that can operate on a hot motor with
large shaft play allows the use of significantly lower-cost
motors. Economics often favor small motors that can reach
temperatures up to 100Â°C. As one customer put it, "If I'm
not running a motor hot, I'm using too big a motor."

HEDS-5000 encoders require adhesives in the assembly
process and an alignment that takes about 3 minutes. Cus
tomers told the design team that such assembly processes
are not compatible with high-volume automated manufac
turing. They need an encoder that can be located and fas
tened by ordinary mechanical methods with no follow-up
adjustments.

Logistics are also important in high-volume manufactur
ing. Some customers want high-volume capaci ty with
quickly adjustable running rates to avoid cost ly inven
tories. Another issue is that count density and code wheel
size vary with the application, so a variety of standard parts

Fig . 1 . The HEDS-9000 encoder w i th code whee l mounted
on the DeskJet pr inter carr iage dr ive motor .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 99

© Copr. 1949-1998 Hewlett-Packard Co.

Basics of Optical Incremental Encoders

An encoder p rov ides in fo rmat ion about the pos i t ion o f some
movable part . For example, in a plot ter the control ler must know
where the pen is a t a l l t imes and issue appropr ia te commands
to the focus to make the desired plots. This discussion wi l l focus
on rotary encoders, but the principles apply equal ly wel l to l inear
encoders.

HP produces t ransmiss ive opt ica l incrementa l quadrature en
code rs . I n t hese encode rs , l i gh t passes t h rough a pa t t e rned
wheel and a detector senses the result ing shadows. An incremen
tal encoder only reports relat ive mot ion. The control ler must use
other means to f ind i ts reference posit ion, and then count pulses
to keep t rack of the instantaneous posi t ion of the moving par t .

A quadrature encoder has two output channels which together
indicate both the distance and the direction of motion. The signal
f rom each channel is a square wave, one cyc le for each spoke
o f t he s lo t t ed code whee l . Typ i ca l encoder ou tpu t wave fo rms
and performance definit ions are shown in Fig. 1 . Channel A leads
channel B by VA cycle for mot ion in one direct ion and lags by Vi
cycle in the other direct ion.

There are four possib le s tates of the two channels, occurr ing
in the sequence s1 , s2, s3, s4, s1 , ... in one direction and ...,
s1, s4, s3, s2, s1, . . . in the other. From any given state, only the
two adjacent s tates are va l id . An out -of -sequence state s ignals
an er ror . Even in un id i rec t iona l systems, a quadrature encoder
is o f ten used for er ror check ing and/or to double the resolut ion
(four t ransi t ions per cycle instead of two).

A d ig i t a l encoder g i ves no i n fo rma t ion abou t mo t ion un t i l a
s igna l t rans i t i on occurs . D ig i t i z ing d iscards some in fo rmat ion
from the analog opt ical s ignals. Some appl icat ions, such as stop
ping at a point (wi th no deadband), might benef i t f rom using the
miss ing ana log in fo rmat ion . Normal ly , however , the reso lu t ion
(s ta tes per revo lu t ion) o f the code wheel i s made h igh enough
so the uncerta inty wi th in a s ingle state is acceptable.

Errors in the Output Signals
There is somet imes confus ion about the terms accuracy, res

o lu t ion , and repeatab i l i t y . A l l th ree have someth ing to do w i th
knowing the pos i t ion, but there are impor tant d i f ferences. Accu
racy is the relat ion between the reported posi t ion and the actual
posit ion. Resolut ion defines how small a motion can be detected.
Repeatabi l i ty concerns how closely the system can return again
to a par t i cu la r loca t ion . For example , imag ine an encoder w i th
a very high-count code wheel mounted on a bent shaft . Accuracy
wil l not be very good, because the center of the wheel isn't where
i t shou ld be . Bu t the sys tem can move and re tu rn to the same
spot qui te precisely (repeatabi l i ty) or detect a smal l mot ion (res
o lu t ion) . On the o ther hand, a we l l -made encoder w i th a smal l
number o f counts per revo lu t ion wou ld have good accuracy be
cause i ts output pulses occur at the r ight p laces, but low resolu
t i on because the sha f t has to tu rn a l ong way be fo re the nex t
transition.

Since the output signals are periodic, it is convenient to discuss
their t iming and errors relative to one cycle of those signals. Each
cyc le en def ined as 360 e lect r ica l degrees. For a 500-count en
coder, 360 electrical degrees equal 1 /500 of a full turn of the shaft.

Cyc le un i formi ty (pos i t ion o f cor responding t rans i t ions on ad
j acen t cyc les) i s usua l l y qu i t e accu ra te , because the va r i ous
sou rces o f e r ro r a f f ec t co r respond ing t rans i t i ons i n t he same
way . A ben t spoke i n a me ta l code whee l does cause a cyc l e
un i fo rmi ty e r ro r , bu t even tha t e r ro r i s decreased because the
encoder averages the posi t ions of severa l spokes. An eccentr ic

code whee l w i l l cause cyc le un i fo rmi ty e r ro rs tha t accumula te
into posi t ion errors equal to the total eccentr ic i ty.

Idea l l y , the s igna ls fo r the A and B channe ls d i f fe r in phase
b y 9 0 c a n d e g r e e s . E r r o r s i n t h i s p h a s e r e l a t i o n s h i p c a n
be caused by mechanical misal ignment between the code wheel
and the detector . In F ig. 2, the dark l ines represent code wheel
s lo ts , and the cross ha i rs represent the detectors for channels
A a n d B . S u p p o s e t h e c e n t e r o f t h e c o d e w h e e l i s m o v e d a
distance e. The code wheel slots that should be over the detectors
are no wheel in the correct posit ions. Rotat ion of the code wheel
can s t i l l a l i gn t he s l o t s w i t h t he de tec to r s , bu t i t mus t r o ta te
counterc lockwise fo r A and c lockwise fo r B . The d i f fe rence be
tween those two posi t ions is the phase error between the A and
B channe l s igna ls . Re fe rence 3 l i s ted on page 106 ca lcu la tes
this error to be

= (360/2-n-)eSn/r2,

-One Cycle -

-S3 - s4-

Channel
A

Channel B

Rotation

Fig . 1 . Typ ica l ou tpu t wave fo rms fo r a two-channe l quadra
tu re encoder . One shaf t ro ta t ion equa ls 360 mechan ica l de
grees or n cyc les , where n is the number o f counts per rev
o lu t ion . Each count (cyc le) cor responds to one code whee l
spoke and w indow pa i r . One cyc le equa ls 360 e lec t r i ca l de
grees.
Pu lse w id th (P) : The number o f e lec t r i ca l deg rees tha t an
output is h igh dur ing one cyc le, nominal ly 180.
Pulse width error (AP): The deviat ion, in e lect r ica l degrees,
of the pulse width f rom i ts ideal value of 180.
State width (s) : The number of e lectr ica l degrees between a
t r a n s i t i o n i n t h e o u t p u t o f c h a n n e l A a n d t h e n e i g h b o r i n g
t rans i t ion in the ou tpu t o f channe l B . There are four s ta tes
per cyc le , each nominal ly 90 e lect r ica l degrees wide.
Sta te wid th er ror (As) : The dev ia t ion, in e lec t r ica l degrees,
of each state width f rom i ts ideal value of 90.
Phase (< t>) : The number o f e lec t r ica l degrees between the
cen te r o f the h igh s ta te o f channe l A and the cen te r o f the
h igh state of channel B, nominal ly 90 for quadrature output .
Phase error (A<Â£): The deviat ion of the phase from i ts ideal
value of 90 electr ical degrees.

100 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

F ig . 2 . L ines on a code whee l rad i ca l l y d i sp laced by a d i s
tance e no longer over lap targets on the detector. This leads
to a change in t iming for events seen by the two detec tors ,
A and B. Th is change in t iming is a phase er ror .

wtiere Ad> is the phase error in e lect r ica l degrees, e is the mis
a l ignment , S i s the separa t ion be tween the A and B de tec to rs
(near and in the HEDS-9000). n is the cycles per revolut ion, and
r is the radius of the code wheel .

E r ro rs i n pu l se w id th a re t yp i ca l l y caused by th reshho ld o r
balance errors in the detector , or by a nonuni form l ight source.
Pulse width and phase errors combine to cause errors addit ively
in at least one of the four states.

I f the code wheel happens to stop r ight at the point of a t rans
i t ion of the output signals, the output should not chatter or di ther
be tween the two ad jacent s ta tes . Such d i ther ing shou ld no t in
theory cause the controller to lose count, but it would be a burden.
The remedy is to put hysteresis in the logic circui t . This requires
the code wheel to travel sl ightly beyond the ideal switching point,
then to switch abruptly. To return to the previous state, the wheel
has to before back across the transition point a finite distance before
the output wi l l snap to that other state. The amount of hysteresis
should be large enough to avoid d i ther ing yet smal l enough not
to add s ign i f i can t l y to pos i t i on uncer ta in ty . In the HEDS-5000
and HEDS-9000 encoders, a bui l t - in circuit provides the required
hysteresis.

and a reasonable lead time for specials are important. The
HEDS-9000 is designed to accommodate a large variety of
formats, including use of linear scales instead of rotating
code wheels.

In summary, market research told us that the new en
coder had to be dramatically less expensive, both to buy
and to use.

Overall Results
Out of the user feedback came ambitious goals, leading

to a product that matches well the original customer re
quests. Compared with the HEDS-5000 family, HEDS-9000
manufacturing costs are reduced by a factor of 4 and labor
content is reduced by a factor of 10. Assembly tolerance
(detector to code wheel) is increased by a factor of 50.
Customer assembly time is reduced by a factor of 10. The
maximum recommended operating temperature has been
extended from 85Â°C to 100Â°C, and the module can operate
to 100 kHz over its full temperature range with substantially
constant encoding accuracy.

In most two-channel encoders, phase errors between the
two signals result from misalignment between the code
wheel and the detector. In the HEDS-9000, a 50-to-l reduc
tion in phase sensitivity to alignment is of key importance.
Some of the increased tolerance budget is used in manufac
turing to decrease cost, while most of it is given the cus
tomer in the form of increased assembly allowances. Encod
ing errors are discussed later in this article and in the box
on page 100. A more detailed analysis of encoder errors
can be found in reference 3.

In mounting a HEDS-9000 module, the customer is al
lowed a mounting position error of Â±400 /n,m in any direc
tion. One version has about 30 /am resolution (2000 tran
sitions per revolution on an 1 1-mm-radius code wheel) and

L E D

Detector 1C

F i g . 2 . O p t i c a l a r r a n g e m e n t o f t h e H E D S - 9 0 0 0 e n c o d e r .
There are four photodiodes per code wheel cycle (one spoke
and window pair) . Al l four contr ibute to both output channels
(A and B).

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 101

© Copr. 1949-1998 Hewlett-Packard Co.

is accurate within about 10 /nm. Thus the allowed mounting
position error is about 40 times the accuracy of the resultant
encoder. The repeatability of the resultant encoder is even
tighter, about 4 /im or 1/100 the allowed assembly error.
This repeatability is maintained over a recommended tem
perature range of â€” 40Â°C to 100Â°C, a frequency range of 0
to 100 kHz, and an operating life greater than 50,000 hours.

Design Approach
The design approach is to create a beam of light, pass it

through the customer's code wheel, and report the locations
of the shadows. Like the HEDS-5000 encoder, the HEDS-
9000 design takes advantage of in-house expertise and ca
pabilities in integrated photodetector circuits, LED technol
ogy, plastic optics, and high-volume manufacturing. A
major strategy was to use geometric intimacy between chan
nels A and B to reduce phase sensitivity to mounting posi
tion. This led to a new 1C design and elimination of a lens
and an aperture plate â€” the plate was used for phasing the
two channels. Optical balance is maintained by design
throughout the fabrication process, eliminating the need
for adjustments at final test. Precise collimation allows
wide gaps between the code wheel and the detector. Pack
aging integration reduces the number of parts and increases
reliability. Manufacturing technologies are adapted from
the semiconductor and hybrid industries to take advantage
of proven, inexpensive, and reliable processes.

The detector 1C contains an array of photodiodes and
circuitry to process the resulting signals. The array is cus
tom-made to work with a specific code wheel design. All
the signal processing is done by comparing light levels
received at the various detector regions. This is differential
or push-pull detection, which avoids the need to calibrate
the brightness of the light source.

Geometr ic Int imacy in the Detector Design
Fig. 2 shows the HEDS-9000 optical arrangement. There

are four photodiodes per code wheel cycle (one spoke and
window pair), and each of the four photodiodes contributes
to both output signals. The shared function merges the
effective locations of the detectors for channels A and B.
This geometric intimacy reduces phase errors between the
channels in response to alignment errors, as discussed on
page 100. In the earlier HEDS-5000 encoder, separate detec
tors for channels A and B were located about 2 mm apart.

The HEDS-9000 detector combines light detection and
signal processing for both output channels on one chip.
With minor process adjustments, a normal 1C manufactur
ing step makes the photodiodes.

Each point on the photodiode array can only measure
light intensity, but the integrated detector as a whole is
sensitive to the pattern of light and shadow. Different
counts-per-revolution geometries are provided by changing
a single 1C mask layer.

In use, the light source and code wheel combine to project
a pattern of light and shadow on the detector 1C. The light
levels falling on the various photodiodes behind the code
wheel are compared with each other to determine the
shadow locations.

The earlier HEDS-5000 design has a metal aperture plate
to shutter the light passing through the code wheel, and
lenses to focus the light on separate detector areas. Not
only do these parts cost money, but the aperture (phase)
plate also blocks half the light passing through the code
wheel at the signal transitions. In the new encoder,
eliminating the aperture plate and interdigitating the detec
tor areas puts to good use light that would otherwise have
been lost.

The signal processing portion of the 1C includes non
linear operations to make it respond to the ratio of the light
intensities in the shadows and illuminated areas. Absolute
brightness of the light source is not a significant concern.
At very low light levels, performance is limited by noise
and leakage currents. At very high light levels, the amplifier
stages overload. Between those extremes there is a range
of about 200:1 of satisfactory operation.

At the logic switch points, hysteresis is provided to avoid
oscillation. The hysteresis circuit was developed for the
previous generation of encoders,4 and is used here as well.

Most other pieces of the previous circuit were also reused
to reduce the design effort and maximize the probability
that the new design would work the first time, which it
did. The output circuitry was modified to improve fre
quency and temperature response.

Included in the borrowed circuitry is the block that com
pares the photocurrents from the alternating pattern of light
and shadow to make the digital outputs. It also creates an
analog signal that follows the original triangular waveshape
of the photocurrents, but has an amplitude independent
of light level. The signal is not available to the customer,

F i g . 3 . A s c a n p l o t s h o w i n g t h e
l ight energy uni formity of the LED
source and the shadow o f a w i re
located 45 wire diameters from the
source.

102 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

but is a useful in-process test point for monitoring the
optical system.

Optical Balance in the Emitter Lens System
Differential detection accommodates large variations in

light level, but requires matching between the two halves
of the system. Imbalance in the optical path or circuitry
creates pulse width errors. Although it might have been
possible to adjust pulse width at final test, unit-by-unit
adjustments clutter the path to manufacturing simplicity.
The design stategy for the HEDS-9000 was to make the
optics and detector inherently balanced. This was not par
ticularly difficult in the detector, but in the emitter system
this was technically challenging.

The detector design takes advantage of matching compo
nents that come naturally in an 1C. 1C resistors, for example,
may have 20% variation from batch to batch, and a signif
icant temperature drift, but adjacent resistors on the same
1C usually match each other within 1%. The circuit leans
heavily on characteristics that come free and avoids un
realistic expectations on process control.

One figure of merit for encoders is their tolerance for
uncertainty in the distance from the code wheel to the
detector. Such tolerance allows the system designer to use
cheaper code wheels (less flat), cheaper bearings (more end

play), or less careful assembly. The code wheel should not
rub on the detector at its closest position, yet must cast a
clear shadow at its farthest position. This leads to another
restriction on the light source: it must produce a collimated
beam of parallel light rays. The HEDS-9000 emitter lens is
a precision-molded polycarbonate lens with an f-number
of 0.7 for high efficiency and two aspheric surfaces for
control of collimation and uniformity. The emitter, a light-
emitting diode (LED), produces more intense light on-axis
than at wide angles. The lens funnels more of the weaker
wide-angle light to each unit area of exit surface. It does
this compensation while causing more than 50% of the
total light from the emitter to emerge in a parallel, colli
mated beam.

Tight collimation requires a small light source as well
as precise lens surfaces. The gallium arsenide phosphide
emitter radiates from a 60-/u.m-wide active area on its top
surface.

Emitter system characteristics are monitored in the man
ufacturing process to ensure consistent collimation and
unformity. Fig. 3 shows the intensity profile across the
diameter of the light beam. The dip in the middle of the
graph is the shadow of a test wire at a distance of about
45 wire diameters. The contrast between the shadowed and
nonshadowed areas remains good.

Co l l ima tmg Lens

Resistor 1C

Detector 1C

Stamped Leadframe

Exploded View

Insert Molded Package

Parting Line
of Insert Mold

Open Encoder Module

Folded Encoder
Module

Code Wheel

Application

Fig. fold-over insert-molded design of the HEDS-9000 encoder showing the fold-over insert-molded
leadframe.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 103

© Copr. 1949-1998 Hewlett-Packard Co.

Package Design
The package design is illustrated in Fig. 4. The package

carries the 1C, the LED, the lens, and a current limiting
resistor. It provides electrical interconnections between
these elements and includes connecting pins to the outside
world. The package also aligns the emitter system to the
detector and provides mounting location features. A plastic
body molded around a stamped metal leadframe was de
veloped for the HEDS-9000 because it performs all of these
functions, replacing as many as 10 separate parts (see Fig.
5), saving labor, and improving reliability.

The molded leadframe is flat for die attachment and wire
bonding of the detector 1C, the emitter, and the current-
limiting resistor. The detector is given a protective trans
parent encapsulant. The collimating lens is inserted over
the emitter cavity and sealed. The package is then folded
into its final C shape and tested. Five 0.025-inch-square
posts on the leadframe become the connecting pins. Details
on the molded plastic align the emitter system to the detec
tor. Holes provide for screw mounting and registration of
the module by the customer.

Manufactur ing Technology
The assembly process for the HEDS-9000 is similar to

that used for a standard 1C package. Since 1C manufacturing
is a well-developed technology, off-the-shelf machines are
widely available for high-volume production.

The LED, the 1C, and a resistor die are automatically
positioned and wire-bonded using standard equipment. 1C
encapsulation, lens insertion and sealing, package folding,
and testing operations are done on equipment specifically
developed for the HEDS-9000.

Because the HEDS-9000 is not dependent on special
alignment by the customer, it can be 100% tested in an
as-used configuration for both electrical characteristics and
encoding parameters. Testing is performed at over 700 units
per hour with a tube-to-tube parts handler. To test a 1000-
cycle-per-revolution encoder at the required resolution of

1/360 of a cycle, the tester must resolve about 4 seconds
of arc (0.000017 radians). A code wheel turning at constant
speed allows the tester to make time measurements rather
than angle measurements. Each output channel is moni
tored at a 50-MHz sample rate.

Production System
Work in progress (WIP) flows through the HEDS-9000

production line under a pull system, that is, WIP is pro
cessed only as required to satisfy the needs of the next
operation. Rework, hot lots, and fill jobs are not allowed.
The result is short lead times without huge inventories.
1,000-piece orders are delivered in less than four weeks.
Pull systems and JIT (just-in-time) manufacturing are com
mon throughout HP and other manufacturers, but there are
some difficulties in applying a JIT philosophy to compo
nent manufacturing. Because of special process steps, such
as oven cures, components are best made in batches to
allow better use of equipment and labor. HEDS-9000 pro
duction machines are loaded using magazines holding 48
units each. This accommodates batch processing while al
lowing the benefits of a pull system.

Fig. 6 is a simplified diagram of the HEDS-9000 produc
tion line with workstations and WIP holding areas. A work
station is an operation or combination of operations under
the control of one operator. The workstations are balanced,
that is, all stations run at approximately the same speed.
WIP flows from a cabinet through a workstation and into
the next cabinet on a first-in, first-out basis. WIP cabinet
contents are not allowed to exceed a preset maximum.
Limits are set to allow a certain amount of random speed
variation and machine setup time without stopping the
line. For example, if station 3 shuts down long enough,
cabinet B fills to its maximum and station 2 cannot work.
This propagates backward, so one person's problem be
comes everyone's problem. A cabinet that is always full
indicates that the next station is a bottleneck and it receives
engineering attention. If the speed at a bottleneck is in
creased by 5%, the output of the entire line increases by 5%.

The pull system works best if WIP has few reasons to
stop before completion. No rework of defective units is
allowed. Effort is spent learning to make things right rather
than learning to rework. Yield is high. Quality problems
are painful and get fixed in a hurry. Cycle time has been
reduced by eliminating time-consuming steps. For exam
ple, conventional adhesives and coatings would require a

Table I
HEDS-9000 Reliability Test Results (Abridged)

Test Devices Failures

0

0

F ig . 5 . An encoder p rev ious ly used in many HP p lo t te rs . I t
had 28 parts. The HEDS-9000 module that replaced it has five.

High-Temperature Operating Life 105
(+ 100Â°C), 1000 Hours

85Â°C, 85% Relat ive Humidi ty , 90
Biased, 1000 Hours

T e m p e r a t u r e C y c l e 5 5 0
(- 40Â°C to + 100Â°C) , 800 Cycles

S h o c k , 1 5 0 0 g , 5 m s , 5 0
6 Planes, 5 Blows

104 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

total of about 14 hours of oven cure time. To eliminate one
oven cure, an adhesive was developed that cures in less
than 5 seconds when exposed to ultraviolet radiation.
Cumulative cure time was reduced to 2 hours.

Reliability
Table I summarizes the reliability test results for the

HEDS-9000. Reliability is inherently good because of the
low number of parts and interconnections. Here again, the
benefits of integrated design are reaped. Judicious choice
of materials, stress-test monitoring of production parts, and

statistical quality control result in consistent performance.

Encoder Selection
There is no one best encoder for all applications. Assum-

Fig. 6. Simpl i f ied diagram of the HEDS-9000 product ion l ine,
showing work- in -progress (WIP) ho ld ing areas and works ta
t ions. The l ine operates under a pul l system.

A Complete Encoder Based on the HEDS-9000 Encoder Module

Many customers want a complete, easy-to-use encoder without
the compl icat ions of procur ing a code wheel and a housing. The
HEDS-5500 Qu ick Assembly Opt ica l Encoder , F ig . 1 , i s the re
sponse to this need. The goals for this encoder were for customer
assembly t ime to be less than 30 seconds, to have a mount ing
tolerance of Â±0.25 mm, and to require no special assembly tools.
I t a l s o h a d t o b e d u s t r e s i s t a n t , b e a b l e t o a c c o m m o d a t e a
through shaf t , and be easi ly removed.

An impor tan t s tep in encoder assembly i s the se t t ing o f the
gap, or the distance f rom the code wheel to the photodetectors.
The HEDS-5500 encoder 's in tegra l , mu l t i func t ion tw is t cap de
sign solves the problem of sett ing the gap quickly without special
tools.

T h e H E D S - 5 5 0 0 e n c o d e r m a i n h o u s i n g c o n t a i n s t h e c o d e
wheel , the twis t cap, and the HEDS-9000 encoder module. The
encoder is shipped with the twist cap preset to provide the proper
gap and comes supp l ied w i th a p re inser ted hex wrench and a
baseplate.

To mount the HEDS-5500 encoder to a motor , the basep la te
is f i rs t at tached wi th screws. The main housing is then snapped
on to the basep la te . App ly ing a downward fo rce on the end o f

the suppl ied- in-pos i t ion hex wrench levers the code wheel hub
upwards aga ins t the tw is t cap . A se t sc rew i s t i gh tened us ing
t h e s a m e h e x w r e n c h t o s e c u r e t h e c o d e w h e e l t o t h e m o t o r
shaf t , and the wrench is removed. Turn ing the cap l i f ts i t away
f rom the hub , a l low ing the code whee l to tu rn f ree ly , and a lso
moves a w ipe r a rm ove r t he hex wrench access ho le t o keep
out dust . This f in ishes the 15-second assembly sequence.

The cam-actuated twist cap plays a key role in sett ing the gap
between the code wheel and the detector. I t provides a reference
surface to the code wheel hub in one posi t ion and moves up out
of the way in i ts other posi t ion. A blade screwdriver can be used
to turn the twist cap through a slot on the top surface or through
exposed s lots on the cap's wiper arm. In the case of a through-
shaft opt ion, only the wiper arm slots are avai lable.

The twist cap also l imits radial t ravel of the code wheel hub to
prevent damage to the code wheel dur ing sh ipp ing.

Chr is Togami
Development Engineer

Optoelectronics Div is ion

S l o t o n T o p o f T w i s t C a p

Slots Â¡n
â€” Wiper Arm of

T w i s t C a p

, H e x W r e n c h

M o t o r

Fig. attached . motor attach the HEDS-5500 encoder to a motor, a baseplate is attached to the motor
with encoder and the encoder is snap mounted to the baseplate. The encoder housing contains

a code whee l and an HEDS-9000 encoder modu le .

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 105

© Copr. 1949-1998 Hewlett-Packard Co.

ing that an optical digital incremental encoder like the
HEDS-9000 is appropriate for the application, some re
maining important choices involve code wheel diameters
and counts.

Larger code wheel diameters give better accuracy, but
take up more room and have greater inertia.

Higher code wheel counts give better resolution, but at
a higher signal frequency, which could approach the limits
of the detector or the controller. Count and diameter com
bine to determine feature size. Cost can be largely depen
dent on area, a fact that favors small diameters until a point
is reached where the feature size gets too small. Code
wheels with very small features are hard to make, therefore
expensive.

All encoders in the HEDS-9000 family share the same
temperature and frequency capabilities. Different versions
are available for various code wheel sizes and resolutions.
The HEDS-9100 module is used with 28-mm-diameter code
wheels. The HEDS-9200 is for linear applications using a
code strip rather than a rotating wheel. The part number
HEDS-9000 specifically refers to modules used with 56-
mm-diameter code wheels but is also used as a family part
number. Many standard resolutions are available and spe
cials between 1.2 and 8 lines per millimeter can be provided
by tooling a new photodiode layout on the 1C.

Acknowledgments
Mark Bullock conceived much of the manufacturing ar

chitecture. Chris Togami designed the leadframe and plas
tic parts. Joe Dody and Donald Lapray contributed in the
areas of processes and tooling. Art Wilson did prototype
tooling. Thomas Lugaresi provided 1C layout direction.
Akhtar Khan's analysis provided the insight that led to the
detector IC's ability to operate smoothly over its wide tem

perature range. Thomas and Akhtar brought the insight to
fruition with simulation and physical modeling. Craig Sue,
whose leadership was essential for keeping the whole 1C
task on schedule, was responsible for 1C product engineer
ing, including test development and 1C characterization.
Curt Wilson did product characterization and ensured the
integrity of the data sheet. Richard Ruh managed the project
in its development phase with unrelenting dedication. He
took over from the able leadership of Debbie Haferburns,
who left to manage her family, also in development. Larry
McColloch gets credit for the pull system and much ingeni
ous tooling design. Victor Loewen and Bill Bilobran
supplied expertise in many areas including tester design.
Dave Oshima, Ray Tam, Yoshi Tatsumi, and Maria Costa
made successful production possible. Bill Loesch and Bill
Beecher provided unwavering support and sage advice
from the inception of this project to product release. Bob
Steward brought in the right people to make it all happen.
Lui Kok Chwee, George Lim, and many others in Singapore
established high-volume production capabilities. Karen
Owyeung and her predecessor Lisa Wade made certain that
the customer viewpoint predominated.

References
1. Hewlett-Packard Journal, this issue, pp. 6-52.
2. H.C. Epstein, M.G. Leonard, and J.J. Uebbing, "An Incremental
Optical Shaft Encoder Kit with Integrated Electronics," Hewlett-
Packard Journal, Vol. 32, no. 10, October 1981, pp. 10-15.
3. H. Incre "Optical and Mechanical Design Trade-offs in Incre
mental Encoders," Proceedings of the Tenth Annual Symposium
on Incremental Motion Control Systems and Devices, Chicago,
Illinois, June 1981, p. 57.
4. M. Leonard, "Push-Pull Optical Detector Integrated Circuit,"
IEEE Journal of Solid-State Circuits, Vol. SC-15, no. 6, December
1980, p. 1087.

1 06 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
October 1 988

6 Z Z D i s c l e s s H P - U X Z I i r Z I = = = = r r r = = Z :

Scot t W. Wang
Scott Wang served as proj
ect manager for a variety of
ca lcu la tor so f tware pro j
ects before he jo ined HP's
UNIX development team.
Success ive ly , he was a

i p ro jec t manager and R&D
sect ion manager involved
in HP-UX development for
the HP 9000 Ser ies 300.

Scott now is R&D manager at the Information Soft
ware Division of HP and continues to be responsi
b le for HP-UX sof tware. He came to HP in 1972,
when he joined the Calculator Products Division in
Loveland, Colorado. His BSEE degree is from the
Massachusetts Institute of Technology (1 971) and
his MSEE degree is from the University of Michigan
(1972). Scott is a member of the IEEE. He has con
tributed two previous articles to the HP Journal. He
was born in Taipei, is married and has two children.
He is an af f ic ionado of h igh-f idel i ty audio, v ideo,
and photography.

1 0 Z Z D i s c l e s s F i l e S y s t e m

Debra S. Bartlett
Debb ie Bar t le t t was re
sponsible for the HP-UX 6.0
f i le system, part icular ly
the I /O and FIFO scheme.
She has s ince become a
project manager for the file
sys tem and d isc less tes t
i ng . Debb ie a t tended Pur
due Univers i ty , where she
obta ined a BS degree in

mathematics in 1 977, Her MS degree in computer
science is f rom Colorado State Univers i ty (1982).
She was born in Indianapolis, Indiana, is married,
and has two smal l daughters . Debb ie 's husband
is a project manager at HP's Colorado 1C Division.
She resides in Ft. Coll ins, Colorado, and enjoys out
door act iv i t ies with her family.

Joel D. Tester
. ^ M _ A s t h e l e a d e n g i n e e r o f t h e

team that conce ived and
built the original distributed
HP-UX environment, Joel

e s i g n e d m o s t o f t h e
e system code and
sage interface. In a
= project, he de-
^ sof tkey package

and other environments for
the HP 64000-UX system. Joel came to HP in 1 980,
when he joined the Logic Systems Division. He is
the coauthor o f a paper on HP-UX opera t ing sys
tems presented at Uniforum 87, and he has previ
ously contr ibuted to the HP Journal . He at tended
the Univers i ty of Cal i forn ia at Davis , where he re
ceived his BS degree in computer science in 1 980.
Joel was born in Los Angeles and l ives in Cuper
tino, California. Hisfavorite pastime is orienteering,
a cross-country race in which contestants navigate
through unfami l iar terr i tory using only a compass
and a map.

2 0 D i s c l e s s N e t w o r k F u n c t i o n s ;

1

1 5 :ZZ Discless Program Execution '.

Ching-Fa Hwang
Ching Hwang init iated and
managed the DUX pro jec t
at HP Laboratories. He con
t inued to manage kernel
and in tegrated systems at
HP's Information Software
Divis ion and led their inte-

j g ra t ion in to HP-UX prod
ucts . He coauthored a
paper on the subject a t

Uni forum 87, and a patent appl icat ion descr ib ing
the DUX network protocol includes his ideas. Pre
viously, Ching led two projects aimed at develop
ing d is t r ibu ted data bases Before jo in ing HP
Laborator ies in 1979, Ching 's profess ional act iv i
t ies inc luded rea l - t ime process contro l , computer
archi tecture and processors, and mul t ip le-proces
sor operating systems. His BSEE degree is from the
National Taiwan University (1 971), and his MS de
gree in computer science is from the University of
Utah (1974) . Ching and h is wi fe, who a lso works
for HP, have two sons and live in Cupertino, Califor
n ia. He is bui ld ing a koi pond wi th water fa l ls and
enjoys playing the piano.

Wil l iam T. McMahon
The remote swapping
scheme for the d isc less
workstat ions was Bi l l
McMahon ' s p r imary p ro j
ec t . H is p rev ious deve lop
ment ass ignments inc lude
the graph ics ROM for the
HP 9826 BASIC Release
1.0, and the l inker and
assembler for Release 2.0

of the HP 9000 Series 200 HP-UX system. He holds
a BA degree in ph i losophy f rom Ohio Univers i ty
(1971) and an MS degree in computer science from
Colorado State Univers i ty (1979) . He came to HP
in 1 979. Bill is married and has two children. Among
his favori te recreat ional act iv i t ies are Tai-Chi,
c ross-count ry sk i ing, h ik ing, and backpack ing.

David O. GutiÃ©rrez
As a member o f the team
developing the HP-UX 6.0
software, David Gut ierrez
responsibi l i t ies included
the network funct ions and
transport, protocol and buf-

â€¢ fer management, and con-
' f i gu rab i l i t y . Be fo re j o in ing
Â¡ HP in 1985, he worked for

â€¢ Digi tal Equipment Corpora
t ion, Western Electr ic Company, and Bel l Labora
tor ies. David 's mam professional interests are the
UNIX operat ing system, special-purpose network
ing protocols, and d is t r ibuted operat ing systems.
He attended the University of New Mexico, where
he rece ived h is BS degree in 1980, and d id
graduate work in computer eng ineer ing a t the
Il l inois Institute of Technology. He has taught a proj
ect business class in a middle school and serves
as t reasurer of the Parent /Chi ld Educat ion Center
in Windsor, Colorado, where he lives. He was born
in Pueblo, Colorado, is marr ied, and has two
daughters. He has designed his own house and en
joys woodworking, gol f , ski ing, camping, and "any
th ing that doesn' t deal wi th computers. "

Chyuan-Shiun Lin
Dis t r ibu ted opera t ing sys
tems, data base systems,
and communicat ions are
Chyuan-Shiun Lin 's focal
profess ional in terests . Be
fore working on the distr ib
uted HP-UX system, his re
sponsibi l i t ies included data
base research at HP
Laborator ies and work on

the HP-UX Release 2.0 for the HP 9000 Series 800
Before coming to HP in 1 981 , he worked in the data
processing f ield. He has publ ished a number of pa
pers on a var ie ty o f computer sub jects and has
contributed to a protocol design for which a patent
is pending. Chyuan-Shiun is a member of ACM. His
BSEE degree is from the National Taiwan University
(1970) , and h is master 's degree in computer sc i
ence (1 976) is from the University of Utah. Born in
Ta ipe i , he is mar r ied and has th ree ch i ld ren He
l ives in Cupert ino, Cali fornia.

2 7 D i s c l e s s C r a s h R e c o v e r y

Annette Randel
I Crash detection and recov-
| ery, system reboot, sel f -

test , and the f i le system
cnode maps were among

' Anny Randel 's pro jects for
the HP-UX 6.0 system Pre-

l v ious responsibi l i t ies in-
^ ^ ' e l u d e w o r k o n t h e b o o t

Â ¡ ^ P R O M s f o r t h e H P 9 0 0 0
Ser ies 200/300 Computers

and the assembler and commands for the Ser ies
200. She first joined HP in a summer-student posi
t ion in 1981, and two years later jo ined ful l - t ime.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 107

© Copr. 1949-1998 Hewlett-Packard Co.

Anny's BS degree in computer science and com
puter engineer ing is f rom Graceland Col lege
(1981) and her MS degree in computer science is
f rom Colorado State Univers i ty (1983). Born in
Roseville, California, she is married and lives in Ft.
Coll ins, Colorado. She sings for a pop/jazz group
and p lays both c lar inet and bar i tone saxophone.
Her other hobbies include bicycl ing, tr iathlons, run
ning, ski ing, softbal l , and water ski ing.

3 7 ~ D i s c l e s s S y s t e m C o n f i g u r a t i o n I

3 3 ~ D i s c l e s s B o o t M e c h a n i s m â € ”

J o h n S . M a r v i n
A s o f t w a r e e n g i n e e r o n t h e
HP-UX Release 6.0 project,
John Marv in deve loped a
number o f commands fo r
d isc less operat ion. Before
he came to HP in 1984,
John worked as a program
mer analyst for his alma
mater, the University of Vir
g in ia. Both h is BS and his

MS degrees are in computer sc ience (1981 and
1983, respectively). He was born in Brooklyn, New
York, is married, and lives in Ft. Collins, Colorado.
Among his favor i te of f -hours act iv i t ies are ski ing
and ba l l room danc ing.

Perry Scott 's pr imary
responsibi l i t ies for HP-UX
Re lease 6 .0 were the sec
ondary loader , d isc less
kernel init ial ization, disc-
less context for CDF, and
sys tem c lock synchron iza
t ion. He had prev iously
worked on Releases 5.0,
5 .1 , and 5.2 . He has been

with HP since he earned his bachelor's degree in
electr ical engineering from North Dakota State Uni
versity in 1 980. Perry has served in the Air National
Guard for s ix years. He was born in Fargo, Nor th
Dakota, is marr ied, and l ives in Ft . Col l ins, Col
o rado. Garden ing and b icyc l ing a re among h is
favorite leisure activit ies.

Robe r t D . Qu i s t
Among the HP pro jec ts
Robert Quist has worked on
since he joined HPin 1971
are a Lisp workstat ion,
th i rd -par ty suppor t , a Pas
ca l workstat ion and a boot
ROM forthe HP 9000 Series
200 system. To the HP-UX
Release 6.0 system he con
t r i bu ted boo t ROM rev i

sions B and C. Specialty boot ROMs, Pascal work
stat ions, low- level dr ivers, and human inter faces
are Robert 's specia l in terests. His BE degree in
computer sc ience is f rom Br igham Young Univer
s i ty (1971). Born in Lethbr idge, Alber ta, Robert is
marr ied and has e ight ch i ldren. He l ives wi th h is
fami ly in Loveland, Colorado. He is act ive in the
Cub Scouts and teaches Pasca l p rogramming.
Robert enjoys birdwatching, camping, and reading
science f ict ion.

K i m b e r l y S . W a g n e r
k K i m W a g n e r ' s r e s p o n -
I s i b i l i t i e s o n t h e H P - U X R e

lease 6.0 pro ject inc luded
T " ^ - j L - ~ t n e d i s c l e s s a d m i n i s t r a t i o n

tools and system sof tware
integrat ion. She came to
HP in 1 986. She holds a BS
deg ree i n compu te r sc i
ence and mathemat ics
from the Universi ty of

California at Davis (1 983) and an MS degree from
Colorado State University at Ft. Collins (1 986). Kim
is a member of ACM and SIGGRAPH. She was born
in Redwood Ci ty, Cal i fornia, and now l ives in Ft .
Col l ins, Colorado.

3 9 = S C S I !

Pau l Q . Pe r lmu t te r
Paul Per lmut ter 's respon
s ib i l i t ies in the HP-UX Re
lease 6.0 pro ject inc luded
the mass storage software,
the dr iver support , and
backup s t ra teg ies. High-
performance mass storage
devices for UNIX systems
were the main focus of the
posi t ions Paul held before

jo in ing HP in 1985. His PhD and MS degrees in
mathemat ics are f rom the Univers i ty of Colorado
(1 975 and 1971). He has held a position as a col
lege professor of mathematics and has published
several articles on the subject. Paul serves as pres
ident in h is synagogue in Ft . Col l ins, Colorado,
where he lives. He was born in New York and has
two daughters. His favorite pastimes are bicycling,
photography, and h ik ing , bu t he spends most o f
h is spare t ime wi th his chi ldren.

4 6 = X W i n d o w S y s t e m :

Frank Hall is a project man
ager for user interface pro
ductivity tools and has held
a similar position in the de
velopment of the Xr l ib and
HP X Widget user interface
l ibrar ies for HP-UX. Before
coming to HP in 1979, he
worked as a system analyst
for the Computer Sciences

Corporat ion, where he helped develop aworldwide
computer network for communicat ions wi th the
space shut t le and geosynchronous sate l l i tes . At
HP, Frank has worked as a sof tware engineer on
operat ing system f i rmware for the HP 71 B Hand
held Computer and application software for the HP
Portable PLUS laptop computer. He has publ ished
three articles in the proceedings of the HP Software
Engineering Productivi ty Conference. Frank holds
a BA degree in mathematics from Florida State Uni
versity (1 972) and an MA degree in anthropology
f rom the Univers i ty of Texas at Aust in (1979). He
isa member of the ACM. He was born in Ft. Myers,
Florida, is married, and lives in Corvallis, Oregon.
His le isure interests inc lude b icyc le tour ing, b i rd-
watching, fo lk music, sk i ing, whi te water raf t ing,
and f ishing.

J a m e s B . B y e r s
a With marketing user inter

face technology h is focal
interest, Jim Byers is the
p roduc t marke t i ng en
gineer involved with HP's
re lease of the X Window
System Version 1 1 . He

^ fc fc* iÂ° 'ne{ - ' ' ^e Ind ianapo l is
A â „ ¢ I s a l e s o f f i c e o f H P i n 1 9 8 2 f ^ f
M * a n d h a s s e r v e d a s t h e m a r

keting representative for the HP 9000 and HP 1 000
Computers. Jim's BSEE degree is from Purdue Uni
versity (1 980) and his MBA degree in marketing is
f rom Indiana Univers i ty (1982). He was born in
South Bend, Indiana. He's marr ied, has a smal l
daughter, and lives in Corvallis, Oregon. In his off-
hours, he l ikes skiing, camping, and exploring the
outdoors with his fami ly.

5 1 = M a n a g i n g D e s k J e t D e v e l o p m e n t =

J o h n D . R h o d e s
I When he jo ined the Micro-
| wave Divis ion of HP in

1966, John Rhodes had
Ã . i r ^ B l u s ' r e c e i v e d h i s M B A d e -

J ^ f g r e e f r o m S t a n f o r d U n i v e r -
~ { K I s i t y - H e a l s o h o l d s a

I B b a c h e l o r ' s d e g r e e i n i n d u s -
H t r ia l techno logy f rom Long

O " ~ V * f A M B e a c h S t a t e C o l l e g e
\ W . ^ * V . 7 Â » (1 9 6 4) . I n h i s v a r i e d c a r e e r

a t HP, John served in many d i f ferent engineer ing
and manager ia l pos i t ions. As pro ject manager o f
the mechanical team working on the DeskJet proj
ect, he originated several patents. John was born
in San Jose, California. He is married, has a daugh
ter and a son, and lives in Vancouver, Washington.
For seven years, he served on the board of direc
tors for a puppet theater which tours extensively
throughout the United States. His hobbies include
astronomy, photography, and pi lot ing l ight aircraft.

5 5 H i g h - R e s o l u t i o n P r l n t h e a d

K e n n e t h E . T r u e b a
The pr inthead f i r ing
chamber, the ink feed pro
cess , and a method fo r
bubble observat ion were
a m o n g K e n T r u e b a ' s d e
s ign assignments for the
DeskJet pen. Earlier design
work inc luded the thermal
pr intheads for the HP
2621 P Terminal, the HP

2671 Thermal Printer, and the HP 85A/B Personal
Computers . On the DeskJet deve lopment team,
Ken was respons ib le for process, assembly , and
architectural design of the printhead. He came to
HP after receiving his BS (1 974) and MSEE (1 976)
degrees f rom the South Dakota School o f Mines.
Ken has presented papers and published a journal
article on the subjects of thin-fi lm techniques and
thermal inkjet devices. Three patents based on his
des igns are pending. Ken was born in Bo ise,
Idaho, is marr ied, and l ives wi th h is wi fe and two
daughters in Corval l is, Oregon. He enjoys photog
raphy, ski ing, playing the guitar, and psychology.

108 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Richard R. Van de Pol l
^ ^ ^ ^ A p r o c e s s e n g i n e e r i n t h e

^ ^ 1 ^ ^ t e a m d e v e l o p i n g t h e D e s k -
f ^ ^ J e t p r i n t e r . R i c h V a n d e

Pol l worked on pr inthead-
â€¢* re la ted ass ignments . He i s

^ E n o w a p r o j e c t l e a d e r a t t h e
'

â„¢ tion. His BS degree in
chemica l engineer ing is
f rom the Un ivers i ty o f Co l

orado. Before he joined HP's Logic Systems Divi
s ion in 1986, he had been a process eng ineer a t
Eastman Kodak, where he part ic ipated in develop
ing photographic emulsions. Born in Surabaja, In
donesia, Rich served three years in the U.S. Army.
He is marr ied, has two ch i ldren, and serves as a
cubmaster in the Boy Scouts. He lives in North Al
bany, Oregon, and spends h is le isure t ime wi th
photography and scuba d iv ing .

Paula H. Kanarek
^ ^ ^ ^ A s t a t i s t i c i a n a n d R & D p r o j -

Ã ‰ t t t t ^ ^ ^ e c t m a n a g e r f o r t h e D e s k -
^ k J e t p r o d u c t , P a u l a K a n a r e k

B c a m e t o H P i n 1 9 8 2 . H e r
I b a c h e l o r ' s d e g r e e i s f r o m

the Univers i ty of Michigan
(1 967), and her ScM (1969)

f _ _ a n d S c D (1 9 7 3) d e g r e e s i n
a l b i os ta t i s t i c s a re f r om Ha r

vard Universi ty. Before join
ing HP, Paula held posit ions as an assistant profes
sor in stat ist ics and biostat ist ics, respect ively, at
the University of Washington and at Oregon State
University. Statistical applications and reliabil ity in
engineering are her focal interests and provide the
subjects of some 20 of her publ icat ions. She is a
member of the Amer ican Stat is t ica l Associat ion,
the Amer ican Society of Qual i ty Contro l , and the
Society of Women Engineers. Paula is act ive in
loca l schoo l adv isory commi t tees a t Sa lem, Ore
gon, where she lives. She is married and has two
children. For recreation, she likes hiking, bicycling,
and cross-country sk i ing.

Robert N. Low
Starting as a temporary hire
dur ing summer recess.
Bob joined HP permanently
in 1977, when he received
his BS degree in metallurgi-

â € ¢ J S W p c a l e n g i n e e r i n g f r o m P u r -
â€¢ due University. His first as-
â€¢ signment involved the hy-
â„¢ brid development for the

HP-41C Calculator . He
went on to other projects, part icipated in develop
ment o f the Th inkJet pr in ter , and eventua l ly be
came project manager for pen assembly and man
ufactur ing technology for the DeskJet pr inter .
Bob's work has resulted in four patents for DeskJet-
related devices. His professional interests focus on
h igh-prec is ion , h igh-vo lume manufac tur ing tech
no logy, and he has prev ious ly cont r ibuted to the
HP Journal . He was born in South Bend, Ind iana.
Bob is married, has two small daughters, and lives
in Corval l is , Oregon. His le isure interests include
sai l ing, scuba d iv ing, sk i ing, h ik ing, and spor ts
cars.

Will iam A. Buskirk
Bi l l Buskirk came to HP in
1977 wi th a BSEE degree
f rom the Un ivers i ty o f Co l
orado at Boulder. Before he
became a project manager
for the DeskJet pr inthead,
he handled a variety of as
signments as a production
engineer and R&D en-

. g i nee r , i nc lud ing wo rk on
the HP 821 61 A Digital Tape Drive. The DeskJet de
velopment provided the subject of two papers Bil l
publ ished in conference proceedings. He recent ly
was appointed R&D section manager at the InkJet
Components Operat ion. B i l l was born in
Bloomington. Indiana, is married, and now lives in
Albany, Oregon. He has three young children. His
favorite recreational activit ies are hiking, windsurf
ing, alpine ski ing, and sai l ing.

Stanley T. Hal l
^ g P ^ ^ i A Ã i e r p i n i n g H P i n 1 9 7 6 a t

^ ^ ^ ^ * " ~ : e C o r v a l l i s C o m p o n e n t
â€¢ Operation, Stan Hall spent

I Â«Si* , Â»> f " ! over f i ve years as a man
ufactur ing engineer work-
ing on tooling for HP 33, 10,
ar |d 75 Ser ies calculators
and an HP" IL Pr in te r He
moved to InkJet deve lop-
ment in 1983 and became

a pro ject manager in product ion engineer ing.
Stan 's BS degree in industr ia l technology is f rom
Cali fornia Polytechnic University. His previous pro
fess ional exper ience inc ludes posi t ions as a
supplier quality engineer for ISS-SperryUnivac and
Intel. Stan is a member of the Society of Manufac
turing Engineers. He was born in Oakland, Cali for
n ia, and now res ides in Corval l is , Oregon. He is
married and has two daughters. His leisure activ
it ies include woodworking in the winter, sail ing and
gardening in the summer.

David E. Hackleman
As R&D project manager at
HP's InkJet Components

I Operat ion, the inks and
media used in ThinkJet,
PaintJet, and DeskJet print
ers have been the focus of
Dav id Hack leman 's i n
terests in recent years. He
came to HP with a BSEE de
gree f rom Oregon State

Univers i ty (1979) and a PhD in ana ly t ica l e lec
t rochemistry f rom the Universi ty of North Carol ina
at Chapel Hill (1 978). His previous design work at
HP inc ludes a var ie ty o f in tegra ted c i rcu i t p ro
cesses at the InkJet Component Operat ion. His
work in 1C processing, thermal InkJet inks, and mul
t ip lexing has resul ted in s ix patents, wi th several
more in appl icat ion. Dav id is a member o f the
American Chemical Society and the Electrochem
ical Society. He is a National Youth Science Camp
lecturer and serves as a control station operator of
the amateur rad io emergency serv ice . Dav id was
born in Coos Bay, Oregon, is married, and lives in
Monmoth, Oregon, where in his off-hours he oper
ates a tree farm "on forty acres way out of town. "

62 ~ Pr inter Pr inthead Integrat ion :

John A. Widder
Author s b iography appears e lsewhere in th is

section

J. Paul Harmon
As a development engineer
on the DeskJet project ,
Paul Harmon was responsi
b le for carr iage, serv ice

I stat ion, and interconnect
I design. A patent is pending
, for the DeskJet intercon-
' nect support structure Paul

developed. He came to HP
af ter receiv ing his BMSE

degree from the University of Washington in 1 981
and has since earned his MSME degree from Stan
ford Universi ty (1988). Paul has previously
coauthored an ar t ic le for the HP Journal (May
1 987). Born in Hermiston, Oregon, Paul is married
and has a ch i ld . He now l ives in Washougal ,
Washington. Paul 's spare t ime is taken up by
motorcycles, spor ts cars, and church act iv i t ies.

6 7 ~ C h a s s i s a n d M e c h a n i s m D e s i g n Ã ¼ ^ ^ ;

David W. Pinkernel l
Mechanica l des ign o f the
servo control for paper feed
and car r iage dr ive was
Dave Pinkernel l 's focal
contribution to the DeskJet
development. With the proj
ect s ince he jo ined HP in
1981 , he worked as a de
sign engineer unti l the con
c lus ion of the design

phase, when he joined a team of manufacturing en
g ineers in the task of set t ing up product ion
facilit ies. He is coinventor of a pending patent for
the printer mechanism. Dave attended the Cal i for
nia Polytechnic State University at San Luis Obispo,
where he received his BSME degree in 1 981 . His
MSME degree is from Stanford University. He was
born in Santa Barbara, Cal i forn ia, and makes h is
home in Pullman, Washington. His recreational in
terests include photography and traveling, both of
which he recent ly combined in a t r ip to East
Afr ica

John A. Widder
The des ign of the car r iage
servo system, l inefeed
motor control , and pr int-
head dr iver pr in ted c i rcu i t
boards are among John
Widder 's contr ibut ions to
the DeskJet pr in ter . As a
deve lopment eng ineer a t
the Vancouver Division, he
a lso worked wi th the

suppl iers of the power supply. Now a manufactur
ing engineer, John has shifted his attention to the

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 109

© Copr. 1949-1998 Hewlett-Packard Co.

DeskJet production line. In the past, he has worked
on the design of thermal pr in ters such as the HP
2675A, HP 2671 /3A, and HP 2674A. John came to
HP's Boise Div is ion in 1978, af ter receiv ing his
BSEE degree f rom the Univers i ty of Port land. He
is a member of the I EEE and the American Associ
ation for the Advancement of Science. He's also ac
tive in the City Club of Portland and the World Af
fa i rs Counci l o f Oregon. John was born in
Bethesda, Maryland, and now makes his home in
Brush Prair ie, Washington. His favorite pastimes in
c lude backpack ing and cross-count ry sk i ing .

Kieran B. Kelly
The DeskJet printer was not
the f i rs t product to use a
paper pa th des ign by
Kieran Kel ly. With mechan
ical design his main profes
sional interest, he has pre
v iously worked on the
QuietJet printer, the t i l t /
swivel base for the HP 1 50
Computer , and the HP

9826 and HP 9836 Control ler/Computers. His work
on the QuietJet paper dr ive resul ted in a patent
application. Kieran joined HP in 1 979, the year he
received his BS degree from the University of Vir
g in ia He a lso ho lds an MS degree f rom Stanford
Universi ty (1984). He l ives in Vancouver,
Washington, where he is present ly renovat ing a
turn-of-the-century Victorian house. Other hobbies
inc lude sai l ing, sk i ing, b icycl ing, and hik ing.

Steve O. Rasmussen
The paper path, carr iage,
and t ransmission of the
DeskJet pr inter were the
focal points of Steve Ras-
mussen 's des ign work . He
has contributed to designs
for the DeskJet printer that
resulted in a patent and five
patent appl icat ions. He
came to the Vancouver Di

v is ion in 1982, af ter receiv ing h is BSME degree
f rom Iowa State Univers i ty . Steve also holds an
MSME degree from Stanford University (1 987). He
was born in Fort Dodge, Iowa. He is married, has
an infant son, and lives in Vancouver, Washington.
Steve l ikes to spend h is of f -hours wi th church
act iv i t ies, work ing on h is house, b icyc l ing, and
woodwork ing.

Larry A. Jackson
p M , 4 I H E L a r r y J a c k s o n c o o r d i n a t e d

f ^ B t h e d e s i g n o f D e s k J e t
I paper hand l ing par ts , such

1 * I a s t h e c h a s s i s , c a r r i a g e
I gu i de , p i nch ro l l e r s , p i nch

, x ^ H s p r i n g s , a n d g e a r t r a i n s . A n
P ^ ! â € ¢ R & D e n g i n e e r a t t h e H P

^ V a n c o u v e r D i v i s i o n , h i s
past product invo lvement
includes the ThinkJet

pr in ter , the HP-01 Watch, the HP-41C Calculator ,
an 1C tester , a laser in ter ferometer , and a mul
t ichannel ana lyzer . He has managed the hybr id

laboratory at Santa Clara Div is ion. A patent and
four pa ten t app l i ca t ions a re based on Lar ry 's de
s igns. He at tended Utah State Univers i ty f rom
wh ich he rece ived BS (1965) and MS (1966) de
grees in mechanical engineering. He was born in
Ogden, Utah, is married and has four children. He
res ides in Vancouver , Washington. Larry 's spare
t ime interests inc lude camping, boardsai l ing,
downhi l l sk i ing, and church act iv i t ies.

76: : Data to Dots :

Donna J. May
As a development engineer
at the Vancouver Divis ion,
Donna May worked on the
f i rmware for the DeskJet
p r in te r . On o ther ass ign
ments , she has worked on
the HP 2934A Business
Pr in ter and a landscape
upgrade car t r idge for the
DeskJet pr inter . Donna

came to the Vancouver D iv is ion in 1983, a f ter re
ce iv ing her BS degree in computer eng ineer ing
from Iowa State University. Born in Cedar Rapids,
Iowa, she is marr ied and res ides in Vancouver ,
Wash ington. She p lays p iano and bassoon and
l ikes backpack ing and b icyc l ing.

Claude W. Nichols
After joining HPin 1980 as
a development engineer ,
C laude Nicho ls worked on
a variety of printers, includ
ing the HP 2675A, the HP
2671 A/G, the HP 2674A,
and the HP 2932A. In the
design of the DeskJet
pr inter , he was involved in
var ious aspects of the

f irmware. Claude's BS degree in computer science
is from Brigham Young University, earned in 1 979.
He was born in Reno, Nevada, but grew up in
Cheney, Washington. He is married and has three
children. Claude is active in the Boy Scouts and in
h is church in Vancouver , Washington, where he
l ives. He enjoys cross-country sk i ing, b icycl ing,
and hik ing.

Mark D. Lund
One of the patents pending
for the DeskJet pr in ter re
su l ted f rom Mark Lund's
des ign wo rk . An R&D en
gineer at the Vancouver Di
vision, he joined HP in 1 977
after receiving his BSEE
degree f rom the Univers i ty
of California at Irvine.
Among the pro jec ts Mark

has worked on are the electronics architectures of
the HP 2621 A Terminal and the HP 2671 A and HP
2673A Thermal Pr in ters. He was born in Santa
Monica. Cal i forn ia, and now l ives in Vancouver,
Washington. He is married and has a daughter and
t r ip le t sons. He en joys camping, backpack ing,
scuba diving, and woodworking. He also l ikes f ish
ing, especia l ly sa lmon and steelhead.

Thomas B. Pr i tchard
A s a d e v e l o p m e n t e n

gineer for the DeskJet
pr inter, Tom Pri tchard's re
spons ib i l i t i es inc luded de
s ign of a custom 1C and
test ing and correct ion of
e lectrostat ic d ischarge
condi t ions. His past as-
s ignmepts inc lude both
f i rmware and e lect ronics

des ign on HP 2934A, HP 2932A, and HP 2671 A
Printers and work as a production engineer for the
HP 3000 Bus iness Computer System. Tom is the
pr imary author o f an ar t i c le descr ib ing a micro
processor -based s igna l process ing system for
biomedical measurements and also has previously
contributed to the HP Journal. A patent is pending
for a character generator he developed. Born in
Ann Abor , M ich igan , Tom is mar r ied and has a
three-year-o ld chi ld . He now l ives in Vancouver,
Washington. He enjoys hiking and playing tennis.

81 HZ DeskJet Firmware :

Mark J. DiVittorio
i Mark DiVi t tor io is a project

 I m a n a g e r a t t h e V a n c o u v e r
IB Division, where his respon-

â€¢ sibilities included develop-
â€¢ ment of the DeskJet

L M i Â £ â € ¢ f i r m w a r e . I n t h e p a s t , h e
 has se rved as deve lop-
| ment engineer , product ion

eng inee r , and R&D en
gineer. His EE and MS de

g rees in compute r sc ience (1974 and 1978 , re
spectively) are from the University of Santa Clara.
Born in Chicago, I l l inois, Mark is marr ied, has a
seve'n-year-old son, and l ives in Vancouver,
Washington. In his off-hours, he likes to go fishing.

Claude W. Nichols
Author 's b iography appears e lsewhere in th is

section.

Michael S. Ard
_ _ _ _ _ â € ž , A S a p r o j e c t m a n a g e r a t t h e
â € ¢ j E ^ B V a n c o u v e r D i v i s i o n , M i k e

I A r d d i r e c t e d t h e d e v e l o p -
J ^ . ^ - V H Â » m e n t o f t h e E p s o n F X - 8 0

pr inter emulat ion f i rmware
for the DeskJet. His past re
sponsibi l i t ies as a develop
ment engineer inc lude
work on the HP 300 Bus i
ness Computer System

and the HP 2675A, HP 2673A, and HP 2934A
printer systems. He also managed the printer sys
tems group, focusing on printer solutions to system
and app l ica t ion suppor t . He ho lds a BS degree
(1975) and an MS degree (1 978) in computer sci
ence, both f rom Br igham Young Univers i ty . Mike
is active in his church and in youth sports. Born in
St. Anthony, Idaho, he is married and has six chil
dren. He l ives in Vancouver, Washington. Mike en
joys outdoor act iv i t ies and has been busy design
ing , bu i ld ing, and landscap ing h is new home.

110 HEWLETT-PACKARD JOURNAL OCTOBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

K e v i n R . H u d s o n
Development o f the Epson
FX-80 pr inter emulat ion
f i rmware, speci f ical ly the
g raph ics and parser , was
Hud Hudson ' s f oca l i n
te res t on the DeskJet p ro j
ect . In previous years, he
â€¢ as worked on printhead
and character set develop
ment for the ThinkJet

printer and hardware for the QuietJet. Hud earned
his BS degree at Iowa State University in 1 981 and
shortly thereafter joined HP, where he now is a de
velopment engineer at the Vancouver Division. He
was born in Vinton, Iowa, is marr ied, and l ives in
Vancouver, Washington. His recreational interests
include Softbal l , gol f , and science f ict ion.

Br ian Gr ipe
Deve lopment o f the Desk
Jet format ter was among
Br ian Gr ipe's most recent
projects. Present ly, he is
work ing on the X Window
System at the Corval l is
Workstation Operation, and
past ass ignments inc lude

f f c t h e m e c h a n i s m c o n t r o l l e r
. / * ' c o d e f o r t h e T h i n k J e t

printer. Brian has originated a text scaling system
for which a patent is pending. His BSCE and BAGS
degrees are from Rice University (1 982). Brian was
born in Anapolis, Brazil, is married, and lives in Cor
vall is, Oregon. His favorite pastimes are bicycling,
te lemark sk i ing, and tending h is pr ize-winning
roses.

Dav id J . Ne f f
Dav id Ne f f ' s respon
sibi l i t ies for the DeskJet
p r in te r i nc luded deve lop
ment of the Epson FX-80
emulat ion f i rmware. In the
past, he has worked on the
RTE-L and RTE-XL opera t
ing systems and landscape
cartridge firmware. He also
deve loped CAD/CAM so f t

ware l inks used internally in HP's Vancouver Divi
sion. David attended Harvey Mudd College, where
in 1 979 he earned his BS degree in mathematics.
He was born in Portland, Oregon, is married, and
has two ch i ldren. He now res ides in Vancouver ,
Washington.

8 7 = R o b o t i c A s s e m b l y :

P . Dav id Gas t
As a manufactur ing
engineer at the Vancouver
D iv is ion , Dave Gast de
ve loped an automated
h igh-volume assembly l ine
for mixed-mode product ion
o f DeskJet and Rugged-
Wri ter 480 pr inted c i rcui t
boards . He a lso des igned
the mechanica l hardware

for the robot ic workcel l that bui lds the boards. In
a previous position. Dave worked for the Research
Cente r o f Weyerhaeuser Company He ho lds a
BSME degree f rom Texas A&M Univers i ty (1982)
and an MBA degree from Oregon State University
(1984) He was born in Minneapol is . Minnesota,
and now l ives in Vancouver, Washington Windsurf
ing, b icyc l ing, te lemark sk i ing, and photography
are Dave's favori te leisure act ivi t ies.

a n d M a c h i n e V i s i o n :

R o b e r t F . A m a n
As a product ion eng ineer
and later as a procurement
eng ineer , Bob Aman has
shared responsibi l i ty for
product ion, procurement ,
and mater ia ls select ion for
the HP-85 Ser ies personal
computers and other por ta
b le computers. More re-

^ W v c e n t l y , a t H P ' s I n k J e t C o m
ponents Operation, he served as a project leader
for des ign and fabr ica t ion o f the equ ipment used
for wafer assembly and its integration in the man
ufacturing process of the DeskJet pen. Bob came
to HP in 1980, af ter work ing for some three years
as a manufac tu r ing eng ineer a t Boe ing Commer
cial Airplane Company. He earned a BSME degree
f rom Oregon State Univers i ty in 1977 and was
awarded a profess ional engineer ing l icense in
1 981 . Bob was born in Silverton, Oregon. He is mar
ried, has two sons, and lives in Albany, Oregon. His
hobbies include radio-control led model airplanes,
canoeing, f ish ing, and bow hunt ing.

Br ian L . Me l te r l i ne
Just af ter receiv ing his
BSEE deg ree f rom Mon
tana State University in
1987, Brian Helterl ine
jo ined the InkJet Compo
nents Operat ion o f HP. As
a product engineer, he was
responsible for print quality
testing of DeskJet print car
t r i dges , ownersh ip cons id

erations for the print quality tester, and machine vi
s ion algor i thms used for test ing. Vis ion sof tware
and computer-cont ro l appl icat ions are h is main
professional interests. Born in Plains, Montana,
Brian now makes his home in Salem, Oregon. He
is married and enjoys playing basketbal l and ten
nis.

G r e g g P . F e r r y
J**"" "^â€¢â€¢â€¢1 An engineer at HP's InkJet

I C o m p o n e n t s O p e r a t i o n ,
I Gregg Fer ry par t i c ipa ted in
I t he des ign o f v i s i on app l i -

j Ã ˆ j h t I c a t i o n s f o r t h e D e s k J e t
^ L m p r i n t e r . T h e p r o j e c t c o n -

' t i nues t o be cen t ra l t o h i s
design act iv i t ies as he con
centrates on electronic
too ls and compute r - in te

gra ted manufactur ing for the product . Both h is
BSEE (1 973) and his master's (1 976) degrees are
from the California Polytechnic Institute at San Luis

Ob ispo . Gregg was born in M inneapo l i s , M in
nesota , and now l ives in Corva l l i s . Oregon He
serves as a volunteer instructor for the Saturday
Academy, an organizat ion offer ing extracurr icular
ins t ruc t ion for h igh school s tudents Gregg l ikes
t rave l ing and b icyc l ing, two avocat ions he once
combined in a two-year b iycyc le t r ip around the
world.

T i m o t h y S . H u b l e y
A v i s ion app l i ca t ions en
gineer and project leader at
the HP InkJet Components
Operation, Tim Hubley has
focused on evaluat ion of
DeskJet pr int qual i ty. In
prev ious pro jects, he has
w o r k e d a s a p r o d u c t e n
g ineer on the ch ips for the
HP 71 B Handhe ld Com

puter and as an electrical tooling engineer for test
equipment. He earned BS and ECE degrees from
the University of Massachusetts in 1 981 and joined
HP the same year. He is a member of the Society
o f Mechanica l Engineers and the Machine Vis ion
Associat ion. Tim was born in St. Charles, I l l inois.
He is married, has two children, and lives in Corval
lis, Oregon. Among his favorite activities, Tim lists
vol leybal l , tennis, and fatherhood.

Mark C . Hu th
In the over seven years
s ince he jo ined HP, Mark
Hu th has wo rked on man
ufactur ing development
and too l des ign for the HP

â€¢ 85 Computer, the HP 75C
I and HP 71 B Handhe ld

â„¢ Computers, and inkjet print
cartr idges. On the DeskJet
team, Mark he lped des ign

the optics system and develop the machine vision
software. He received his BS degree in mechanical
eng ineer ing f rom Vi rg in ia Tech in 1981. He was
born in Boston, Massachusetts, and now lives with
h is w i fe and two sons in Corva l l i s , Oregon. B icy
c l ing , vo l leyba l l , and rock c l imb ing are Mark 's fa
vor i te sport ing act iv i t ies, but he also l ikes pot luck
parties and enjoys the "small-town atmosphere of
Corvall is."

R o b e r t A . C o n d e r
Vis ion appl icat ions and
compu te r - i n teg ra ted man
ufactur ing are Bob Con-
der 's foca l p ro fess iona l in
terests. Since he joined HP
in 1975 , h is p roduc t in
vo lvements have inc luded
a w ide var ie ty o f HP ca l
cu la to rs , handhe ld com
puters, and the ThinkJet

and DeskJe t p r in te rs . Bob i s now a p ro jec t man
ager and has been responsible for the coordination
of vision projects and control systems associated
with the DeskJet product. He is the author of an ar
t icle about inkjet cartridges, and three patents are

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 111

© Copr. 1949-1998 Hewlett-Packard Co.

pend ing on op t ics and a l ignment p rocedures he
developed. Bob's BSEE degree is from the Univer
sity of Utah (1 975). He was born in Salt Lake City,
Utah, and served four years as a sergeant in the
U.S. A i r Force. He is marr ied, has a son and a
daughter and l ives in Corvall is, Oregon. His recre
at ional interests include dir t -bike r id ing, sai l ing,
and f ishing

9 9 ~ O p t i c a l E n c o d e r s

Robert Nicol
As a manu fac tu r i ng en
g inee r , Rob N ico l de
ve loped a number o f p ro
duct ion methods for the
HEDS-9000 encoder. Pr ior
to that , he contr ibuted to
the development of the
HEDS-9000 as an R&D en
g ineer . He is now work ing

I â€” on new optical-encoder ap
p l icat ions. Before jo in ing HP as an R&D engineer
in 1983, Rob worked fo r the Santa Barbara Re
search Center , a subs id iary o f GM/Hughes. H is
BSME degree is from the University of California at
Santa Barbara (1983) . He was born in Walnut
Creek, California, is married and has two sons. He
resides in Fremont, California. Rob is a memberof

the Society for Automot ive Engineers and, in h is
spare t ime, has conver ted a convent iona l au to
mobile to electric operation. He also enjoys serious
music , sa i l ing, and making beer .

Mark G. Leonard
Mark Leonard was one of
the designers of the original
HP encode r , and h i s co l
labora t ion wi th o ther de
velopment engineers led to
p roduc t de f in i t i on and de
sign of the HEDS-9000. His
professional interests are
in terd isc ip l inary and en
compass e lec t ron ics , com

puter sc ience, and re l iabi l i ty physics. In the past ,
Mark has been invo lved in the des ign of a f iber
opt ic receiver and h igh-vol tage optocouplers Be
fore coming to HP in 1975, h is respons ib i l i t ies in
c luded fa i lu re ana lys is and compute r p rogram
ming. He is a senior member o f the IEEE and a
reg is te red pro fess iona l eng ineer and has pub
l ished ar t ic les about opt ical encoders. Four U.S.
patents are based on his designs. Mark attended
Macalester Col lege at St . Paul , Minnesota, where
he rece ived h is BA degree in 1965. He was born
in San Jose, Costa Rica, is married, and has three

sons. He lives in Los Altos, California. His hobbies
inc lude woodwork ing and photography .

Howard C. Epstein
Since coming to HP in
1976, Howard Epste in has
been responsib le for the
deve lopment o f sha f t en
coder technologies. On the
HEDS-9000 encoder , he
led the de f in i t ion and pro
to type s tages and was the
arch i tec t o f the emi t ter /de
tector/ lens system. Howard

has since concentrated on extensions of the HEDS-
9000 product . Before jo in ing HP, he deve loped
piezoelectr ic and piezoresist ive transducers. Sen
sors and t ransducers are the focus o f h is p ro fes
sional interests, and he has published four papers
about e lect romechanica l and opt ica l sensors . He
is a named inventor on f ive patents. A regis tered
profess ional - engineer , Howard holds BA and MS
degrees in phys ics (1965 and 1975) f rom the
California State University at Los Angeles. Born in
Los Angeles, he is marr ied, has three teenage
daughters, and l ives in Los Altos, California. How
ard serves on the board of the American Associa
t ion for Ethiopian Jewry, an organization dedicated
to the rescue of the ancient Ethiopian Jewish com
munity. He enjoys playing handball, rol ler-skating,
and surf f ishing.

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i fornia 94304

H E W L E T T - P A C K A R D J O U R N A L
O c t o b e r 1 9 8 8 V o l u m e 3 9 â € ¢ N u m b e r 5

Technical Information from the Laborator ies of
Hewlett -Packard Company

Hewlet t -Packard Company, 3200 Hulv iew Avenue
Palo Alto, Cal i fornia 94304 U.S.A.

Hewlet t -Packard Centra l Mai l ing Department
P.O. Box 529, Star tbaan 16

1180 AM Amste lveen, The Nether lands
Yokogawa-Hewlet t -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1M8 Canada

C H A N G E O F A D D R E

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

? 0 0 5 5 6 0 1 H P J 8 / 8 8
C BLACKBU'M
JOHNS HOPKINS JNIV
aPPLÃED 9iYSÃ¯:3 LA3
JOHNS HOPKINS RD
L a U R I L t M D 2 1 7 0 7

- chan9e yÂ°ur address> Â°r delete vÂ°ur naâ„¢ from our â„¢̂
Journa l . 60 H i l l v iew Avenue, Pa lo A l to . CA 94304 U.S.A. Inc lude your o ld address labe l , i f any . A l low 60 days.

5953-8571

© Copr. 1949-1998 Hewlett-Packard Co.

	Discless HP-UX Workstations
	Program Management
	A Discless HP-UX File System
	Discless Program Execution and Virtual Memory Management
	The Design of Network Functions for Discless Clusters
	Crash Detection and Recovery in a Discless HP-UX System
	Boot Mechanism for Discless HP-UX
	Discless System Configuration Tasks
	Small Computer System Interface
	X: A Window System Standard for Distributed Computing Environments
	Managing the Development of the HP Deskjet Printer
	Market Research as a Design Tool
	Human Factors and Industrial Design of the HP DeskJet Printer
	Development of a High-Resolution Thermal Inkjet Printhead
	Integrating the Printhead into the HP DeskJet Printer
	Deskjet Printer Chassis and Mechanism Design
	Data to Dots in the HP DeskJet Printer
	The DeskJet Printer Custom Integrated Circuit
	DeskJet Printer Font Design
	Firmware for a Laser-Quality Thermal Inkjet Printer
	Slow-Down Mode
	Robotic Assembly of HP DeskJet Printed Circuit Boards in a Just-in-time Environment
	DeskJet Printer Design for Manufacturability
	Fabricated Parts Tooling Plan
	CIM and Machine Vision in the Production of Thermal Inkjet Printheads
	Whole Wafer Assembly of Thermal InkJet Printheads
	Production Print Quality Evaluation of the DeskJet Printhead
	Economical, High-Performance Optical Encoders
	Basics of Optical Incremental Encoders
	A Complete Encoder Based on the HEDS-9000 Encoder Module

