
H E W L E T T - P A C K A R D

J â€” LJ A P R I L 1 9 B 9

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

c j
H E W L E T T -

a _i â€” u April 1989 Volume 40 â€¢ Number 2

Articles

6 An 81/2-Digit Digital Multimeter Capable of 100,000 Readings per Second and Two-
Source Ca l i b ra t i on , by Sco t t D . S teve r

8 An 81/2-Digit Integrating Analog-to-Digital Converter with 16-Bit , 100,000-Sample-
p e r - S e c o n d P e r f o r m a n c e , b y W a y n e C . G o e k e

I f - P r e c i s i o n A C V o l t a g e M e a s u r e m e n t s U s i n g D i g i t a l S a m p l i n g T e c h n i q u e s , b y R o n a l d
O L . S w e r l e i n

r \ r \ E x t e r n a l o f a n 8 1 / z - D i g i t M u l t i m e t e r f r o m O n l y T w o E x t e r n a l S t a n d a r d s , b y W a y n e
Â¿_Â¿_ D. Goeke, Ronald L. Swer le in, Stephen B. Venzke, and Scot t D. Stever

2 4 J o s e p h s o n J u n c t i o n A r r a y s
28 A H igh-S tab i l i t y Vo l tage Refe rence

O H Des ign fo r H igh Throughput in a Sys tem D ig i ta l Mu l t imete r , by Gary A . Cee ly and
O I D a v i d J . R u s t i d

3 3 F i r m w a r e D e v e l o p m e n t S y s t e m
3 6 C u s t o m U A R T D e s i g n

3 9
High-Resolut ion Dig i t i z ing Techniques wi th an In tegrat ing Dig i ta l Mul t imeter , by
Dav id A. Czenkusch

4 2 T i m e I n t e r p o l a t i o n
46 Measurement of Capaci tor D iss ipat ion Factor Using Dig i t iz ing

50
57

A S t r u c t u r a l A p p r o a c h t o S o f t w a r e D e f e c t A n a l y s i s , b y T a k e s h i N a k a j o , K a t s u h i k o
Sasabuch i , and Tadash i Ak iyama

D i s s e c t i n g S o f t w a r e F a i l u r e s , b y R o b e r t B . G r a d y

6 2 D e f e c t O r i g i n s a n d T y p e s

Editor, Richard P. Dolan â€¢ Associate Editor, Charles L. Leath â€¢ Assistant Editor, Hans A. Toepfer â€¢ Art Director, Photographer, Arvid A. Danielson
Support European Susan E, Wright â€¢ Administrat ive Services, Typography, Anne S. LoPrest i â€¢ European Product ion Supervisor, Michael Zandwi jken

2 HEWLETT-PACKARD JOURNAL APRIL 1989 Â© Hewlett-Packard Company 1989 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

Ã‡Ã¯ A Software Defect Prevention Using McCabe's Complexity Metric, by William T. Ward

66 The Cyclomatic Complexity Metric

69 Object-Oriented Unit Testing, by Steven P. Fiedler

7 5 Val ida t ion and Fur ther App l i ca t ion o f So f tware Re l iab i l i t y Growth Mode ls , by Gregory
A. Kruger

80
86

Comparing Structured and Unstructured Methodologies in Firmware Development,
by Wi l l iam A. F ischer , J r . and James W. Jost

A n O b j e c t - O r i e n t e d M e t h o d o l o g y f o r S y s t e m s A n a l y s i s a n d S p e c i f i c a t i o n , b y B a r r y
D. Kur tz , Donna Ho, and Teresa A. Wal l

91

96

V X I b u s : A N e w I n t e r c o n n e c t i o n S t a n d a r d f o r M o d u l a r I n s t r u m e n t s , b y K e n n e t h
Jessen

V X I b u s P r o d u c t D e v e l o p m e n t T o o l s , b y K e n n e t h J e s s e n

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

5 6 C o r r e c t i o n s
9 8 A u t h o r s

The Hewlet t -Packard Journal is publ ished b imonthly by the Hewlet t -Packard Company to recognize technical contr ibut ions made by Hewlet t -Packard (HP) personnel . Whi le
the in format ion o f in th is pub l ica t ion is be l ieved to be accurate , the Hewlet t -Packard Company makes no warrant ies , express or impl ied, as to the accuracy or re l iab i l i t y o f
such informat ion. The Hewlet t -Packard Company discla ims ai l warrant ies of merchantabi l i ty and f i tness for a part icular purpose and al l obl igat ions and l iabi l i t ies for damages,
including but not l imited to indirect, special , or consequent ial damages, attorney's and expert 's fees, and court costs, ar is ing out of or in connect ion with this publ icat ion.

Subscr ipt ions: non-HP Hewlett-Packard Journal is distr ibuted free of charge to HP research, design, and manufactur ing engineering personnel, as wel l as to qual i f ied non-HP
individuals, business and educational inst i tut ions. Please address subscript ion or change of address requests on printed letterhead (or include a business card) to the HP address
on the please cover that is closest to you. When submitt ing a change of address, please include your zip or postal code and a copy of your old label.

Submiss ions: research ar t ic les in the Hewlet t -Packard Journal are pr imar i ly authored by HP employees, ar t ic les f rom non-HP authors deal ing wi th HP-re la ted research or
solut ions contact technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitt ing such art icles. Also, the
Hewlett-Packard should encourages technical discussions of the topics presented in recent art ic les and may publ ish let ters expected to be of interest to readers. Letters should
be br ief , and are subject to edi t ing by HP.

Copyright publication that 989 Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not Hewlett-Packard used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the title of the publication and date appear on
:he copies; Otherwise, be a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
produced recording, information in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written
permission of the Hewlet t -Packard Company.

Please Journal , inquir ies, submissions, and requests to: Edi tor , Hewlet t -Packard Journal , 3200 Hi l lv iew Avenue, Palo Al to, CA 94304, U.S.A.

APRIL 1989 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
If you thought that voltmeters, those ancient and fundamental instruments,

had evolved about as far as possible and that there couldn' t be much more
to say d ig i ta l them, you 'd be wrong . Today , they ' re usua l l y ca l led d ig i ta l
mul t imeters or DMMs rather than vol tmeters. You can f ind h ighly accurate

â€¢>,â€¢ automated ones in cal ibrat ion laborator ies, very fast ones in automated test systems,
i j f V H B I m a n d a w h o l e s p e c t r u m o f p e r f o r m a n c e l e v e l s a n d a p p l i c a t i o n s i n b e t w e e n

II these extremes. Generally, more speed means less resolution â€” that is, fewer
~JJ^^^^Â¿2 d ig i ts in the measurement resul t . Conversely , a h igher- resolut ion measure-

HM ^mmamÃˆ I men t gene ra l l y t akes l onge r . Some DMMs a re capab le o f a range o f speeds
and resolut ions and a l low the user to t rade one for the other . The HP 3458A Dig i ta l Mul t imeter
does this to an unprecedented degree. I t can make 100,000 41/2-digi t measurements per second
or six cont inuous measurements per second, and al lows the user an almost cont inuous select ion
of speed-versus-resolut ion t rade-of fs between these l imi ts. You' l l f ind an int roduct ion to the HP
3458A on page 6. The basis of i ts performance is a state-of- the-art integrat ing analog-to-dig i ta l
converter (ADC) that uses both mul t is lope runup and mul t is lope rundown along wi th a two- input
s t ructure to achieve both h igh speed and high precis ion (page 8) . So precise is th is ADC that i t
can function as a rat io transfer device for cal ibrat ion purposes. With the ADC and a tr io of bui l t- in
t r ans fe r on l y a l l o f t he f unc t i ons and ranges o f t he HP 3458A can be ca l i b ra ted us i ng on l y
two external t raceable standards â€” 10V and 10 ki l . The art ic le on page 22 explains how this is
poss ib le . A t t he h igh end o f i t s speed range , t he ADC a l l ows the HP 3458A to func t i on as a
high-speed digi t izer, an unusual role for a DMM (page 39). In fact, ac vol tage measurements are
made eliminating analog the input signal and computing its rms value, eliminating the analog rms-to-dc
converters of older designs (page 15). Final ly, moving data fast enough to keep up with the ADC
was a des ign chal lenge in i tse l f . How i t was met wi th a combinat ion of h igh-speed c i rcu i ts and
eff icient f i rmware is detai led in the art icle on page 31 .

The seven papers on pages 50 to 90 are f rom the 1988 HP Software Engineer ing Product iv i ty
Conference and should be of in terest to sof tware engineers and users concerned wi th sof tware
defect prevent ion. Col lect ively, the papers spot l ight areas where v igorous sof tware engineer ing
activity testing, occurring today, namely in structured and object-oriented analysis, design, and testing,
and i n t he pape r o f r e l i ab l e me t r i c s w i t h wh i ch t o measu re so f twa re qua l i t y . ^ I n t he pape r
on page describe engineers from Yokogawa Hewlett-Packard and Tokyo University describe a joint
effort to f ind the f laws in design procedures that increase the l ikelihood of human errors that result
in p rogram fau l ts . Work ing backwards f rom fau l ts to human er rors to f lawed procedures , they
propose var ious structured analysis and design solut ions to el iminate the f laws. > The paper on
page 57 project expansion of the software defect data collection process so that project managers
can not only determine how best to prevent future defects, but a lso bui ld a case for making the
necessary changes in procedures. The t ime requi red to co l lect and analyze the addi t ional data
is shown to be minimal. ^ That complexi ty leads to defects is wel l -establ ished, so monitor ing the
complexity of software modules during implementation should point out modules that wil l be defect
prone. The paper on page 64 tel ls how HP's Waltham Divis ion is taking this approach to improve
the so f tware deve lopment p rocess , us ing McCabe 's cyc lomat ic complex i ty met r i c to measure
complexi ty. ^ Object-or iented programming, or iginal ly conceived for art i f ic ial intel l igence appl ica
t ions, and now f inding wider acceptance. The paper on page 69 reports on problems and methods
associated with test ing software modules developed with an object-or iented language, C + + , for
a c l in ica l in fo rmat ion sys tem. > In the paper on page 75, Greg Kruger updates h is June 1988
paper on the use of a software rel iabi l i ty growth model at HP's Lake Stevens Instrument Division.

4 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

The mode l i t . genera l l y been success fu l , bu t there a re p i t fa l l s to be avo ided in app ly ing i t . >
On a sof tware pro jec t a t HP's Log ic Systems Div is ion, some of the eng ineers used s t ruc tured
methods the some used unstructured methods. Was st ructured design bet ter? According to the
paper offered page 80, the results were mixed, but the structured methods offered enough benefits
to justify their continued use. *â€¢ In software development, system analysis precedes design. The
paper on increas 86 describes a new object-oriented approach suitable for analyzing today's increas
ingly based and more complex systems. The authors believe that designs based on object-oriented
speci f icat ions can be procedure-or iented or object-or iented with equal success.

Modular measurement systems consis t o f inst ruments on cards that p lug in to a card cage or
mainf rame. A user can ta i lor a system to an appl icat ion by p lugging the r ight modules in to the
mainf rame. The VXIbus is a new industry s tandard for such systems. Modules and mainf rames
conforming to the VXIbus standard are compat ible no matter what company manufactured them.
The a r t i c les on pages 91 and 96 in t roduce the VXIbus and some new HP p roduc ts tha t he lp
manufacturers develop VXIbus modules more quick ly . HP's own modular measurement system
archi tecture conforms to the VXIbus standard where appl icable. However, for h igh-performance
R F a n d s y s t e m i n s t r u m e n t a t i o n , H P h a s u s e d a p r o p r i e t a r y m o d u l a r s y s t e m i n t e r f a c e b u s
(HP-MSIB) . Pa ten t r i gh ts to the HP-MSIB have now been ass igned to the pub l i c so tha t th i s
archi tecture can be used by everyone as the high-frequency counterpart of the VXIbus.

P .P . Do lan
Editor

Cover
So prec ise is the 3458A Dig i ta l Mul t imeter that ver i fy ing some aspects o f i ts per formance is

beyond Division limits of conventional standards. In the HP Loveland Instrument Division Standards
Laboratory , the HP 3458A's l inear i ty is measured us ing a 10-vo l t Josephson junct ion ar ray de
veloped by the U.S. Nat ional Inst i tu te of Standards and Technology. The array is in a specia l ly
magnet ica l ly sh ie lded cryoprobe in the center of a l iqu id-hel ium-f i l led dewar (the tank wi th the
protect ive "steer ing wheel . ") On top of the dewar are a Gunn-diode s ignal source (72 GHz) and
v a r i o u s t o c o m p o n e n t s . A w a v e g u i d e a n d v o l t a g e a n d s e n s e l e a d s c o n n e c t t h e a r r a y t o
the external components. For more detai ls see page 24.

What's Ahead
Subjects to be covered in the June issue include:
â€¢ The Architecture 9000 Model 835 and HP 3000 Series 935 Midrange HP Precision Architecture

Computers
â€¢ Programming with neurons
â€¢ A new 2D simulation model for electromigration in thin metal f i lms
â€¢ Data compression and blocking in the HP 7980XC Tape Drive
â€¢ Design and appl icat ions of HP 8702A Lightwave Component Analyzer systems
â€¢ A data base for real-t ime applications and environments
â€¢ A hardware/software tool to automate test ing of software for the HP Vectra Personal

Computer.

APRIL 1989 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

An 81/2-Digit Digital Multimeter Capable of
100,000 Readings per Second and
Two-Source Cal ibrat ion
A highly l inear and extremely f lex ib le analog-to-dig i ta l
converter and a state-of-the-art design give this DM M new
performance and measurement capabi l i t ies for automated
test , cal ibrat ion laboratory, or R&D appl icat ions.

by Scott D. Stever

THE DIGITAL MULTIMETER OR DMM is among the
most common and most versatile instruments avail
able for low-frequency and dc measurements in auto

mated test, calibration laboratory, and bench R&D applica
tions. The use of general-purpose instrumentation in auto
mated measurement systems has steadily grown over the
past decade. While early users of programmable instru
ments were elated to be able to automate costly, tedious,
error-prone measurements or characterization processes,
the sophistication and needs of today's users are orders of
magnitude greater. The computing power of instrument
controllers has increased manyfold since the mid-1970s
and so have user expectations for the performance of mea
surement systems. Test efficiency in many applications is
no longer limited by the device under test or the instrument
controller's horsepower. Often either the configuration
speed or the measurement speed of the test instrumentation
has become the limiting factor for achieving greater test
throughput. In many systems, the DMM is required to per
form hundreds of measurements and be capable of multiple
functions with various resolutions and accuracies.

In some applications, several DMMs may be required to
characterize a single device. For example, measurements
requiring high precision may need a slower DMM with
calibration laboratory performance. Usually, the majority
of measurements can be satisfied by the faster, moderate-
resolution capabilities of a traditional system DMM. In ex

treme cases, where speed or sample timing are critical to
the application, a lower-resolution high-speed DMM may
be required. A single digital multimeter capable of fulfilling
this broad range of measurement capabilities can reduce
system complexity and development costs. If it also pro
vides shorter reconfiguration time and increased measure
ment speed, test throughput can also be improved for au
tomated test applications.

The HP 3458A Digital Multimeter (Fig. 1) was developed
to address the increasing requirements for flexible, accu
rate, and cost-effective solutions in today's automated test
applications. The product concept centers upon the syner-
gistic application of state-of-the-art technologies to meet
these needs. While it is tuned for high throughput in com
puter-aided testing, the HP 3458A also offers calibration
laboratory accuracy in dc volts, ac volts, and resistance.
Owners can trade speed for resolution, from 100,000 mea
surements per second with 4V2-digit (16-bit) resolution to
six measurements per second with 8V2-digit resolution. At
5V2-digit resolution, the DMM achieves 50,000 readings
per second. To maximize the measurement speed for the
resolution selected, the integration time is selectable from
500 nanoseconds to one second in 100-ns steps. The effect
is an almost continuous range of speed-versus-resolution
trade-offs.

Fig. 1 . The HP 3458 A Digital Mul
t ime te r can make 700 ,000 41 /2 -
digi t readings per second for high
s p e e d a u t o m a t e d t e s t a p p l i c a
t i ons . Fo r ca l i b ra t i on l abo ra to ry
appl icat ions, i t can make six 8V?-
d / g i t r e a d i n g s p e r s e c o n d . F i n e
control of the integrat ion aperture
a/ lows a near ly cont inuous range
o f speed-versus- resou l t ion t rade
offs.

6 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Measurement Capabilities
Measurement ranges for the HP 3458A's functions are:

â€¢ Voltage: 10 nV to 1000V dc
<1 mV to 700V rms ac

â€¢ Current: 1 p A to 1A dc
100 p A to 1A rms ac

â€¢ Resistance: 10 pÂ£l to 1 Gil, 2-wire or 4-wire
â€¢ Frequency: 1 Hz to 10 MHz
â€¢ Period: 100 ns to 1 s
â€¢ 16-bit digitizing at effective sample rates to 100

megasamples/second .
The ac voltage bandwidth is 1 Hz to 10 MHz, either ac or
dc coupled.

To increase uptime, the HP 3458A is capable of two-
source electronic calibration and self-verifying autocalibra-
tion. Autocalibration enhances accuracy by eliminating
drift errors with time and temperature. The dc voltage sta
bility is specified at eight parts per million over one year,
or 4 ppm with the high-stability option. Linearity is speci
fied at 0.1 ppm, transfer accuracy at 0.1 ppm, and rms inter
nal noise at 0.01 ppm. Maximum accuracies are 0.5 ppm
for 24 hours in dc volts and 100 ppm in ac volts. Midrange
resistance and direct current accuracies are 3 ppm and 10

ppm, respectively.
The HP 3458 A can transfer 16-bit readings to an HP 9000

Series 200 or 300 Computer via the HP-IB (IEEE 488. IEC
625) at 100,000 readings per second. It can change functions
or ranges and deliver a measurement 200 times per second
(over 300/s from the internal program memory), about four
times faster than any earlier HP multimeter.

The following five articles describe the technologies re
quired to achieve this performance and the benefits that
result. In the first paper, the development of a single analog-
to-digital converter capable of both high resolution and
high speed is discussed. The second paper describes the
development of a technique for the precise measurement
of rms ac voltages. The application of these technologies
to provide improved measurement accuracy over extended
operating conditions and to provide complete calibration
of the DMM from only two external traceable sources (10V
dc, 10 kfl) is discussed in the third article. Hardware and
firmware design to achieve increased measurement through
put is the topic of the fourth paper. The final paper dis
cusses several applications for the HP 3458A's ability to
perform high-resolution, high-speed digitizing.

APRIL 1989 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

An 81/2-Digit Integrating Analog-to-Digital
Converter with 16-Bit, 100,000-Sample-per-
Second Performance
This integrat ing- type ADC uses mul t is lope runup,
mul t is lope rundown, and a two- input s t ructure to achieve
the required speed, resolut ion, and l inear i ty.

by Wayne C. Goeke

THE ANALOG-TO-DIGITAL CONVERTER (ADC)
design for the HP 3458A Digital Multimeter was driv
en by the state-of-the-art requirements for the system

design. For example, autocalibration required an ADC with
SVz-digit (28-bit] resolution and 7V2-digit (25-bit) integral
linearity, and the digital ac technique (see article, page 22)
required an ADC capable of making 50,000 readings per
second with 18-bit resolution.

Integrating ADCs have always been known for their abil
ity to make high-resolution measurements, but tend to be
relatively slow. When the HP 3458A's design was started,
the fastest integrating ADC known was in the HP 3456A
DMM. This ADC uses a technique known as multislope
and is capable of making 330 readings per second. The HP
3458A's ADC uses an enhanced implementation of the
same multislope technique to achieve a range of speeds
and resolutions never before achieved â€” from 16-bit resolu
tion at 100,000 readings per second to 28-bit resolution at
six readings per second. In addition to high resolution, the
ADC has high integral linearity â€” deviations are less than
0.1 ppm (parts per million) of input.

Multislope is a versatile ADC technique, allowing speed
to be traded off for resolution within a single circuit. It is
easier to understand multislope by first understanding its
predecessor, dual-slope.

Basic Dual-Slope Theory
Dual-slope is a simple integrating-type ADC algorithm.

Fig. 1 shows a simple circuit for implementing a dual-slope
ADC.

The algorithm starts with the integrator at zero volts.
(This is achieved by shorting the integrator capacitor, C.)
At time 0 the unknown input voltage Vin is applied to the
resistor R by closing switch SWl for a fixed length of time
tu. This portion of the algorithm, in which the unknown
input is being integrated, is known as runup. At the end
of runup (i .e . , when SWl is opened), the output of the
integrator, V0, can be shown to be

V0(t J = - (1 /RC) P"v in (t)d t
J o

or, when Vin is time invariant,

V0(tu) = -(l/RC)Vintu.

Next a known reference voltage Vref with polarity oppo
site to that of Vin is connected to the same resistor R by
closing SW2. A counter is started at this time and is stopped
when the output of the integrator crosses through zero volts.
This portion of the algorithm is known as rundown. The
counter contents can be shown to be proportional to the
unknown input.

V0(t2) = V0(tu) - (l/RC)Vreftd = 0,

where td is the time required to complete rundown (i.e.,
td = t2 - tj . Solving for Vin,

vin=-vref(td/tj.

Letting Nu be the number of clock periods (Tck) during

SW1

V i n O

Vre t

Time

Runup Rundown

F ig . 1 . Dua l - s l ope i n t eg ra t i ng ADC (ana log - t o -d i g i t a l con
verter) c i rcui t and a typical waveform.

8 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

runup and Nd the number of clock periods during rundown,
time cancels and

Vin = - Vref{Nd/Nu).

The beauty of the dual-slope ADC technique is its insen-
sitivity to the value of most of the circuit parameters. The
values of R, C, and Tck all cancel from the final equation.
Another advantage of the dual-slope ADC is that a single
circuit can be designed to trade speed for resolution. If the
runup time is shortened, the resolution will be reduced,
but so will the time required to make the measurement.

The problem with the dual-slope algorithm is that its
resolution and speed are limited. The time Tm for a dual-
slope ADC to make a measurement is determined by:

Tm = 2TckM,

where Tm is the minimum theoretical time to make a full-
scale measurement, Tck is the period of the ADC clock, and
M is the number of counts of resolution in a full-scale
measurement. Even with a clock frequency of 20 MHz, to
measure a signal with a resolution of 10,000 counts requires
at least 1 millisecond.

The resolution of the dual-slope ADC is limited by the
wideband circuit noise and the maximum voltage swing
of the integrator, about Â±10 volts. The wideband circuit
noise limits how precisely the zero crossing can be deter
mined. Determining the zero crossing to much better than
a millivolt becomes very difficult. Thus, dual-slope is lim
ited in a practical sense to four or five digits of resolution
(i.e., 10V/1 mV).

Rundown

Fig. 2 . Enhanced dual -s lope ADC c i rcu i t uses two res is tors ,
one lor runup and one for rundown.

Enhanced Dual-Slope
The speed of the dual-slope ADC can be nearly doubled

simply by using a pair of resistors, one for runup and the
other for rundown, as shown in Fig. 2.

The unknown voltage, Vin, is connected to resistor Ru.
which is much smaller than resistor Rd, which is used
during rundown. This allows the runup time to be short
ened by the ratio of the two resistors while maintaining
the same resolution during rundown. The cost of the added
speed is an additional resistor and a sensitivity to the ratio
of the two resistors:

Vin = - Vref(Nd/NJ(Ru/Rd).

Because resistor networks can be produced with excel
lent ratio tracking characteristics, the enhancement is very
feasible.

Mult is lope Rundown
Enhanced dual-slope reduces the time to perform runup.

Multislope rundown reduces the time to perform rundown.
Instead of using a single resistor (i.e., a single slope) to
seek zero, multislope uses several resistors (i.e., multiple
slopes) and seeks zero several times, each time more pre
cisely. The ratio of one slope to another is a power of some
number base, such as base 2 or base 10.

Fig. 3 shows a multislope circuit using base 10. Four
slopes are used in this circuit, with weights of 1000, 100,
10, and 1. Each slope is given a name denoting its weight

+Vrel

- V r e f

Time

+ S 1 0 0 0 + S 1 0 - S 1
- S 1 0 0

R u n u p R u n d o w n

Fig. 3 . Base- W mul t is lope rundown c i rcu i t .

APRIL 1989 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

and polarity. For example, S1000 is a positive slope worth
1000 counts per clock period and -SlOO is a negative
slope worth - 100 counts per clock period. A slope is con
sidered to be positive if it transfers charge into the inte
grator. This may be confusing because the integrator (an
inverting circuit] actually moves in a negative direction
during a positive slope and vice versa.

The multislope rundown begins by switching on the
steepest slope, SlOOO. This slope remains on until the inte
grator output crosses zero, at which time it is turned off
and the next slope, -SlOO, is turned on until the output
crosses back through zero. The SlO slope follows next, and
finally, the -Si slope. Each slope determines the inte
grator's zero crossing ten times more precisely than the
previous slope. This can be viewed as a process in which
each slope adds another digit of resolution to the rundown.

If each slope is turned off within one clock period of
crossing zero, then each subsequent slope should take ten
or fewer clock periods to cross zero. Theoretically, then,
the time td to complete a multislope rundown is:

td < NBTck,

where N is the number of slopes and B is the number base
of the slope ratios. In practice, the time to complete run
down is higher, because it isn't always possible to to turn
off each slope within a clock period of its zero crossing.
Delays in detecting the zero crossings and delays in re
sponding by turning off the slopes cause the actual time
to be:

td < kNBTck,

where k is a factor greater than one. The delay in turning
off a slope results in the integrator output's overshooting
zero. For each clock period of overshoot, the following
slope must take B clock periods to overcome the overshoot.
Typical values of k range from two to four. The multislope
rundown shown in Fig. 3 completes a measurement yield
ing 10,000 counts of resolution in 4.0 /JLS assuming a 20-
MHz clock and k = 2. This is 125 times faster than the
equivalent dual-slope rundown.

Multislope can be optimized for even faster measure
ments by choosing the optimum base. Noting that the
number of slopes, N, can be written as logB(M), where M
is the number of counts of resolution required from run
down,

td < kBlogB(M)Tck.

This yields base e as the optimum base regardless of the
required resolution. Using base e in the above example

SWa
+ V r e f

- V r e l

results in a rundown time of 2.5 Â¿Â¿s. This is a 60% increase
in multislope rundown speed as a result of using base e
instead of base 10.

There is a cost associated with implementing multislope
rundown. A resistor network must be produced with sev
eral resistors that have precise ratios. The tightest ratio
tolerance is the reciprocal of the weight of the steepest
slope and must be maintained to ensure linear ADC oper
ation. If the ratio tolerances are no tighter than 0.05%, then
this requirement is feasible. Multislope also requires a more
complex circuit to control and accumulate the measure
ment, but with the reduced cost and increased density of
digital circuits, this is also feasible.

Mult islope Runup
Multislope runup is a modification of dual-slope runup

with the purpose of increasing the resolution of the ADC.
As mentioned earlier, the dual-slope technique's resolution
is limited by the maximum voltage swing of the integrator
and the wideband circuit noise. Multislope runup allows
the ADC to have an effective voltage swing much larger
than the physical limitations of the integrator circuit
hardware.

The technique involves periodically adding and subtract
ing reference charge to or from the integrator during runup
such that the charge from the unknown input plus the total
reference charge is never large enough to saturate the inte
grator. By accounting for the total amount of reference
charge transferred to the integrator during runup and add
ing this number to the result of rundown, a measurement
can be made with much higher resolution. Fig. 4 shows a
circuit for implementing multislope runup.

A precise amount of reference charge is generated by
applying either a positive reference voltage to resistor Ra
or a negative reference voltage to resistor Rb for a fixed
amount of time. The following table shows the four possible
runup reference currents using this circuit.

Slope
Name

s_

S W a S W b Integrator
Direction

+Vref
0
0

+vref

0
0

-vref
-vref

Current

+ 1
0

- I
0

Fig. 4 . Mul t is lope runup c i rcu i t .

Notice that, like multislope rundown, S+ adds charge to
the integrator and S_ subtracts charge from the integrator.
If we design the S+ and S_ currents to have equal mag
nitudes that are slightly greater than that of the current
generated by a full-scale input signal, then the reference
currents will always be able to remove the charge ac
cumulating from the input signal. Therefore, the integrator
can be kept from being saturated by periodically sensing
the polarity of the integrator output and turning on either
S+ or S_ such that the integrator output is forced to move
towards or across zero.

Fig. 5 shows a typical multislope runup waveform. The
dashed line shows the effective voltage swing, that is, the
voltage swing without reference charge being put into the
integrator. The integrator output is staying within the limits
of the circuit while the effective voltage swing ramps far

10 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

beyond the limit. The HP 3458A has an effective voltage
swing of Â±120,000 volts when making 8V2-digit readings,
which means the rundown needs to resolve a millivolt to
achieve an SVz-digit reading (i.e.. 120.000V 0.001Y =
120.000,000 counts).

The multislope runup algorithm has two advantages over
dual-slope runup: (1) the runup can be continued for any
length of time without saturating the integrator, and (2)
resolution can be achieved during runup as well as during
rundown. The HP 3458A resolves the first 4Vi digits during
runup and the final 4 digits during rundown to achieve an
SVz-digit reading.

An important requirement for any ADC is that it be linear.
With the algorithm described above, multislope runup
would not be linear. This is because each switch transition
transfers an unpredictable amount of charge into the inte
grator during the rise and fall times. Fig. 6 shows two
waveforms that should result in the same amount of charge
transferred to the integrator, but because of the different
number of switch transitions, do not.

This problem can be overcome if each switch is operated
a constant number of times for each reading, regardless of
the input signal. If this is done, the charge transferred dur
ing the transitions will result in an offset in all readings.
Offsets can be easily removed by applying a zero input
periodically and subtracting the result from all subsequent
readings. The zero measurement must be repeated period
ically because the rise and fall times of the switches drift
with temperature and thus the offset will drift.

Multislope runup algorithms can be implemented with
constant numbers of switch transitions by alternately plac
ing an S+0 and an S_0 between each runup slope. Fig. 7
shows the four possible slope patterns between any two
S+o slopes. Varying input voltages will cause the algorithm
to change between these four patterns, but regardless of
which pattern is chosen, each switch makes one and only
one transition between the first S+0 slope and the S_0 slope,
and the opposite transition between the S_0 slope and the
second S+0 slope.

The cost of multislope runup is relatively small. The
runup slopes can have the same weight as the first slope
of multislope rundown. Therefore, only the opposite-polar

ity slope has to be added, along with the logic to implement
the algorithm.

HP 3458A ADC Design
The design of the HP 3458A's ADC is based on these

theories for a multislope ADC. Decisions had to be made
on how to control the ADC, what number base to use, how
fast the integrator can be slewed and remain linear, how
much current to force into the integrator (i.e., the size of
the resistors), and many other questions. The decisions
were affected by both the high-speed goals and the high-res
olution goals. For example, very steep slopes are needed
to achieve high speed, but steep slopes cause integrator
circuits to behave too nonlinearly for high-resolution mea
surement performance.

One of the easier decisions was to choose a number base
for the ADC's multislope rundown. Base e is the optimum
to achieve the highest speed, but the task of accumulating
an answer is difficult, requiring a conversion to binary.
Base 2 and base 4 are both well-suited for binary systems
and are close to base e. Base 2 and base 4 are actually
equally fast, about 6% slower than base e, but base 2 uses
twice as many slopes to achieve the same resolution. There
fore, base 4 was chosen to achieve the required speed with
minimum hardware cost.

Microprocessors have always been used to control mul
tislope ADCs, but the speed goals for the HP 3458A quickly

V o

SWb

7 T 8T

SWa

SWb

Fig. 5. In tegrator output waveform for mul t is lope runup. The
dashed l i ne shows the e f f ec t i ve i n teg ra to r ou tpu t vo l t age
swing.

F ig . 6 . I dea l l y , t hese two wave fo rms wou ld t r ans fe r equa l
charge into the integrator, but because of the different number
of switch transit ions, they do not.

A P R I L 1 9 8 9 H E W L E T T - P A C K A R D J O U R N A L 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

SWa

SWb

SWa

SWb

S + o S - S - o S + S + o
Pattern No. 1

S + o S - S - o S - S + o
Pattern No. 3

SWa

SWb

SWa

SWb

S + o S + S - o S - S + o
Pattern No. 2

S + o S + S - o S + S + o
Pattern No. 4

Fig. 7. Mul t is lope runup pat terns for an algor i thm that keeps
the number of swi tch t ransi t ions constant.

eliminated the possibility of using a microprocessor to con
trol the ADC algorithm. It was anticipated that the ADC
clock frequency would have to be between 10 and 20 MHz,
and making decisions at these rates requires dedicated
hardware. Therefore, a gate array was chosen to implement
state machines running at 20 MHz for ADC control. The
ADC control and accumulator functions consume approx
imately half of a 6000-gate CMOS gate array. The other half

of the gate array is devoted to the timing and counting of
triggers and a UART (universal asynchronous receiver/
transmitter) to transfer data and commands through a 2-
Mbit/s fiber optic link to and from the ground-referenced
logic (see article, page 31).

The number of slopes and the magnitude of the currents
for each slope are more subtle decisions. If the slope cur
rents get too large, they stress the output stage of the inte
grator's operational amplifier, which can cause nonlinear
behavior. If the currents are too small, switch and amplifier
leakage currents can become larger than the smallest slope
current, and the slope current would not be able to converge
the integrator toward zero. A minimum of a microampere
for the smallest slope was set to avoid leakage current prob
lems. Also, it was believed that the integrator could handle
several milliamperes of input current and remain linear
over five or six digits, but that less than a milliampere of
input current would be required to achieve linearity over
seven or eight digits. On the other hand, greater than a
milliampere of current was needed to achieve the high
speed reading rate goal. Therefore, a two-input ADC struc
ture was chosen.

As shown in Fig. 8, when making high-speed measure
ments, the input voltage is applied through a 1 0-kÃÃ resistor,
and the ADC's largest slopes, having currents greater than
a milliampere, are used. When making high-resolution
measurements, the input voltage is applied through a 50-kfl
resistor and the largest slopes used have less than a milliam
pere of current. The largest slope was chosen to be Si 024,
having 1.2 /u.A of current. This led to a total of six slopes
(S1024, S256, S64, S16, S4, and Si) with Si having about
1.2 Â¡Â¿A of current. S1024 and S256 are both used during
multislope runup; therefore, both polarities exist for both
slopes. The Â±8256 slopes (0.3 mA) are used when the
50-kohm input is used and both the Â±81024 and the Â±5256
slopes (1.5 mA total) are used in parallel when the 10-kil
input is used. The 8256 slope is 25% stronger than a full-
scale input to the 50-kfi resistor, which allows it to keep
the integrator from saturating. The 10-kfl input is five times

+vre f

-v,

Fig . 8 . S impl i f ied HP 3458A ADC
circuit.

12 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

stronger than the 50-kohm input: thus, by using both S1024
and S256. 25% stronger reference slopes can be maintained
during high-speed measurements.

Integrator
The integrator's operational amplifier behaves more non-

linearly as the integrator slew rate (i.e.. the steepest slope)
approaches the slew rate of the amplifier. Two factors de
termine the integrator slew rate: the total current into the
integrator and the size of the integrator capacitor. Wanting
to keep the integrator slew rate less than 10V//u.s led to an
integrator capacitor of 330 pF. This capacitor must have a
very small amount of dielectric absorption since 50 fC of
charge is one count.

The integrator circuit has to respond to a change in refer
ence current and settle to near 0.01% before the next pos
sible switch transition (about 200 ns). It also has to have
low voltage and current noise, about IOOV//J.S slew rate, a
dc gain of at least 25,000, an offset voltage less than 5 mV,
and a bias current of less than 10 n A. A custom amplifier
design was necessary to achieve all the specifications.

Resistor Network
The resistor network has several requirements. The most

stringent is to obtain the lowest ratio-tracking temperature
coefficient possible. It is important to keep this coefficient
low because the gain of the ADC is dependent on the ratio
of the input resistor to the runup reference slope resistors.
An overall temperature coefficient of 0.4 ppm/Â°C was
achieved for the ADC. Even at this level, a temperature
change of 0.1Â°C results in a five-count change in a full-scale
8V2-digit measurement. (Autocalibration increases the gain
stability to greater than 0.15 ppm/Â°C.)

Another requirement for the resistor network is to have
a low enough absolute temperature coefficient that non-
linearities are not introduced by the self-heating of the
resistors. For example, the 50-kil input resistor has a input
voltage that ranges from +12V to -12V. There is a 2.88-
milliwatt power difference between a 0V input and a 12V
input. If this power difference causes the resistor to change
its value, the result is a nonlinearity in the ADC. A 0.01Â°C
temperature change in a resistor that has an absolute tem
perature coefficient of 1 ppm/Â°C causes a one-count error
in an SVi-digit measurement. The network used in the HP
3458A's ADC shows no measurable self-heating non-
linearities.

The final requirement of the resistor network is that it
maintain the ratios of the six slopes throughout the life of
the HP3458A. The tightest ratio tolerance is approximately
0.1% and is required to maintain linearity of the high-speed
measurements. This is a relatively easy requirement. To
maintain the ADC's SVz-digit differential linearity at less
than 0.02 ppm requires ratio tolerances of only 3%.

Switches
A last major concern for the ADC design was the switches

required to control the inputs and the slopes. Because the
switches are in series with the resistors, they can add to
the temperature coefficient of the ADC. A custom chip
design was chosen so that each switch could be scaled to
the size of the resistor to which it is connected. This allows

the ADC to be sensitive to the ratio-tracking temperature
coefficient of the switches and not to the absolute temper
ature coefficient. Another advantage of the custom design
is that it allows the control signals to be latched just before
the drives to the switches. This resynchronizes the signal
with the clock and reduces the timing jitter in the switch
transitions. The result is a reduction in the noise of the
ADC.

Performance
The performance of an ADC is limited by several non-

ideal behaviors. Often the stated resolution of an ADC is
limited by differential linearity or noise even though the
number of counts generated would indicate much finer
resolution. For example, the HP 3458A's ADC generates
more than 9Vz digits of counts but is only rated at 8V2 digits
because the ninth digit is very noisy and the differential
linearity is about one eight-digit count. Therefore, when
stating an ADC's speed and resolution, it is important to
specify under what conditions the parameters are valid.
Fig. 9 shows the speed-versus-resolution relationship of
the HP 345 8 A ADC assuming less than one count of rms
noise.

Given a noise level, there is a theoretical limit to the
resolution of an ADC for a given speed. It can be shown
that the white noise bandwidth of a signal that is the output
of an integration over time T is

ADC Switch
between 10-ki i

and 50-ki ! Inputs
at 100 us

100 nV//Hz
Theoretical Limit

10 s
6 8

Measurement Resolution (Digits)

Fig. 9. HP 3458A ADC speed versus resolut ion for one count
of rms noise.

APRIL 1989 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

BW = 1/2T.

If rundown took zero time then an integrating ADC could
sample once every T seconds. At this rate, the counts of
resolution, M, of an ADC are noise-limited to

M = (VfsV2T)/Vn.

where Vfs is the full-scale input voltagejo the ADC and Vn
is the white noise of the ADC in V/VHz. Fig. 9 shows the
best theoretical resolution for an ADC with rms noise of
100 nV/VÃÃz and a full-scale input of 10 volts. The HP
3458A comes very close to the theoretical limit of an ADC
with a white noise of 130 nV/V^iz near the 7-digit resolu
tion region. At lower resolutions the ADC's rundown time
becomes a more significant portion of the overall measure
ment time and therefore pulls the ADC away from the
theoretical limit. At higher resolutions the 1/f noise of the
ADC forces a measurement of zero several times within
the measurement cycle to reduce the noise to the 8Vz-digit
level. This also reduces the measurement speed.

Another way of viewing the ADC's performance is to
plot resolution versus aperture. The aperture is the integra
tion time, that is, the length of runup. This is shown in
Fig. 10 along with the 100-nV/VlÂ·lz noise limit and the
ADC's resolution without regard to noise. At smaller aper
tures, the HP 3458A's resolution is less than the theoretical

1 f l S

1 0 - k l l I n p u t
Idea l Reso lu t ion

10
5 6 7 8 9

M e a s u r e m e n t R e s o l u t i o n (D i g i t s)

Fig. 1 0. HP 3458A ADC aperture (runup t ime) versus resolu
tion.

noise limit because it is limited by noise in detecting the
final zero of rundown. That is, the algorithm does not have
enough resolution to achieve the theoretical resolution.

Linearity
High-resolution linearity was one of the major challenges

of the ADC design. The autocalibration technique requires
an integral linearity of 0.1 ppm and an differential linearity
of 0.02 ppm. One of the more significant problems was
verifying the integral linearity. The most linear commer
cially available device we could find was a Kelvin-Varley
divider, and its best specification was 0.1 ppm of input.
Fig. 11 compares this with the ADC's requirements, show
ing that it is not adequate.

Using low-thermal-EMF switches, any even-ordered de
viations from an ideal straight line can be detected by doing
a turnover test. A turnover test consists of three steps: (1)
measure and remove any offset, (2) measure a voltage, and
(3) switch the polarity of the voltage (i.e., turn the voltage
over) and remeasure it. Any even-order errors will produce
a difference in the magnitude of the two nonzero voltages
measured. Measurements of this type can be made to within
0.01 ppm of a 10V signal. This left us with only the odd-
order errors to detect. Fortunately, the U.S. National Bureau
of Standards had developed a Josephson junction array
capable of generating voltages from â€” 10V to + 10V. Using
a 10V array we were able to measure both even-order and
odd-order errors with confidence to a few hundredths of
a ppm. Fig. 4a on page 23 shows the integral linearity error
of an HP 3458 A measured using a Josephson junction array.

The differential linearity can be best seen by looking at
a small interval about zero volts. Here a variable source
need only be linear within 1 ppm on its 100-mV range to
produce an output that is within 0.01 ppm of 10 volts. Fig.
4b on page 23 shows the differential linearity of an HP
3458A.

K e l v i n - V a r l e y
S p e c i f i c a t i o n

- 1 0 V 10V
I n p u t V o l t a g e

F ig . 11 . HP 3458 A l i near i t y spec i f i ca t ion compared w i th a
Kelvin-Varley divider.

14 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Acknowledgments
The evolution of multislope ADC technology started with

the development of the HP 3455A DMM over 15 years ago
and has been refined by many designers working on several
projects. Through the years Al Gookin. Joe Marriott, Larry
Jones, James Ressmeyer. and Larry Desjardin have made
significant contributions to multislope ADC concepts. I also
want to thank John Roe of Hewlett-Packard's Colorado In

tegrated Circuits Division for his efforts in the design of
the custom switch chip, David Czenkusch and David Rus-
tici for the gate array development, and Steve Venzke for
his valuable input to the integrator design. I would like to
commend Clark Hamilton and Dick Harris of the U.S. Na
tional Bureau of Standards for developing the Josephson
junction array voltage system that contributed to the refine
ment of the ADC technology developed for the HP 3458A.

Precision AC Voltage Measurements Using
Digital Sampling Techniques
Instead of t rad i t ional DMM techniques such as thermal
convers ion or ana log computa t ion , the HP 3458A DMM
measures rms ac voltages by sampling the input signal and
comput ing the rms value d ig i ta l ly in real t ime. Track-and-
hold c i rcu i t per formance is cr i t ica l to the accuracy of the
method.

by Ronald L. Swerlein

THE HP 3458A DIGITAL MULTIMETER implements
a digital method for the precise measurement of rms
ac voltages. A technique similar to that of a modern

digitizing oscilloscope is used to sample the input voltage
waveform. The rms value of the data is computed in real
time to produce the final measurement result. The HP
3458A objectives for high-precision digital ac measure
ments required the development of both new measurement
algorithms and a track-and-hold circuit capable of fulfilling
these needs.

Limitat ions of Conventional Techniques
All methods for making ac rms measurements tend to

have various performance limitations. Depending on the
needs of the measurement, these limitations take on differ
ent levels of importance.

Perhaps the most basic specification of performance is
accuracy. For ac measurements, accuracy has to be
specified over a frequency band. Usually, the best accuracy
is for sine waves at midband frequencies (typically 1 kHz
to 20 kHz). Low-frequency accuracy usually refers to fre
quencies below 200 Hz (some techniques can work down
to 1 Hz). Bandwidth is a measure of the technique's perfor
mance at higher frequencies.

Linearity is another measure of accuracy. Linearity is a
measure of how much the measurement accuracy changes
when the applied signal voltage changes. In general, linear
ity is a function of frequency just as accuracy is, and can

be included in the accuracy specifications. For instance,
the accuracy at 1 kHz may be specified as 0.02% of reading
+ 0.01% of range while the accuracy at 100 kHz may be
specified as 0.1% of reading + 0.1% of range. The percent-
of-range part of the specification is where most of the linear
ity error is found.

If a nonsinusoid is being measured, most ac rms measure
ment techniques exhibit additional error. Crest-factor error
is one way to characterize this performance. Crest factor
is defined as the ratio of the peak value of a waveform to
its rms value. For example, a sine wave has a crest factor
of 1.4 and a pulse train with a duty cycle of 1/25 has a
crest factor of 5. Even when crest factor error is specified,
one should use caution when applying this additional error
if it is not given as a function of frequency. A signal with
a moderately high crest factor may have significant fre
quency components at 40,000 times the fundamental fre
quency. Thus crest factor error should be coupled with
bandwidth information in estimating the accuracy of a mea
surement. In some ac voltmeters, crest factor specifications
mean only that the voltmeter's internal amplifiers will re
main unsaturated with this signal, and the accuracy for
nonsinusoids may actually be unspecified.

Some of the secondary performance specifications for
rms measurements are short-term reading stability, settling
time, and reading rate. These parameters may have primary
importance, however, depending on the need of the mea
surement. Short-term stability is self-explanatory, but the

APRIL 1989 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

difference between settling time and reading rate is some
times confusing. Settling time is usually specified as the
time that one should wait after a full-scale signal amplitude
change before accepting a reading as having full accuracy.
Reading rate is the rate at which readings can be taken. Its
possible for an ac voltmeter that has a one-second settling
time to be able to take more than 300 readings per second.
Of course, after a full-scale signal swing, the next 299 read
ings would have degraded accuracy. But if the input signal
swing is smaller than full-scale, the settling time to
specified accuracy is faster. Therefore, in some situations,
the 300 readings/second capability is actually useful even
though the settling time is one second.

The traditional methods for measuring ac rms voltage
are thermal conversion and analog computation. The basis
of thermal conversion is that the heat generated in a resis
tive element is proportional to the square of the rms voltage
applied to the element. A thermocouple is used to measure
this generated heat. Thermal conversion can be highly ac
curate with both sine waves and waveforms of higher crest
factor. Indeed, this accuracy is part of the reason that the
U.S. National Institute of Standards and Technology (for
merly the National Bureau of Standards) uses this method
to supply ac voltage traceability. It can also be used at very
high frequencies (in the hundreds of MHz). But thermal
conversion tends to be slow (near one minute per reading)
and tends to exhibit degraded performance at low frequen
cies (below 20 Hz). The other major limitation of thermal
conversion is dynamic range. Low output voltage, low ther
mal coupling to the ambient environment, and other factors
limit this technique to a dynamic range of around 10 dB.
This compares to the greater than 20 dB range typical of
other techniques.

Analog computation is the other common technology
used for rms measurements. Essentially, the analog con
verter uses logging and antilogging circuitry to implement
an analog computer that calculates the squares and square
roots involved in an rms measurement. Since the rms av
eraging is implemented using electronic filters (instead of
the physical thermal mass of the thermal converter), analog
computation is very flexible in terms of reading rate. This
flexibility is the reason that this technique is offered in the
HP 3458A Multimeter as an ATE-optimized ac measure
ment function (SETACV ANA). Switchable filters offer set
tling times as fast as 0.01 second for frequencies above 10
kHz. With such a filter, reading rates up to 1000 readings/
second may be useful.

Analog computation does have some severe accuracy
drawbacks, however. It can be very accurate in the midband
audio range, but both its accuracy and its linearity tend to
suffer severe degradations at higher frequencies. Also, the
emitter resistances of the transistors commonly used to
implement the logging and antilogging functions tend to
cause errors that are crest-factor dependent.

Digi ta l AC Technique
Dig i t a l a c i s ano the r way to measu re t he rms va lue o f a

s i g n a l . T h e s i g n a l i s s a m p l e d b y a n a n a l o g - t o - d i g i t a l c o n
v e r t e r (A D C) a t g r e a t e r t h a n t h e s i g n a l ' s N y q u i s t r a t e t o
a v o i d a l i a s i n g e r r o r s . A d i g i t a l c o m p u t e r i s t h e n u s e d t o
compute the rms va lue of the appl ied s ignal . Digi ta l ac can

exh ib i t exce l l en t l inea r i ty tha t doesn ' t degrade a t h igh f re
q u e n c i e s a s a n a l o g a c c o m p u t a t i o n d o e s . A c c u r a c y w i t h
a l l waveforms is comparable to thermal techniques wi thout
the i r long se t t l ing t imes . I t i s poss ib le to measure low f re
quencies faster and with bet ter accuracy than other methods
u s i n g d i g i t a l a c m e a s u r e m e n t s . A l s o , t h e t e c h n i q u e l e n d s
i tself to autocalibration of both gain and frequency response
e r ro r s us ing on ly an ex te rna l dc vo l t age s t andard (see a r t i
cle, page 22).

I n i t s ba s i c fo rm, a d ig i t a l rms vo l tme te r wou ld s ample
t h e i n p u t w a v e f o r m w i t h a n A D C a t a f a s t e n o u g h r a t e t o
a v o i d a l i a s i n g e r r o r s . T h e s a m p l e d v o l t a g e p o i n t s (i n t h e
fo rm of d ig i t a l da ta) would then be opera ted on by an rms
e s t ima t ion a lgo r i t hm. One example i s shown be low:

N u m = n u m b e r o f d i g i t a l s a m p l e s
S u m = s u m o f d i g i t a l d a t a
Sumsq = sum o f squa re s o f d ig i t a l da t a
acrms = SQR((Sumsq-Sum*Sum/Nurn)/Num)

Concep tua l ly , d ig i t a l rms es t imat ion has many po ten t ia l
a d v a n t a g e s t h a t c a n b e e x p l o i t e d i n a d i g i t a l m u l t i m e t e r
(DMM) . Accu racy , l i nea r i t y ove r t he measu remen t r ange ,
f requency response , shor t - te rm read ing s tab i l i ty , and c res t
f a c t o r p e r f o r m a n c e c a n a l l b e e x c e l l e n t a n d l i m i t e d o n l y
by t he e r ro r s o f t he ADC. The pe r fo rmance l im i t a t i ons o f
d ig i ta l ac a re unknown a t the p resen t t ime s ince ADC tech
no logy i s con t inua l ly improv ing .

Read ing ra tes can be as fas t a s theore t i ca l ly poss ib le be
c a u s e i d e a l a v e r a g i n g f i l t e r s c a n b e i m p l e m e n t e d i n

f i rmware . Low-frequency se t t l ing t ime can be improved by
measur ing the pe r iod o f t he inpu t wavefo rm and sampl ing
o n l y o v e r i n t e g r a l n u m b e r s o f p e r i o d s . T h i s w o u l d a l l o w
a 1-Hz waveform to be measured in only two seconds â€” one
s e c o n d t o m e a s u r e t h e p e r i o d a n d o n e s e c o n d t o s a m p l e
the wavefo rm.

Synchronous Subsampl ing
A thermal converter can measure ac voltages in the fre

quency band of 20 Hz to 10 MHz with state-of-the-art accu
racy. Sampling rates near 50 MHz are required to measure
these same frequencies digitally, but present ADCs that can
sample at this rate have far less linearity and stability than
is required for state-of-the-art accuracy in the audio band.
If the restriction is made that the signal being measured
must be repetitive, however, a track-and-hold circuit can
be used ahead of a slower ADC with higher stability to
create an ADC that can effectively sample at a much higher
rate. The terms "effective time sampling," "equivalent time

Analog-to-
Digital

Converter

Trigger Level
Circuit

Timing
Circuitry

Fig. 1 . Simpl i f ied block diagram of a Subsampl ing ac vol tme
ter.

16 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

sampling," and "subsampling" are used interchangeably
to describe this technique.

The concept of subsampling is used by digitizing oscil
loscopes to extend their sample rate to well beyond the
intrinsic speed of the ADC. The concept is to use a trigger
level circuit to establish a time reference relative to a point
on a repetitive input signal. A timing circuit, or time base,
is used to select sample delays from this reference point
in increments determined by the required effective sam
pling rate. For example, moving the sampling point in 10-ns
increments corresponds to an effective sampling rate of
100 MHz. A block diagram of a subsampling ac voltmeter
is shown in Fig. 1.

Fig. 2 is a simple graphic example of subsampling. Here
we have an ADC that can sample at the rate of five samples
for one period of the waveform being measured. We want
to sample one period of this waveform at an effective rate
of 20 samples per period. First, the timing circuit waits for
a positive zero crossing and then takes a burst of five read
ings at its fastest sample rate. This is shown as "First Pass"
in Fig. 2. On a subsequent positive slope, the time base
delays an amount of time equal to one fourth of the ADC's
minimum time between samples and again takes a burst
of five readings. This is shown as "Second Pass." This
continues through the fourth pass, at which time the
applied repetitive waveform has been equivalent time sam
pled as if the ADC could acquire data at a rate four times
faster than it actually can.

The digital ac measurement technique of the HP 3458A
is optimized for precision calibration laboratory measure
ments. Short-term measurement stability better than 1 ppm
has been demonstrated. Absolute accuracy better than 100
ppm has been shown. This accuracy is achieved by auto
matic internal adjustment relative to an external 10V dc
standard. No ac source is required (see article, page 22).
The internal adjustments have the added benefit of provid
ing a quick, independent check of the voltage ratios and
transfers that are typically performed in a standards labo-

First Pass

Second Pass

M f K M f t f

t / f t t M M X M t t t t

Fourth Pass

t / f * * I I T I T f H t T t T M T f I I

Fig. 2. An example oÃ subsampling.

ratory every day. Fast, accurate 1-Hz measurements and
superb performance with nonsinusoids allow calibration
laboratories to make measurements easily that were previ
ously very difficult.

The HP 3458A enters into the synchronously subsampled
ac mode through the command SETACV SYNC. For optimal
sampling of the input signal, one must determine the period
of the signal, the number of samples required, and the
signal bandwidth. The measurement resolution desired
and the potential bandwidth of the input waveform are
described using the commands RES and ACBAND. The
period of the input signal is measured by the instrument.
The more the HP 3458A knows about the bandwidth of
the input and the required measurement resolution, the
better the job it can do of optimizing accuracy and reading
rate. Default values are assumed if the user chooses not to
enter more complete information. An ac measurement
using the SYNC mode appears to function almost exactly
the same to the user as one made using the more conven
tional analog mode.

Subsampled AC Algor i thm
The algorithm applied internally by the HP 3458A during

each subsampled ac measurement is totally invisible to the
user. The first part of a subsampled ac measurement is
autolevel. The input waveform is randomly sampled for a
period of time long enough to get an idea of its minimum
and maximum voltage points. This time is at least one cycle
of the lowest expected frequency value (the low-frequency
value of ACBAND). The trigger level is then set to a point
midway between the minimum and maximum voltages, a
good triggering point for most waveforms. In the unlikely
event that this triggering point does not generate a reliable
trigger, provision is made for the user to generate a trigger
signal and apply it to an external trigger input. An example
of such a waveform is a video signal. Even though video
signals can be repetitive, they are difficult to trigger on
correctly with just a standard trigger level.

With the trigger level determined, the period of the input
waveform is measured. The measured period is used along
with the global parameter RES to determine subsampling
parameters. These parameters are used by the timing cir
cuitry in the HP 3458A to select the effective sample rate,
the number of samples, and the order in which these sam
ples are to be taken. In general, the HP 3458A tries to
sample at the highest effective sample rate consistent with
meeting the twin constraints of subsampling over an inte
gral number of input waveform periods and restricting the
total number of samples to a minimum value large enough
to meet the specified resolution. This pushes the frequency
where aliasing may occur as high as possible and also per
forms the best rms measurement of arbitrary waveforms of
high crest factor. The number of samples taken will lie
somewhere between 4/RES and 8/RES depending on the
measured period of the input waveform.

The final step is to acquire samples. As samples are taken,
the data is processed in real time at a rate of up to 50,000
samples per second to compute a sum of the readings
squared and a sum of the readings. After all the samples
are taken, the two sum registers are used to determine
standard deviation (ACV function), or rms value (ACDCV

APRIL 1989 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

function). For example, suppose a 1-kHz waveform is being
measured and the specified measurement resolution is
0.001%. When triggered, the HP 3458A will take 400,000
samples using an effective sample rate of 100 MHz. The
timing circuit waits for a positive-slope trigger level. Then,
after a small fixed delay, it takes a burst of 200 readings
spaced 20 /us apart. It waits for another trigger, and when
this occurs the timing circuit adds 10 ns to the previous
delay before starting another burst of 200 readings. This is
repeated 2,000 times, generating 400,000 samples. Effec
tively, four periods of the 1-kHz signal are sampled with
samples placed every 10 ns.

Sources of Error
Internal time base jitter and trigger jitter during subsam-

pling contribute measurement uncertainty to the rms mea
surement. The magnitude of this uncertainty depends on
the magnitude of these timing errors. The internal time
base jitter in the HP 3458A is less than 100 ps rms. Trigger
jitter is dependent on the input signal's amplitude and
frequency, since internal noise will create greater time un
certainties for slow-slew-rate signals than for faster ones.
A readily achievable trigger jitter is 100 ps rms for a 1-MHz
input. Fig. 3 is a plot generated by mathematical modeling
of the performance of a 400,000-sample ac measurement
using the HP 3458A's subsampling algorithm (RES =
0.001%) in the presence of 100-ps time base and trigger
jitters. The modeled errors suggest the possibility of stable
and accurate ac measurements with better than 6-digit ac
curacy.

Errors other than time jitter and trigger jitter limit the
typical absolute accuracy of the HP 3458A to about 50 ppm,
but there is reason to believe that short-term stability is
better than 1 ppm. Many five-minute stability tests using
a Datron 4200 AC Calibrator show reading-to-reading stan
dard deviations between 0.7 ppm and 3 ppm. Other mea
surements independently show the Datron 4200 to have
similar short-term stability. More recently, tests performed
using a Fluke 5700 Calibrator, which uses a theoretically
quieter leveling loop, show standard deviations under 0.6
ppm.

The above algorithm tries to sample the applied signal
over an integral number of periods. To do this, the period
of the signal must first be measured. Errors in measuring
the period of the input waveform will cause the subsequent
sampling to cover more or less than an integral number of

i i o j - f s

c
'â€¢5
$ 1 ce

0.1

Timing J i t ter = 100 ps
Approx. 400,000 Samples
Trigger Jitter = 100 ps at 1 MHz
W h i t e N o i s e = 0 . 0 4 %
Sine Wave Signal

10 100 1 k 1 0 k
Frequency (Hz)

100k 1M

periods. Thus, the accuracy of the subsampled ac rms mea
surement is directly related to how accurately the period
of the input waveform is known relative to the internal
sample time base clock.

Period measurements in the HP 3458A are performed
using reciprocal frequency counting techniques. This
method allows accuracy to be traded off for measurement
speed by selecting different gate times. A shorter gate time
contributes to a faster measurement, but the lower accuracy
of the period determination contributes to a less accurate
ac measurement. Fig. 4 is a graph of the error introduced
into the rms measurement by various gate times. At high
frequencies, this error is a constant dependent on the res
olution of the frequency counter for a given gate time. At
lower in t r igger t ime j i t ter increases, causing in
creased error, because random noise has a larger effect on
slower signals. At still lower frequencies, where the period
being measured is longer than the selected gate time, this
error becomes constant again. This is because the gate time
is always at least one period in length, and as the frequency
is lowered, the gate time increases just fast enough to cancel
the effect of increasing trigger jitter.

Any violation of the restriction that the input waveform
be repetitive will also lead to errors. A common condition
is amplitude and frequency modulation of the input. If this
modulation is of a fairly small magnitude and is fast com
pared to the total measurement time this violation of the
repetitive requirement will probably be negligible. At most,
reading-to-reading variation might increase slightly. If
these modulations become large, however, subsampled ac
accuracy can be seriously compromised. The signal sources
typically present on a lab bench or in a calibration labora
tory work quite well with the subsampling algorithm of
the HP 3458A.

Random noise spikes superimposed on an input can
make an otherwise repetitive input waveform appear non-
repetitive. Induced current caused by motors and electrical
devices turning on and off is just one of many ways to
generate such spikes. Large test systems tend to generate
more of this than bench and calibration laboratory environ
ments. Low-voltage input signals (below 100 mV) at low

0.1%
G a t e 0 . 1 m s

G a t e 1 . 0 m s

0.1 ppm

F ig . 3 . Subsampl ing e r ro rs resu l t i ng f rom t im ing uncer ta in
ties.

1 1 0 1 0 0 1 k 1 0 k 1 0 0 k
Frequency (Hz)

Fig. 4 . Subsampl ing er ror as a funct ion of gate t ime.

18 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

frequencies are the signals most susceptible to these errors.
Two ways are provided by the HP 3458A to deal with

these potential errors. The first is to use the internal 80-kHz
low-pass trigger filter to reduce high-frequency trigger
noise (LFILTER ON). If this is not enough, provision is made
for accepting external synchronization pulses. In principle,
getting subsampled ac to work in a noisy environment is
no more difficult than getting a frequency counter to work
in the same environment.

If nonsinusoidal signals are being measured, the subsam-
pling algorithm has some additional random errors that
become greater for signals of large crest factor. All non-
sinusoidal repetitive signals have some of their spectral
energy at frequencies higher than their fundamental fre
quency. Signals of high crest factor generally have more of
this high-frequency energy than those of lower crest factor.
Random timing jitter, which tends to affect higher frequen
cies the most, will create measurement errors that are
greater for large-crest-factor signals. These random errors
can be reduced by specifying a higher-resolution measure
ment, which forces more samples per reading to be ac
quired. The additional measurement error induced by a
signal crest factor of 5 can be as low as 50 ppm in the HP
3458A.

Track-and-Hold Circuit
Track-and-hold performance is critical to the accuracy

of digital ac measurements. Track-and-hold linearity,
bandwidth, frequency flatness, and aperture jitter all affect
the error in a sampled measurement. To meet the HP 3458A
performance objectives, track-and-hold frequency response
flatness of Â±0.0015% (15 ppm) was required from dc to 50
kHz, along with a 3-dB bandwidth of 15 MHz. In addition,
16-bit linearity below 50 kHz and low aperture jitter were
needed. A custom track-and-hold amplifier was developed
to meet these requirements.

The most basic implementation of a track-and-hold cir
cuit â€” a switch and a capacitor â€” is shown in Fig. 5. If the
assumption is made that the switch is perfect (when open
it has infinite impedance and when closed it has zero im
pedance) and if it assumed that the capacitor is perfect (no
dielectric absorption), then this is a perfect track-and-hold
circuit. The voltage on the capacitor will track the input
signal perfectly in track mode, and when the switch is
opened, the capacitor will hold its value until the switch
is closed. Also, as long as the buffer amplifier's input im
pedance is high and well-behaved, its bandwidth can be
much lower than the bandwidth of the signal being sam
pled. When the switch is opened, the buffer amplifier's
output might not have been keeping up with the input
signal, but since the voltage at the input of the amplifier
.is now static, the buffer will eventually settle out to the
hold capacitor's voltage.

The problem with building Fig. 5 is that it is impossible
at the present time to build a perfect switch. When the
switch is opened it is not truly turned off; it has some

V o u t

Fig. 5 . Bas ic t rack-and-ho ld c i rcu i t w i th idea l components .

residual leakage capacitance and resistance. In hold mode,
there is some residual coupling to the input signal because
of this leakage capacitance. This error term is commonly
called feedthrough. Another error term is pedestal voltage.
The process of turning real-world switches off induces a
charge transfer that causes the hold capacitor to experience
a fixed voltage step (a pedestal) when entering hold mode.

Another problem with Fig. 5 is that it is impossible in
the real world to build a perfect capacitor. Real-world
capacitors have nonideal behaviors because of dielectric
absorption and other factors. This dielectric absorption will
manifest itself as a pedestal that is different for different
input-voltage slew rates. Even if the capacitor is refined
until it is "perfect enough," the switch and the buffer
amplifier may contribute enough capacitance in parallel
with Chold that the resultant capacitance has dielectric ab
sorption problems.

Fig. 6 is an implementation of Fig. 5 using real-world
components. The switch is implemented with a p-channel
MOS FET. When the drive voltage is â€”15V, the circuit is
in track mode. If the FET has an on resistance of R, then
the 3-dB bandwidth of the circuit is l/(27rRChold). Cdg (the
drain-to-gate capacitance) is always in parallel with Cho|d,
so even if Choid and the buffer amplifier have low dielectric
absorption, the dielectric absorption associated with Cdg
will cause this circuit to exhibit pedestal changes with
different input signal slew rates.

When the drive voltage is changed to +15V, the FET
turns off and puts the circuit into hold mode. The drain-to-
source capacitance (Cds) contributes feedthrough error
equal to Cds/Chold. If the drive voltage changes infinitely
fast, the pedestal error is (30V)(Cdg/Chold). If the drive volt
age changes at a slower rate, the pedestal error will be less,
but a gain error term will now appear. Assume that the
drive voltage changes slowly relative to the bandwidth of
the track-and-hold circuit (l/(27rRC|u,id)). Assume also that
the FET is on until the drive voltage is equal to Vin and
that it is off when the drive voltage is greater than Vin. The
process of going into hold mode begins with the drive
voltage changing from â€”15V to +15V. As the voltage
changes from â€”15V to Vin, C^0[Â¿ experiences very little
pedestal error since the current CtÂ¡g(dv/dt) mostly flows
into the FET, which is on. When the drive voltage reaches
Vin> the FET turns off and all of the Cdg(dv/dt) current flows
into Chold. The pedestal in this case is (15V -- Vin)(Cdg/
Choid)- Notice that this is a smaller pedestal than in the
previous case where the drive voltage changed infinitely
fast. Also notice that there is a Vin term in the pedestal
equation. This is a gain error.

Pedestal errors are easy to deal with in the real world.
There are a number of easy ways to remove offset errors.

C d s

Gate
Drive

- 1 5 V , + 1 5 V V

V o u t

Fig. 6 . 8as/c t rack-and-ho ld c i rcu i t w i th rea l components .

APRIL 1989 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

Gain errors are not necessarily bad either, since ideal gain
errors can be corrected with a compensating gain stage.
But because Cdg is a semiconductor capacitance, it tends
to change value with the applied voltage. This leads to a
form of error called nonlinearity. In general, gain errors
that are caused by semiconductor capacitances (like that
calculated in the above paragraph) lead to nonlinearity
errors. A track-and-hold circuit application that is affected
by nonlinearity errors is sampling a signal and calculating
its Fourier transform. Feedthrough and dielectric absorp
tion errors also are hard to deal with. Commonly, a different
track-and-hold architecture is used to achieve better linear
ity, feedthrough, and dielectric absorption performance.

Fig. 7 is a diagram of the track-and-hold architecture
used most often to achieve 16-bit or better resolution along
with 2-MHz bandwidths. In track mode the drive voltage
is - 15V, turning Ql on. The output voltage is the inverse
of the input voltage. The inverse of the input voltage is
impressed across Chold during track mode. When the drive
voltage is changed to + 15V, Ql turns off and Vout is held.

Fig. 7 has several advantages over Fig. 6. Since the switch
(Ql) is at a virtual ground point, the pedestal voltage is
constant with Vin and equal to (30V)(Cdg/Chold). This is
because the drain and source are always at zero so that
when Ql is turned off the same amount of charge is always
transferred to Choid. Also, since no point on Ql moves with
Vin, the FET does not contribute any dielectric absorption
error terms.

Fig. 7 does have feedthrough error. It is equal to V2(Cds/
Choid)- Theoretically this error could be substantially elimi
nated if a second switch could be turned on after entering
hold mode to ground the junction of the two resistors.
However, a real drawback of this circuit is that the op amp
Ul has to have the same bandwidth and slew rate capabil
ities as the signal being sampled. In the descriptions of
Figs. 5 and 6 it was mentioned that the buffer amplifier
need not have the same bandwidth as the signal being
sampled. So in summary, Fig. 7 eliminates some of the
errors of the previous circuits but introduces at least one
new limitation.

HP 3458A Track-and-Hold Archi tecture
Fig. 8 is a modification of Fig. 6 that has most of the

advantages and very few of the disadvantages of the previ
ous circuits. Here the switch is implemented with two
n-channel JFETs and one p-channel MOS FET. In track
mode the JFETs Ql and Q2 are on and the MOS FET Q3
is off. Ql and Q2 are on because their gate-to-source volt
ages are zero, since their gates track Vin. Their gates track

V o u t

Gate
Drive

- 1 5 V , + 1 5 V

Vin because in track mode point B is an open circuit and
CR1 and CR2 act like resistances of about 1 kÃl CR1 and
CR2 are current regulator diodes, which are simply JFETs
with their gates wired to their sources. In hold mode, Ql
and Q2 are off and Q3 is on. Ql is now off because point
B is now at - 15V and thus the gate of Ql is at - 15V. CR2
now appears as a current source of high resistance and the
gate of Q2 is clamped at about 7V below Vout, turning off
Q2. Q3 is on because its gate (point A) is at â€”15V.

In hold mode, feedthrough error is very low, since the
feedthrough caused by Cdsl is shunted into the ac ground
created by Q3's being on. Also, the pedestal error caused
by Cdg2 is constant for all Vin , since the gate of Q2 is clamped
at 7V below Vout. Since Vout is tracking Vin during track
mode (or will settle out to Vin after hold mode is entered),
the pedestal error caused by Cdg2 is (- 7V)(Cdg2/Choid) and
has no Vin dependent terms. Therefore it makes no differ
ence to the linearity errors of the track-and-hold circuit
whether Cdg2 is nonlinear with bias voltage.

It is not so obvious that Cds2 contributes almost nothing
to the pedestal errors and the nonlinearity errors of the
circuit. In addition to being a T-switch that reduces feed-
through errors in hold mode, Ql, Q2, and Q3 when
switched in the correct sequence act to remove almost all
of the pedestal errors caused by Cds2. This is very important,
since Cds2 is nonlinear, and if its pedestal errors remained,
the linearity of the circuit would be no better than that of
Fig. 6. Ql is selected such that its pinchoff voltage (Vgsoff)
is greater than that of Q2. Thus, as point B is driven to
-15V, Q2 turns off before Ql. Once Q2 is off, the only
coupling path to Choid is through the capacitance Cds2.

Fig. 9 shows the various waveforms present in the circuit.
When Ql is finally turned off, the voltage on Cl has a
pedestal error of (Vin l5V)(Cd^/C^). This pedestal
couples into Choid through Cds2. The magnitude is (Vin -
15V)(Cdgl/C1)(Cds2/Chold). Since Cdgl is nonlinear and the
coupling has a Vin dependent term, the pedestal on Choid
now has a nonlinear component. But after Ql and Q2 are
off, point A is driven to - 15V, turning Q3 on. C-Â¡ is now
connected to Vout through the on resistance of Q3 and ap
proaches the voltage Voul. This voltage movement, which

_ r ~ . ' " -

T r a c k : B = O p e n
A = + 1 5 V

H o l d : B = - 1 5 V
A = - 1 5 V

Fig. 7 . Convent ional t rack-and-hold arch i tecture.

CR1, CR2:
ldÂ« = 1 mA Â£

Fig. 8 . HP 3458A t rack-and-ho ld arch i tec ture.

-15V

20 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

V i n -
Pedestal

Voot

V i n "

VC1

G) G o e s L o w Q3 Turns On

Fig. 9. Waveforms in the c i rcui t o f F ig. 8.

is of the same magnitude as C-^'s previous change but in
the opposite direction, couples into Chold through Cds2 and
totally removes the pedestal error previously coupled into
Chold through Cds2.

Another point that also might not be so obvious is that
Ql, Q2, and Q3 do not contribute any dielectric absorption
errors to the track-and-hold circuit. Since in track mode
the drains, sources, and gates of Ql and Q2 are at the same
potential (Vin), none of the FET capacitances has charge
on it before it is put in hold mode. Therefore, the charge
transferred to Choid through the FET capacitances when
hold mode is entered is the same for any value or slew rate
of Vin, so it doesn't matter whether the FET capacitances
have high dielectric absorption.

Summary
The performance of the HP 3458A with sinusoidal and

nonsinusoidal inputs is known to be very good. The DNÃN!
was tested against a synthesized arbitrary waveform
generator under development at the U.S. National Bureau
of Standards which was capable of generating sine waves
and ANSI-standard distorted sine waves with an absolute
uncertainty of 10 ppm. The HP 3458A measured all of the
various test waveforms with errors ranging from 5 ppm to
50 ppm for 7V rms inputs from 100 Hz to 10 kHz.

The digital ac measurement capability of the HP 3458A
combines the best features of the traditional thermal and
analog computational ac rms techniques in addition to add
ing several advantages of its own. Measurement accuracies
for digital ac are comparable to thermal techniques for both
sinusoidal (crest factor 1.4) and large-crest-factor non-
sinusoidal waveforms. Like analog computation, digital ac
reading rates are reasonably fast compared to thermal rms
techniques. The major advantages of digital ac include
linearity superior to traditional analog rms detection
methods and significantly faster low-frequency rms ac mea
surements (less than six seconds for a 1-Hz input). Short-
term dif stability is excellent, allowing previously dif
ficult characterizations to be performed easily.

Acknowledgments
Credit should be given to Larry Desjardin for his direction

and support for the development of the digital ac tech
niques implemented in the HP 3458A. I would also like to
thank Barry Bell and Nile Oldham of the National Bureau
of Standards for allowing access to their synthesized ac
source to help validate the digital ac concept.

APRIL 1989 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

Calibration of an 81/2-Digit Multimeter from
Only Two External Standards
Internal t ransfer standards and autocal ibrat ion s impl i fy
external calibration and extend the period between external
cal ibrat ions to two years.

by Wayne C. Goeke, Ronald L. Swer le in , Stephen B. Venzke, and Scott D. Stever

ONE OF THE EARLIEST PRODUCT CONCEPTS for
the HP 3458A Digital Multimeter was to develop
a means for calibrating its measurement accuracies

from only two external reference standards. This is not
possible with the traditional design for a DMM, which
requires independent adjustment of the full-scale gain and
zero offset for each measurement range and function.

Calibration is a process in which individual gain and
offset values are adjusted, manually or electronically, to
yield minimum error relative to an applied input, as shown
in Fig. 1. Gain and offset calibration values are generally
determined using precision ratio transfer measurements
relative to a smaller set of working standards whose errors
are directly traceable to national standards. In the United
States, standards are kept by the National Institute of Stan
dards and Technology (NIST), formerly the National Bureau
of Standards (NBS). DC voltages are often derived from a
1.018-volt saturated electrochemical cell known as a Wes-
ton standard cell. The output voltage is divided, or other
wise ratioed, to yield other traceable values. For example,
the output would be divided by 10.18 to produce 0.1V.
The ratio transfer process is, in general, different for each
calibration value. It is prone to both random and systematic
errors, which may propagate undetected into instrumenta
tion through the calibration process. This calibration (or
verification) uncertainty will produce a "floor" measure
ment error sometimes equal to or greater than the uncer
tainty of the instrument alone.

The objectives for two-source calibration are to reduce
this floor uncertainty and to provide an independent
method to increase confidence in the overall calibration
process. The HP 3458A uses a highly linear analog-to-digi-
tal converter (ADC) to measure the ratio between a trace
able reference and its divided output. The ADC performs
the function of the precise ratio transfer device.

Sources of Error
The errors in any ratio measurement can be divided into

two general types: differential errors (D) and integral errors
(I). A differential error is a constant percent of full scale
and is independent of the input. These errors are handled
like dc offsets. An integral error is a function of the input,
and the relationship is usually nonlinear. These errors are
generally thought of as gain errors. The maximum total
error can be expressed as:

EJx) = I(x/100%) + D,

where x is the input to the ratio device and E^x) is the
error, both expressed as a percent of full scale. The general
form of the error bound is shown in Fig. 2.

What is of concern is the error in the output or measured
value expressed as a percent of that value. Expressed in
this form, the maximum error is:

E2(x) = I + D(100%/x),

Where E2(x) is the total error in the output or measured
value expressed as a percent of x. The general form of this
error bound is shown in Fig. 3. For ratios less than one,
the total error is dominated by the differential errors of the
ratio transfer device. Since the differential error term is
equal to the differential linearity error multiplied by one
over the divider ratio, this error grows to infinity as the
divider ratio grows smaller.

HP 3458A Uncertainty
The design goal for the HP 3458A DMM was for internal

ratio transfer errors to be equal to or lower than those
achievable with commercially available external ratio di
viders. This set the total ratio measurement error (linearity)
requirement for the ADC for a 10:1 transfer to approxi
mately 0.5 ppm of output or 0.05 ppm of input.

Fig. 4 illustrates the integral and differential linearity
achieved with the HP 3458A ADC design. The test data
was generated using a Josephson junction array intrinsic
voltage standard (see "Josephson Junction Arrays," page

Calibrated ,

Uncalibrated

Input (x)

Fig. 1 . Cal ibrated and uncal ibrated gain and of fset in a mea
surement.

22 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Differential
Integral

H 1 -

100%
Percent of Range

Fig. 2. L inear i ty error as a percent of range.

24). Fig. 4a shows typical deviation from a straight line for
the input voltage range from minus full scale to plus full
scale expressed in ppm of full scale. This expresses the
test data in a form dominated by the integral linearity ef
fects. Integral error less than 0.1 ppm of full scale was
achieved. Fig. 4b shows typical test data expressed as ppm
of reading (output). This data indicates differential linearity
error less than 0.02 ppm of reading. For a 10:1 ratio transfer
the predicted error would be approximately I + lODorO.3
ppm. Fig. 4c shows measured data, again using a Josephson
junction array standard to characterize the error at 1/10 of
full scale relative to a full-scale measured value. The data
indicates a 10:1 ratio error of 0.01 ppm of the input or 0.1
ppm of the measured (output) value. This represents typical
results; the specified 3o- ratio transfer error is greater than
0.3 ppm. Measurement noise contributes additional error,
which can be combined in a root-sum-of-squares manner
with the linearity errors.

Offset Errors
Linear measurement errors in a DMM are of two general

types, offset errors and gain errors. Offset error sources
include amplifier offset voltages, leakage current effects

Differential
Integral

1 h

- \ r - - I h

H h H

Percent of Range

Fig. 3. L inear i ty error as a percent of reading.

100%

(IR). and thermocouple effects generated by dissimilar met
als used in component construction or interconnection.
Fig. 5 shows a simplified schematic of the dc measurement
function. Switches Si and S2 are used to provide a zero
reference during each measurement cycle. Offset errors
common to both measurement paths, for example the offset
voltage introduced by amplifier Al, are sampled and sub
tracted during each measurement sequence. This is referred
to as the autozero process.

Correction of the remaining offset error is achieved by

+0.06

IK +0 .04 -

i- +0.02 -â€¢

5.

~ - 0 . 0 4

- 0 . 0 2 - '

0 . 0 3 - r

0 . 0 2 - -

0.01

-0.01 - â€¢

- 0 . 0 2 - -

- 0 . 03
- 1 0 0

+ 0.015 T-

+ 1 0
Input (Volts)

- 5 0

Input (mV)

4 6
Input (Volts)

Fig. 4. Results of HP 3458/4 l inearity tests using a Josephson
junc t ion ar ray , (a) Seven passes and the average resu l t fo r
l inearity error characterization, (b) Differential l inearity charac
ter ist ic, (c) Lineari ty error for an internal 10:1 rat io transfer.

APRIL 1989 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Josephson Junction Arrays

A Josephson junct ion is formed by two superconductors sepa
rated by a th in insu lat ing barr ier . When cooled to l iqu id he l ium
tempera tu res (4 .2K) , t hese dev i ces exh ib i t ve ry comp lex non
l inear behav io r tha t has led to a w ide range o f app l i ca t ions in
ana log and d ig i ta l e lec t ron ics . A quantum mechanica l ana lys is
shows tha t t hese j unc t i ons genera te an ac cu r ren t whose f re
quency is related to the junction voltage by the relat ion f = 2eV/h
where e is the electron charge and h is Planck's constant. When
the j unc t i on i s d r i ven by an ac cu r ren t t he e f f ec t ope ra tes i n
reverse. The junct ion osc i l la t ion phase locks to the app l ied ac
current and the junct ion vol tage locks to a value V = hf /2e. This
phase locking can also occur between harmonics of the appl ied
ac current and the Josephson osci l la t ion. Thus, the junct ion I -V
cu rve d i sp lays a se t o f cons tan t - vo l tage s teps (F ig . 1) a t t he
vol tages V = nhf /2e, where n is an in teger . The Josephson junc
t ion thereby prov ides a means o f t rans la t ing the inherent accu
racy of the f requency scale to vo l tage measurements.

In Ju ly o f 1972 the Josephson ef fect was adopted as the def
init ion of the U.S. legal volt. For the purpose of this definit ion the
quant i ty 2e /h was ass igned the va lue 483593.42 GHz/V. S ince
then, have of the Josephson vol tage-to- f requency re lat ion have
ver i f ied i t s p rec is ion and independence o f exper imenta l cond i
t ions to the level of a few parts in 1017.1

The Josephson voltage standards of 1 972 had only one or two
junct ions and cou ld generate vo l tages on ly up to about 10 mV.
Th is low vo l tage requ i red the use o f a complex vo l tage d iv ider
to ca l ib ra te the 1 .018V s tandard ce l ls used by most s tandards
laborator ies. To overcome the l imi tat ions of these low vol tages,

Q
<

3
O

Voltage Step Present
under RF Excitation

- t -
Voltage (5V/Div)

Fig. 1 . Partial I-V curve of an 18,992-junction Josephson junc
t ion ar ray wi thout RF exc i ta t ion. A lso shown is a typ ica l I -V
curve under 75-GHz exc i ta t ion, which is a constant -vo l tage
step at a vol tage V = nhf/2e. The vol tage V is between - 12V
and + 12V, and is determined by contro l l ing the b ias current
and source impedance to se lect the va lue of n .

researchers at the U.S. Nat ional Inst i tute of Standards and Tech
nology (formerly the Nat ional Bureau of Standards), and PTB in
West Germany have deve loped superconduct ing in tegra ted c i r
cu i ts that combine the vo l tages o f severa l thousand junct ions.
The most complex o f these ch ips uses 18,992 junct ions to gen
era te 150,000 constant -vo l tage s teps spanning the range f rom
-12V to +12V (Fig. 2) . The chip uses a f in l ine to col lect 75-GHz

providing a copper short across the input terminals. A re
ference measurement is taken and the measured offset is
stored. Values are determined for each measurement func
tion and range configuration. The offset is subtracted from
all subsequent measurements. The HP 3458A performs all
zero offset corrections by automatically sequencing through
each of the required configurations and storing the appro
priate offset correction during the external calibration pro
cess. These offsets are the b term in the linear equation
y = mx + b, where y is the calibrated output result and x
is the internal uncalibrated measurement. These calibrated
offsets can be made small and stable through careful printed
circuit layout and component selection.

Gain Errors
Gain errors in a DMM result from changes in amplifier

gains, divider ratios, or internal reference voltages. Each
gain term exhibits a temperature coefficient and some finite
aging rate, and can potentially change value following ex
posure to high-humidity environments or severe shock or
vibration. Periodically, known values close to the full scale
of each measurement function and range are applied to the
DMM to calibrate the gain ratio m such that y = mx + b
is precisely equal to the known input value, y. However,
even after gain calibration, a DMM can easily be exposed
to conditions that may introduce new errors. The HP 3458A
DMM implements a special method for self-adjusting all
instrument gain errors and many offset errors relative to
its own internal references.

DC Calibration
Calibration of the dc function begins by establishing

traceability of the internal voltage reference. The internal
7V Zener reference (see "A High-Stability Voltage Refer
ence," page 28) is measured relative to an externally applied
traceable standard. A traceable value for this internal refer
ence is stored in secure calibration memory until the next
external calibration is performed. Next, the gain of the 10V
range is determined by measuring the internal 7V reference
on this range. The gain value is stored in secure autocali-
bration memory. This gain value can be recomputed at any
time by simply remeasuring the internal 7V reference. The
stability, temperature coefficient, and time drift errors of
the internal 7V reference are sufficiently small (and speci
fied) compared with other gain errors that remeasurement
or autocalibration of these gains will yield smaller measure
ment errors in all cases. Adjustment of the full-scale gain
values of all other ranges relies on the precise ratio measure
ment capabilities of the HP 3458A ADC as demonstrated
in Fig. 4c. For the IV-range gain adjustment, the traceable
internal 7V reference is divided to produce a nominal IV
output. The exact value of this nominal IV is measured on
the previously adjusted 10V measurement range at approx
imately 1/10 of full scale. The measured value, a ratio trans
fer from the internal 7V reference, is used to adjust the
gain of the IV range of the dc voltage function. This gain
value is again stored in secure autocalibration memory.
Neither the precise value nor the long-term stability of the
nominal IV internal source is important. The internal IV

24 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Ser ies Ar ray

Capac i t i va Coup le r

F in l ine

Ground P lane

Res is t i ve Termina t ion
DC Contac t

- 1 9 m m -

Fig . 2 . The layout fo r an 18,992-
j u n c t i o n v o l t a g e s t a n d a r d a r r a y
c a p a b l e o f g e n e r a t i n g v o l t a g e
s t e p s i n t h e r a n g e o f - 1 2 V t o
+ 12V. The hor izonta l l ines repre
sent 16 s t r ip l ines , each o f wh ich
p a s s e s t h r o u g h 1 1 8 7 j u n c t i o n s .
The Â¡unctions are too small to be
dist inguished on th is drawing.

power f rom a wavegu ide and d i rec t Â¡ t th rough a se t o f power
sp l i t t e r s t o 16 s t r i p l i nes , each o f wh ich passes th rough 1187
junct ions. A network of high-pass and low-pass f i l ters al lows the
microwave power to be appl ied in paral le l whi le the dc vol tages
add in series.2

In ope ra t i on , t he a r ray i s coo led to 4 .2K in a l i qu id -he l i um
dewar . A Gunn-d iode source a t room temperature prov ides the
requ i red 40 mW o f 75 -GHz power . I t i s poss ib le to se lec t any
one of bias 150,000 constant-voltage steps by controll ing the bias
current level and source impedance. A cont inuous vol tage scale
can be obta ined by f ine- tun ing the f requency. The accuracy o f
the vol tage at the array terminals is equal to the accuracy of the
t ime s tandard used to s tab i l i ze the Gunn-d iode source. Ac tua l
cal ibrat ions, however, are l imi ted by noise and thermal vol tages
to an accuracy of a few parts in 1 09.

The abi l i ty to generate exact ly known voltages between - 1 2V
and + 1 2V can eliminate the problems and uncertainties of poten-

t iometry from many standards laboratory functions, r-or example,
Josephson array standards make i t possible to perform absolute
cal ibrat ion of voltmeters at levels between 0.1 V and 10V without
the uncer ta in ty o f a res is tor ra t io t ransfer f rom s tandard ce l ls .
Another application is the measurement of voltmeter l inearity with
an accuracy h igher than ever before poss ib le .

References
1 . R.L. Standards," and F.L. Lloyd, "Precision of Series-Array Josephson Voltage Standards,"
Appl ied Physics Let ters , Vol . 51, no. 24, December 1987, pp. 2043-2045
2 . F .L L loyd , C .A . Hami l t on , K . Ch ieh . and W. Goeke , "A 10 -V Josephson Vo l tage
Standard," 1 988 Conference on Precision Electromagnetic Measurements, June 1988,
Tokyo

John Giem
Development Engineer
Cal ibrat ion Laboratory

Loveland Instrument Div is ion

source must only be stable for the short time required to
perform the two measurements of the transfer.

Each of the remaining dc voltage ranges is automatically
gain adjusted relative to the internal 7V reference through
a similar sequence of full-scale-to-1/lO-full-scale transfer
measurements. All gain errors can then be readjusted rela
tive to the internal reference to remove measurement errors
at any later time. The only gain error that cannot be adjusted
during autocalibration is the time and temperature drift of
the internal 7V reference.

Ohms and DC Current Cal ibrat ion
Calibration of the ohms functions is similar to that of

the dc voltage function. Traceability for the internal 40-kfi
reference resistor is established first. The internal reference
resistor is measured relative to an externally applied trace
able 10-kil standard resistor. The traceable value for this
internal reference is stored in secure calibration memory
until the next external calibration is performed. Resistance
measurements are made by driving a known current I
through an unknown resistance R and measuring the resul
tant voltage V. The unknown resistance value R is com
puted from Ohm's law, R = V/I. Since the dc voltage mea

surement function has been previously traceably adjusted,
only the values of the ohms current sources (I) need be
determined to establish calibration.

Adjustment of the ohms current source values begins by
applying the nominal 100-microampere current source (10-
kfl range) to the traceable 40-kft internal resistance stan
dard. The value of the current source is computed from
the traceable measurements and stored in secure autocali
bration memory. The 100-/U.A current source can be remea-
sured (autocalibrated) at any time to correct for changes in
its value. Residual errors in this autocalibrated measure
ment are reduced to those of the internal reference resistor
and the autocalibrated error of the 10V dc voltage range â€”
essentially the drift of the internal voltage reference. For
resistance measurements, only drift in the internal resis
tance reference will affect measurement accuracies. The
gains of the voltage measurements V and the current
sources I, which are derived from the internal voltage refer
ence, will also change as this reference drifts, but the com
puted value for R is not affected since the V/I ratio remains
unchanged.

The known 100-/iA current, its value determined in the
previous step, is next applied to an internal 5.2-kfi resistor

APRIL 1989 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

(an internal 10-to-l ratio transfer measurement). The value
of this resistor is determined, again from Ohm's law. This
new resistor R is computed (R = V/I) from the 100-/H.A
current previously determined relative to known traceable
standards and the previously calibrated dc voltage func
tion. The value of this resistor is stored in autocalibration
memory. This resistor is actually the 10-/uA dc current
function shunt resistor. With the shunt resistor R traceably
determined, traceable dc current measurements can be
computed from Ohm's law, I = V/R.

Now that the 5.2-kfl internal shunt resistor is known,
the 1-mA ohms current source (1-kfl range) is applied and
its value computed as a ratio relative to the 100- Â¿iA current
source value. The 1-mA current source value is stored in
autocalibration memory. This combined ohms current
source and dc current shunt resistor ratio transfer process
continues until all six currents and all eight shunt resistors
are known relative to the two external standards.

As we set out to show, all gain errors for dc voltage,
ohms, and dc current measurements have been traceably
adjusted relative to only two external standard values: 10V
dc and 10 kfl. Table I summarizes the HP 3458A errors for
the internal ratio transfer measurements described so far.

Table I
Internal Ratio Transfer Errors

Addit ional Errors
Gain and offset variations are the dominant sources of

measurement error in a DMM, but they are by no means
the only sources of error. Measurement errors are also pro
duced by changes in leakage currents in the input signal
path. These may be dynamic or quasistatic leakages. A
more complete schematic of the input circuit of the HP
3458A is shown in Fig. 6. Recall that switches Si and S2

are used to null the dc offsets of amplifier Al and its input
bias current. However, the capacitance Cl causes an error
current Ierr to flow when Si is turned on. This current,
sourced by the input, generates an exponentially decaying
error voltage Ierr(R + RÂ¡)- If RÂ¡ is large, as it is for ohms
measurements, significant measurement errors can result.

These errors can be reduced by providing a substitute
source (shown in the shaded section of Fig. 6) to provide
the charging current for the parasitic capacitance Cl.
Amplifier A2 follows the input voltage so that when switch
S3 is turned on between the S2 and SI measurement
periods, Cl will be precharged to the input voltage. Second-
order dynamic currents flow because of the gate-to-drain
and gate-to-source capacitances of the switches, which are
FETs. The HP 3458A performs complementary switching
to minimize these effects. During an autocalibration, the
offset of buffer amplifier A2 is nulled and the gain of the
complementary switching loop is adjusted to reduce errors
further.

High ohms measurements are particularly sensitive to
parasitic leakage currents. For example, 10 ppm of error
in the measurement of a 10-Mfl resistor will result from a
change of 5 pA in the 500-nA current source used for the
measurement. Over the 0Â°C-to-55Â°C operating temperature
range a 5-pA change can easily occur. During autocalibra
tion, which can be performed at any operating temperature,
several internal measurements are performed with various
hardware configurations. The results are used to solve
simultaneous equations for leakage current sources. Know
ing these leakage currents allows precise calculation of the
ohms current source value for enhanced measurement ac
curacy.

Many other errors are also recomputed during autocali
bration. Autocalibration can be performed in its entirety
or in pieces (dc, ohms, or ac) optimized for particular mea
surement functions. The dc voltage autocalibration, for
example, executes in approximately two minutes. The au
tocalibration process for the ohms functions, which also
calibrates the dc current function, takes about eight minutes
to complete. If the user is only concerned with correcting
errors for dc or ac measurements, the ohms autocalibration

S 2 : 0 + V o s
R e s u l t : (V i n + V o s) - (0 + V o s) = V l n

Fig. 5 . S impl i f ied schemat ic o f the dc vo l tage measurement
function.

F ig . 6 . A more comp le te schema t i c o f t he HP 3458A i npu t
circuit.

26 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Â£â€¢
V Q U , _ R l (S T 2 - 1)

V l n R , + R 2 (S T 3 + 1)

T , â € ” R ^ C T T 2 â € ” R 2 C 2

Fig. 7. f lC at tenuator gain-versus- f requency character is t ic .

sequence can be omitted to save time.

AC Frequency Response Cal ibrat ion
The goals for self-calibration of the HP 3458A extended

beyond the dc measurement functions. Just as the concept
of sampling a signal and digitally computing its true-rms
value goes against traditional DMM methods, so does the
idea of adjusting the frequency response and gain of an ac
voltmeter without applying external ac calibration sources.
Normally, the first step in the calibration of an ac voltmeter
would be to adjust the instrument for constant gain at all
frequencies. This frequency flatness correction is generally
performed by manually adjusting either resistive or capaci-
tive circuit components. Resistive components usually de
termine gains at lower frequencies and capacitive compo
nents usually determine gains at higher frequencies. The
frequency response characteristic of the HP 3458A ac mea
surement function is dominated by five compensated RC
divider networks, which are used to condition the input
signal for each measurement range. The gain-versus-fre
quency characteristic of an RC attenuator circuit is shown
in Fig. 7. When the attenuator is properly compensated
(-ra = T2), the resulting divide ratio is a frequency indepen
dent constant determined solely by the resistive elements.

It can be shown using Fourier transforms that if the input
to a linear circuit is a perfect voltage step and the output

of the same circuit is also a perfect voltage step, then the
circuit transfer function is constant with frequency. The
hardware used to implement the digital ac measurement
technique of the HP 3458A is also used to sample a step
output of the RC attenuator. The sampled data is used to
compensate the internal RC divider networks for flat gain
versus frequency without external inputs.

A simplified schematic for the 10V ac measurement range
is shown in Fig. 8. The active compensation of the divider
network is achieved by generating a "virtual trimmer" cir
cuit element to allow the adjustment of the divider time
constants. The trimmer is a programmable-gain bootstrap
amplifier connected across resistor Rl. The variable-gain
amplifier allows control of the voltage across Rl , effectively
varying Rl 's value. The resistive divider ratio can be elec
tronically servoed to match the fixed capacitive divider
ratio given a measurable error function. The servo error
signal is generated by applying an extremely square voltage
step to the network. The step output is sampled at least
twice. An amplitude difference between samples indicates
the presence of an exponential component resulting from
miscompensation of the attenuator. The digitally con
trolled loop servos the difference signal to adjust the virtual
trimmer to achieve precise cancellation of frequency de
pendent errors. Sample times can be optimized for
maximum sensitivity to the attenuator time constant RC,
thus improving servo-loop rejection of second-order time
constants resulting from capacitor dielectric absorption or
other parasitic effects.

Sampling of the voltage step uses the same internal tools
required to perform the digital ac measurement function.
The flatness autocalibration voltage step is sampled with
the integrating ADC configured for 18-bit measurement res
olution at 50,000 conversions per second. An internal pre
cision sampling time base is used to place samples with
100-ns resolution and less than 100-ps time jitter. Fig. 9
shows the range of attenuator output waveforms present
during frequency flatness autocalibration. When the at
tenuator is compensated correctly, the output waveform
will closely resemble an ideal voltage step as shown. Test
data has shown that the automated compensation yields
less than 50 ppm of frequency response error from dc to
30 kHz. Autocalibration of the frequency response will
correct for component changes caused by temperature,
humidity, aging, and other drift mechanisms. Correction

A p p r o x i m a t e l y
1 0 M l

T o A D C

A m p l i f i e r O u t p u t

V a r i a b l e - G a i n g
A m p l i f i e r

T i m e

Â±10V

F i g . 8 . S i m p l i f i e d s c h e m a t i c o f
the 10V ac measurement range.

APRIL 1989 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

A High-Stability Voltage Reference

Autocalibration in the HP 3458A Digital Mult imeter is a process
o f t rans fer r ing the ga in accuracy o f a s ing le vo l tage re ference
to a l l measurement gains. The design goal for the internal refer
ence o f t he HP 3458A was t o p rov ide l ong - te rm s tab i l i t y and
t e m p e r a t u r e s t a b i l i t y c o m p a r a b l e t o e x t e r n a l s t a n d a r d s t h a t
wou ld no rma l l y be used to ca l i b ra te an 81 /2 -d ig i t mu l t ime te r .
These goa ls were ach ieved by us ing a tempera tu re -s tab i l i zed
so l id-s ta te Zener re ference. Wi thout temperature s tab i l iza t ion,
the Zener 's vo l tage d r i f t w i th tempera tu re i s approx imate ly 50
ppm/Â°C. A proportional temperature control loop senses the chip
temperature of the reference device and reduces this dri f t to less
than 0.15 ppm/Â°C.

The long-term dr i f t of each vol tage reference assembly is mea

sured by an automated dr i f t moni tor ing and screening process.
Reference assembl ies, including the temperature control ler , are
mon i to red un t i l t he ag ing ra te i s shown to be l ess than the 8
ppm/yr s tabi l i ty requirement of the HP 3458A. Summarized test
da ta fo r a number o f 8 ppm/yr re fe rence assembl ies i s shown
in Fig. the . Monitoring the references for additional time allows the
selection of assemblies that exhibit aging rates less than 4 ppm/yr
for the high-stabi l i ty opt ion.

David E. Smith
Development Engineer

Loveland Instrument Divis ion

5 â€¢â€¢

â€¢ Mean Drift
â€¢ Mean + 3-sigma Drift

3 0 6 0 9 0 1 2 0
Days Since Shipment

180 Fig. 1. HP 3458 A internal vol tage
reference dri f t distr ibut ion.

of these errors allows a single specification to apply for
extended operating conditions.

AC Gain Cal ibrat ion
Once the frequency flatness characteristics are adjusted,

the second step of calibration can be completed. Gain cor
rection for the measurement must still be achieved. In Fig.
7 it can be seen that when frequency compensation is
achieved, the attenuator gain can be established equally
well at any frequency as long as the calibration signal
amplitude is precisely known. Adjustment of the circuit
gain using a dc signal is convenient since a traceably cali
brated dc voltage reference and a dc voltage measurement
function are available. Gain adjustment of the ac measure
ment function using known dc voltages allows complete
autocalibration of ac measurement accuracy in much the
same manner as the dc voltage measurement function.

Several mechanisms can limit the accuracy of a dc gain
adjustment. Dc offsets or turnover errors can be minimized
by performing gain adjustment calculations using known
positive and negative voltages. Errors caused by white noise

are reduced by averaging 40,000 samples for each voltage
measurement made through the wide-bandwidth track-
and-hold circuit. Low-frequency 1/f noise is minimized by
chopping these 40,000 readings into groups of 1000, each
group sampling alternating polarities of the known internal

F ig . 9 . The range o f a t tenua to r ou tpu t wave fo rms p resen t
d u r i n g f r e q u e n c y f l a t n e s s c o m p e n s a t i o n . T h e o u t p u t
waveform closely resembles an ideal vol tage step when com
pensat ion is correct.

28 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

dc calibration voltages. This voltage chop is performed at
a fast enough rate to achieve maximum cancellation of the
1/f noise voltage. A final error mechanism results from
aliasing of internal spurious signals. The internal 10-MHz
clock signal tends to be present in small amounts every
where. The ac signal path and the track-and-hold circuit
(2-ns sample aperture) each have sufficient bandwidth to
couple the internal clock into measurements. If the sample
spacing is a multiple of the 100-ns clock period, the internal
spurious clock will be aliased or mixed down to contribute
a dc offset in the measurement. A 100-/nV-peak spurious
clock signal can lead directly to a 100-yu.V error in measuring
the internal dc calibration signal as shown in Fig. 10. The
HP 3458A uses a random sampling time base mode during
this calibration sequence. The time base generates ran
domly spaced sample intervals with a resolution of 10 ns.
The chopped groups of random samples, 40,000 in all, are
averaged together to obtain the net gain of the divider.
Errors caused by dc offsets, white noise, 1/f noise, and
clock aliasing are reduced using this internal calibration
algorithm. Gain calibration of the ac measurement function
relative to the internal dc reference is accomplished with
less than 10 ppm error for intervals extending to two years.
The residual dc gain calibration error will limit the absolute
measurement accuracy for low-frequency inputs.

Additional Errors
Besides adjusting the frequency response and gain of

each ac measurement range, other corrections are per
formed during autocalibration. Offset voltage corrections
are determined for each ac amplifier configuration. The
offset of the analog true-rms-to-dc converter is determined.
The offset of the analog trigger level circuit is nulled. Inter
nal gain adjustments for various measurement paths are
performed. For example, the track-and-hold amplifier gain
is precisely determined by applying a known dc voltage

100

3 0 s

a)

100 ,*V +

3 0 s

Time

and measuring the output in track mode using 7V2-digit
internal dc measurements. A gain ratio is computed using
this measurement and the hold mode gain is determined
by averaging 40.000 samples using the 6-Â¿Â¿s. 50,000-read-
ing-per-second, 18-bit conversion mode of the integrating
ADC. This gain is critical to the accuracy of the digitally
computed rms ac voltage function and to the wideband
sampling functions. Ac current measurements use the same
shunt resistors as the dc currents. A differential amplifier
is used to sample the voltage across the shunt resistors for
ac current measurements, and the gain of this amplifier is
computed during autocalibration.

As a result of autocalibration, the ac measurement accu
racy of the HP 3458A is unchanged for temperatures from
0Â°C to 55Â°C, for humidity to 95% at 40Â°C, and for a period
of two years following external calibration. Execution of
only the ac portion of the autocalibration process is com
pleted in approximately one minute.

Summary
Two-source calibration of a state-of-the-art digital mul

timeter provides several benefits:
â€¢ Increased process control within the standards labora-

National DC
Standards

Primary DC
Standards

Working DC
Standards

Ratio
Transfers

National AC
Standards

Primary AC
Standards

Working AC
Standards

Ratio
Transfers

(a)

National DC
Standards

Primary DC
Standards

b)

National AC
Standards

Primary AC
Standards

j r

T
Working AC
Standards

Ratio
Transfers

F i g . 1 0 . (a) U s i n g t h e c l o c k - d e r i v e d t i m e b a s e , a 7 0 0 - p V
spur ious c lock s igna l can lead d i rec t ly to a lOO-^V er ror in
measuring the internal dc calibration signal, (b) The HP 3458 A
uses a random samp l ing t ime base mode to e l im ina te th i s
error source.

(b)

Fig. 1 1 . (a) Traditional calibration chain for dc and ac voltage,
(b) HP 3458A cal ibrat ion chain, showing the increased ver i f i
cat ion conf idence that resul ts f rom internal cal ibrat ion.

APRIL 1989 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

tory through the independent ratio transfers of the DMM
â€¢ Reduced calibration time
â€¢ Increased measurement accuracies in real environments
â€¢ Increased confidence through complete self-testing.

The greatest benefit of two-source calibration is seen not
by the instrument end user but by the calibration facility
supporting those instruments. Fig. 11 shows the normal
instrument and two-source calibrated instrument traceabil-
ity chain. When verifying the results of the two-source
calibration process, the metrologist now has the indepen
dent checks of the HP 3458A to catch inadvertent human
errors in the normal process. Technique, cabling, and other
instruments used in the generation of calibration values
are no longer open-loop errors that may propagate through
a calibration laboratory. Two-source calibration can iden
tify errors anywhere within the traceability chain, from
primary standards to final values.

The HP 3458A autocalibration procedures are also per
formed during the instrument self-test, which takes about
one minute. The only difference is reduced averaging of
the internal results for faster execution. Also, the results
are not retained in memory afterward. The self-test proce
dures perform highly accurate measurements on each range
of each function, thereby providing a comprehensive
analog and digital confidence test of the system.

Acknowledgments
Verification of the two-source calibration performance

of the HP 3458A was not a particularly easy process. Iden
tifying and quantifying errors, normally a fairly straightfor
ward proposition, was made difficult by both the high ac
curacy and the independent nature of two-source calibra
tion. Many people have contributed to the success of these
efforts. Particular thanks are given to Bill Bruce, the Love-
land Instrument Division standards lab manager, and his
staff. Their assistance and guidance were of immeasurable
help. They were disbelieving and skeptical initially, but
in the end, their ardent support was greatly appreciated.
Kudos go to our production engineering test development
group of Bert Kolts and Randy Hanson for developing a
fully automated system for performance verification testing
of the HP 3458A. Last and most important, special thanks
to the staff of the U.S. National Bureau of Standards: to
Dick Harris and Clark Hamilton at NBS Boulder, Colorado
for allowing us access to their Josephson junction array
during our product development and for helping us set up
our own Josephson array voltage standard system. Thanks
also go to Neil Oldham of NBS Washington, D.C. for making
available his transportable digital ac reference standard,
also for performance verification testing.

30 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Design for High Throughput in a System
Digital Multimeter
High-speed custom gate ar rays , microprocessors , and
suppor t ing hardware and a substant ia l investment in
firmware design contributed to the design of the HP 3458 A
DMM as a system for moving data ef f ic ient ly .

by Gary A. Ceely and David J. Rustic!

MANUFACTURERS OF ELECTRONIC and other
types of products have learned that high test system
throughput is vital to maintaining production ca

pacity. As a primary component of automated test and data
acquisition systems, the system digital multimeter (DMM)
has become a major factor in determining system through
put. A DMM must not only be able to take and transfer high
speed bursts of readings, but must also have the ability to
reconfigure itself quickly when measuring several different
parameters in rapid succession.

Historically, DMM performance has been hindered by a
number of factors, such as relay switching times, ADC con
version delays, and the limited processing power of early-
generation microprocessors. In addition to controlling the
ADC hardware, taking and transferring readings, and pars
ing commands, the microprocessor has been saddled with
scanning the front-panel keyboard, updating the display,
and polling various peripheral ICs to monitor and update
status information. Increasing demands on the capabilities

of firmware written for these machines have only com
pounded the problem. Adoption of more English-like pro
gramming languages has added greatly to both bus over
head (because of the length of these commands) and parsing
time, which formerly was a minor factor.

Another performance limitation in system DMMs has
resulted from the need to make floating measurements, that
is, measurements referenced to the LO terminal instead of
earth ground. Since the LO terminal may be raised to a
potential several hundred volts above ground, the ADC
hardware must also float with this voltage. The problem
here is that the HP-IB (IEEE 488, IEC 625), and therefore
the hardware that interfaces to it, is earth-referenced, re
quiring that the ADC hardware be isolated from the control
ling microprocessor. In many cases, the ADC hardware is
designed around a second microprocessor which com
municates with the main microprocessor via an isolated
serial link, forming a bottleneck in high-speed ADC pro
gramming and data transfers.

System Controller Section (Outguard)

MC68COOO 8-MHz
Microprocessor

Floating Guarded Measurement Section (Inguard)

Calibration
Hardware

Protection

RAM
32K x 16

RAM
(optional)
64K x 16

80C51
Microprocessor

Gate Array

Fiber Optic
Isolation

Time
Interpolator

80CS1
Microprocessor

Communication
Controller

Analog-to-Digital
Converter Control

Analog-to- Digital
Converter

Input

Fig. 1 . HP 3458 A Dig i ta l Mul t imeter system block d iagram.

APRIL 1989 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

Considering the history of DMM performance, it becomes
obvious that the design of the instrument as a system in
itself is critical to the performance of the surrounding auto
matic test system as well. Two key design goals for the HP
3458A were that it be able to reconfigure itself and take a
reading 200 times per second, and that it be able to take
and transfer readings (or store them internally) at a burst
rate of 100,000/s. To achieve these goals, system design for
the HP 3458A focused on expediting the flow of data
through the instrument, both in the hardware and in the
firmware.

Design Overview
A simplified block diagram of the HP 3458A is shown

in Fig. 1. Like previous designs, the DMM is divided into
two sections, inguard and outguard, which correspond to
the hardware inside and outside of the guarded (isolated)
section of the DMM. In this design, however, the bottleneck
of the serial interface between the two sections is overcome
by the use of a high-speed (5 Mbits/s) fiber optic data link
and custom gate arrays on each end to decode and buffer
received data.

Performance features on the outguard side include an
8-MHz MC68COOO main processor, high-speed RAM and
ROM (requiring no wait states from the processor), a sepa
rate 80C51 microprocessor to control the front-panel inter
face, and a programmable timer used as an operating system
clock. This represents a significant upgrade in the outguard
hardware over previous 6800-based designs, and not only
yields faster execution of instructions, but also frees the
main processor from polling peripherals, since all I/O and
interprocessor communications are now interrupt-driven.
Additional gains are realized through the use of a double-
buffered HP-IB input scheme (the parser reads data from
one buffer while an interrupt service routine fills the other)
and a hardware HP-IB output buffer, which allows the main
processor to write data to the HP-IB in words (16 bits)
instead of bytes (8 bits).

Outguard RAM is divided into three sections: an EEPROM
for storing calibration constants, standard RAM (non
volatile), and optional RAM (volatile). Calibration RAM is
distinct from the rest of RAM because it is protected from
accidental overwrites by a hardware mechanism that also
makes writing to it rather slow. Standard RAM is divided
into program memory, reading memory (10K 16-bit read
ings), state storage, and system overhead (stacks, buffers,
etc.). Nonvolatile RAM is used here to protect stored instru
ment states, subroutines, and user key definitions. Optional
RAM is available only as additional reading storage (64K
readings).

Inguard hardware is also under microprocessor control
(an 80C51, in this case), but the heart of the inguard section
is a 6000-gate, 20-MHz CMOS gate array. Functions per
formed by the gate array include communications with the
outguard section through a custom UART, trigger logic con
trol, analog-to-digital conversion, and communications be
tween the UART and other parts of the inguard section.
Shift registers are incorporated to minimize the number of
interconnections between the gate array and other inguard
circuits (the ADC, the ac and dc front ends, and the trigger
control logic). Five shift registers containing 460 bits of

information reduce the number of interface lines to just
three per circuit. Communications are directed by the pro
cessor, which also interprets messages sent from the out
guard section and generates response messages (see "Cus
tom UART Design," page 36.

Firmware Structure
The division of tasks between the inguard and outguard

processors is based on the need to minimize the flow of
messages between them. Inguard firmware is responsible
for controlling the ADC measurement sequence, controlling
the trigger logic during measurements, and directing con
figuration data to the other inguard circuits. Outguard
firmware responsibilities are as shown in Fig. 2. Primary
functions, such as parsing, command execution, display
updating, and keyboard input are performed by separate
tasks under operating system control. Other functions, such
as HP-IB I/O and interprocessor communications, are inter
rupt-driven, are coded in assembly language for maximum
speed, and communicate with the primary tasks via signals
and message exchanges. High firmware throughput is
achieved by focusing on optimization of time-intensive
tasks, such as data transfer and manipulation, parsing and
execution of commands, task switching overhead, and the
measurements themselves.

Fig. 3 shows the flow of data through the HP 3458A.
Data flow is divided into two main paths: the input path
for messages received from the controller, and the output
path for measurements generated by the instrument. When
a controller sends a command such as DCV 10, the data flow
is from the controller to the HP 3458A through the HP-IB.
The HP-IB handler accepts incoming data and passes it on
to the outguard processor's parser, which interprets the
command and then passes control to an execution routine.
After determining the necessary actions, the execution
routine sends state change data to RAM and inguard-bound
messages to the UART. Messages sent to the inguard section
are of two types: measurement messages, which control
the type of measurement (e.g., dc voltage or ac voltage),
and configuration messages, which define the state of the
front ends and the ADC and timer control circuits. Data is
received by the inguard UART and passed to the inguard
processor, which parses the message and either acts upon
it or directs it through the communication controller to
one of the other inguard circuits. Once the configuration
phase is complete, the ADC is ready to take a reading, and
throughput becomes a matter of getting the reading out of
the instrument quickly. Referring again to Fig. 3, the output
data path is from the ADC to the inguard UART, through
the fiber optic link, and on to the outguard processor. The
processor performs any required math and formatting op
erations, and then directs the data either to reading storage
or to the HP-IB.

Data Input , Configurat ion, and Measurements
Programming commands coming in over the HP-IB are

received and buffered by an interrupt service routine,
which in turn signals the HP-IB parser/execution task. The
interrupt code is designed to continue reading characters
from the HP-IB chip as long as they continue to come in
at a rate of 100 /xs/character or faster. In this manner, an

32 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Firmware Development System

Fi rmware fo r the HP 3458A DMM was deve loped on four HP
9000 Computers (Models 320 and 350) under the HP 64000-UX
m ic rop rocesso r deve lopmen t env i r onmen t . Each sys tem was
fu l l y equ ipped to opera te as an independent deve lopment s ta
t i on , and the sys tems were ne tworked to fac i l i t a te t rans fe r o f
code revisions (see Fig. 1). A fifth station was used for consolidat
ing code modif icat ions to be tested using a prototype HP 3458A
and the HP 3458A product ion test system. Af ter pass ing an ex-

IEEE 802.3 LAN

tens ive bat tery o f tes ts , code was re leased in EPROM form for
other prototype instruments

Firmware tasks were div ided along l ines intended to minimize
in terdependence between the des igners The areas o f respons i
b i l i ty were (1) measurements and cal ibrat ion, (2) d ig i t iz ing, (3)
data process ing, format t ing, and s torage, and (4) pars ing, I /O,
and opera t ing sys tem overhead. F ig . 2 shows a b reakdown o f
the amoun t o f ob jec t code genera ted by va r ious modu les . A l -

H P 9 0 0 0 M o d e l 3 2 0 I I H P 9 0 0 0 M o d e l 3 5 0 I I H P 9 0 0 0 M o d e l 3 5 0 I I H P 9 0 0 0 M o d e l 3 5 0

F i rmware Deve lopment

SRM Network

HP 9000 Model 350

H P 6 4 1 2 0 A
Development

Station

HP 9000
Model 220

Production/
QA Test
Station

HP 1631 D
Logic Analyzer

Fi rmware QA/Release
F i g . 1 . H P 3 4 5 8 A f i r m w a r e d e
velopment and QA regression test
systems.

entire command or string of commands can be read in
during a single invocation of the interrupt routine, thereby
generating only one signal to the parser task. In reality, two
input buffers are used: one that is filled by the interrupt
routine, and another that is read by the parser task. After
the interrupt routine signals the parser that data is present
in one buffer, that buffer belongs to the parser task, and
the other buffer is used for the next command that comes
in. When the parser empties a buffer, that buffer is freed
for later use by the interrupt routine. Using two buffers
simplifies pointer manipulation so that data can be read
in and passed to the parser quickly.

To maximize the flow of data to the HP-IB parser/execu
tion task, the instrument must first be programmed to an
idle state (e.g., using TARM HOLD). This allows the operating
system to keep the HP-IB parser task active so that no task
switching is necessary when an HP-IB command is re
ceived. The parser is a table-driven SLR (simple left-right)
design, with all critical components coded in assembly
language. Simple commands can be parsed in as little as

I ms; longer commands take as much as 3 ms. For a further
increase in system throughput, command sequences can
be stored as subprograms, in which case they are first com
piled into assembly language by the parser/code generator.
Executing command sequences in this fashion eliminates
most of the overhead of bus I/O and parsing and allows
the HP 3458A to perform reconfiguration and trigger oper
ations almost twice as fast as the same sequence with indi
vidual commands (340/s instead of 180/s).

In many situations, the HP 3458A will be reconfigured
for a different measurement setup with each test, which
may include only one measurement. The setup changes in
these cases may take more time than the measurement, so
the configuration time must be minimized. To perform 180
reconfiguration and trigger operations per second, the in
strument must be able to transfer, parse, and execute a
command in slightly over 5 ms. Of this total, several
hundred microseconds are spent in bus transfer and system
overhead, and up to 3 ms may be spent parsing the com
mand. Given that an additional several hundred microsec-

APRIL 1989 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

System 10.7%

Formatting 11.4%

Parsing 14.4%-

Measurements 19.8%

Library 6.2%

I/O 5.5%

Memory 5.1%

Processing
4.4%

Digitizing
1.3%

Calibration 21.1%

Total 364,570 bytes

Fig . 2 . Outguard f i rmware modu les .

together, over 28,000 l ines of C code were wri t ten, represent ing
rough ly 80% o f the 356K by tes o f ob jec t code genera ted . The
r e m a i n d e r (1 2 , 0 0 0 l i n e s) w a s w r i t t e n i n 6 8 0 0 0 a s s e m b l y l a n
guage.

During the most intense period of f i rmware development, code
revisions were released on a weekly basis. To relieve the firmware
team of the t ime-consuming task of generat ing and test ing code
rev i s i ons , a f i f t h t eam member was g i ven th i s respons ib i l i t y .
F i rmware des igners up loaded source code week ly to the f i f t h
sys tem, where i t was comp i led , l i nked , and down loaded to an
emulator . Hav ing source code ava i lab le on th is system made i t
p o s s i b l e t o t r a c e a n d a n a l y z e d e f e c t s u s i n g a d e d i c a t e d Q A
sys tem to rep roduce them. The f i f t h deve lopment sys tem was
a lso rev i for arch iv ing f i rmware rev is ions us ing PCS (UNIX rev i
s ion con t ro l sys tem) . To reduce dup l i ca t i on o f e f fo r t , t he tes t
sys tem used for f i rmware deve lopment was a rep l ica o f the HP

3458A product ion test system, which had been developed earl ier
i n t he p ro j ec t c yc l e t o be used i n env i r onmen ta l t es t i ng and
prototype character izat ion.

As the f i rmware cons t ruc t ion phase neared comple t ion , two
engineers were added to the project so that test sof tware could
be deve loped in para l le l w i th the f i rmware e f fo r t . To save tes t
writers the trouble of learning the details of test system operation,
dr ivers and u t i l i t ies were wr i t ten that a l lowed each new tes t to
be wr i t ten as an isolated subrout ine. The test system execut ive
s imply loaded and ran each tes t as i t was needed, thereby pro
v id ing an e f f ic ien t mechanism for add ing new tes ts th roughout
the const ruc t ion and tes t phases. Both hardware and f i rmware
des igners wro te tes ts fo r the tes t su i te . Each was ass igned a
speci f ic area of funct ional i ty to be tested, us ing both whi te-box
and b lack-box approaches.

In addi t ion to the tests wr i t ten spec i f ica l ly to ver i fy f i rmware
operat ion, each revision of code was subjected to the production
test sof tware (which mainly tested the analog hardware for mea
surement accuracy). Addit ional test coverage included the ent ire
HP 3458A user 's manual , w i th emphasis on the command re fer
ence, example programs, and randomly generated combinat ions
o f va l i d and inva l i d syn tax . As de fec ts were found , they were
f i x e d a t h e t e s t c o d e r u n a g a i n f o r v e r i f i c a t i o n . F o l l o w i n g a
success fu l run th rough the tes t su i te , code was re leased and
source code was saved us ing PCS. Sav ing o ld code rev is ions
enabled the f i rmware team to recreate ear l ier code rev is ions to
he lp t rack down de fec ts tha t may no t have been rep roduc ib le
on a newer code rev is ion. When a new defect was found, tes ts
were writ ten and added to the test suite to ensure that the defect
wou ld no t recu r . By the end o f t he p ro jec t , t he tes t su i t e had
grown to where 1 2 hours were required to run all tests. To assess
tes t ing p rogress and e f fec t i veness , de fec ts were submi t ted to
HP 's DTS (de fec t t rack ing sys tem) . Met r i c repor ts were gener
ated and analyzed on a weekly basis to help assess the f irmware
status.

Victor ia K. Sweetser
Development Engineer

Loveland Instrument Divis ion

onds will be spent taking and transferring the reading, only
about 1 ms is left for the execution of the command. In
this millisecond, the execution routine must range-check
parameters, calculate the gain and offset values, and config
ure the trigger controller, the ADC, the front-end hardware,
and the inguard processor. In the worst case, performing
these operations takes considerably longer than a mil
lisecond. A complete configuration of all the inguard sec
tions takes 1.4 ms, and settling time for the front-end relays
adds another 1.3 ms. In addition, a function command may
require as many as six floating-point calculations, each
taking 0.3 ms. This all adds up to well over 4 ms; therefore,
a number of optimizations have been incorporated to re
duce configuration time.

The first step is to avoid reconfiguring the instrument or
a section of inguard if there is no change. For example, if
the present function is ac volts and the new command is
ACV, only the range is configured (if it changes), not the
function. The ADC configuration is the same for dc volts,
ohms, and dc current, so the ADC section is not reconfi
gured for changes between these functions. The trigger con
figuration changes only for digital ac voltage or frequency
measurements, so a new configuration is sent only when

entering or leaving these functions. In general, reconfigura
tion occurs only to the extent required by a given command.

Each combination of function and range uses different
gain and offset values for the ADC readings. The gain and
offset values are scaled by the ADC's aperture, so if the
aperture increases by 2, the gain and offset are scaled by
2. An execution routine retrieves the gain and offset values
from calibration memory and scales them by the aperture.
Then the 120%- and 10%-of-full-scale points are calculated
for overload detection and autoranging. The autoranging
algorithm uses a different ADC aperture and has a separate
set of 120% and 10% points. These two calculations were
removed from the execution routine, and are done at cali
bration time since the autoranging algorithm always uses
the same ADC aperture. To reduce the effect of the other
four calculations, a data structure is used that saves the
gain and offset for each function and range as it is needed.
If the aperture of the ADC is changed, the data structure
is cleared, and as function and ranges are revisited, the
data of is filled in. This eliminates recalculation of
values that are constant for a given aperture.

An operation that is not always necessary but takes con
siderable time during a range or function change is a special

34 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

sequence of relay closures in the front-end circuitry. This
sequence protects the relays from damage when high volt
age is on the input terminals during range changes, but is
not needed when measuring low voltages or if high voltage
is only present when the instrument is set to a high voltage
range. Therefore, the HP 3458A provides an HP-IB program
mable command to defeat the protection scheme, speeding
up the relay sequence by a factor of five. If an overvoltage
condition occurs while protection is inactive, an interrupt
is generated and the relay sequence is reversed, thereby
protecting the relays from damage. A delay of 0.4 second
is then inserted to prevent a rapid recurrence of the over
load condition, and the instrument reverts to normal (pro
tective) relay sequencing thereafter.

Another technique used to reduce the configuration time
is to defer computations until the last possible moment.
The scale factor used in the format conversion of ADC
readings from integer format to real or ASCII format is an
example of this technique. Many commands cause the scale
factor to change, so instead of each command computing
the scale factor, a flag is set and the calculation is performed
when the scale factor is first used. This eliminates wasted
time from unnecessary calculations when many inter
mediate configuration changes are sent to the instrument,
and reduces the time spent responding to even a single
HP-IB command.

Data flow between the outguard and inguard sections

has the potential to be a bottleneck, because the UART and
the inguard processor can only accept configuration data
at a rate of 20.000 words s. Furthermore, commands to
change relays can take a millisecond for the inguard proces
sor to execute. To relieve the outguard processor of the
need to wait on the inguard processor, a buffer was added
to store messages bound for the UART. This buffer is deep
enough to hold an entire configuration change â€” 128 com
mands. This allows the outguard processor to overlap its
activities with the inguard processor's. If the buffer is empty
and the UART is not busy sending data, the 68000 will
send a command directly to the UART, avoiding the over
head of the buffer. If the UART is busy, data is written to
the buffer instead. In this case, the UART generates an
interrupt when it is ready to accept the next word, which
is then retrieved from the buffer and sent.

In addition to fast reconfiguration, system throughput
depends on the time required to make a measurement. Fig.
4 shows the steps an ADC reading goes through before it
is sent to the HP-IB . The first step is autoranging: if a reading
is less than 10% of the range or greater than 120%, the
instrument switches to the next range, changes the ADC's
aperture for a fast measurement, and takes a reading. This
procedure is repeated until the correct range is found, and
then the final measurement is made with the ADC's original
aperture. Although this algorithm is very fast (typically 8
milliseconds), it usually requires that the ADC take several

Measurements

(a)

I n g u a r d - T i m e r
O u t g u a r d | (O S C l o c k)

Communication

Hardware
Protected

Callibration-
RAM Write
Operations

(b)

F ig . 2 . HP 3458A f i rmware s t ruc
t u r e , (a) T a s k s u n d e r o p e r a t i n g
sys tem con t ro l , (b) I n te r rup t se r
vice routines.

APRIL 1989 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

Custom UART Design

At the center of the communicat ions l ink between the inguard
a n d o u t g u a r d s e c t i o n s o f t h e H P 3 4 5 8 A D M M i s t h e c u s t o m
UART (universal asynchronous receiver / t ransmit ter) . A ser ia l in
terface was chosen because an isolated paral le l interface would
have been prohib i t ive ly expensive. Unfor tunate ly , convent ional
UARTs are too s low to meet the HP 3458A's requi red data ra te
of 200 kbytes/s, which corresponds to a baud rate of 2 Mbi ts /s ,
count ing start and stop bi ts. Therefore, f iber opt ic couplers were
chosen, which a lso provide the benef i t o f in f in i te iso lat ion resis
tance.

Convent ional UARTs requi re a c lock ra te that is 16 t imes the
baud the thus, to generate the 3458A's requi red baud ra te , the
c l o c k r a t e w o u l d h a v e t o b e 3 2 M H z . T h e 1 6 x c l o c k r a t e i s
needed to compensa te fo r m ismatched c lock f requenc ies and
waveform distor t ion. These two factors can be contro l led wi th in
the HP 3458A, so a c lock ra te o f th ree t imes the baud ra te i s
used. The UART design is implemented as part of a CMOS gate
a r ray d r i ven by a 10-MHz c lock . Th is c lock ra te y ie lds a baud
rate of 3.3 Mbi ts /s , which meets the design goal wi th some mar
gin.

The data format for the UART is shown in F ig. 1 . The f i rs t b i t
i s the s ta r t b i t and ind ica tes the beg inn ing o f a message. The
next b i t is the handshake bi t . I f th is bi t is h igh, a data/command
message wi l l fo l low immedia te ly . I f the b i t i s low, the message
is a handshake and the next b i t w i l l be a s top b i t . A handshake
message i s sen t each t ime a da ta message i s read by the p ro
cessor , ensur ing tha t a new message w i l l no t be sent un t i l the
previous message has been read. The next-to- last bi t is the inter
r up t o r command b i t , used to i nd i ca te whe the r t he p reced ing
message was da ta o r a command . A command message f r om
the inguard sect ion could be an ADC convers ion fa i lure, an end
of sequence message, or a change in the front or rear terminals.
Command messages genera te in te r rup ts , e l im ina t ing the need
for so f tware to check the data f rom the UART to determine the
message type. The middle 16 bi ts of the message represent the
data or command, and the last b i t is the s top b i t .

F ig . 2 shows a b lock d iagram o f the UART and the communi
cat ion contro l ler . When the decoding state machine detects that
a s t a r t b i t has been rece i ved , i t wa i t s t h ree cyc l es t o dec ide
whether the message is a handshake. I f so , the s ta te mach ine
returns to i ts ini t ial state. I f the message is data, the next 16 bits
are c locked into the input shi f t register . The state machine then
examines the next b i t (the command/data bi t) . I f the message is
a command, an in ter rupt is generated.

U A R T Communication
Controller

Shift Register

Decode
State Machine

1 0 - M H z
C l o c k

Encode
State Machine

Interrupt
Logic

Message
Control

Out -

D 1 5

Stop
Fig. 1 . In terprocessor message formats .

For transmitted messages, the encode machine f irst generates
a start bit. If the message is a handshake, the next bit is set high;
o therwise (i f the message is da ta) , the next b i t i s se t low. The
16 bi ts of data are sent next (i f required), and i f the message is
a command, the last b i t is set h igh.

Buf fers in the UART are used both for received data and data
to be transmitted. This al lows the ADC to leave data in the buffer
while start ing the next measurement, thus maximizing the overlap
b e t w e e n o u t g u a r d a n d i n g u a r d . O n c e t h e b u f f e r h a s b e e n
empt ied , the handshake message is sen t and an in te r rup t can
be generated. The in ter rupt can be used as a request for more
data to be sent . The buf fer queues requests f rom four sources:
the ADC's e r ro r de tec t ion c i rcu i t r y , the ADC's ou tpu t reg is te r ,
the t r igger cont ro l ler messages, and the inguard processor .

The i npu t bu f f e r a l so has a d i r ec t ou tpu t mode t o t he sh i f t
registers. When data is sent to the inguard section, the processor
is in ter rupted, the data is parsed, and, i f the message is a con
f i gu ra t i on message , the d i rec t ou tpu t mode i s se lec ted in the
communica t ion cont ro l le r . Th is mode a l lows the nex t message
to be sent to both the processor and the sh i f t reg is ter , thereby
sending the configuration data directly to the appropriate section.
In th is case, the processor rece ives the message but does not
act upon i t , thereby e l iminat ing the overhead of processor in ter
vent ion in the conf igurat ion process.

Al though the use of microprocessors has enabled instruments
t o o f f e r g r e a t l y e n h a n c e d m e a s u r e m e n t c a p a b i l i t y , a s e v e r e
speed penalty may be incurred i f f i rmware is burdened with tasks
that are best le f t to hardware. The HP 3458A's use of a custom
UART coupled d i rect ly to the measurement hardware opt imizes
per formance by ba lanc ing the work load between hardware and
firmware.

Dav id J . Rus t id
Development Engineer

Loveland Instrument Divis ion

ADC Controller
â€¢ *â€¢ ADC Offset
(h-^ Trigger Controller
(h> DC Front End
< h> AC Front End

80C51
Processor

Â»N- ADC Data
Error

-^â€”Trigger Control
F i g . 2 . B l o c k d i a g r a m o f t h e
U A R T a n d d a t a c o m m u n i c a t i o n
portions of the inguard gate array.

36 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

samples to generate one reading. Therefore, a faster mea
surement will be made if autoranging is turned off.

Throughput is also enhanced by minimizing operating
system overhead. In cases where high throughput is not
an issue (e.g., long integration times), measurements are
handled by a background task, which runs whenever the
instrument is not actively executing commands. This task
simply monitors the trigger and trigger arm states to see if
a measurement should be taken. When throughput is an
issue, however, measurements are initiated directly by the
HP-IB command parser/execution task. In this case, the
overhead of task switching (approximately 250 /xs) is elimi
nated, leaving only the overhead of communication be
tween the interrupt service routine and the HP-IB task.
Another speed enhancement is the use of preprogrammed
states, which fall into two categories: predefined states (ac
tivated using the PRESET command), and user-defined
states (stored using the SSTATE command and activated
using the RSTATE command). Since these commands cause
an extensive reconfiguration, their primary benefit is in
putting the instrument in a known desired state. However,
they can also save time when the alternative is to send
long strings of commands to program the instrument to the
same state.

Output Data Path
Once the instrument has been configured and triggered,

a measurement is taken by the ADC and transmitted
through the fiber optic link to the outguard processor. The
format for this reading is either a 16-bit or a 32-bit two's
complement result with the range offset subtracted. The
next step is to convert the readings into volts, ohms, or
amperes by multiplying by the gain of the range. If a math

Computer/Controller

I

HP-IB Buffer nil

Ã ̄
Outguard

Parser
Reading
Storage

Subprograms
and

State Storage I
Execution
Routines

Inguard-
Outguard

Communication

i

I
m

Â§

Gain
Correction

Inguard-
Outguard

Communication

Inguard
Parser

Hardware
Configuration

A-to-D Algorithm
(ASIC)

Inguard
Measurement

Algorithms

operation is active, it is initiated using a procedure variable
that points to the math subroutine. At this point, the reading
is in a 64-bit floating-point format, and a format conversion
is required for an integer, ASCII, or short real format. The
last step is to display the result and send it to memory or
the HP-IB. Some steps can be eliminated using the appro
priate HP-IB command; for example, the display operation
is deleted using the DISP OFF command.

If autoranging, math, and the display are turned off and
the output format matches the ADC's internal format, the
measurement can be sent directly to the HP-IB or memory.
Special assembly language routines were written to handle
these high-speed modes. The time allowed to read the mea
surement and send it out is 10 fis (given a maximum reading
rate of 100,000 per second). There are two data paths: one
that sends readings to memory and one that sends them to
the HP-IB.
Reading Storage. The memory structure dictated by HP's
multimeter language is a general circular buffer in which
readings may be added or removed at any time. This buffer
can be used in either of two modes: FIFO (first in, first out)
or LIFO (last in, first out), the main distinction being that
the LIFO mode will overwrite the oldest readings when
memory fills, whereas the FIFO mode will terminate when
memory fills, thus preserving the oldest samples. A general
program loop for receiving readings from the ADC and
writing them into memory is as follows:
â€¢ Wait until the ADC has taken a reading.
â€¢ Write the reading into the current fill location and incre

ment the fill pointer.
â€¢ Has the fill pointer reached the top of memory (buffer

pointer wrap-around)?
â€¢ If memory is full and the memory mode is FIFO, stop.
â€¢ Terminate the loop when the end of sequence is sent.

Within 10 (Â¿s, the 68000 will allow only about three
decisions to be made. Even using hand-optimized assembly

Analog-to-
Digital

Converter

Reading
Gain

Format
Conversions

Reading
Storage

Fig. 3 . Input and output data f low paths. F ig . 4 . Process ing o f read ings.

APRIL 1989 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

language, a single program loop could not be written to
implement the general memory model in the allotted time.
The solution uses the fact that if enough decisions are made
before the start of the burst, the number of on-the-fly deci
sions can be reduced. Before the start of a burst of samples,
it is known how many readings can be added before the
buffer pointers wrap around, and how much room is left
before the circular buffer fills. The problem is divided into
a set of special cases. For example, assume that 1000 read
ings are expected from the ADC. Memory fill and empty
pointers indicate space for 2000 readings, but the fill
pointer is only 100 samples from buffer wraparound. Under
these conditions, the memory fill algorithm can be stated
as follows:
â€¢ Fill memory with samples until the buffer fill pointer

reaches the top of memory.
â€¢ Wrap around the fill pointer to the bottom of memory.
â€¢ Fill memory with samples until the sequence is com

plete.
â€¢ Exit the routine.

Any memory scenario can be expressed as a combination
of the following special-case loops:
â€¢ Fill memory with samples until the fill pointer reaches

the top of memory, then wrap around the fill pointer to
the bottom of memory.

â€¢ Fill memory with samples until memory is full (fill
pointer = empty pointer).

â€¢ Fill memory with samples until the sequence is com
plete.
Four factors influence the algorithm used: memory mode,

number of readings expected, total available memory, and
number of samples before wraparound. All possible com
binations of these factors can be accommodated using only
ten special-case combinations. Any particular special case
can be built out of one to four of the routines listed above.
Routines are linked together by pushing their addresses
onto the stack in the reverse of the order in which they are
to be executed (the address of the exit routine is pushed
first), and the first routine is called. In the example above,
the first routine is called to fill memory until it detects
buffer wraparound. It then loads the fill pointer with the
address of the bottom of memory and executes an RTS (re
turn from subroutine) instruction, which pops the address
of the next routine from the stack and jumps to it. The next
routine continues filling memory until the burst is com
plete, then terminates in another RTS instruction, which
pops the address of the exit routine. The exit routine per
forms some minor cleanup (restoring pointers, setting flags,
etc.) and leaves.

HP-IB Output. The high-speed output routine for the HP-IB
uses some of the same concepts as the memory routines.
In this case, the algorithm is as follows:
â€¢ Initialize pointers.
â€¢ Wait until the ADC has taken a reading, then enter the

readings.
â€¢ Wait until the HP-IB buffer is ready to accept more data.
â€¢ Transfer the reading to the HP-IB buffer.
â€¢ Terminate the loop when the end-of-sequence command

is sent.
The HP-IB buffer accepts a 16-bit word from the processor

and sends the lower eight bits to the HP-IB interface chip.
Once this byte has been transmitted, the HP-IB chip signals
the buffer, and the buffer then sends the upper eight bits
without intervention from the processor. Use of a buffer
relieves a congestion point in the output data flow that
would occur if the processor wrote directly to the HP-IB
chip, since the HP-IB is an eight-bit bus while all other
internal data paths are 16 bits wide. Using this scheme,
the HP 3458A is able to offer complete memory and HP-IB
functionality at the full speed of 100,000 16-bit dc voltage
readings per second.

Summary
Achieving high throughput in a system DMM is a matter

of designing the instrument as a system for moving data
efficiently. Hardware and firmware must be designed as
integral elements of this system, not as isolated entities. In
the design of the HP 3458A, experience with DMM perfor
mance limitations provided invaluable insight into key
areas of concern. As a result, significant improvements in
throughput were achieved through the development of
high-speed custom gate arrays for ADC control and inter-
processor communications. Use of high-performance mi
croprocessors and supporting hardware also contributed
greatly to meeting design goals, as did the substantial in
vestment in firmware design and development that was
necessary to translate increased hardware performance into
increased system performance.

Acknowledgments
We would like to thank Greg Wale and Dave Czenkusch,

who were responsible for a significant part of the firmware
development, and Vicky Sweetser, who was responsible
for coordinating, testing and releasing firmware revisions.
We also thank Bill Lutton and Jerry Metz of the HP 3235A
design team for contributing parts of their firmware to be
reused in the HP 3458A.

38 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

High-Resolut ion Digit iz ing Techniques
with an Integrating Digital Mult imeter
Capabi l i t ies and l imitat ions of the HP 3458 A Digi tal
Mult imeter as a high-resolut ion digi t izer are summarized.
Per formance data is presented for se lected appl icat ions.

by David A. Czenkusch

WITH ITS INTEGRATING analog-to-digital con
verter (ADC) capable of making 100,000 conver
sions per second, the HP 3458A Digital Multi

meter (DMM) raises the possibility that, for the first time,
a voltmeter can satisfy many requirements for high-resolu
tion digitizing.

What are the characteristics of a high-resolution digi
tizer? Digitizing requires a combination of fast, accurate
sampling and precise timing. It also needs a flexible trigger
ing capability. The HP 3458A allows sampling through two
different signal paths, each optimized for particular appli
cations.

Converting a signal using the dc volts function (which
does not use a sample-and-hold circuit, but depends on
the short integration time of the ADC) provides the highest
resolution and noise rejection. The direct sampling and
subsampling functions, which use a fast-sampling track-
and-hold circuit, provide higher signal bandwidth and
more precise timing.

High-Resolution Digit izer Requirements
As the block diagram in Fig. 1 illustrates, a digitizer

consists of an analog input signal conditioner followed by
a sampling circuit. A trigger circuit and time base generator
controls the timing of samples. The output of the sampling
circuit is converted to a number by an analog-to-digital
converter (ADC). Once converted to a number, the sample
data can be processed digitally and displayed to the user.

Many types of instruments fit this definition of a digi
tizer, including digital oscilloscopes, dynamic signal ana
lyzers, and digital multimeters (DMMs). Digitizing products
can be roughly differentiated by four characteristics: analog
signal bandwidth, sample rate, signal-to-noise ratio (which
can be expressed as effective bits of resolution), and type
of data displayed (time, frequency, etc.). In general, digital
oscilloscopes tend to have high bandwidth and sample rate

Input Sampling

Trigger and
Time Base

Control

Analog-to-
Digital

Converter

Data
Processing

and
Presentation

and relatively low resolution, while DMMs and dynamic
signal analyzers tend to have much higher resolution and
correspondingly lower bandwidth and sample rate.

Digital oscilloscopes are known for their high bandwidth,
typically 100 MHz or greater, and their digitizing rates of
50 megasamples to one gigasample per second, making
them useful for capturing very fast, single-shot events.
Their resolution of five to eight effective bits is well-suited
for displaying waveforms on a CRT, since one part in 200
is perfectly adequate for the human eye.

Dynamic signal analyzers, on the other hand, are used
in applications that call for higher resolution â€” typically
10 to 14 bits. Examples include dynamic digital-to-analog
converter testing, telecommunications, SONAR, and seis
mic or mechanical measurements that require digital signal
processing. These applications require higher resolution
and typically involve frequency-domain analysis. There
fore, to judge the attributes of a high-resolution digitizer,
we should also examine the characteristics of discrete
Fourier transforms (DFTs) performed on the digitizer's out
put data.

Digitizer Spectral Attributes
"Effective bits" is a measure of the resolution of an ADC.

Essentially, it is a measure of the signal-to-noise ratio in a

2 1 T

2 0 - - 20-Bit ADC
, -
19-Bit ADC

60 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0
Signal-to-Noise Ratio (dB)

140

Fig. 1 . General ized b lock d iagram of a d ig i t izer .

F ig . 2 . Analog- to-d ig i ta l conver ter (ADC) e f fec t ive b i t l imi ta
t ion because o f excess ADC no ise and no ise present in the
ADC input s ignal .

APRIL 1989 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

digitizing system expressed as a power of two. This can be
expressed mathematically as:

N(effective) = (S/(N + D) - 1.8)/6.02

where S/(N + D) is the ratio of the signal power of a full-
scale input to the total power of noise plus distortion, ex
pressed in dB. Notice that the effective bits rating and the
signal-to-noise ratio expressed in dB are both logarithmic
scales related by the constant 6.02. This means that increas
ing the resolution of a measurement by one effective bit
results in a 6-dB improvement in the signal-to-noise ratio.
The system noise term, N + D, is the rms result of the
power contributions of harmonic distortion and noise from
various sources. For an otherwise noise-free, distortion
free-system, there is minimum noise component because
of the fundamental quantization error of the ADC. If this
is the only source of error, the number of effective bits
approaches the basic resolution of the ADC. Fig. 2 shows
how the number of effective bits decreases as errors from
other sources increase.

Other types of errors will appear as random noise. These
include noise in the input signal, noise in the analog input
circuits, random jitter in the timing of samples, and noise
and differential nonlinearity in the ADC.

Linearity error is a measure of the deviation of the output
of an ADC from the ideal straight-line relationship it should
have with the input voltage. Fig. 3 shows a graph of the
linearity error of a typical ADC as a function of input volt
age. Integral linearity error is the large-scale bow in the
total linearity error plot. This deviation from a straight line
can often be described by a second-order or third-order
function. Differential linearity error, on the other hand, has
no large-scale structure, so it looks very much like noise.

If the noise in a digitizer is truly random, then a point-by-
point average of many independent ensembles of waveform
data taken with the same input signal will reduce this noise
by the square root of the number of ensembles, provided
the different ensembles of data have the same phase re
lationship to the input signal. Analog noise in the input
amplifier and ADC and noise caused by random timing
errors tend to be uncorrelated with the input signal, and
so can be reduced by waveform averaging. On the other
hand, differential linearity error in the ADC and systematic
timing errors, while appearing like random noise in a single
pass of data, are repeatable from pass to pass, and so are
correlated with the input and cannot be reduced by averag
ing. This provides a way of determining if the signal-to-
noise ratio of a given digitizing system is dominated by
input noise or by differential linearity error.

Effect ive Bits from the DFT
One way to characterize the signal-to-noise ratio of a

digitizer is to sample a quiet (low-noise) and spectrally
pure full-scale sine wave and perform a discrete Fourier
transform (DFT) on the resulting data. The dynamic range
(in dB) from the peak of the fundamental to the noise floor
of the DFT gives an idea of the low-level signals that can
be resolved. The level of the noise floor depends on the
number of frequency points (bins) in the DFT, and hence
on the number of samples taken, since if the same noise

power is spread over more frequency bins, there will be
less noise power per bin.

The DFT spectrum can be used to produce an estimate
of the signal-to-noise ratio of a digitizer by performing es
sentially the same measurement digitally that a distortion
analyzer performs electronically. A distortion analyzer
supplies a low-distortion sine wave as the input to a circuit
under test. A notch filter is used to remove the fundamental
frequency from the output signal. The power in the filtered
signal is measured and a ratio is formed with the total
output power of the circuit under test. A distortion analyzer
measurement assumes that the power in the filtered output
signal is dominated by harmonic terms generated by distor
tion in the circuit under test. In practice, however, the
analyzer is unable to separate this power from the power
contribution of wideband noise, and hence is actually-
measuring the signal-to-noise ratio of the output signal.

An analogous operation can be performed on the DFT
spectrum of a digitized pure sine wave. A certain number
of frequency bins on either side of the fundamental peak
are removed from the DFT data. The data in each of the
other frequency bins is squared (to yield a power term) and
summed with similar results from the other frequency bins
to calculate the total noise power. The data within the
narrow band around the fundamental is squared and summed
to give the total signal power. The ratio of these two terms,

(a)

D T

(b)

(c)

Fig. 3. Lineari ty errors in an ADC. (a) Integral l ineari ty error,
(b) Dif ferential l ineari ty error, (c) Total l ineari ty error.

40 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

expressed in dB. can be used to compute the number of
effective bits of resolution of the digitizer.

Calculations of effective bits from DFT spectra will show
variations if the test is performed repeatedly. This variation
can be reduced if the spectral values from many indepen
dent trials are averaged point by point (as opposed to av
eraging the time-domain data). Spectral averaging will not
reduce the level of the noise floor in the DFT data, but only
the amount it varies. Therefore, if enough ensembles of
spectral data are averaged, the number of effective bits
calculated will converge to a single number.

Fig. 4 shows the DFT for 4096 samples of a mathemati
cally generated ideal sine wave quantized to 16 bits
(Â±32,767 counts). From this, we see that a perfect 16-bit
digitizer will show a noise floor of about - 127 dB when
quantization error is the only source of noise. If the signal-
to-noise ratio is calculated using the method described
above, the result is 97.0 dB, or 16.0 effective bits, which
is what we would expect.

Other types of digitizer errors can show up on a DFT
plot. Distortion reveals itself as harmonic components at
multiples of the fundamental input frequency. This can be
distortion in the input signal, harmonic distortion in the
input amplifier, or integral nonlinearity in the ADC. As
mentioned before, integral linearity error can be approxi
mated by a second-order or third-order term in the transfer
function of the ADC. These higher-order terms generate
spurious harmonic components in the DFT spectrum.

Other spurious signals can show up in the DFT spectrum
besides harmonic distortion. Internal clock signals can pro
duce unwanted signal components (spurs) either by direct
cross talk or through intermodulation with the input signal.
These effects are commonly grouped together into a single
specification of spurious DFT signals.

Effect of Sample Aperture
Another aspect of digitizers that should be considered

is the effect of the finite acquisition time of the sampling
circuit that provides the input to the ADC. This is typically
some type of sample-and-hold or track-and-hold circuit.
For maximal time certainty, an ideal track-and-hold circuit
would acquire a voltage instantaneously when triggered to
take a sample. In reality, of course, all sampling circuits
require some finite time to acquire a sample. This sampling

function can be approximated by a rectangular window of
time T over which the input signal is sampled.

The Fourier transform of a square pulse defined over the
interval â€” T2=Â£t=sT2in the time domain has the form
[sin(TrfT)] TTÃT. which is the familiar function sinc(fT). This
means that sampling a signal for a time T is equivalent in
the frequency domain to multiplying the input spectrum
by the function sinc(fT). Fig. 5 shows that the spectral
envelope of the sine function approximates a single-pole
low-pass filter with a 3-dB corner frequency of fc = 0.45/T.

From this analysis we can conclude that making the sam
ple time as short as possible produces the flattest possible
response because it maximizes the aperture roll-off corner
frequency. A less desirable trade-off, however, is that this
also increases the equivalent white noise bandwidth of the
sampler, thereby increasing its sensitivity to noise. There
fore, in applications where noise is a greater problem than
frequency roll-off, it would be desirable to have a wider
sample aperture to reduce the noise bandwidth.

The transform above was defined for a square pulse ex
tending from â€” T/2 to T/2. Since a real sampler cannot
anticipate its input, the sample must actually occur over
the interval O =s t =Â£ T. This implies that any sampler that
acquires a signal over a nonzero time interval T will intro
duce an apparent time delay equal to T/2 to the output. In
most real applications, however, this distinction is not sig
nificant.

Another characteristic of the sine function that can be
useful is that its transfer function goes to zero at all frequen
cies that are multiples of 1/T. This means the sampler will
reject all harmonics of a signal whose fundamental period
is equal to the sample aperture. Therefore, a selectable
aperture allows the rejection of specific interference fre
quencies that may be present in the measurement environ
ment.

HP 3458A Digit iz ing Characterist ics
Many of the same design characteristics required to make

0.01/T
Frequency

0 .1 /T 0 .45 /T 1 /T
H r

10/T

- 2 0 - -

03
T3

3 - 4 0 -

- 6 0 -

1 0 1 5
FREQUENCY (KHz)

Fig. 4. Discrete Four ier t ransform of an ideal s ine wave sam
pled wi th an ideal 16-b i t ADC.

F ig . 5 . A t tenua t i on o f t he i npu t s i gna l as a f unc t i on o f f r e
quency resul t ing f rom sampl ing wi th an aper ture of width T.

APRIL 1989 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

Time Interpolation

To imp lemen t t he subsamp l i ng (e f f ec t i ve t ime samp l i ng) re
q u i r e d f o r t h e H P 3 4 5 8 A D M M ' s d i g i t a l a c m e a s u r e m e n t
technique, some means of synchronizat ion wi th the input s ignal
was necessa ry . To m in im ize e r ro r s caused by a l i as i ng o f t he
sampled da ta , a t ime base w i th 10-ns reso lu t ion was des i red .
However , the in terna l 10-MHz c lock would on ly a l low a sample
reso lu t ion o f 100 ns re la t i ve to a synchron iz ing t r igger even t .
These t ime requ i rements d ic ta ted the deve lopment o f the t ime
interpolat ion circui t of the HP 3458A.

The i ns t rumen t ' s 10 -MHz c lock i s used to genera te samp le
t iming pu lses o f var iab le per iod in 100-ns (10-MHz) s teps. The
t ime in te rpo la to r ex tends the reso lu t ion o f the t ime base f rom
100-ns s teps to 10-ns s teps fo r i n i t i a l bu rs t de lays (the de lay
from the tr igger event to the start of sampl ing). This enables the
HP 3458A to d ig i t ize s ignals wi th spectra l content up to 50 MHz
without introducing al iasing errors.

The time interpolator, Fig. 1 , uses analog techniques to convert
t ime to s to red charge on a capac i to r . Be fo re an inpu t t r i gge r ,
the in terpolator is reset by shor t ing both capaci tors (S1 and S2
c losed) wi th the current source shorted to ground (S3 and S4 in
pos i t ion B) . An asynchronous input t r igger , generated e i ther by
the ac path 's t r igger level c i rcui t or by an external t r igger input ,
in i t ia tes charge accumulat ion on C1 by opening S1 and set t ing
S3 and S4 to posi t ion A. This charge accumulat ion process con
t inues unt i l the next pos i t ive edge of the 10-MHz c lock occurs.

On th is edge S3 and S4 sw i tch to pos i t ion B , fo rc ing the ac
cumulated charge to be held on C1. This charge, Q-, , is d i rect ly

RAMP

proportional to the elapsed t ime (Tvar1) between the input tr igger
and the next 10-MHz c lock edge. L ikewise, the vo l tage across
C1 (Vvar1) is also proportional to Tvar1, which varies between 50
ns and 150 ns depend ing on t he t im ing o f t he asynch ronous
input t r igger relat ive to the internal 10-MHz clock.

The in te rpo la to r rema ins in th i s "ho ld " s ta te fo r an in teg ra l
number o f c lock cyc les , Tde iay . The nex t pos i t i ve -go ing c lock
edge af ter Tde]ay in i t ia tes the second charge accumulat ion pro
c e s s . A t t h i s t i m e , S 2 o p e n s a n d S 3 a n d S 4 a r e s w i t c h e d t o
posit ion A. During this t ime, the same charge, Q2, is accumulated
on C1 and C2. Th is process cont inues unt i l the vo l tage on C1,
Vramp, crosses the programmable comparator threshold V,. This
transit ion generates an output tr igger that signals the track-and-
hold c i rcui t in the ac sect ion to enter hold mode, thus acquir ing
a sample fo r subsequent ADC convers ion . By p rogramming V ,
to var ious values, the system can al ter th is delay in increments
o f 10 ns, a l lowing prec ise t iming of a burs t o f samples re la t ive
to an asynchronous star t ing event.

The output t r igger also switches S3 and S4 to posi t ion B. This
no t on l y tu rns o f f t he cu r ren t sou rce , bu t a l so c rea tes a l oop
be tween C2 , R1 , and the bu f fe r amp l i f i e r ' s i npu t and ou tpu t .
Feedback forces a current through C2, removing i ts accumulated
charge, Q2. The result ing current f lows through both C1 and C2,
remov ing the charge Q2 f rom capac i to r C1 . The process com
pletes wi th C1 hold ing the or ig ina l charge, Q-, , which is propor
t ional to the delay between the f i rs t t r igger and the r is ing edge
o f t he i n te rna l 10 -MHz c l ock . Du r i ng t he ADC conve rs i on , (a

T r i g g e r O u t JL n
V r , â€¢amp Vvan ; V t Vvan! Vt

Vvar l

Fig. 1 . HP 3458 A DMM time inter
p o l a t o r b l o c k a n d t i m i n g d i a
grams.

42 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

ERT I ER1

:

:

3HMPLE

:â€¢:-.:â€¢ " sec

(a)

;

HOPIZC NTHL: 103 -s

-1D0

(b) 50

Fig. 2. 77)e f /me interpolator 's accuracy is adjusted by cal ibrat ing l ramp. (a) A digi t ized 1-MHz
waveform after lramp calibration, (b) Fourier transform of (a), showing a noise f loor 80 dB below
the f undamen ta l and spu r i ous s i gna l s be low -55 dB . (c) A d ig i t i zed 1 -MHz s ine wave w i th

L , misadjusted. (d) Fourier t ransform of (c).

minimum of 20 /Â¿s for subsampl ing) the t ime base circui t waits
an interval T, imer before repeat ing the charge/discharge cycle.

The accuracy of the 1 0-ns increments Â¡s ensured by calibration
o f the de lay ga in . S ince the t ime in te rpo la tor 's abso lu te de lay
is a function of lramp, C1 , and V,, many variables can prevent the
10-ns increments f rom being exact ly one tenth of a 100-ns t ime
base s tep. In terpo la t ion fo r ten 10-ns In terva ls must prec ise ly
equa l one 100-ns c lock per iod (10 MHz) to min imize sampl ing
er rors . By adjust ing l ,amp (F ig. 2) , the s lew rate and threshold
errors are adjusted to yield 1 0-ns steps within Â±50 ps. Time jitter
is held to less than 100 ps rms. Low temperature coeff ic ients for
C1 and the DAC that generates V, ensure in terpolator accuracy
ove r i s opera t ing tempera tu re range . The t ime in te rpo la to r i s
adjusted by applying a 2-MHz sine wave to the input and execut
ing a ca l ib ra t ion rout ine which a l ternate ly programs 100-ns de
lays into either the time base or the time interpolator. By adjusting

the DAC that controls lramp, the routine converges the two delays.
Th i s 80 base pe r fo rmance con t r i bu tes to the a no i se f l oo r 80
dB below the fundamantal and spurious signals below - 55 dB.

The des ign o f the t ime in terpo la tor c i rcu i t was re f ined us ing
analog simulat ion methods on an HP 9000 Model 320 Computer.
Compute r -a ided eng ineer ing p rov ided t ime ly feedback du r ing
deve lopment , a l lowing rap id eva luat ion o f a l ternat ive c i rcu i t to
pologies. Cri t ical design characterizat ions, di f f icult to achieve by
t rad i t ional means, were per formed accurate ly and s imply us ing
CAE s imu la t ions . The resu l t i ng c i r cu i t pe r fo rmance exceeded
our or ig inal design goals.

David E. Smith
Development Engineer

Loveland Instrument Divis ion

high-accuracy ac and dc measurements also allow the HP
3458A to perform well as a high-resolution digitizer. For
instance, because it makes true-rms ac measurements using
digital techniques, it has a scope-like trigger level circuit
for waveform synchronization. A precise trigger timing cir
cuit allows sample intervals to be specified to a resolution
of 100 nanoseconds and initial delays from a trigger event
to the first sample of a burst can be specified to a resolution

of 10 nanoseconds using an analog time interpolator.
As the block diagram in Fig. 6 shows, the HP 3458A

provides two distinct input paths for digitizing, corres
ponding to the two amplifiers used for the dc volts and ac
volts functions. Each path has advantages and disadvan
tages. The dc input path should be used when maximum
resolution and noise rejection are required and the
bandwidth of the input signal is relatively low. Because it

APRIL 1989 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

uses a track-and-hold circuit, the ac input path can be used
on signals of higher bandwidth or when the signal must
be sampled at a very precise point in time.

High-Resolut ion DC Input Path
The dc input path allows higher-resolution sampling as

well as a higher single-shot measurement speed, providing
16-bit samples at up to 100,000 samples per second. The
bandwidth of this amplifier varies from 50 kHz to 150 kHz,
depending on the range selected. The widest bandwidth
is available on the 10V range, when the amplifier is operat
ing at unity gain. In this path, the sampling function is
performed by the ADC itself with its selectable integration
time (sample aperture). Historically, digital multimeters
with integrating ADCs have allowed only a few discrete
values for integration time. These values were chosen to
be multiples of the power-line frequency â€” the most com
mon signal to interfere with a high-resolution voltage mea
surement. In the HP 3458A, integration times can be
specified from 500 ns to 1 s in increments of 100 ns. This
allows the rejection of an interference signal of arbitrary
frequency that may be present in the input, and provides
attenuation of other frequencies above the sample rate by
the approximate single-pole roll-off characteristic of the
sample aperture's sine function. The longer the integration
aperture specified, the more resolution is provided by the
ADC. Fig. 7 shows the resolution that can be obtained for
a given aperture.

Because the dc input path is designed for extremely low
noise, low offset, and part-per-million (ppm) accuracy, the
DFT spectra produced in this mode are quite good. In fact,
it is difficult to determine whether the harmonic distortion
and noise floor measurements are dominated by the HP
3458A or by the input signal.

Fig. 8a shows the DFT calculated on 4096 samples of a
1-kHz waveform aquired at a rate of 50,000 samples/s with
an integration time of 10 microseconds. The noise floor
and spurious DFT signals are below â€”120 dB, and har
monic spurs are below â€” 106 dB. If the signal-to-noise ratio
is computed from the spectral data, the result is approxi
mately 93.9 dB, yielding 15.3 effective bits.

The input signal for this test was provided by the oscil
lator output of an HP 339A Distortion Measurement Set,
whose distortion at this frequency is specified to be less

Input
Signal

Precision
DC

Amplifier

Wideband
AC

Amplifier

Threshold
Detection

Circuit

1 m

Integrating
Analog-to-Digital

Converter
â€¢ Bits

Track-and-
Hold Circuit

Analog
Time

Interpolator

Trigger

Trigger Control
and Sampling

Time Base

External Trigger-

than - 96 dB at the first harmonic. It is unclear whether
the first-harmonic term at - 107 dB is caused by distortion
in the source signal or distortion in the HP 3458A at this
sample rate. However, tests performed at slower sample
rates (and greater resolution) also exhibit this second-har
monic term.

The averaging effect of the relatively wide sample aper
ture (10 fjis vs. 2 ns) reduces random noise contributions
to the DFT noise floor to a level comparable to those of
systematic nonlinearities. Because of this, waveform av
eraging only provides an extra 4.4 dB improvement in the
signal-to-noise ratio, yielding an extra 0.7 effective bit. Fig.
8b shows the DFT spectrum that results if 64 waveforms
are averaged.

A striking example of the high-resolution digitizing capa
bility of the dc volts sampling mode involves measuring
an ultralow-distortion signal source used to characterize
the performance of seismic measurement systems. The out
put of the source is a 0.03-Hz sine wave whose noise and
harmonic distortion products are guaranteed by design to
be at least 140 dB below the level of the fundamental.
Superimposed on this is a 1-Hz sine wave whose amplitude
is 120 dB below the level of the 0.03-Hz signal. The goal
of the measurement system two-tone test is to be able to
see the 1-Hz tone clearly in the presence of the full-scale

10 MS- .

100 / js - -

1 ms â€¢ â€¢

g . 1 0 m s - -

100 ms- -

1 s - -

4 5
(1 4 . 5 b i t s) (1 8 b i t s)

R e s o l u t i o n (d i g i t s)

6 7
(2 1 b i t s) (2 4 . 5 b i t s)

8
(2 8 b i t s)

F ig . 6 . HP 3458A b lock d iagram, showing the two measure
ment paths.

F ig . 7 . HP 3458A measurement reso lu t ion as a funct ion oÃ
aperture t ime (speed).

44 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

(lOVpeak) input without introducing extraneous distortion
products. The HP 3458A was used to acquire 4096 samples
with an ADC aperture of 20 milliseconds and a sample
interval of 50 milliseconds, resulting in a resolution of 24
bits (7V2 digits).

The DFT plot in Fig. 9 shows the result of this test. Only
a portion of the full 10-Hz bandwidth is shown to make
the component at 0.03 Hz more apparent. The 1-Hz spike
at - 120 dB is clearly visible above a noise floor of - 150
dB. If the 1-Hz component is notched out along with the
0.03-Hz fundamental, and the remaining power is consid
ered noise, a signal-to-noise calculation yields 19.6 effec
tive bits. As before, it is not clear whether the DFT noise
floor in this measurement is dominated by noise in the
input signal or noise in the HP 3458A. If the rms noise of
the HP 3458A is characterized with the same ADC aperture
(20 ms) and a quiet dc source is substituted as input, mea
surements demonstrate a performance of 22 effective bits.
The HP 3458A is clearly capable of verifying the perfor
mance of this source to the levels guaranteed by its design
ers. We are told that earlier measurements had never been
able to achieve these low levels of noise and distortion.

In the dc volts mode, the input signal is sampled directly
by the ADC. The sampling is synchronous with the instru
ment's internal 10-MHz clock. This leads to a 100-nano-
second peak uncertainty in the time latency of a sample
or group of samples relative to an external or level trigger
event. While a time uncertainty of 100 nanoseconds from
an asynchronous trigger event is perfectly adequate for

most applications, other applications require more precise
sample timing.

Digital AC Input Path
The ac input path provides a wider analog bandwidth

and more precise timing than the dc path. The bandwidth
of the ac amplifier is 12 MHz on all ranges except the
10-mV and 1000V ranges, where the bandwidth is 2 MHz.
Autocalibration guarantees a frequency response flatter
than 0.01% (0.001 dB) throughout the frequency band from
200 Hz to 20 kHz, making this path ideal for characterizing
frequency response in the audio band. While the maximum
single-shot sample rate of 50,000 samples per second is
somewhat lower than the dc input path because of the
additional settling time required by the track-and-hold cir
cuit, a precise timing circuit allows effective time sampling
(subsampling) of repetitive input signals with effective
sample intervals as short as 10 ns.

Achieving true-rms ac measurements with 100-ppm ac
curacy using digital techniques requires an extremely
linear track-and-hold circuit. This same track-and-hold cir
cuit provides 16-bit linearity in digitizing applications. A
sample acquisition time of approximately 2 ns results in a
3-dB aperture roll-off frequency of at least 225 MHz. This
means that amplitude errors caused by the sample aperture
are insignificant through the entire measurement band. The
timing of the track-and-hold circuit is controlled by an
analog ramp interpolator circuit which operates asynchro-
nously with the internal 10-MHz clock, giving a burst-to-
burst timing repeatability error less than 100 picoseconds.
The time interpolator allows programming of delays from
an external or internal trigger with a resolution of 10 ns,
allowing single samples to be timed very precisely.

While the greater equivalent noise bandwidth of the
input amplifier and track-and-hold circuit results in fewer
effective bits of resolution in a single-shot measurement
than the dc input path, the DFT performance for this path
is still quite good. Fig. 10a shows a typical 2048-point DFT
plot for a 1-kHz sine wave sampled at the single-shot limit
of 50,000 samples per second. A signal-to-noise ratio calcu
lation on this data yields 10.4 effective bits. The ac input
path has a greater equivalent noise bandwidth than the dc
input path, so random noise dominates the signal-to-noise

1 . 2
F R E Q U E N C Y (H z)

F ig . 8 . (a) S ing le -sho t , 4096- t ime-sample d isc re te Four ie r
t ransform (DFT) of a 1-kHz input s ignal , (b) DFT for 64 aver
aged acquisi t ions of the 1-kHz input signal. Effect ive bi ts are
15.3 for (a) and 16.0 for (b).

F i g . 9 . DFT f o r a 4096 -samp /e HP 3458A acqu i s i t i on o f a
0 .3-Hz s ine wave wi th a T -Hz, - 120-dB s ine wave super im
posed. The ef fect ive b i ts rat ing is 19.6.

APRIL 1989 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

Measurement of Capacitor Dissipation Factor Using Digitizing

No capaci tor outside of a textbook exhibi ts the theoret ical cur
rent- to-vol tage phase lag of 90 degrees. This is another way of
say ing tha t i n the rea l wor ld a l l capac i to rs a re l ossy to some
ex ten t . These losses are caused by a number o f fac to rs , such
as lead resistance and die lectr ic hysteresis.

A t a g iven f requency, the d iss ipat ion fac tor o f a capac i to r i s
def ined to be the rat io of the equivalent ser ies resistance (ESR)
and the capaci t ive reactance. Dissipat ion factor is important for
many app l i ca t ions . A t h igh power leve ls , capac i to rs w i th poor
d i ss ipa t ion fac to r can overhea t . The p rec is ion o f capac i t i ve l y
compensa ted a t tenua to rs can be compromised by d i ss ipa t ion
fac to r . A lso , the capab i l i t i es o f t rack -and-ho ld c i r cu i t s a re de
graded by the d iss ipat ion factors of the i r ho ld capaci tors .

There are two common ways to measure diss ipat ion factor . In
the f irst method, the impedance of the capacitor under test (CUT)
i s measu red a t a g i ven f requency and the dev ia t i on i n phase
angle f rom the ideal 90 degrees is used to calculate the diss ipa
t ion factor. Br idges are another method used to measure dissipa
t ion fac tor . In essence, the CUT is in a br idge wi th th ree o ther
capaci tors, one of which is adjustable in both C and ESR. When
the br idge is nul led, the values of the adjustable C and i ts ESR
determine the d iss ipat ion factor of the CUT.

The ac attenuator in the HP 3458A uses a 20-pF capacitor that
has a kHz . fac to r requ i remen t o f 0 .0001 (0 .01 %) a t 1 0 kHz .
Commerc ia l ly ava i lab le automated equipment exh ib i ts reading-
to - read ing no ise o f 0 .01% and d iss ipa t ion fac tor accurac ies o f
0.04%. This is inadequate to screen this capacitor rel iably. High-

v,
T 2

V , = V p s i n e

V2 = -Vp s in , / ,

V , - V 2
= s in~1

2 V n

Fig. 1 . Measur ing phase shi f t in a s ine wave.

qual i ty manual br idges can do this job, but their operat ion is not
wel l -sui ted to a product ion environment.

By making use of the h igh-resolut ion d ig i t iz ing and prec is ion
ac measurement capabi l i t ies o f the HP 3458A, i t i s poss ib le to
construct an automated d iss ipat ion factor meter that is capable
o f mak ing accura te and s tab le 0 .001% d iss ipa t ion fac to r mea
su remen ts and capac i t ance measu remen ts t ha t a re s tab le t o
0.001 pF.

Circuit Description
In F ig . 1 , a method o f de te rmin ing the phase sh i f t o f a s ine

wave re la t ive to an ex terna l t im ing pu lse occur r ing a t the s ine
wave's zero crossing is shown. Theoret ical ly, only V-, is needed
to determine th is phase shi f t . The advantage of us ing a second
sample (V2) spaced one hal f cyc le la ter in t ime is that (V, - V2)

measurement to a much greater extent. Because of this, the
noise floor can be lowered another 20.6 dB by waveform
averaging, producing 13.8 effective bits as shown in Fig.
lOb.

The ac input path supports two digitizing functions: di
rect sampling and subsampling, which is also referred to
as effective time sampling. The article on page 15 describes
the subsampling technique. Subsampling allows the sam
pling of repetitive waveforms with effective sample inter
vals as short as 10 ns, thus allowing the user to take full
advantage of the 12-MHz analog input bandwidth. The sub-
sampling parameters are somewhat complex to calculate
for an arbitrary effective interval and number of samples,
but the user need not understand the details of the al
gorithm. All that need be specified is the desired effective
sample interval and number of samples, and the HP 3458A
will compute the number of passes, the number of samples
per pass, the delay increment per pass, and the ADC sample
rate required to complete the task most efficiently. Further
more, if the samples are directed to the instrument's inter
nal memory, they will be sorted into the correct time order
on the fly.

If the number of samples required for a subsampled mea
surement exceeds the size of the instrument's internal
memory, the samples can be sent directly from the ADC
to a computer via the HP-IB. Since the HP 3458A cannot
sort the data in this mode, the samples recieved by the
computer generally will not be in the correct time order.
If this is the case, the waveform can be reconstructed in

the computer's memory using an algorithm requiring three
sorting parameters supplied by the HP 3458A.

Subsampling is essentially the same as direct sampling
when the effective sample rate is less than or equal to
50,000 samples per second. Why, then, is direct sampling
even offered? The answer is that the subsampling technique
only allows sampling based on the internal time base,
whereas the direct sampling function includes all the same
trigger modes as the dc volts function. This means that the
user can supply an external time base via the external trig
ger input to allow sampling at odd frequencies that cannot
be realized with the 100-ns quantization of the internal
time base. An example would be the 44.1-kHz sample rate
required by many digital audio applications. Direct sam
pling is also useful for acquiring single samples with
minimum time uncertainty. Samples can be precisely
placed with 10-ns delay resolution relative to an external
trigger event and with 2-ns rms time jitter. "Measurement
of Capacitor Dissipation Factor Using Digitizing" on this
page shows an example of these measurement capabilities
of the HP 3458A.

HP 3458A Limitat ions
Since the HP 3458A must be a voltmeter first and a digi

tizer second, it is not surprising that it has some limitations
as a digitizer. Perhaps the most significant is the lack of
an anti-aliasing filter. Because no single filter could be
included to cover all possible sample rates, and because it
would degrade the analog performance, the design team

46 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

E x t e r n a l
O u t

I n p u t T o
H P 3 4 5 8 A

E x t e r n a l
T r i g g e r I n

Fig. 2 . Ci rcu i t to measure d iss ipat ion factor .

is insensi t ive to vol tage offsets on the sine wave.
F ig . 2 shows a c i r cu i t us ing the techn ique o f F ig . 1 . A s ine

wave i s app l ied to one o f two capac i t i ve d iv iders , one fo rmed
by the CUT and Ctow and the other formed by Chigh and Clow (R
prov ides the dc b ias for the buf fer ampl i f ier) . This s ine wave is
a lso app l ied to a compara to r tha t de tec ts zero c ross ings . The
output o f the comparator Is routed to the externa l t r igger Input
of the HP 3458A and the output of the buffer ampl i f ier is appl ied
t o t h e i n p u t o f t h e H P 3 4 5 8 A . T h e H P 3 4 5 8 A c a n u s e I t s a c
sec t ion to measure the rms va lue o f th is ou tput waveform and
thus Vp In Fig. 1 can be determined very precisely. The HP 3458A
can a lso measure the per iod of the output waveform and set up
sample t iming parameters to sample the output sine wave relative
to the ex te rna l t r i gge r s igna l as shown In F ig . 1 . Thus a l l t he
in format ion is p resent to determine the phase sh i f t o f the s ine
wave through the capaci tor d iv ider network.

The abso lu te phase sh i f t o f one s ide o f the capac i tor d iv ider
is not the in format ion des i red, however . What is des i red is the
phase sh i f t caused by the d iss ipa t ion fac to r o f the CUT In the
divider formed by the CUT and C,ow. This wil l provide the informa
t ion needed to determine the d iss ipat ion factor of the CUT.

Comput ing the di f ference between the absolute phase shi f t of

the reference divider (Chigh and C,oJ and the input divider (CUT
and CfcvJ is the first step towards determining the phase shift Â¡n
the input divider result ing from the dissipat ion factor of the CUT.
The HP 3458A s EXT OUT ou tpu t i s used to se lec t e i t he r t he
reference divider or the input divider. Taking the phase difference
between the reference and input measurements removes errors
caused by the buf fer ampl i f ier and the comparator . I f Chigh had
zero dissipat ion factor, CUT had the same capaci tance value as
Ch,gh, and the switching relay was perfect, this phase dif ference
would be ent i re ly a resul t of the dissipat ion factor of the CUT. I f
this phase difference is <t>, the dissipation factor of the CUT is:

DF = tan(<Â« (C U T + C , o J

In general , the CUT wi l l not be the same size as Chigh, Chigh
wi l l not have zero dissipat ion factor, and the switching relay wi l l
not be perfect . However, these condi t ions are easi ly contro l led.
The feedthrough capacitance of the relay Â¡n Fig. 2 can be reduced
by implement ing the re lay as a T-swi tch. I f the CUT Is d i f ferent
Â¡n magni tude f rom Chigh, a phase di f ference wi l l be measured
even I f the CUT has zero dissipat ion factor . This is because the
phase shi f t of the paral le l combinat ion of R and Chigh and C!ow
is d i f fe rent f rom that o f the combinat ion o f R and the CUT and
C|OVV. This error can be removed by appropriate correction factors
Implemented Â¡n software. Also, in general, the dissipation factor
of the CUT wil l not be zero. A zero calibration against a reference
capaci tor can remove th is error .

Summary
The p rec i s i on d ig i t i z i ng capab i l i t i es o f t he HP 3458A DMM

have been appl ied to make a t radi t ional ly d i f f icul t measurement
o f capac i tor d iss ipat ion fac tor . Test resu l ts show measurement
accurac ies approach ing 0 .001%. Th is cor responds to a phase
error of 0.0005 degree or a t ime error of 150 ps at 10 kHz. Also,
s i nce t he capac i t ance o f t he CUT i s compu ted as pa r t o f t he
d i ss ipa t i on fac to r ca l cu la t i on , accu ra te capac i tance measure
ments are a lso generated that are s table to 0.001 pF.

Ronald L. Swer le in
Development Engineer

Loveland Instrument Div is ion

decided it would be impractical to include one.
Another limitation is the latency from an external or

internal trigger to the start of sampling. The ramp time of
the analog time interpolator produces a minimum delay of
at least 400 ns. This means that if the input frequency is
greater than about 500 kHz, the signal edge that is used to
synchronize the waveform in a subsampled measurement
will not even show up in the output data. Oscilloscopes
typically include some form of analog delay to match the
timing of the signal path to the trigger circuit, but again
this was not compatible with the requirements of a high-
precision DMM.

Another effect inherent in the design of the analog time
interpolator is voltage droop. Essentially, the phase of the
input signal relative to the internal 10-MHz clock is rep
resented by a voltage stored on a hold capacitor, which is
captured at the beginning of a measurement burst and held
throughout the burst. Since there will always be some leak
age in the circuits attached to this node, the voltage on this

capacitor will slowly leak off, causing an apparent length
ening in the time between samples. This produces an appar
ent frequency modulation in the output data, which con
tinues until the charge leaks off completely, at which time
the sample interval will again be stable. This droop rate
gets worse as leakage increases with higher temperature.
Measurements on a typical unit at room temperature show
a droop rate of about 500 ns/s, which persists for about 140
ms. In other words, during the first 140 ms of a reading
burst, a sample interval of 20 /us will be lengthened by
about 10 ps per sample.

Waveform Analysis Software
One factor limiting the effectiveness of the HP 3458A as

a stand-alone digitizer is the lack of a built-in CRT for
waveform display. This shortcoming has been addressed
with a software library that turns an HP 3458A and a com
puter into a real-time single-channel digital oscilloscope
and DFT analyzer.

APRIL 1989 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

The optional waveform analysis library allows a user
with an HP 9000 Series 200 or 300 workstation or an IBM
PC/AT-compatible computer with HP BASIC Language Pro
cessor to display waveforms in real time. In addition,
routines are included to perform parametric analysis,
waveform comparisons, and FFT spectral calculations and
to store and recall waveforms from mass storage.

The real-time oscilloscope subprogram, ScopeSS, began
as a means to demonstrate how quickly waveforms could
be acquired by the HP 3458A and displayed. It soon became
an indispensable tool in the development of the ADC and
high-speed firmware. Since the program had proven so
valuable during development, we decided it should be in
cluded in the waveform analysis library. A user interface
was added to give the look and feel of a digital oscilloscope,
including horizontal and vertical ranging, voltage and time
markers, and an FFT display mode. The program can ac
quire and plot waveforms at a rate of approximately 10
updates per second â€” fast enough to provide a real-time feel.

The heart of the Scope58 subprogram is a set of
specialized compiled subroutines for fast plotting, averag
ing, and interpolation of waveforms. Since speed was the
overriding design consideration for these routines, most of
these subroutines were written in MC68000 assembly lan
guage rather than a higher-level language like Pascal or
BASIC. The fast plotting routine, in particular, required
certain design compromises to achieve its high speed. It

z -B0

(a)

2 0

0

- 2 0

Â»-4B
m
73

y - 6 0

3 -B0
tr
-100

- 1 2 0

- 1 4 0

(b)

5 1 0 1 5
FREQUENCY (KHz)

1 0 1 5
FREQUENCY t KHz)

F ig . 10 . (a) Typ i ca l DFT fo r 2048 samp les o f a 1 -kHz s ine
wave sampled at the HP 3458A ac path 's s ing le-shot l imi t o f
50,000 samples per second. Effect ive bi ts are 10.4. (b) Effec
t ive b i ts can be increased to 13.8 by averaging data for sev
eral acquisit ions.

uses a simplified plotting algorithm which requires that
there be one sample per horizontal display pixel, which
means that the only way to change the horizontal scale is
to change the sample rate unless the waveform data is
interpolated to increase its time resolution before plotting.
Also, the plotting routine bypasses the machine independent
graphics routines and writes directly to the bit-mapped
frame buffer of the graphics screen. This makes the routine
fast, but it complicates the programming task, since a spe
cial version of the routine must be written for every sup
ported display interface.

In addition to the Scope58 subprogram, the waveform
analysis library includes routines that help with waveform
acquisition, analysis, and storage. Since the HP 3458A is
capable of synchronizing with external switching instru
ments like a normal DMM, it can be switched to acquire a
waveform per channel in a multichannel data acquisition
system. This feature, combined with the waveform analysis
library, can be used to make many complex measurements
in automated test applications.

The library's analysis capabilities include routines to
extract parametric data such as rise time, pulse width, over
shoot, and peak-to-peak voltage, and routines to compare
waveforms against high and low limit arrays. There is also
a compiled utility for calculating Fourier and inverse
Fourier transforms. This routine can compute a 2048-time-
point-to-1024-frequency-point transform in as little as 1.2 s
if the computer's CPU includes a 68881 floating-point co
processor. Finally, routines are provided for the interpola
tion of waveforms using the time convolution property of
the sinc(x) function. This technique is common in digital
oscilloscopes, and allows the accurate reconstruction of
waveforms with frequency components approaching the
Nyquist limit of half the sampling frequency.

The precision digitizing characteristics of the HP 3458A
and the display capabilities of the waveform analysis li
brary combine to form a powerful waveform analysis tool
in R&D or automated test applications. For instance, an HP
3458A together with a digital pattern generator can be used
to test digital-to-analog converters (DACs). The waveform
comparison capability of the waveform analysis library can
be used to provide a pass/fail indication. Assuming a DAC
settling time of 10 /LIS and an HP 3458A measurement time
of 20 fj.s (only 10 /us of which is spent integrating the input
signal), all codes of a 14-bit DAC (16,384 levels) can be
acquired in approximately 328 ms. The dynamic charac
teristics of the DAC can be tested using the FFT library
routine. The DAC can be programmed to output a sine
wave, which the HP 3458A can digitize. A DFT on the
resulting data can be analyzed to characterize the DAC for
noise floor and total harmonic distortion (THD).

Summary
The capabilities of a high-resolution digitizer can best

be characterized by examining its performance in the fre
quency domain. To be able to resolve very low-level
phenomena, it must have a wide dynamic range and very
low levels of distortion and spurious signals. The excep-
* l f you 10 16 .384 by 30 us , t he resu l t i s ac tua l l y 492 ms . Howeve r , l o r a t l eas t 10 us
o f each TTL convers ion , the HP 3458A i s no t measur ing the inpu t , and p rov ides a TTL
signal indicating this fact. This t ime can be overlapped with the DAC's sett l ing t ime, thereby
reducing the total acquisi t ion t ime.

48 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

tional DFT performance of the HP 3458A results from its
combination of precise timing and the nearly ideal noise
rejection capability of an integrating ADC. Also, its high-
resolution track-and-hold circuit allows very fast sampling
with maximal time certainty. These features, combined
\vith the display capabilities of a host computer, are all
that is needed to implement a high-resolution single-chan
nel oscilloscope or DFT analyzer.

Acknowledgments
I would especially like to mention the contributions of

Dave Rustici who implemented the original version of the
real-time oscilloscope program, Evan Whitney of Santa
Clara Division who wrote the sine interpolation software,
and Ron Swerlein who wrote the original compiled DFT
routine. Also, I'd like to thank Brad Waite, who provided
programming support on a prototype of the waveform
analysis library, Greg Wale, who helped with software test
ing, and Brian Berry, whose inputs helped greatly to refine
the definition of the waveform analysis library.

References
1. D.R. Flach, "Characterization of Waveform Recorders," Digital
Methods in Waveform Metrology, NBS Special Publication 707,
October 1985, pp 31-52.
2. B. Allen Montijo, "Digital Filtering in a High-Speed Digitizing
Oscilloscope," Hewlett-Packard Journal, Vol. 39, no. 3, June 1988.

APRIL 1989 HEWLETT-PACKARD JOURNAL 49

© Copr. 1949-1998 Hewlett-Packard Co.

A Structured Approach to Software Defect
Analysis
An ef fect ive sof tware defect analys is requires that the
re la t ionships between program faul ts , human errors , and
f laws in the des ign process be unders tood and
character ized before cor rec t ive measures can be
implemented.

by Takeshi Nakajo , Katsuhiko Sasabuchi , and Tadashi Akiyama

PROBLEMS THAT OCCUR IN SOFTWARE DEVEL
OPMENT because of human error negatively affect
product quality and project productivity. To detect

these problems as early as possible and prevent their recur
rence, one approach is to identify flaws in present software
development methodologies and procedures and recom
mend changes that will yield long-term defect prevention
and process improvement. Typical approaches to software
defect prevention have been to:
â€¢ Investigate only design methodologies and procedures

and then recommend such things as different languages
or more tools as defect prevention measures.

â€¢ Analyze the problems resulting from current design
methodologies and procedures and develop solutions
for each class of problem.
The first approach is the most widely used and has

tended not to be data-driven, thus making the investigation
tedious and the results ambiguous. In contrast, the analysis
of problems tends to produce less ambiguous results and
data collection is easier, but it has typically been used only
to solve immediate problems and therefore has produced
only short-term solutions.

To break out of the status quo, the instrument division
of Yokogawa Hewlett-Packard (VHP) joined with Kume
Laboratory of Tokyo University to analyze 523 software
defects that occurred in three products developed by YHP.
We tried to identify the flaws hiding in our current software
design methodologies and procedures, and examine the
impact of using the structured analysis and structured de
sign (SA/SD) methods.1'2 This paper discusses the results
of this joint investigation.

Projects Investigated
The 523 software defects used for our investigation oc

curred during the development of three projects at YHP,
which shall be called projects A, B, and C in this paper.
Project A is a large all-software measurement system for
analog-to-digital and digital-to-analog converters, and proj
ects B and C are firmware for measurement instruments.
360 defects were studied from project A and 163 defects
from projects B and C. These software systems have the
following common characteristics:
â€¢ They are intended to control hardware, that is, initializa

tion, setting registers, data retrieval, and so on. Therefore,

they are greatly affected by the accuracy and clarity of
hardware specifications.
Their main parts are intrinsics, which are functions that
can be used in measurement programs, or commands,
which can be used sequentially to control devices.
They are used to control hardware status, which means
that they need many global variables to keep track of
hardware states.

Module Interface Faults

Matching Faults

Program
Faults

Examples
â€¢ Wrong names of global variables or constants
â€¢ Wrong type or structure of module arguments
â€¢ Wrong number of hardware units
â€¢ Wrong procedures for writing data to hardware

Restriction Fauns

Examples
â€¢ Omission of procedures to prevent invalid input

or output data
â€¢ Wrong limit value for validity check of arguments

Module Function Faults

Examples
â€¢ Omission of saving data to global variables
â€¢ Unnecessary calling of modules
â€¢ Wrong limit value for judging whether or not

hardware is set

Module Internal Process Faults

Logic Faults

Examples
â€¢ Reference of undefined local variables
â€¢ Omission of loop variable incrementation
â€¢ Logic expressions that are always true

Programming Faults

Examples
â€¢ Comparison of local variables of different types
â€¢ Omission of comment marks

Fig . 1 . Types o f program fau l ts .

50 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

A n a l y z i n g S o f t w a r e D e f e c t s
Three types of information useful for a defect analysis

can be derived from a software defect: the human error (on
the part of the developer), the program faults caused by
the human error, and the flaws in the process causing the
human error. Human error is an unintended departure from
work standards or plans. Program faults are outright errors
in the software which result in the system's crashing, pro
ducing wrong results, and in general not behaving as
specified. Flaws are imperfections in the design method
ologies or development procedures that affect the occur
rence rate of human errors and the possibility of detecting
human errors before they become program faults. Examples
of flaws include no documentation, confusing specifica
tions, nonstandard coding practices, bad methodology, no
inspections, poor test planning, and so on.

To identify the flaws hiding in the design methodologies
and procedures, we need to understand the mechanisms
that cause human errors, and determine the relationship
of these errors to program faults. This analysis is not easy
because the human error process cannot be observed by
objective methods, and usually, there isn't enough error
data to analyze the relationship to program faults. However,
the flaws must have some common factors, and they are
reflected in the program faults caused by the human errors
that occur during the design process. By design process
we mean the portion of the software life cycle devoted to
the definition and design of a product's features, software
architecture, modules, and data structures.

Program Faults
To identify the types of faults that occur in programs, it

is necessary to study what caused the problem and what
corrections were made to fix the problem. Classification of
faults based only on their outward appearance does not
work well. Categories of faults such as "wrong range of
loop counters in DO statements" or "omission of conditions
in IF statements" define the coding problem, but they do

Pro jec t A
360 Faul ts

Pro ject B
97 Faul ts

Pro ject C
66 Faul ts

| I n t e r f a c e ^ F u n c t i o n

Size (KNCSS)"

Project A
Project B
Project C

In te rna l Process

Language

Pascal, C
Assembly, C
Assembly, Pascal

"182 Match ing Fau l ts and 42 Rest r ic t ion Fau l ts
" K N C S S = t h o u s a n d s o f n o n c o m m e n t s o u r c e s t a t e m e n t s

Fig. in Distr ibut ion of program faul ts for the three projects in
this study.

not provide a clear correspondence between the fault and
the design process. We still need to know the role of each
program segment in the system. For instance, in the DO
loop range problem, was the range error related to the
number of hardware units, or the length of the data file?
Understanding program faults from the designer's point of
view can help us link program faults to flaws in the design
process. Fig. 1 shows our categorization of program faults
along with examples of each category1. Module interface
faults relate to transferring data between modules, global
variables, and hardware. Module function faults relate to
a module's performing the wrong function. Module internal
process faults correspond to logic errors, internal inconsis
tency, and programming rule violations.

Based upon the program fault classification given in Fig.
1, Fig. 2 shows the distribution of these faults among the
three projects studied in this paper. The percentages of
module interface faults and module function faults are
similar for all three products (91%, 81%, and 85%). Since
our design process was relatively the same for all three
projects, we guessed that there must be some flaws in our
design process associated with the way we do module in
terface definitions and module function definitions. Since
module internal process faults had the lowest frequency
of occurrence and because these faults are more directly
related to the coding phase, they were not given further
analysis.
Module Interface Faults. From Fig. 1 , interface faults can
be further classified into matching faults (mismatched data
transfer between modules or hardware), and restriction
faults (omission of checks on transferred data). The ratio
of the number of matching faults to restriction faults turns
out to be the same for all three projects and is about four
to one. Consequently, we decided to focus our attention
on matching faults for further study. Fig. 3 shows the five
types of matching faults and their distribution for project
A. These five types of matching faults are defined as fol
lows:
â€¢ Wrong correspondence between values of data and their

meanings (e.g., storing the value r into a global variable
that is supposed to contain the value râ€” 1, or selecting
the wrong destination hardware)

â€¢ Wrong data type, structure, or order (e.g., mismatch in
the structure or order of arguments passed between pro
grams, or mismatch in the order of arguments read from
a data file or a hardware interface)

â€¢ Wrong correspondence between names and their mean-
"The same fault types and very similar distributions were discovered lor projects B and C.

1 8 2 F a u l t s

N a m e a n d
M e a n i n g

1 9 . 2 %

D a t a T y p e
a n d S t r u c t u r e

2 9 . 7 %

N a m e
3 . 3 %

D a t a V a l u e
a n d M e a n i n g

3 3 . 5 %

Fig . 3 . D is t r ibu t ion and types o f modu le in ter face match ing
faults for project A.

APRIL 1989 HEWLETT-PACKARD JOURNAL 51

© Copr. 1949-1998 Hewlett-Packard Co.

ings (e.g., using the wrong argument in a calling se
quence, reading from the wrong global variable, or setting
the wrong hardware registers)

â€¢ Wrong method of processing data (e.g., omission of cer
tain steps when setting up hardware for some task such
as a DMA transfer, or omission of initialization condi
tions or variables when calling other routines)

â€¢ Wrong name (e.g. , using the wrong name to call a module
or to access a global variable).

Module Function Faults. Function faults are program faults
resulting from a module's performing the wrong internal
operations. Fig. 4 shows the four types and the distribution
of module function faults for project A. These four types
of function faults are defined as follows:
â€¢ Missing or unnecessary operations (e.g., failure to save

calculated data to a global variable, or unnecessary cali
bration of hardware)

â€¢ Missing condition checks (e.g., saving data to a global
variable before checking to see if it is permitted to save
data to that particular variable)

â€¢ Wrong behavior of functions (e.g., making the wrong
decision, or calculating the wrong value because the
wrong coefficients are used in an equation)

â€¢ Wrong order of functions (e.g., checking whether a
hardware unit exists after setting it).

The Design Process
Our design process for instrument control software con

sists of the following steps:
â€¢ Definition of unit functions and product features which

are documented in the system external reference specifi
cations (ERS)

â€¢ Definition of data structures and module interfaces
"The same C. types and very similar distr ibutions were discovered for projects B and C.

103 Faults

Condit ion-
Checks
29.1%

Behav io r
15.5%

- Order
10.7%

â€” Unnecessary
Operations

44.7%

Fig . 4 . D is t r ibu t ion and types o f modu le func t ion fau l ts fo r
project A.

which are documented in the internal reference specifi
cations (IRS)

â€¢ Coding of each module
â€¢ Iteration through the previous steps as necessary.

Each of these steps includes the appropriate deliverables
(specifications, test plans, etc.), and verification activities,
such as design reviews and code inspections. Design re
views are done on the external and internal reference
specifications, and code inspections are performed on
selected modules.

These documents and procedures are intended to ensure
that a defect-free product is eventually produced. However,
this goal cannot be attained if we do not have a clear knowl
edge of the types of human errors that occur in the design
process and of the features of the documents and proce
dures that affect the error occurrence rate and error detec
tion. Consequently, we need to identify the types of human
errors that cause program faults, the flaws in the present
design documents and procedures, and the relationships

Fault! Flaws

Module interface
matching faults
(See Fig. 3)

Error in recognition of
hardware specifications

Error in recognition of the
interface specifications of
modules or global variables

Hardware specifications that
are incomplete and difficult to
understand

Unsystematic and ambiguous
specifications of module
interface

Module interface not well
defined

Module function
faults
(See Fig. 4)

Error in recognition of
the functions of intrinsics
or commands

Insufficient examination of
the independence between
intrinsics or commands

Error in translation from
ERS to module structure
and/tecognition of the
module functions

Unsystematic specification of
the functions of intrinsics or
commands

Unsystematic correspondence
between ERS and the module
structure

Unsystematic and ambiguous
specifications of the module
functions

Fig . 5 . Re la t ionsh ip between pro
gram faults, human errors, and de
sign process f laws.

52 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

between them. From this perspective, we used the informa
tion gathered from investigating the two prevalent program
fault types â€” module interface matching faults and module
function faults â€” to derive the human errors associated with
each fault type. These relationships were derived from inter
views with the design engineers and our own analysis. Fig.
5 summarizes the relationships between the two main types
of program faults, human errors, and flaws in the design
process.

Human Errors and Process Flaws
Fig. 6 shows the distribution of the different types of

human errors we discovered during our analysis. The
human error that caused each software defect was not al
ways clearly recorded. However, as we did for deriving the
information in Fig. 5, we analyzed various documents and
interviewed the designers and programmers who de
veloped the system to come up with the numbers and per
centages shown in Fig. 6.
Human Errors and Matching Faults. The human errors
responsible for causing module interface matching faults
are defined as follows:
â€¢ Module or Variable Specifications. Module interfaces

and global variable definitions are missing or misun
derstood.

â€¢ Hardware Specifications. Software developers overlook
and misinterpret hardware specifications or other tech
nical requirements of the hardware.

â€¢ Design Changes. Changes to the hardware interfaces,
other related systems, or module interfaces are not com
municated properly.

â€¢ Related System Requirements. Technical requirements
are not communicated clearly between development
groups and other related systems.
As shown in Fig. 6a, human errors associated with

hardware interface specifications and module interfaces
were the most frequent. Therefore, we examined the design
process and found the following flaws associated with
these error types.
â€¢ Hardware Specifications. Hardware specifications are

difficult to read and understand for software engineers,
and as a result, some important technical requirements
about their interfaces were omitted. This flaw affected
our external and internal design steps. We found that
hardware interface information for writing software driv
ers was being derived from circuit diagrams, which were
difficult for software developers to use without error.

â€¢ Module or Variable Specifications. The results of defin
ing interfaces in the lower-level modules were not well-
documented before defining internal algorithms and
coding modules. Therefore, it was difficult to find mod
ule interface mismatching faults in design reviews. There
was a lack of uniformity in the definition of certain fea
tures, and complicated interfaces between modules were
not taken into consideration. These flaws also affect our
internal design activities.

Human Errors and Function Faults. The human errors re
sponsible for causing module function faults are defined
as follows:
â€¢ Module Specifications. Errors in the translation from

external specification to internal module specifications
or misunderstanding of module specifications.

â€¢ Commands and Intrinsic Specifications. Misunderstand
ing the system external specification and providing the
wrong or incomplete functionality for system features.

â€¢ Status Transition. Missing or misunderstanding the val
ues of global variables that define the different state
transitions of the system or hardware.

â€¢ Related System Requirements. Missing or misunder
standing the technical requirements of other related sys
tems or hardware, resulting in such mishaps as the use
of the wrong information from another subprogram to
set hardware.
As shown in Fig. 6b, human errors associated with com

mands, instrinsics, and module functions were the most
frequent. Therefore, we examined the design process and
found the following flaws associated with these error types.
â€¢ Commands and Intrinsics. During the first part of our

design process, when the external specification is de
fined, the independence between the functions of the
commands and intrinsics was not sufficiently defined.
For example, functions associated with the user interface
were not partitioned properly, resulting in overlap in
functionality, thereby causing program faults. Another
problem was that the external specification documenting
the commands, intrinsics, and other system require
ments was not systematic. The specifications were
mainly written in natural languages, which resulted in
ambiguity regarding the uses and functions of commands
and intrinsics.

â€¢ Module functions. During the internal design phase of
our design process, when the modules and data struc
tures are defined, developers designed the module struc
tures based mainly on considerations about system per

' l 82 Faults

H a r d w a r e
S p e c i f i c a t i o n s

28.6Â°/<

M o d u l e J
o r V a r i a b l e s

S p e c i f i c a t i o n s
5 2 . 2 %

(a)

D e s i g n
â € ” C h a n g e s

9.9%

â€” Related
S y s t e m

R e q u i r e m e n t s
9 . 3 %

1 0 3 F a u l t s

I n t r i n s i c a n d
C o m m a n d

S p e c i f i c a t i o n s
29.1%

Module â€”
S p e c i f i c a t i o n s

4 8 . 5 %

(b)

Sta tus
T rans i t i on

14.6%

R e l a t e d
S y s t e m

R e q u i r e m e n t s
7.8%

Fig. 6. Distr ibut ion of human error
t y p e s a n d f r e q u e n c y o f o c c u r
rence fo r p ro jec t A . a) Human e r
r o r s r e l a ted t o modu le i n te r f ace
match ing fau l ts , b) Human er rors
related to module funct ion faul ts.

APRIL 1989 HEWLETT-PACKARD JOURNAL 53

© Copr. 1949-1998 Hewlett-Packard Co.

formance. This resulted in modules that had no clear
correspondence with the system external specification.
Another problem was that module functions were not
completely specified before the internal algorithm and
coding of each module were started. Internal design
specifications also suffered from a lack of systematic
documentation, resulting in ambiguous module func
tions.

Design Process Issues
In the previous section we determined the flaws in our

design process that caused the human errors resulting in
program faults in our products. Based upon what we
learned about these flaws, three issues were derived from
our analysis. Fig. 7 shows an example of the relationship
between these issues and our design process.

Issue 1. A systematic method is needed to translate sys
tem features defined during product investigation into the
details of a clear system external reference specification.

Issue 2. A systematic method is needed to translate exter
nal specifications into module structure and module func
tions.

Issue 3. A systematic method is needed to specify the
technical requirements of hardware and to translate these
requirements into software module interface specifica
tions.

The above issues are vital to our design process. Since
most of our products have similar characteristics, any solu
tions to these issues would pertain to all our software prod
ucts. Issues 1 and 2 indicate that we need a method to
translate from one level of abstraction to another, with each
translation making it easier to perform a systematic en
gineering analysis of the system. With a good analysis
methodology we can check the independence and suffi
ciency of functions and review their specifications to find
unsuitable function definitions. Issue 3 requires that we
have a methodology that enables hardware engineers to
communicate hardware interfaces effectively to software
engineers, and enables software engineers to communicate
module interfaces and other system interfaces among them
selves. With such a methodology, module structure and
design can be effectively reviewed by the hardware and
software engineers of the design team as well as those who
must test and support the product.

SA/SD and Design Process Issues
Our investigation led us to believe that the structured

analysis and structured design (SA/SD) methodology is the
most suitable candidate for dealing with the three design
process issues. We believe that SA/SD design methods can
help prevent program faults by enabling us to detect and
correct these problems before they become real defects.

Inves t iga t ion

CODE Command
Process

5555
I Some part of the comparator function is in

the interpreter module.
Ã I HP-IB comparator commands are located Â¡n

interpreter and comparator modules.

ERS - External Reference Specifications
IRS - Internal Reference Specifications F ig . 7 . An examp le o f where the

design issues occur in the design
process.

54 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 8 shows the correspondence between the three design
issues and the solutions offered by SA/SD methods.
Proposed Solution for Issue 1. The key elements of struc
tured analysis we found useful for dealing with issue 1
include:
â€¢ Context diagrams, which define the relationship be

tween the software system and its environment (e.g.,
relationship between the hardware and the firmware ele
ments in an instrument)

â€¢ Data flow diagrams, which define the actions of pro
cesses (modules or functions) in the system, and the data
and control flows between these modules

â€¢ Process specifications, which define the functions and
behavior of the processes in a precise structured lan
guage.
The functions we define for our systems are organized

based on their relationship with data. The functions that
depend on each other are difficult to classify into simple
groups. In structured analysis, detailed functions of each
intrinsic or command and their relationships can be rep
resented by data flow diagrams. Also, the data relationships
are clearly specified, and the operation of each function is
defined in a structured language in the process specifica

tion.
Proposed Solution for Issue 2. The system external specifi
cation can be smoothly translated to the module structure
by using the transformation analysis technique provided
by SA/SD. Transformation analysis enables us to take each
data flow diagram and transform it into more detailed data
flow diagrams or module structure. By applying this
method, we can make a module structure that has a clear
correspondence to the system external specification.
Proposed Solution for Issue 3. The key elements of struc
tured design we found useful for dealing with issue 3 in
clude:
â€¢ Structure charts, which define the module hierarchy

within a data flow diagram or within a module
â€¢ Module specifications, which define in a structured lan

guage the function of each module
â€¢ Data dictionaries, which define the data that flows be

tween modules.
Among these elements, the data dictionary provides us

with the greatest leverage to solve issue 3. With the data
dictionary we can systematically specify the interfaces to
the hardware and the interfaces between the software mod
ules. With these interfaces consistently defined we can

Deliverables
User Needs and

Enhancement

Investigation

External
Reference

Specifications

External
Design

Internal
Design

Coding

Current

Quality Deployment ?

Product Plan

User Needs and
Enhancement

External Reference
Specifications

Internal Reference
Specifications

1. Module Block Chart

Quality (FURPS)
Deployment

Product Plan

1. Data Flow Diagram

2. Process Specification

3. Data Dictionary

External Reference
Specifications

Internal Reference
Specifications

1. Structure Chart

Quality
(FURPS)

Deployment

2 . Modu le Spec i f i ca t ion 2 . Modu le Spec i f i ca t ion

3 . H C P C h a r t 3 . D a t a D i c t i o n a r y

Source Code Source Code

FURPS - Supportability for Functionality, Usability. Reliability, Performance, and Supportability
HCP - Hierarchical and Compact Description Chart

Fig. process. deployment of SA/SD methods in the software development process. Quality deployment
i s a t o o l t o h e l p s d e s i g n e r s t o f o c u s o n t h e f e a t u r e s i n t h e p r o d u c t t h a t a r e i m p o r t a n t t o

meet ing customer needs.

APRIL 1989 HEWLETT-PACKARD JOURNAL 55

© Copr. 1949-1998 Hewlett-Packard Co.

easily detect mismatches between modules and hardware.

Conclusion
In this investigation, we tried to identify the flaws hiding

in our current software design methodology and proce
dures and examine possible countermeasures against them.
We analyzed about five hundred actual problems that oc
curred during software development for three instruments
and used these defects as a basis for our investigation.

We believe that SA/SD methods can solve some of our
design problems. However, there are still some challenges,
which include:
â€¢ Elimination of the inconsistencies between the present

specifications using natural languages and the new
specifications using the SA/SD methods

â€¢ Installation of automated tools for using the SA/SD
methods

â€¢ Establishment of an appropriate education and training
system on the SA/SD methods for the software engineers

â€¢ Preparation of other groups in our division for dealing
with documents written using SA/SD methods

â€¢ Establishment of design review methods based on the

SA/SD methods
â€¢ Investigation and use of other tools and techniques pro

vided by SA/SD, such as state transition diagrams and
transactional analysis

â€¢ Investigation to find ways to model software behavior
that cannot be analyzed with current SA/SD methods.

Acknowledgments
The authors wish to thank the following people: YHP

instrument division manager Mitsutoshi Mori for his useful
advice, Drs. H. Kume and Y. lizuka of Tokyo University
for their valuable comments, I. Azuma in the product assur
ance section for his help with the analysis of the software
defects for one project, and the software engineers in the
research and development sections for their help with the
collection of the software defect information.

References
1. E. Yourdon and L.L. Constantine, Structured Design, Prentice-
Hall.Inc., 1979.
2. T. DeMarco, Structured Analysis and System Speci/ication,
Prentice-Hall, Inc., 1979.

CORRECTIONS

Author New Chu has sent us two correct ions for h is ar t ic le , "Phase Dig i t iz ing; A New
Method issue. Capturing and Analyzing Spread-Spectrum Signals," in the February issue.
Page 32, second co lumn, las t paragraph (jus t above F ig . 7) shou ld read "Advanced
phase in earl ier in t ime, so 8Â¿,(tÂ¡) and S,(t ,) are always opposite in sign." In Fig. 2,
the s ignal shown is BFSK. not BPSK.

Also three places, February issue, in Fig. 2b on page 7, AE should be 2miE in three places,
and in F ig. 4a on page 9, fc should be 2 i r fc .

56 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Dissecting Software Failures
Beyond collecting software defect data just to study defect
f requency, th is paper out l ines a qual i ty data col lect ion
process, an ef fect ive analys is process, and a method to
just i fy changes in the software development process based
on the defect analysis.

by Robert B. Grady

MOST PEOPLE DON'T LIKE TO BE TOLD that
they've made a mistake. It's only human not to
want to be wrong. On the other hand, software engi

neers don't intentionally make mistakes, so if we can under
stand why mistakes occur without accusing individuals,
we might eliminate the causes of those mistakes. Unfortu
nately, discussions concerning software defects are confus
ing because different people describe them from different
perspectives.

This paper discusses some of the terminology of these
different views. It then examines some simple data collec
tion and analysis techniques that help identify causes of
defects and point to areas where improvements can be
made. Finally, it presents some guidelines for justifying
change based upon the results of analyses.

"A defect is any flaw in the specification, design, or
implementation of a product."1 Such flaws cause managers
to lose control by reducing their ability to predict when
development or maintenance will be completed. Thus, we
encounter another human trait: people like to be in control
of a situation. The opportunity, then, is for software de
velopers and managers to record sufficient defect data
while analyzing and resolving defects to understand and
remove the causes of those defects.

Defect Perspectives
Fig. 1 illustrates three views of a defect. Each of these

views is characterized by its own terminology and focus.
When users of a product have a problem, they know that
they can't get their job done because the software product
isn't performing the way they expect it to. The level of
their concern reflects how much their business is impacted,
and terms like critical or serious mean that they stand to
lose substantial time and/or money if something isn't done
soon.

On the other hand, individuals responsible for com
municating defect information and status to and from cus
tomers refer to which component is at fault, whether a
patch exists, and when a permanent fix can be expected.
They must extract enough detail from customers to discover
workarounds and to provide maintainers enough informa
tion to seek a permanent fix.

The third perspective is that of the people responsible
for maintaining and enhancing software. They speak in
terms of what code was at fault, the priority associated
with correcting the defect, how difficult it will be to fix,
and when to expect the fix.

If we draw an analogy to medicine, the patient describes
the problem in terms of what hurts and how much. The
nurse setting up the appointment must ask enough ques
tions to tell the doctor enough to form preliminary conclu
sions and to determine how urgent it is for the doctor to
see the patient. The doctor must run tests to discover the
real cause of the ailment and must prescribe the correct
treatment to heal the patient.

Data Collection
The first step in treating software defects is data collec

tion. Most organizations already gather much of the neces
sary data. What is proposed is a method to use the data for
a long-term quality improvement effort, not just to solve
the current problems.

For example, there is always justifiable pressure to fix
urgent problems. The goal is to maximize customer satisfac
tion (with an emphasis on timeliness, in this case). In pur
suit of that goal, data is collected to optimize the flow of
information from the customer about a defect (see Fig. 2).
Additional data is collected as engineers investigate the
problem to provide information to the customer regarding
status and possible fixes. Once customer satisfaction is

Customer
View

Current
Product

Engineer
View

Response
Center/
On-Line
Support

View

Description

-Symptoms
-Effect on
Customer

Analysis/ Action/
Disposition

-Actual Cause
-Source
-Type
-Resolution

-Suspected
Cause

-Repeatability
-Workaround

i i r
e.g.
Critical
Ser ious
Med ium
Low

e.g.
Design Defect,

Wrong Data
Definition

Coding Defect,
Miss ing Log i c

e.g.
Hardware

Subsystem
Operating System

Component
Application

Component
Documentation

Fig . 1 . D i f fe rent v iews o f a defec t based upon the respons i
bi l i ty for deal ing with the defect.

APRIL 1989 HEWLETT-PACKARD JOURNAL 57

© Copr. 1949-1998 Hewlett-Packard Co.

achieved and the customer has a workaround or permanent
fix for the problem, data collection should not stop.

If we want to learn from past mistakes to improve de
velopment or support practices, then a small additional
amount of time must be spent to collect additional data.
What are some of the questions that this long-term goal
prompts, and what data is needed to answer the questions?
Some of the more obvious questions are:
1. What development or maintenance process failed?
2. How often do such failures occur?
3. How expensive is it to fix such failures?
4. Which components are most subject to failure?
5. What process change will detect or eliminate these

failures?
Fig. 3 shows an example of the additional data needed

for the defect described in Fig. 2. The numbers in Fig. 3
are related to the questions above. Question 2 could only
be answered by analyzing the defect type information for
a number of similar defect fix reports.

Resistance to data collection when defects are being fixed
is natural, because there may be a backlog of defects and
strong schedule pressures. A common request is for addi
tional automation aids to capture the information suggested
in Fig. 3, and until then, no data is collected. Such requests
sometimes miss the point, however, and fall into the trap
of what we'll call the "automation syndrome." In fact it is
unlikely that entry of such data into an automated system
would shorten the time involved on the part of the en
gineers reporting it. The problem with the automation syn
drome is that it can prevent the collection of needed data
for years if simple solutions and firm management don't
prevail.

We need to ask what it costs (in time) to collect this
additional data. Let's take a typical product of 100 KNCSS
(thousands of noncomment source statements). We have
seen average postrelease defect densities from less than 0.1
to as high as 1 or 2 defects per KNCSS in the first year after
release of a product. For the sake of calculations, let us
assume a very high value of 1 defect/KNCSS. For our prod
uct, then, we would expect 100 defects in the first year. If
we look at the data requested in Fig. 3, it seems likely that
it would take between five and ten minutes per defect to
provide the fix information requested in Fig. 3. This means
that the total incremental engineering hours for our defect-
plagued 100-KNCSS product might vary from one to
slightly over two days (see Fig. 4). Not a very large invest
ment for such valuable data.

S u b m i t t e r : B r u c e D a v i s
C o m p a n y N a m e : H e w l e t t - P a c k a r d
S u p p o r t E n g i n e e r : J o h n M i c h a e l s
C o m p u t e r S y s t e m M o d e l : 3 0 0 0 9 3 0
D e f e c t i v e S o f t w a r e : M P E - X L
S e v e r i t y (C r i t i c a l . S e r i o u s .

M e d i u m . L o w) : S e r i o u s
W o r k a r o u n d ? (Y N) : Y

D a t e S u b m i t t e d : 8 2 2 8 4
D e p t . : S E L
S u p p o r t O f f i c e : F a c t o r y
I d e n t i f i c a t i o n N o . : 0 - 1 3 - 8 2 1 8 4 4 - 7
R e l e a s e V e r s i o n : M I T X . B 6 . 0 6

(e a s y d i f f i c u l t) ? : D i f f i c u l t

S y m p t o m s : S y s t e m c r a s h e s w i t h a b o r t n u m b e r o f 1 0 7 2 . T h i s h a s
h a p p e n e d t w i c e i n t h e l a s t w e e k . A t t h e t i m e o f t h e c r a s h ,
t h e r e w a s o n e u s e r o n t h e s y s t e m , m g r . o f f i c i a l . T h e j o b r u n n i n g
w a s n e w j o b x l .

Fig. 2 . S impl i f ied defect repor t .

Suppose the product that you are going to perform post-
release analysis on is ten times as large, or that you want
to perform your analysis before product release (where we
typically see about ten times the number of defects as in
postrelease). Data collection time is always a sensitive
issue, so you should consider how to capture the informa
tion that you need while minimizing the data collection
time. This is done by collecting sufficient samples of defect
data to yield an effective distribution of causes. The total
will be adequate as long as the sample size is large enough
(probably 100 to 150 samples) and sufficiently random.
For example, you might restrict the capture of the addi
tional data shown in Fig. 3 to just critical and serious de
fects, or turn selection into a game by rolling dice before
starting work on each defect.

The goal of the data collection scheme is to optimize the
amount and quality of information and to minimize the
time (cost) spent by those supplying the information,
whether the collection method is manual or automated.

Data Validation
When you initiate the collection of a new set of data,

adjustments are needed in people's activities and existing
processes. It is particularly important at the start to include
procedures to ensure valid data.

A common cause of invalid data is different interpreta
tions of definitions. These are somewhat alleviated by
proper training before collection begins, but all too often
we incorrectly assume that everyone will interpret instruc
tions in the same way. For example, two different HP divi
sions reported that many defects labeled as coding defects
were really caused by changed requirements or design. The
incorrect labeling occurred because the defects were discov
ered or fixed during the coding phase.

It is desirable to reinforce initial collection of defect in
formation with subsequent interviews. These should be
initiated by the project manager or a representative to en
sure that the data is accurate and to emphasize the impor
tance of accuracy to the engineers reporting the data. These
checks should examine a large cross section of the data in
depth. Once this is accomplished, spot checks are probably
all that are needed to maintain the flow of good data.

Data Analysis
In the previous sections, the focus was on collection of

F i x e d b y : L y n n S m i t h
D a t e f i x e d : 9 1 9 - 8 4

(D E n g i n e e r i n g H o u r s t o F i n d a n d F i x : 6 6
(T) D e f e c t O r i g i n : D e s i g n
@ D e f e c t T y p e : D a t a D e f i n i t i o n

C a t e g o r y o f D e f e c t
(M i s s i n g , U n c l e a r , W r o n g , C h a n g e d , O t h e r) : W r o n g

@ M o d u l e s C h a n g e d : D i s c j o , T a b l e 5
O t h e r m o d u l e s a f f e c t e d : I n t e r x

@ H o w c o u l d d e f e c t h a v e b e e n f o u n d e a r l i e r :
D e s i g n w a l k t h r o u g h ; m o r e c o m p l e t e t e s t c o v e r a g e ;
m o r e t i m e l y d a t a d i c t i o n a r y u p d a t e s .

Fig. 3. Defect f ix informat ion. The numbers refer to the ques
t ions in the art icle.

58 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

valid data. The next step of the process is the analysis of
the data collected. Again, there is a danger that nothing
will happen, because many managers have never taken the
time to perform such an analysis. They believe that the
time involved will be too great. Perhaps this belief is as
unfounded as the one concerning the data collection time.

What are the steps involved in a typical analysis? The
following estimates assume that the analysis is begun with
100 one-page completed defect reports and is done manu
ally.
\. Sort the data collection forms by defect origin. Count
the number in each group and total the number of engineer
ing hours to fix the defects for each group. Arrange the
totals in descending order of total engineering hours (30
min).
2. Calculate the average fix time for each of the totals from
step 1 (5 min).
3. For the top two or three totals in step 1 , count the defects
sorted by defect type and multiply by the appropriate av
erage fix times. Limit the number of types to the largest
totals plus a single total for all others (15 min).
4. Add up the defects sorted by module changed. Limit
the number of choices to the five most frequent plus a
single total for all others (15 min).
5. Review the defect reports for the defects included in
the largest totals from steps 3 and 4, and summarize the
suggestions for how the defects could have been found
earlier (1 hour).

Following the procedure above, project managers would
know several valuable facts after only about two hours
time. They would know what the most costly defects were,
when they occurred, where they occurred, and the most
likely steps to take to prevent their occurrence in the future.

But even two hours of a project manager's time is some-

Produc t S i ze x H igh Ave rage x T ime to Reco rd = Eng inee r i ng
P o s t r e l e a s e D a t a C o s t
Defect Dens i ty

100 KNCSS x 1 De fec t KNCSS x 1 1 2 H o u r D e f e c t = 8 1 3 H o u r s
1 6 H o u r D e f e c t = 1 6 2 3 H o u r s

F ig . 4 . Samp le ca l cu la t i on o f t he cos t o f co l l ec t i ng de fec t
cause data.

times difficult to find. Other useful alternatives that have
been successfully tried are to use engineers from a quality
or metrics organization or to hire a student from a local
university to perform the analysis.

A M o d e l f o r A n a l y z i n g D e f e c t C a u s e s
Various reports have documented successful efforts to

analyze defects, their causes, and proposed solutions.2"1
But the terminology among them has differed considerably,
and the definitions could possibly mean different things
to different people. In the fall of 1986 the HP Software
Metrics Council addressed the definition of standard
categories of defect causes. Our goal was to provide stan
dard terminology for defects that different HP projects and
labs could use to report, analyze, and focus efforts to elimi
nate defects and their causes.

Fortunately, the IEEE had a subcommittee working on a
standard for defect classification,12 so it was possible to
start from their working documents. The IEEE definitions
covered all phases of defect tracking in an extensive general
way. These will undoubtedly be of value to the people
supporting defect tracking systems. Unfortunately, the
IEEE document at that time was very long and too general
to be applied specifically to any project. As a result, the
metrics council extracted only the material related to defect

Or ig ins

Requirements
or

Specifications

Functionality

Types

Hardware
Interface

Software
Interface

User Interface

Functional
Description

Process
(Interprocess)

C o m m u n i
cations

Data Definition

Module Design

Logic
Description

Error Checking

Modes

L o g i c I T e s t S o f t w a r e

C o m p u t a t i o n I T e s t H a r d w a r e

D a t a H a n d l i n g I D e v e l o p m e n t
Tools

Module
Interface/

Implementation

Miscellaneous
or Other

M i s s i n g U n c l e a r W r o n g C h a n g e d T y p e S p e c i f i c Fig. 5 . Categor izat ion of sources
of software delects.

APRIL 1989 HEWLETT-PACKARD JOURNAL 59

© Copr. 1949-1998 Hewlett-Packard Co.

causes and produced a metrics guideline that is easier to
use.13 Fig. 5 illustrates a model of defect sources taken
from the guideline, and the box on page 62 gives the defi
nitions from the guideline.

The model is used by selecting one descriptor each from
origins, types, and modes for each defect report as it is
resolved. For example, a defect might be a design defect
where part of the user interface described in the internal
specification is missing. Another defect might be a coding
defect where some logic is wrong.

An Example
Let us look at a specific example using the model pre

sented in Fig. 5. The data for this example is taken from a
detailed study of defect causes done at HP.11 In the study,
defect data was gathered after testing began. Fig. 6 shows
the data sorted by the primary origins of defects.

It is desirable to focus attention on the causes of defects
that cost the most to fix. The net cost of any given classifi
cation is represented by the total defects for the classifica
tion times the average cost to fix those defects. This study
didn't accurately record the engineering times to fix the
defects, so we will use average times summarized from
several other studies to weight the defect origins.14 In par
ticular, the average engineering cost to fix coding defects
that are not found until testing is about 2.5 times the cost
of those found during coding. The factors for design and
specification defects that are not found until testing are
about 6.25 and 14.25, respectively. Fig. 7 shows the relative
costs to fix the defect population from Fig. 6 when the
weighting factors are applied. For the sake of this example,
the other origins are assumed to have a multiplier of one,
and we will normalize all fix times to assume that a coding
defect fixed during coding takes one hour. The weighting
factors then simply become engineering hours to fix the
various defect categories.

These two figures illustrate step 1 of the five-step proce
dure described earlier and the weighting factors in Fig. 7
represent step 2. The study from which this data was taken
only provided defect type data for coding and design de
fects. Therefore, we will perform step 3 of our procedure
with a breakdown of data for only coding and design. This
is shown in Fig. 8. It suggests that efforts should be focused

400 -â€¢

Â¡I 300-
Weighting Factors:

Specification
Design
Code

14.25
6.25

2.5

a
O

Fig. 7. Weighted d is t r ibut ion of defect or ig ins.

on eliminating logic errors, computation errors, and pro
cess communication errors before final test.

These brief examples show how easy it is to apply the
analysis procedure to discover where changes with the
greatest impact can be made. They also show how incom
plete data can force us to make assumptions that might
impact the accuracy of our conclusions. In this example
we didn't have complete data regarding specifications de
fects or data detailing engineering hours for all defects.
These are probably not serious drawbacks in this case, but
one must be certain to identify such uncertainties and their
potential effects every time an analysis is performed.

Here is an interesting note to conclude our example. The
use of weighting factors in the analysis above emphasized
working on eliminating causes of problems that cost the
most to resolve. The assumption was that we would insti
tute process changes to eliminate the causes of those de
fects. An excellent source of these changes would be the
suggestions collected when defects are resolved. If the em
phasis is to reduce the defect backlog as quickly as possible,
then the effort must be focused on those problems that are

() = Actua l number o f defects repor ted .

140 - -

1 2 0 - -

100- -

(50)

Fig. 6. Dist r ibut ion of defect or ig ins.

S
Q.

F i g . 8 . W e i g h t e d d i s t r i b u t i o n o f d e f e c t t y p e s (c o d i n g a n d
design defects only) .

60 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

easiest to fix quickly. In that case, we would simply view
the data differently to learn the answer. We would look for
defect groups consisting of large numbers of defects that
can be resolved quickly (e.g., documentation or some types
of coding defects).

Justifying Change
Once you have collected the data necessary to under

stand which defects impact your operation and analyzed
the data to determine what your tactics should be, you
encounter the most difficult step. This step is to recom
mend and implement change based upon the discovered
facts. It is the most difficult because of another human
characteristic: resistance to change. There are many facets
to such resistance that span the entire implementation pro
cess. These are discussed in detail elsewhere,15 so this
paper will focus on the first step in the change process
only, that of initial justification of change. Recommenda
tions for change take many forms, but most successful
changes are based upon a cost/benefit analysis built from
components such as those outlined in Fig. 9.

Most of the entries in the benefit column of an actual
table would be represented in measurable units based on
data already collected and analyzed using the techniques
described earlier. The remaining items would be estimates.
The entire table should be bound to a specific time period,
such as one year. A summary table can be constructed from
an appropriate subset of items, costs, and benefits given in
Fig. 9 that should be convincing by itself. For extra em
phasis, it can be supplemented by benefits beyond a year
and by more-difficult-to-measure customer satisfaction
benefits and increased sales.

An Example
Let's build a case for change based on data from two

studies done at HP. The first study investigated the number
of engineering hours used to find and fix different defect
types primarily during implementation and test.16 It found:

Average number of design defects = 18% of total defects.

The second study evaluated various factors related to
design and code inspections.17 It found:
â€¢ Optimum number of inspectors = 4 to 5
â€¢ Ratio of preparation to inspection time > 1.75
â€¢ Inspection rate = 300 to 400 lines of design text/hour
â€¢ Average number of defects found per inspection hour

Estimated number of design defects (average of 8 defects KNCSS1 8)
Â¡mOOKNCSSofcode:

1 0 0 K N C S S . 8 d e f e c t s v 1 8 d e s i g n d e f e c t s . 1 4 4 d e s i g n
K N C S S 1 0 0 d e f e c t s d e f e c t s

Time cost to f ind the design defects using inspections (assume
might be found'9):

1 44 design
defects x 0.55

2.5 defects found
inspection hour

4.5
engineers

(1 .75 preparation 4
1 inspection hour) 392

= engineering
1 i n s p e c t i o n h o u r h o u r s

Time (same find the same 79 (144 x 0.55) design defects during test (same
cost ratio used in Fig. 714):

3 9 2 d e s i g n - 6 . 2 5 f i n d / f i x h o u r s i n t e s t 2 4 5 0 e n g i n e e r i n g
find hours 1 find/fix hour in design hours

Net savings: 2450 engineering hours - 392 engineering hours = 2058
engineering hours to f ind defects

(a)

Benef i ts

Reduced defect
finding time

Time to market

(b)

2058 engineering hours
2 to 4 months

1-1 2 to 3-1 2 months

Fig. to Resu l ts o f us ing in format ion f rom severa l s tud ies to
show times justification for design inspections, a) Analysis of times
t o f i nd des ign de fec t s , b) Samp le cos t / bene f i t ana l ys i s o f
design inspect ions.

= 2.5.
Fig. 10 shows the results of combining the information

from these two studies into a justification of design inspec
tions for a 100-KNCSS project.

Note that neither costs nor benefits were specified for
the item management. For simplification we assume that
roughly the same management time will be needed to intro
duce the new concepts to a project team as would have
normally been needed to manage the additional engineer
ing hours using the old techniques.

In summary, the introduction of design reviews seems

Items Costs Benefits

Fig . 9 . Fac tors to cons ider when
r e c o m m e n d i n g c h a n g e a n d m e a
sur ing progress.

APRIL 1989 HEWLETT-PACKARD JOURNAL 61

© Copr. 1949-1998 Hewlett-Packard Co.

Defect Origins and Types

Enhancement . A change tha t cou ld no t poss ib ly have been de
tec ted, or , i f detected, would not have been cor rected.

An enhancement is not a defect . Restra int must be exerc ised
when a software change is labeled as an enhancement. The use
o f t he te rm enhancement shou ld be res t r i c ted to those cases
where the customer's needs and/or the product scope have truly
changed s ince the re lease of the product , thereby creat ing new
requirements that could not have been anticipated in the original
development ef for t . For example, the performance of a sof tware
p roduc t was compet i t i ve upon re lease , bu t i t needed to be im
proved two years la ter to remain compet i t ive. Such a change is
an enhancement . I f the per formance was not compet i t ive at the
or iginal t ime of release, then any subsequent change to improve
per formance is considered a defect f ix .
Speci f icat ion Defect . A mistake in a speci f icat ion that sets for th
the requ i rements fo r a sys tem or sys tem component . Such mis
takes can be in func t iona l requ i rements , pe r fo rmance requ i re
men ts , i n te r face requ i remen ts , des ign requ i remen ts , deve lop
ment standards, etc.
â€¢ Requi rements or Spec i f i ca t ions . The spec i f i ca t ions do not

adequate ly descr ibe the needs of target users. A lso inc ludes
the e f fec t s o f p roduc t s t ra tegy red i rec t i on and nonex i s ten t
product speci f icat ions.

â€¢ Funct ional i ty. Problems with the product feature set (e.g., in
correct or incompat ib le features) . Inc ludes cases where func
t ional i ty is increased to add market value.

â€¢ Hardware, Software, and User Interface. Problems with incor
r e c t e n v i o f h o w t h e p r o d u c t w i l l i n t e r a c t w i t h i t s e n v i
ronment and/or users.

â€¢ Functional Description. Incorrect description of what the prod
uct does. General ly discovered dur ing requirements or design
inspection.

Des ign Defec t . A m is take in the des ign o f a sys tem or sys tem
componen t . Such m is takes can be in sys tem o r componen t a l
gori thms, control logic, data structures, data set use information,
input /output formats, and inter face descr ipt ions.
â€¢ Hardware, Software, and User Interface. Problems with incor

rect design of how the product wil l interact with its environment
and/or users . For example, incorrect use of l ib rar ies , des ign
does no t imp lemen t requ i remen ts , dev i ce capab i l i t i es ove r
looked or unused, or des ign does not meet usabi l i ty goals .

â€¢ Funct ional Descr ip t ion. Design does not e f fect ive ly convey
what the in tended module or product shou ld do. Genera l ly a
de fec t found dur ing des ign inspec t ion or dur ing imp lementa
t ion (coding).

â€¢ Process or Interprocess Communicat ions. Problems with the
inter faces and communicat ions between processes wi th in the
product.

â€¢ Data Defini t ion. Incorrect design of the data structures to be
used in the module/product .

â€¢ Module Des ign. Prob lems wi th the cont ro l (log ic) f low and

execut ion wi th in processes.
â€¢ Log ic Descr ip t ion . Des ign is incor rec t in convey ing the in

tended algorithm or logic f low. General ly a defect found during
design inspect ion or implementat ion.

â€¢ Error Checking. Incorrect error condit ion checking.
â€¢ Standards. Design does not adhere to locally accepted design

standards.
Code Defect . A mistake in entry of a computer program into the
symbol ic fo rm tha t can be accepted by a processor .
â€¢ Logic. Forgotten cases or steps, duplicate logic, extreme con

di t ions neglected, unnecessary funct ion, or mis interpretat ion
errors.

â€¢ Computation Problems. Equation insuff icient or incorrect, pre
cis ion loss, or s ign convent ion faul t .

â€¢ Data Handling Problems. Initialized data incorrectly, accessed
or s tored data incor rec t ly , sca l ing or un i ts o f data incor rec t ,
d imensioned data incorrect ly , or scope of data incorrect .

â€¢ Module interface/Implementation. Problems related to the call
ing of, parameter def ini t ion of, and termination of subprocess-
es. For instance, incorrect number of , or order of , subrout ine
arguments, ambiguous termination value for a function, or data
types incorrect.

â€¢ Comments. Insuff icient or incorrect commenting.
â€¢ Standards. Code does not adhere to local ly accepted coding

standard.
â€¢ Miscellaneous (other): This classification should be used spar

ingly, and when i t is used, the defect should be very careful ly
and extens ive ly descr ibed in assoc ia ted documentat ion.

Documentat ion Defect . A mistake in any documentat ion re la ted
to the p roduc t so f tware , excep t i n requ i remen ts spec i f i ca t i on
documents, design documents, or code l is t ings. Mistakes in the
la t te r th ree a re assumed to be spec i f i ca t ions de fec ts , des ign
defects , and coding defects , respect ive ly .
Operator Defect : Any s i tuat ion that invo lves the operator 's mis
understanding of procedures, h i t t ing the wrong but ton, enter ing
the wrong input, etc. Does not necessari ly imply that the product
is in error.
Envi ronmenta l Suppor t Defect . Defects that ar ise as a resul t o f
the system development and/or test ing envi ronment .
â€¢ Test Software. Problems in software used to test the product

sof tware 's capabi l i t ies. For example, another appl icat ion pro
gram, the operat ing system, or s imulat ion sof tware.

â€¢ Test Hardware. Problems wi th the hardware used to run the
test software, not the hardware on which the product software
runs.

â€¢ Development Tools. Problems that are a result of development
too ls no t behav ing accord ing to spec i f i ca t ion or in a pred ic t
able manner.

Other . Th is c lass i f i ca t ion shou ld be used spar ing ly , and when
i t i s used, the de fec t shou ld be very care fu l l y and ex tens ive ly
descr ibed in assoc ia ted documentat ion.

62 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

to be very desirable. The benefits in this example totally
overwhelm the costs, so why aren't inspections more
widely used today? It gets back to the issue of resistance
to change. Remember that while this example is based on
real data, it is suspect since the data was measured by
someone else and is derived from several sources. When
you justify change, you must organize your arguments as
clearly and persuasively as possible, and you must be pre
pared to continue trying to persuade the people involved
until the change has occurred.

The example was selected to illustrate the process of
justifying change. The core of the justification was the data
recorded in previous studies of defects and the times taken
to resolve them. You can use such published data to help
guide your decisions, but ultimately you must also collect
enough data that is specific to your process or products to
verify that the problems you pursue are the most important
ones.

Conclusion
Managers of software development cannot afford to con

tinue producing and supporting products with the same
old techniques and processes. The field is changing rapidly,
and improvements in both quality and productivity are
necessary to remain competitive. The history of the appli
cation of software metrics includes the continuous applica
tion of basic scientific methods. We collect data and estab
lish hypotheses for improvements. We take additional mea
surements to prove or disprove the hypotheses. And we
revise our hypotheses accordingly and start the process
again. The major problem of management without the use
of data is that the hypotheses can never be really validated
and institutionalized.

If we return to our medical analogy, it is like medical
doctors having to practice medicine without understanding
the human body through dissections and autopsies. For
over a thousand years before the fifteenth century, medical
doctors were prevented from dissecting human bodies be
cause of fear and superstition. When the rules against dis
sections were eased, great progress occurred in a relatively
short time. We must experience a similar renaissance
period in software development. Perhaps it is time that our
schools began to teach "software autopsies."

The techniques described here for collecting, analyzing,
and presenting data are simple, yet effective means to im
prove software development. We saw that the collection
of a small amount of additional data can yield a large
payback in terms of useful information that fits into a stan
dard framework for analysis. A five-step process for data
analysis was given that organizes this information to point
to areas and methods for improvement. And a framework
for justifying change to both management and engineers
suggests how changes are proposed initially and justified.
What remains is for managers to use these techniques as
quickly as possible to promote positive change.

A c k n o w l e d g m e n t s
The members of the HP Software Metrics Council who

particularly contributed to the Defect Categorization
Guidelines were Dave Classick. Craig Fuget, Mike Gourlay,
Bob Horenstein, Chuck Leath. and Kathy Osborne. I would
also like to thank Jan Grady. Debbie Caswell. Ken Hoyt.
Barbara Noble, Danny Lau, and Sally Dudley for their help
ful suggestions regarding this article's development.

References
1. R. Com and D. Caswell. Software Metrics: Establishing a Com
pany-Wide Program, Prentice-Hall, Inc., 1987, p. 224.
2. M. L. Shooman, "Types, Distribution, and Test and Correction
Times for Programming Errors," IEEE Proceedings of the 1975
Conference on Reliable Software, Los Angeles, Calif., April 1975,
pp. 347-357.
3. A. Endres, "An Analysis of Errors and Their Causes in System
Programs," IEEE Transactions on Software Engineering, Vol. SE-1,
no. 2, lune 1975, pp. 140-149.
4. R. J. Rubey, J. A. Dana, and P. W. Biche, "Quantitative Aspects
of Software Validation," IEEE Transactions on Software Engineer
ing, Vol. SE-1, no. 2, June 1975, pp. 150-155.
5. B. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. MacLeod, and
M. J. Series "Characteristics of Software Quality," TRW Series
of Software Technology, Vol. 1. Amsterdam: TRW and North-Hol
land Publishing Company, 1978.
6. N.F. Schneidewind and H.M. Hoffman, "An Experiment in Soft
ware on Data Collection and Analysis," IEEE Transactions on
Software Engineering, Vol. SE-5, no. 3, May 1979, pp. 276-286.
7. C. Sieloff, "Software TQC: Improving the Software Develop
ment Process Through Statistical Quality Control," HP Software
Productivity Conference Proceedings, April 1984, pp. 2-49 to 2-62.
8. G. Hamilton, "Improving Software Development Using Quality
Control," HP Software Productivity Conference Proceedings, April
1985, pp. 1-96 to 1-102.
9. D. Kenyan, "Implementing a Software Metrics Program," HP
Software ProducÃiviÃy Conference Proceedings, April 1985, pp.
1-103 to 1-117.
10. C. Fuget, "Using Quality Metrics to Improve Life Cycle Produc
tivity," HP Software Productivity Conference Proceedings, April
1986, pp. 1-86 to 1-93.
11. C. Leath, "A Software Defect Analysis," HP Software Produc
tivity Conference Proceedings, April 1987, pp. 4-147 to 4-161.
12. A Standard for Software Errors, Faults, and Failures, IEEE
working group P1044, March 1987.
13. "Software Development Metrics Guideline: Defect Analysis,"
June 1987, (internal HP memorandum).
14. B. Boehm, Software Engineering Economics, Prentice-Hall,
Inc., 1981, p. 40. Reprinted by permission of Prentice-Hall. Inc.
15. R. Grady and D. Caswell, op. cit., pp. 82-95.
16. R. Grady, "Measuring and Managing Software Maintenance,"
ÃEEE Software, September 1987, pp. 35-45.
17. B. Scott and D. Decot, "Inspections at DSD â€” Automating Data
Input and Data Analysis," HP Software Productivity Conference
Proceedings, April 1985, pp. 1-79 to 1-89.
18. R. Grady and D. Caswell, op. cit., p. 145.
19. C. Jones, Programming Productivity, McGraw-Hill Book Co.,
1986, p. 179.

APRIL 1989 HEWLETT-PACKARD JOURNAL 63

© Copr. 1949-1998 Hewlett-Packard Co.

Software Defect Prevention Using
McCabe's Complexi ty Metr ic
HP's Waltham Division has started to use this methodology
and i ts associated too ls to catch defect prone sof tware
modules ear ly and to assist in the test ing process.

by Wi l l iam T. Ward

IT IS POSSIBLE TO STUDY, MEASURE, AND QUAN
TIFY many aspects of the software development process,
and if sufficient data about good practices used in recently

released projects is available, real-time adjustments can be
made to ongoing projects to minimize past mistakes and
to leverage ideas from past successes.

HP's Waltham Division has maintained an extensive soft
ware quality metrics data base for products developed here
over the past three years. We have been able to use this
data base during project postmortem studies to provide
insight into the strengths and weaknesses of Waltham's
software development process.

Fig. 1 lists the basic software quality metrics for two
major Waltham Division products that have been released
within the past two years. Based on the extensive amount
of code, both of these products can be classified as large-
scale firmware projects. These projects had a short develop
ment time and a very low postrelease defect density. Since
these products are considered technical successes, it was
suggested that the software development data we had about
them could be studied to improve our understanding of
Waltham's software development process. This resulted in
a formal effort to examine the project data in more detail.

A substantial amount of software process data was
evaluated during the course of the study. This data rep
resented each phase of the development process and ad-

dressed both quality and productivity issues (e.g., defect
density and engineering hours). The results of the evalua
tion resulted in a set of recommendations that covered code
inspections, development tools, testing, and people and
process issues such as code reuse and code leveraging.

Since every issue could not be addressed at once, we
decided to find one area in the development process that
had the greatest need for improvement and would provide
the greatest return on our process improvement funds. We
wanted to select methodologies and tools that could be
used to improve the weak process area and could be easily
integrated into our development environment.

Process Improvement Area
Fig. 2 shows the relative percentage of prerelease soft

ware defects based on the development phase where the
defect was inserted. The data shown here is from Project
B, but similar results were found for Project A. Initially we
were surprised by this data. It might be assumed, for in
stance, that defects are introduced into a product in equal
amounts throughout each phase of development, or that
the product design phase might be the most troublesome.
However, the data presented here accurately represents the
Waltham process, which of course may be different from
other environments.

Since 60% of the total prerelease defects were introduced
into the product during the implementation phase, it was
obvious that any improvement in this phase would yield
the greatest benefit. During the implementation phase the
activities that occur include coding, inspections, debug-

'KNCSS: Thousands of l ines of noncomment source statements.

F ig . 1 . 8as /c so f tware qua l i t y me t r i cs fo r two HP Wa l tham
Divis ion products.

- Design 28.2% (35)

 O t h e r 4 . 0 % (5)

Specification 2.4% (3)
Optimization 2.4% (3)

 R e p a i r 1 . 6 % (2)

Implementation 61 .3% (76)

Fig . 2 . Summary o f defec ts by phase for pro jec t B.

64 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

ging, and all testing.

Finding a Methodology
Closer investigation of our metrics data base revealed

that some modules were more defect-prone than others.
These troublesome modules consumed a great deal of time
and effort during the implementation phase. Therefore, we
needed a method to identify these modules early so that
we could take the appropriate corrective measures, such
as more intensive code inspections.

After examining the current software engineering litera-
ture1'2'3 and further scrutinizing of our project data, we
found McCabe's cyclomatic complexity metric and its as
sociated methodologies best suited our needs. This metric
provided us with a measure for detecting error-prone mod
ules and a methodology that fit right into our development
process. The McCabe metric is a number that represents
the complexity of a module. It is based on the number of
decision statements in the module. It has been found that
if the complexity measure of a module exceeds 10 the
chance of that module being error-prone also increases.
See the article on page 66 for more details.

Fig. 3 shows some of the project data we used to help
us evaluate the utility of the McCabe metric. This graph
shows a comparison between prerelease defect density and
the complexity metric for programs belonging to project B
(similar results were found for project A). Each program
in Fig. 3 is a collection of many small modules and the
complexity value shown is the sum of the complexity mea
sures for all of the modules in a particular program. From
this data we were able to compute a 0.8 (or 64%) statistical
correlation between complexity and defect density.

Methodology and Tools
The McCabe metric has been around for a while and its

correlation between the metric and defect-prone modules
has been validated in the literature.4'5'6 We found the fol
lowing additional issues during our investigation of the
McCabe metric and its associated methodology.
â€¢ The algorithm for calculating the McCabe metric for each

module is very simple and the process for gathering the

data to compute the metric can be automated.
â€¢ The McCabe metric is expressed as a unitless number.

Industry' experience suggests that a complexity measure
in the range of 1 to 10 per code module is optimal for
producing quality code, hi fact, some organizations place
a limit of 10 on all modules.

â€¢ The McCabe metric can play an important role in the
module testing process. A methodology has been de
veloped that allows determination of test paths and test
cases using the complexity metric and the accompanying
program flow graphs.

â€¢ The cyclomatic complexity of a code module can be
presented graphically as well as numerically, and there
are tools for plotting representations of modules as cy
clomatic flow graphs.

Implementing Process Improvements
The primary goal of this effort was to find a methodology

that would help reduce the number of defects introduced
into a product during the implementation phase of develop
ment. Once a methodology was found, our next goal was
to integrate it into the real, heavily loaded, often skeptical
R&D environment. We have successfully incorporated the
McCabe methodology into our software development pro
cess by using it in early recognition of code quality, testing,
code inspections, and the software quality engineering pro
cess.
Recogition of Code Quality. As mentioned previously, the
cyclomatic complexity of a module can be represented
either numerically or graphically. As an example, consider
Fig. 4. This diagram is the flow graph of a module written
in C, which is part of a current development project at
Waltham. This module has a cyclomatic complexity value
of seven, which indicates a well-constructed module that
may have a low defect density, or possibly no defects at
all. The flow graph has been constructed using specific
shapes to represent various programming structures. For
instance, in this example IF statements are shown as
branches and WHILE statements are shown as loops. The
complete syntax of a language such as C can be illustrated
in this manner. The numbers on the flow graph correspond

Fig. 3 . Compar ison of defect den
s i t i e s a n d M c C a b e ' s c o m p l e x i t y
f o r p r o g r a m s i n p r o j e c t B . T h e
McCabe comp lex i t y va lue i s t he
summation of a l l the complexi t ies
for the modules in a part icular pro
g ram. Reused code i s code tha t
is used with no changes, and lever
a g e d c o d e i s m o d i f i e d r e u s e d
code.

APRIL 1989 HEWLETT-PACKARD JOURNAL 65

© Copr. 1949-1998 Hewlett-Packard Co.

The Cyclomatic Complexity Metric

T h e q u a n t i f i c a t i o n o f p r o g r a m c o m p l e x i t y i s r e l a t e d t o t h e
number o f dec is ions (changes in cont ro l) in the program. Th is
i s opposed to the v iewpo in t tha t complex i ty can be quant i f ied
from program size or the number of independent program paths.
Program s ize is mis leading because a large program may have
very few decision statements. For example, a 2-KNCSS program
may have only one or two decis ions imply ing one or two paths,
whereas a 50-l ine program with 25 if-then statements in sequence
could generate 33.5 mil l ion paths. Basing code complexity str ict ly
on the number o f paths is a lso mis leading because the number
of paths can be in f in i te for programs that have loops.

To provide a metr ic that indicates a meaningful set of program
p a t h s , t h e c y c l o m a t i c c o m p l e x i t y m e t r i c q u a n t i f i e s a b a s i c
number of paths that have the fo l lowing propert ies:
â€¢ They v is i t every node (program statement) in a graph of the

program, and they v is i t every edge (change of contro l) in the
graph.

â€¢ When taken together the basic paths can generate all possible
paths in the program.
T o d e v e l o p t h e s e c o n c e p t s , a d e f i n i t i o n a n d t h e o r e m a r e

needed f rom graph theory .
Def in i t ion 1 . The cyclomat ic number v(G) of a graph G with n

nodes , e edges , and 1 connected component i s :

v (G) = e - n + 1

A c o n n e c t e d c o m p o n e n t i s a c o d e m o d u l e (f u n c t i o n o r p r o c e
dure) f rom start to end.

Nodes

G:

Edges

G ' :

(b)

Added
Edge

Fig. 1 . a) Program flow graph for a program with seven nodes
(b locks o l code) and ten edges (branches) , b) Same cont ro l
g raph w i th added edge to sa t i s f y t he regu i remen t t ha t t he
graph must be s t rong ly connected.

Theorem 1. In a s t rong ly connected graph G, the cyc lomat ic
number is equal to the maximum number of l inearly independent
paths.

T o a p p l y t h i s t h e o r y a p r o g r a m m u s t b e r e p r e s e n t e d a s a
d i rec ted g raph in wh ich a node represen ts a sequen t ia l b lock
o f code, and an edge cor responds to a branch (t ransfer o f con
t ro l) between nodes (see F ig . 1) . I t is assumed that each node
is entered at the beginning and exi ts only at the end.

The program f low graph in Fig. 1 has seven blocks (a through
g) , en t ry and ex i t nodes a and g , and ten edges . To app ly the
theo rem the g raph mus t be s t rong ly connec ted , wh ich means
that , g iven the two nodes a and b, there exists a path f rom a to
b and a path from b to a. To satisfy this, we associate an additional
edge w i th the g raph tha t b ranches f rom the ex i t node g to the
ent ry node a as shown in F ig . 1b. Theorem 1 now appl ies , and
Â ¡ t s t a t e s t h a t t h e m a x i m a l n u m b e r o f s t a t e s i n G ' i s 1 1 - 7 + 1 = 5 .
The impl ica t ion is tha t there is a bas ic se t o f f i ve independent
paths that when taken in combination wil l generate al l paths. The
f ive sets of paths for G' are:

b1 : abcg
b2 : a(bc)*2g { (bc)*2 means i terate loop be twice }
b3 : abefg
b4 : adefg
b5 : adfg

I f any arb i t rary path is chosen, i t should be equal to a l inear
combinat ion of the basis paths b1 to b5. For example, the path
a b c b e f g i s e q u a l t o b 2 + b 3 - b 1 , a n d p a t h a (b c) * 3 g e q u a l s
2 * b 2 - b 1 .

T h e g e n e r a l f o r m o f t h e c o m p l e x i t y m e t r i c f o r a m o d u l e i s
v (G) = e - n + 2 . The assoc ia t i on o f an add i t i ona l edge f r om
exi t to entry for each module is impl ic i t . Therefore, we have:

v (G) = (e + 1) - n + 1 = e - n + 2

Applications of v(G)
The cyc lomat ic complex i ty met r ic has app l ica t ions in the fo l

lowing areas:
â€¢ The cyc lomat ic number has of ten been used in l imi t ing the

complex i ty o f modules in a sof tware pro ject . Exper ience and
empir ica l data1 have suggested that there is a s tep funct ion
in de fec t dens i t y above a comp lex i t y o f 10 . There fo re , i t i s
good pract ice to l imi t the complexi ty of each software module
to 1 0. The one exception to this rule is a case statement, which
contains an arbi trary number of independent paths. This struc
tu re can have a h igh cyc lomat i c comp lex i t y and have a low
defect densi ty.

â€¢ The cyclomatic number can be used as a predictor of defects.
Var ious pro jec ts have cor re la ted cyc lomat ic complex i ty and
defect densi ty and have reported correlat ions of 0.8 as in the
accompany ing paper to 9 .6 .2

â€¢ The cyclomat ic number and the accompanying program con
trol f low graph can be used to identify test cases. The cyclomat
i c number co r responds to the number o f tes t pa ths and the
t es t pa ths co r respond t o t he bas i c pa ths de r i ved f r om t he
control f low graph. With th is informat ion, test condi t ions (test
cases) can be genera ted fo r a program. Th is en t i re process
can be automated wi th a language dependent preprocessor .
The fo l lowing example i l lust rates the der ivat ion of test paths
and tes t cases us ing the cyc lomat ic number and the cont ro l

66 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

to actual C source statements. This representation provides
a useful reference between the flow graph and the code.

Fig. 5 is a similar diagram for another C code module
from the same development project. Note here that the
cyclomatic complexity is 36, and that the flow graph for
the code is more complex. Since this module's complexity
metric exceeds the optimal value of 10 it is likely that this
module will be error-prone. In addition, Fig. 5 provides
visual evidence that a complex module may be hard to
understand, test, and maintain.

Our experience at Waltham indicates that the graphical
representation of code complexity is a very effective vehicle
for focusing lab-wide attention on code quality. The visual

impact of an image of tangled code appears to attract more
interest than mere correlation of numbers. Therefore, cur
rent projects are actively using cyclomatic flow graphs dur
ing the coding process to focus engineering and manage
ment attention on code quality.
Testing Process. The test case generation capability of the
McCabe methodology has been very useful in establishing
rigorous module testing procedures. The cyclomatic com
plexity values have been used as an indicator of which
modules should be subjected to the most active scrutiny
by the test group. Modules with abnormally high complex
ity values are selected as candidates for the most extensive
test activities.

APRIL 1989 HEWLETT-PACKARD JOURNAL 67

© Copr. 1949-1998 Hewlett-Packard Co.

Cyclomatic 36

Cyclomatic 7

Nodes

Upward
Flows

Control Statement
(e.g., IF, Switch)

Fig. 4. The program flow graph for a module with a cyclomatic
complexi ty of 7.

Code Inspections. Recent studies have suggested that one
of the most effective techniques for software defect preven
tion and detection is the use of formal inspections.7'8 The
complexity data and the flow graphs can be used to help
evaluate various code paths during an inspection, and to
help determine which modules should be given an inspec
tion.
The Software Quality Engineering Process. The software
quality engineering (SQE) group at Waltham has been ac
tively promoting the use of McCabe's technology within
the lab. Specifically, the SQE group is working with current
projects so that all code is subjected to calculation of the
cyclomatic complexity of each module. This process has
been established as part of our software product release
criteria. In addition, the SQE group has purchased and
maintains a tool that computes complexity and generates
program flow graphs. As each project completes major
blocks of code, the SQE group generates the flow graphs
for that code and then provides feedback to project manage
ment and team members.

Conclusion
The McCabe methodology and toolset have been inte

grated into the Waltham software development process
over the past year. This process has been accomplished
with no disruption to current lab projects and has resulted
in the following successes:

Fig. 5. The program f low graph fora module with a cyclomatic
complex i ty o f 36 . The h igh complex i ty va lue and the v isua l
p resen ta t i on i nd i ca tes tha t t h i s modu le i s e r ro r -p rone and
very l ikely hard to maintain.

â€¢ Automatic identification of potentially faulty software
before actual testing is started

â€¢ Automatic identification of code modules that could ben
efit from code inspections

â€¢ Automatic generation of test case data for all software
modules

â€¢ Well-defined coding standards accepted throughout the
lab

â€¢ Effective code defect prevention strategies based on re
structuring of overly complex code.
Each of these successes has contributed to the overall

success of the software defect prevention program pres
ently underway at the Waltham lab. By identifying and
correcting software code defects very early in the coding
phase of product development, the McCabe methodology
and toolset continue to have a major impact on our efforts
to improve the productivity of the Waltham development
process and the quality of the resultant products.

'ACTÂ® (Analys is of Complexi ty Tool) , a product of McCabe and Associates.

68 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

References
1. S.D. Conte, H.E. Dunsmore, and V.Y. Shen, So/tivare Engineer
ing Metrics and Models. Benjamin Cummings Publishing Com
pany, 1986.
2. R.S. Pressman, So/tware Engineering: A Practioner's Approach,
McGraw-Hill, 1982.
3. C.G. Schulmeyer and J.I. McManus, Handbook of Software
Quaiity Assurance, Van Nostrand Reinhold Company Inc.. 1987.
4. T.J. McCabe, Structured Testing: A So/tware Testing Method
ology Using The Cyclomatic Complexity Metric, National Bureau
of Standards Special Publication 500-99.

5. T.J. McCabe. "A Complexity Measure," IEEE Transactions on
Software Engineering, Vol. SE-2, no. 4, Dec. 1976, pp. 308-320.
6. T.J. McCabe, and Associates, Inc. Structured Testing Workbook,
14th Edition.
7. M.E. Fagan. "Design and Code Inspections to Reduce Errors in
Program Development," IBM System Journal, no. 3, 1976, pp 182-
211.
8. M.E. Fagan, "Advances in Software Inspections," IEEE Trans
actions on Software Engineering, Vol. SE-12, no. 1, July 1986, pp.
144-151.

Object-Oriented Unit Testing
HP's Wa/tham Division has taken a first step in applying new
and traditional unit testing concepts to a software product
implemented in an object -or iented language.

by Steven P. Fiedler

ALTHOUGH OBJECT-ORIENTED ENVIRONMENTS
are being used more frequently in software develop
ment, little has been published that addresses ob

ject-oriented testing. This article describes the processes
and experiences of doing unit testing on modules devel
oped with an object-oriented language. The language is
C++1 and the modules are for a clinical information sys
tem. Because the system must acquire real-time data from
other devices over a bedside local area network and the
user requires instant information access, extensions were
made to the language to include exception handling and
process concurrency. We call this enhanced version Ex
tended C+ + . Test routines were developed and executed
in an environment similar to that used in development of
the product. This consists of an HP 9000 Series 300 HP-UX
6.01 system.

Unit Testing
Unit testing is the first formal test activity performed in

the software life cycle and it occurs during the implemen
tation phase after each software unit is finished. A software
unit can be one module, a group of modules, or a subsystem,
and depending on the architecture of the system, it is gen
erally part of a larger system. Unit tests are typically de
signed to test software units, and they form the foundation
upon which the system tests are built. Since software units
and unit tests are fundamental entities, unit testing is crit
ical to ensuring the final quality of the completed system.

The unit testing process involves test design, construc
tion, and execution. The test design activity results in a
test plan. Because the primary intent of unit testing is to
find discrepancies between unit specifications and the
coded implementation,2 the unit specification is the pri
mary reference for the test plan. Test construction involves

building the test cases based on the test plan, and test
execution involves performing the tests and evaluating the
results.

Both structural (white box) testing and functional (black
box) testing techniques are used in unit testing. Since struc
tural testing requires intimate knowledge of the design and
construction of the software, unit testing requires intense
developer involvement in the process.

Message

objx. movejtem (xnew. ynew)

(a)

Methods
movej tem (xnew, ynew)

Un i t

Global
Data Structure

draw i tem ()

ÃÃ
(b) Unit

F i g . 1 . (a) O b j e c t i n s t a n c e o b j x b e i n g s e n t t h e m e s s a g e
move Â¡tem(xnew,ynew) fo invoke the method to move a graphi
cal i tem from one location to another, (b) The same operat ion
be ing processed in a procedura l language env i ronment .

APRIL 1989 HEWLETT-PACKARD JOURNAL 69

© Copr. 1949-1998 Hewlett-Packard Co.

Objects
An object is the fundamental building block in an object-

oriented environment and it is used to model some entity
in an application. For example, in an office automation
system, objects might include mail messages, documents,
and spreadsheets. An object is composed of data and
methods. The data constitutes the information in the object,
and the methods, which are analogous to procedures and
functions in non-object-oriented languages, manipulate the
data. In most applications, there are many objects of the
same kind or class (e.g., many mail messages, devices, etc.).
C+ + defines the data and methods f or these similar objects
in a data type called a class. Each object in an object-
oriented language is an instance of a particular class. Also
in C+ +, a data item is referred to as a member and the
methods, member /unctions.

One of the main differences between object-oriented and
procedural languages (non-object-oriented languages) is in
the handling of data. In a procedural language environment
such as Pascal, C, or Fortran, system design is based on
the data structures in the system, and operations are per
formed on data passed to procedures and functions. The
primary data items are typically global and accessible to
all the modules in the system. In an object-oriented envi
ronment, the object's internal data structures and current
values are accessible only to the methods within the object.
The methods within an object are activated through mes
sages passed from other objects. The messages indicate the
method to be activated and any parameters required.

Fig. 1 illustrates these diferences in architecture between
object-oriented systems and procedural-language-based
systems. In Fig. la, to move a graphical item (objx) from
one location to another, the message move_item(xnew,ynew)
is sent to the object instance objx to perform the operation.
The current location and geometric characteristics of the
item are contained in the data structures of objx. The
methods in objx will handle the transformation and transla
tion of the item to a new location. Fig. Ib depicts the same
operation in a procedural language environment. The
graphical items's data structure and current values are kept
in a global data structure which is accessible to all the
modules in the system.

Objects and Unit Test ing
The issues related to objects and unit testing include:

â€¢ When should testing begin? In a procedural language
environment, a complete unit may not exist until several
functions or procedures are implemented. In an object-
oriented environment, once a class has been defined and
coded, it can be considered a complete unit and ready
for use by other modules in the system. This means that

Array <*Objecl>

C l a s s : S t r i n g R e v : 1 . 9 8 7 . 0 8 1 2

Derived Ciass: Sequence <char>

Include File : ^include "include 'generic-'String.h"

Role characters String may be used whenever a general-purpose sequence of characters is
required. It can be used to store and manipulate character strings of any size.

Abst rac t i ts (s ta tements about the proper t ies o f a c lass that he lp to exp la in i ts
behavior).

1 . The characters in String are terminated by a null character. This null is not accessible
to the user.

2. Length: (int, 0 <- Length) number of characters in String not including the null
terminator.

3. Firstlndex: (int) index of the first character in the character portion of String.
4. Lastlndex: (int) index of the last character in the character portion of String.

Pub l i c Func t ions : S t r ing -S t r ing Append De le teSt r ing
L o w e r c a s e P r i n t Q + = = = ! =

Inher i ted Func t ions : AddF i rs t Capac i ty Empty F lush S ize S to re

Public Function Specifications:

String 0
R e t u r n s (S t r i n g)
Constructor (s = StringQ)

String is constructed with Length = 0 and character string
portion set to null.

-Str ing
Returns
Destructor

If the character portion of String is not null, DeleteString. is
called to free the allocated heap area.

Append (const String s1)
void

Appends s1 to characters in String this.Length = this.Length -
s1 .Length

DeleteString

Returns
Signals

(const int Startlndex,
const int Nchars)

void
(InvalidNumberOfChars,
InvalidStartlndex)

Remove Nchars characters from String starling at
Startlndex. If Nchars > this.Length - Startlndex then all the characters from
Startindex to the end of String are deleted and this.Length = Startlndex,
otherwise, this.Length = this.Length - Nchars.

If this.Firstlndex > Startlndex or Startlndex > this.Lastlndex, then
InvalidStartlndex is raised. If Nchars < 0, then InvalidNumberOfChars is
raised-

Lowercase
Returns

0
void

Converts all characters in String to lowercase.

(i
R e t u r n s v o i d

For debugging purposes, prints the internal representation of String.

O p e r a t o r [] (c o n s t Â ¡ n t i n d e x)
R e t u r n s c h a r
S i g n a l s (i n v a l i d l n d e x ,

EmptyString)

Returns the character at this.[index] of String. If index
> this.Lastlndex or index < this.Firstlndex, then Invalidlndex is
raised. If String is empty, then EmptyString Â¡s raised.

O p e r a t o r - (c o n s t S t r i n g s 1)
R e t u r n s S t r i n g

This function has the same behavior as String:: Append

O p e r a t o r = (c o n s t S t r i n g s 1)
R e t u r n s v o i d

Assigns the value of s1 to this String.

Operator = =
Returns

(const Siring s1)
Boolean

Returns TRUE ifthis.Size = s1. Size and each character in String Â¡s matched
by the corresponding character in s1, otherwise it returns FALSE.

Operator ! =

Returns

(const String s1)

Boolean

Array <*char> Array <*String> Array <*othrObJ! Returns TRUE if this.Size = S1 .Size and at least one character in String Â¡s not
matched by the corresponding character in s1. otherwise it returns FALSE.

Fig . 2 . An example o f parameter iza t ion in ex tended C+ + . Fig. 3. Class specif icat ion for the class Str ing.

70 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

unit testing must be considered much earlier in an object-
oriented environment.

â€¢ What testing techniques should be used? Since the
paradigm of object-oriented programming emphasizes
the external behavior of data abstractions rather than the
internals, one would expect to employ only black box,
functional testing techniques. However, a more robust
testing structure employing complete path testing is ac
tually needed.

â€¢ What should be tested? In an ideal situation, the answer
to this question would be that all classes should be com
pletely path tested, particularly for critical application
systems. However, the resources required to meet this
goal may be substantial and, in working towards it, trade
offs are likely to be made. Nonetheless, refinements can
be added to the testing process that simplify labor inten
sive phases and improve chances that a minimal set of
tests will be executed.

â€¢ Who should do unit testing? To answer this question,
we need to consider what is being tested and the exper
tise required of the tester. Remember that units are typ
ically modules that eventually become part of a larger
system and only the developers know the detailed inter
nals of the units they are responsible for building. As a
result, an independent tester or a developer who is not
involved in the design and generation of code for a spe
cific class may find it difficult to perform adequate test
ing on that class. For example, a developer may design
a data base class which is intended to make it easier for
a user to perform transactions in a data base. The methods
within the data base class are responsible for performing
the data base interface tasks. An independent tester who
is unfamiliar with the way in which these low-level func
tions work would certainly be ineffective in testing the
internals of this class.
In the clinical information system, knowledge of Ex

tended C++ was sufficient to become an effective tester
for certain classes in the system. This was because of the
formulation of generic classes. A generic class in the clin
ical information system is a class that provides general
functionality. It can be considered an extension of the lan
guage's built-in data types that fills a utilitarian purpose

for other components of the system. Strings and linked
lists are examples of objects that provide such universal
functionality.

To build on this generic concept, parameterized type
classes were introduced.3 Parameterization permits a gen
eral definition of a class to be extended to create a family
of type-safe classes, all with the same abstract behavior.
For example, suppose we design a class called Array which
contains pointers to some object. Through parameteriza
tion, we can extend this class definition to create arrays
that point to characters, arrays that point to strings, or
arrays that point to any other type of object (Fig. 2). The
testing of a parameterized type class can provide a high
level of reliability for a growing family of similar classes.
From the experience gained in testing generic classes, we
have developed an approach to the testing of other C+ +
classes.

Test Process
The tasks associated with the testing process for objects

are the same as for regular unit testing: design, construction,
and test execution.
Design. During the design phase, the tester determines the
test approach, what needs and does not need to be tested,
the test cases, and the required test resources. The inputs
required to conduct the design phase for objects include:
â€¢ The header and source files of the target class (the class

being tested], and a well-defined specification of the
class.4 An example of a class specification is shown in
Fig. 3.

â€¢ An analysis of the effects of inheritance on the target
class. When a class uses another class as a base to build
additional functionality, it is said to be derived from
that class and consequently inherits data and methods
from the base (parent) class. If the target class is derived,
we want to know if the base class has been thoroughly
tested. Provided that the functionality of the base class
has been proven, any member function of the target test
class that leverages directly from a base class member
function will require minimal testing. For example, the
specification in Fig. 3 shows that String is derived from
a parameterized class called Sequence. The functions that
String inherits from Sequence (AddFirst, Capacity, etc.) require

Path Test Cases:
1. Str ing contains no characters.
2 . s t r ing con ta ins on ly lowercase charac te rs .
3 . S t r ing conta ins both uppercase and lowercase characters .

Fig. 4. Path test cases for the function Lowercase. Fig. 5. Dependencies lor c lass Str ing.

APRIL 1989 HEWLETT-PACKARD JOURNAL 71

© Copr. 1949-1998 Hewlett-Packard Co.

only a basic functionality test.
â€¢ The cyclomatic complexity metric5 of the individual

member functions belonging to the target class. The com
plexity measure and its accompanying testing methodol
ogy play a key role in the implementation of this test
strategy. Through their use, we can ensure that all the
independent paths in the target member functions are
tested. Fig. 4 shows an example of path test cases for
the member function Lowercase. In our project, the predi
cate method6 of calculating cyclomatic complexity has
been built into the Extended C++ parser.

â€¢ A hierarchy or structure list which shows member func
tion dependencies. In simple terms, what member func
tions call what other member functions of this class?
Private member functions, which are not accessible to
the end user directly, should also be included in this
list. For example, in Fig. 5, the function operator +
performs its task by invoking the Append function, which
indicates that Append should be tested first.

â€¢ The signals or exceptions that are raised (not propagated)
by each function. Extended C++ includes linguistic
support of exception handling,7 which permits a special
kind of transfer of control for processing unusual but
not necessarily erroneous conditions. These signals
should not be confused with HP-UX operating system
signals. Signals are defined for the various member func
tions in a class specification. For example, the specifica
tion for String indicates that the member function Delete-
String raises a signal called InvalidStartlndex if the Startlndex
parameter passed to the member function is not valid.
The last step of the design phase is to determine the

approach to use to verify the test results. There are a number
of options in this area. One approach is to print out the
expected results for a test case and the actual results gen
erated by the target class test to two different files. At the
end of the test, the two files can be compared using the
standard UNIXÂ® tool diff (see Fig. 6). A second option for
results verification uses similar ideas, but may require less
actual programming time. An expected results file can be
constructed by hand and the file can be used for comparison
with actual target class output. If these two approaches
prove impractical because of the behavior of the class being
tested, a third alternative might be to include the expected
UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries.

Actual Results Expected Results

Actual
Results

Actual
Resul ts F i le

Messages

Target Class
Expected
Results

File

' 9 B 1
Differences

File

observations in a test plan using the class specification as
a basis for deriving these observations.

Fig. 7 shows an excerpt from the test plan for the class
String. A test plan is the culmination of the test design
process, and in addition to guiding test activities, it is an
excellent respository of information regarding what was
done to test an object.
Construction and Execution. The strategy for developing
test cases for execution is to determine all the paths in a
module that require test coverage, and then to create test
cases based on the class specification (black box approach)
and certain features in the code (white box approach). The
white box strategy is based on the structured testing
methodology resulting from McCabe's work (see article on
page 64 for a discussion of the use of the McCabe complex
ity metric in our division). In this methodology, test cases are
created to execute each decision path in the code. In the
clinical information system, except for paths that contained
code for exception handling, test cases were written to
ensure complete path coverage of each member function.
Exception handling situations were dealt with separately
because they disrupt the normal control flow of a program.
Based on the class specification and source code, test cases
designed to ensure path coverage were derived using the
other well-understood methodologies of equivalence parti
tioning and boundary-value analysis.2

In creating test cases for valid equivalence classes, realis
tic input values for the member functions were preferred
over those that lacked relevance from an application
standpoint. For example, if the primary use for our sample
String class is to hold a single line of information on an
electronic index card, we might expect it to hold, on aver
age, 12 to 50 characters. Our test case would be to create

Test Plan for Class: String

Date S Revision: 87/08/12 Rev. 1.9

Source: Â¿include "include/generic String. h"

Link/Load: EC $1.o -IGC -lorte -leorte -o $1

Test from Str ing is the only i tem under test. Str ing is derived from Sequence<char>.

Features to be Tested: All of the functions and operators of the class are tested.

Features not to be Tested: No functions of this class will go untested.

Approach to Testing: After one or more String member functions are called, the String::Prlnt
member uses is used to verify the success of the functions. String: Print uses coutÂ«form.
Another also structure that emulates the operation being performed on the Str ing is also
constructed. It, too. is output and the results of the String and emulator are compared. At
times, tested. may also act as an emulator if the needed fuctions have been tested.

Pass/Fall Verification: The results of each String test are compared to the results from the
emulator, using the HP-UX diff comand. No differences should be detected.

Tes t these No works ta t i on i n te rac t i on i s requ i red fo r these tes ts . Tes ts run on
HP-UX 6.01, HP 9000 Model 350.

Test S t r ing . The fo l lowing tes ts ver i fy the opera t ion o f S t r ing .

StrTestO.c. This module tests the following:

â€¢ Append with char' parameter

â€¢ Print with String empty and with String NOT empty

StrTest! .c. This module tests all of the String constructors using the heap and stack-based
variables.

Fig . 6 . Data f low d iagram for c rea t ing ver i f i ca t ion f i les and
per forming the resul t compar isons. Fig. 7. Port/on of the test plan for the class Str ing.

72 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

T I I I 1
0 1 2 3 4

Defects Detected

F i g . 8 . D e f e c t s d e t e c t e d i n t h e
c l asses t es ted a f t e r deve lope rs
had completed b lack box test ing.
(a) Compos i te complex i ty versus
defects for generic classes tested.
(b) NCSS ve rsus de fec ts fo r the
same classes.

a string of 40 characters rather than 140.
Boundary-value analysis dictates that tests be built that

create objects of extremes. Instances of null strings
(size = 0) should respond as any non-null string would
unless the specification states otherwise. Clearly, a null
string appended with the value abc should yield the same
result as the string abc appended with a null value. At the
other extreme, tests should exist to stress objects (usually
in size) beyond all expectations of normal use. For example,
in HP-UX, main memory is managed in pages of 4096 bytes.
Therefore, it should be valid to create a string that holds
4097 characters.

Tests to invoke exception handling capabilities were also
included in class test suites. Boundary-value conditions
were used to invoke these facilities. For example, if an
exception is encountered when we index beyond the legal
boundary of a string, the test case invokes the exception
by trying to access the character just past the end of the
string, not ninety-nine characters past it. Special care must
be taken in coding exception test cases, because if a signal
raised by a member function is not handled correctly, an
aborted test program may result.

There are other areas for test cases that do not show up
using the structured technique. For example, the effects of
implicitly and explicitly invoking a class's constructor and
destructor functions should be examined for consistency.
Initialization and casting operations should also be tested.
In addition, defects have been discovered by applying as
sociativity rules to member functions. That is, if string s1
is null, and string s2 is not null, s1 > s2 should yield the
same results as s2 < s1. In addition, the use of the object
itself as a member function input parameter proved valu
able in uncovering subtle implementation errors. For in
stance, given s1 is a string, the test s1.Append(sl) becomes a
legitimate and creative way of triggering certain test condi
tions. Much of this type of testing can be integrated into
standard testing without creation of separate tests.

Results
The methodology presented here was applied to testing

several generic classes after the development group had
completed their testing using black box testing techniques.
The results show the shortcomings of strict black box test
ing. Even though development group testing was extensive
and appeared to be thorough, defects were still uncovered.

Tln C + + for constructor and a destructor perform the init ial ization and termination for class
objects, respect ively.

Defects were found in each of the generic classes tested.
The number of defects found seemed to be related to the
composite (total) complexity of all of the class member
functions and more directly to the number of noncomment
source statements (NCSS) contained in the source and in
clude files. The general relationship of complexity to de
fects is shown in Fig. 8a, and the correlation between de
fects and the NCSS of each class is shown in Fig. 8b. Each
point represents a generic class. On average, a defect was
uncovered for every 150 lines of code, and correspondingly,
the mean defect density exceeded 5.1 per 1000 lines. Only
the code contained in the source and include files for each
class was counted for this metric. Code from inherited func
tions was not considered. These defect rates pertain to a
small set of actual product code produced during the early
stages of development. Another interesting relationship
was observed when the NCSS values of source and test
code were compared (see Fig. 9).

Conclusion
There is a cost associated with class testing. A significant

investment of time is required to perform the testing pro
posed here. Assuming testers are already competent with
the object-oriented environment, they must acquire famil
iarity with McCabe's complexity concepts as well as a basic
understanding of the class being tested. Because testing so
far has taken place concurrently with development, time
estimates for the testing phase have been somewhat incon-

1600-r-

1200 --

i o
800 - -

4 0 0 - -

ByteString

Array i

Str ing

Stack

â€¢ Bag

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
Class NCSS (Header and Source)

Fig . 9 . Tes t code NCSS versus c lass source code NCSS.

APRIL 1989 HEWLETT-PACKARD JOURNAL 73

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 10. Metr ics for test ing gener
ic classes.

sistent and do not yet suggest any clear conclusions. Fig.
10 summarizes the metrics we have collected thus far. (The
classes are listed in the order they were tested).

In the object-oriented environment, objects and their def
initions, rather than procedures, occupy the lowest level
of program specification. Therefore, it is necessary to focus
on them when implementing a thorough test methodology.
Practices used in testing traditional procedural systems can
be integrated in the approach to object-oriented testing.
The main difference we have found so far is that each object
must be treated as a unit, which means that unit testing in
an object-oriented environment must begin earlier in the
life cycle. Through continued collection of the class metrics
and test results, we hope to gain more insight and continue
to improve our object-oriented unit test efforts.

References
1. B. Stroustrup, The C++ Programming Language, Addison-
Wesley, 1986.
2. G.J. Myers, The Art of Software Testing, John Wiley & Sons,
1979.
3 . B . + " P a r a m e t e r i z e d T y p e s f o r C + + , " U S E N I X C + +
Conference Proceedings, 1988.
4. R. Seliger, E. Calm, and L. Smith, "Object-Oriented Design
Methodology," HP Software Engineering Productivity Conference,
1987.
5. T.J. McCabe, "A Complexity Measure," IEEE Transactions on
Software Engineering, Vol. SE-2, no. 4, 1976.
6. T.J. McCabe and Associates, Inc., Structured Testing Workbook,
14th Edition.
7. E. Horowitz, Fundamentals of Programming Languages, Sec
ond Edition, Computer Science Press, 1984.

74 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Validat ion and Further Applicat ion of
Software Rel iabi l i ty Growth Models
After two years of use, a sof tware rel iabi l i ty growth model
has been validated with empirical data, and now it is being
expanded to est imate test durat ion before i t begins.

b y G r e g o r y A . K r u g e r

AT HP'S LAKE STEVENS INSTRUMENT DIVISION,
a software reliability growth model has demon
strated its applicability to projects ranging in size

from 6 KNCSS to 150 KNCSS (thousand lines of noncom-
ment source statements), and in function from instrument
firmware to application software. Reliability modeling
curves have been used to estimate the duration of system
integration testing, to contribute to the release-to-sales de
cision, and to estimate field reliability. Leveraging from
the basic model, project managers are beginning to plan
staffing adjustments as the QA effort moves through the
defect-fixing-limited phase and into the defect-finding-lim
ited phase.

Basic Model
In the fall of 1986, a software reliability growth model's

good fit to historical data on a previous firmware product
led to the development of a set of release criteria, with
defects per system test hour (QA hour) as the principal
quality measure.1 The model and release criteria were then
applied in real time to a new application product. The
modeling effort aided in predicting when the product was
ready for release to customer shipments and provided es
timates for the number of defects that might be found in
the field.

" S o f t w a r e r e l i a b i l i t y g r o w t h m o d e l i n g i s b a s e d o n t h e p r e m i s e t h a t a s s o f t w a r e i s t e s t e d
a n d d e f e c t s r e m o v e d , t h e r e l i a b i l i t y g e t s b e t t e r (g r o w s) .
" Q A e f f o r t o r Q A p h a s e i n t h i s p a p e r r e f e r s t o t h e s y s t e m i n t e g r a t i o n t e s t p h a s e o f t h e
s o f t w a r e l i f e c y c l e .

The basic exponential model is based upon the theory
that the software defect detection and removal effort will
follow a nonhomogeneous Poisson process.2 In this process
the defect arrival rate is assumed to decrease with every
hour of testing (or at least with every code correction). The
model has two components.

The cumulative number of defects found by time t is
given by

m(t) = a(l-e) -(k/a)t

and the instantaneous new defect-finding rate at time t is
given by

l(t) = ke-(k/a)t.

Fitting the model requires the estimation of parameters
k, the initial defect discovery rate, and a, the total number
of defects. The data required is obtained by recording on
a daily or weekly basis the time spent executing the soft
ware and the resulting number of defects discovered. The
model parameters may be estimated by the least squares,
nonlinear least squares, or maximum likelihood method.
In most cases, the maximum likelihood method is pre
ferred.

Considering typical software development and system
testing practices, the assumptions necessary for the
applicability of Poisson theory would seem to negate the
use of the model. Key assumptions of the model and the

(a)
2 0 0 4 0 0

Cumu la t i ve QA Hours
6 0 0

Fig. Defect-finding rate C results, (a) Cumulative defects found m(t). (b) Defect-finding rate l(t).

APRIL 1989 HEWLETT-PACKARD JOURNAL 75

© Copr. 1949-1998 Hewlett-Packard Co.

correspondingly realities are:
â€¢ Assumption: All functionality is completed before the

start of system testing.
Reality: Many products enter system testing without all
the features in place.

â€¢ Assumption: Testing can be considered to be repeated
random samples from the entire input domain.
Reality: There is some random testing, but typically test
ers are more structured and systematic in the selection
of test cases.

â€¢ Assumption: Defects found are removed with certainty
and no new defects are introduced (a perfect repair).
Reality: A defect repair may introduce new defects.

â€¢ Assumption: The times between failures are indepen
dent.
Reality: When a defect is found in a particular area of
the software, because of the suspicion that there may be
more defects in the same area, the area is probed for
more defects. This process usually finds more defects,
which is good, but makes the arrival rate of defects de
pendent on when the last one was found.
As has been said, with such a set of assumptions, it

would seem unlikely that this model would fit real-world
data. However, some aspects of the testing process at Lake
Stevens approximate these conditions. First, our life cycle
calls for all functionality to be completed by the time we
start formal system integration testing. Typical projects
have 95% or more of their functionality complete by this
time. Second, the entire set of functionality is subdivided
and assigned to different individuals of the testing team.
Therefore, while the testing process cannot be considered
to be repeated random samples from the input domain, it
is at least sampling from the entire functionality set as time
progresses. This is in contrast to a testing process wherein
some subset of the functionality is vigorously tested to the
exclusion of all others before moving on to another subset
and so on. Regarding the third assumption, strict revision
control procedures at least maintain some control over the
rate of defect introduction. Finally, nothing about the Lake
Stevens development process justifies the assumption that
the times between failures are independent. After finding
a serious defect in a portion of the product, testing effort
often intensifies in that area, thus shortening the next time

to failure.
The model's success in describing the projects at LSID

demonstrates some degree of robustness to these assump
tions. Our past and continued application of software relia
bility theory is not based on a fundamental belief in the
validity of the assumptions, but in the empirical validation
of the model. Therefore, we have continued to use software
reliability growth models with the following objectives in
mind:
â€¢ To standardize the application of the model to all soft

ware products produced at LSID
â€¢ To put in place a set of tools to capture and manage the

data and obtain the best fit curves
â€¢ To use the defect-finding rate and the estimated defect

density to define the release goal
â€¢ To predict the duration of the QA phase before its start
â€¢ To understand the relationship between model estimates

and field results.

Standardized Application
To date, software reliability growth modeling has been

conducted on eleven projects that have since been released
for customer shipment. Two demonstrated excellent fit to
the model, two very good fit, four showed a fair confor-
mance to the model, and three showed a poor fit. Fig. 1
shows the curves for one of the projects on which the model
gave an excellent fit. Contrast these results to the model's
performance on the project shown in Fig. 2. Note that time
in this case is measured in calendar days rather than test
hours. Here the cumulative defects begin to taper off only
to start up again. These results reflect inconsistent testing
effort, which is not picked up by simply measuring calen
dar days of testing effort. The curves in Fig. 2 were obtained
by independently fitting the basic model before and after
the change in testing effort. These two best-fit models were
then tied together to form the piecewise curves shown.

Tools
The defect tracking system (DTS),3 an internal defect

tracking tool, is used by all project teams to log defects
found during system testing. In software reliability modeling
it is important to record all time spent exercising the soft
ware under test regardless of whether a defect is discovered.

Cumulative Defects Found

(a)
4 0 6 0

C u m u l a t i v e Q A D a y s
100

(b)

Fig. defects (b) D results, (a) Piecewise curve fit for cumulative defects found m(t). (b) Piecewise
curve f i t for defect-f inding rate l (t) .

76 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

DTS has proven to be unsatisfactory for capturing QA hours
that do not produce a software defect. Therefore, project
teams separately log test hours at the end of each day.

The DTS data is loaded into an Informix data base so
that it can be sorted and retrieved as desired. On projects
using DTS for tracking QA time as well as defect statistics.
Informix reports generate files with weekly (or daily) QA
hour and defect total data pairs. On projects tracking QA
time separately, the weekly (or daily) defect totals are re
trieved from the Informix data base and matched with the
appropriate QA hours. In either case, the file of cumulative
QA hours and cumulative defects found is submitted to a
program that obtains the best-fit model parameters by the
method of maximum likelihood. At the present time, plots
for distribution are generated using Lotus*l-2-3Â®. Future
plans call for using S, a statistical package that runs in the
HP-UX environment, to generate the graphics, thereby con
ducting the data manipulation, analysis, and plotting all
on one system.

Release Goal
The software modeling process provides two related met

rics that help support a release-to-customer-shipments de
cision: the defect-finding rate and the estimated number
of unfound defects. A specific goal for one of these two
metrics must be established if the model is to be used for
predicting the conclusion of system testing.

The defect-finding rate is a statistic you can touch and
feel. It can be validated empirically â€” for example, 100
hours of test revealed four defects. On the other hand, one
can never really measure the number of defects remaining.
This metric can only be estimated. Although the two mea
sures are related, it is not true that two projects releasing
at the same defect-finding rate goal will have the same
number of defects estimated to be remaining. Couple this
fact with the recognition that the size of the product has
no bearing on the model fit and the resulting estimated
number of residual defects and it is clear that two projects
releasing at the same find rate could have quite different
estimated residual defect densities. Because of its observa
bility, the defect-finding rate has been used as the principal
release goal on all projects to date except one. However,
Lotus and 1-2-3 are U.S. registered t rademarks of Lotus Development Corporat ion.

2 / 2 0 2 / 2 7 3 / 5 3 / 1 2 3 / 1 9 3 / 2 6 4 / 2 4 / 9 4 / 1 6

Fig. 3 . QA hour est imates on pro ject E.

both the failure rate and the estimated residual defect den
sity are monitored and used in aiding the release decision.

The Project E Experience
The one project to date using a goal of ending system

test with a certain residual defect density will serve as a
good illustration of the contributions and limitations of
software reliability growth models. Project E is an applica
tion software product of 156 KNCSS. This project repre
sents a new release of a previously developed product and
is roughly two-thirds reused or leveraged code. The stated
goal at the start of system integration testing was to achieve
an estimated residual defect density of 0.37 defects per
KNCSS, a goal derived from the performance of the first
release of this product. Such a goal means that the best-fit
model should be estimating 58 residual defects.

A team of engineers was assembled to conduct testing
while the project team fixed defects. The data was plotted
at roughly 30-hour testing intervals and the model refit
each week. The most recent curve was used to estimate
the QA hours required to achieve the objective and these
estimates were plotted weekly with statistical confidence
limits as shown in Fig. 3. In mid-April, the decision was

C u m u l a t i v e D e f e c t s F o u n d D e f e c t - F i n d i n g R a t e

4 0 0 B O O 1 2 0 0 /
C u m u l a t i v e Q A H o u r s

(a)

1600 2000

April Release (b)

0 4 0 0 B O O 1 2 0 0 . 1 6 0 0 2 0 0 0
C u m u l a t i v e Q A H o u r s

I A p r i l R e l e a s e

Fig. Defect-finding rate E results, (a) Cumulative defects found m(t). (b) Defect-finding rate l(t).

APRIL 1989 HEWLETT-PACKARD JOURNAL 77

© Copr. 1949-1998 Hewlett-Packard Co.

made to release the project for customer shipments and to
continue futher testing and refinements for a final release
in June. The team had all but reached the goal and the data
had tracked the model very well. At this point, the en
gineers on the testing team disbanded and returned to their
original project assignments. The design team then took
on the task of conducting both continued testing and defect
resolution. With only the designers looking, the defect dis
covery rate jumped up rather than continuing to follow the
curve as can be seen in Fig. 4. The designers were testing
specfic areas of the code (directed testing), so an hour of
testing now was not equivalent in intensity to an hour of
testing with the previous test team. The testing process
was not meeting the assumption that testing can be consid
ered to be repeated random samples from the entire user
input domain.

What is clear from this project is that the failure rate data
and curves are modeling more than the software product
alone. They are modeling the entire process of testing. The
estimates of failure rates and residual defect densities are
estimates only as good as the testing process itself. The
degree to which these statistics match field results will
depend upon the degree to which the testing matches the
customer's use profile. The identification of the customer's
use profile and the incorporation of that information into
the testing strategy is a topic for further investigation.

Before QA Begins
Naturally we would like to estimate the duration of the

QA phase before it begins. But fitting a model to do estima
tion must wait for testing to begin and for enough data to
be collected before an effective statistical analysis can be
conducted. However, it is possible to use results from past
projects to estimate the two model parameters a and k.

In preparation for testing a recent software product, Proj
ect F, we reviewed the total number of defects discovered
during system integration testing on past projects. Defect
densities appeared to fall between 12 and 20 defects per
KNCSS. Project F had 28.5 KNCSS, so the likely range for
the first model parameter, a, was calculated to be 342 to
570 defects. Again looking at past projects, the initial defect
discovery rate averaged around one defect per hour, so the
other model parameter, k, could be set to one. Given a goal

for the failure rate of 0.08 defects per hour, an expected
range of 864 to 1440 QA hours was calculated.

Management ultimately needs an estimated date of com
pletion so the expected QA hours required for system test
ing must be converted to calendar time. To accomplish this
we again reviewed the data on past projects and discovered
an amazing consistency of four QA hours per day per per
son doing full-time testing, and an average of 2.3 defects
fixed per day per person doing full-time fixing. Given the
number of team members capable of fixing, the number
capable of finding and those qualified to do both, the re
quired QA hours for testing could now be converted to
calendar time. Fig. 5 shows the final QA projections for
Project F and the staffing levels used to convert the QA
hours into calendar time. Note that the staffing levels given
correspond to the midrange assumption of 16 defects per
KNCSS.

Recognize that as testing proceeds, testing and fixing
resources will have to be shifted. Early in the process, the
project is fixing-constrained because a few testers can find
enough defects to keep all available fixers busy. Over time
this changes, until late in testing, the project is finding-con
strained since it takes many resources looking for defects
to keep only a few fixers working. Also, the finders cannot
be allowed to outstrip the fixers, creating a large backlog
of unresolved defects. Such a situation only causes frustra
tion for the finders because of testing roadblocks created
by defects already found.

Our experience to date with using the model to estimate
the duration of the QA phase before its start demonstrates
the difficulty in estimating the two required model param
eters without actual system test data. Project F concluded
system integration testing with a total QA effort that was
225% of the original effort. Over twice the expected number
of defects were found and resolved. Not all of this error in
estimation can be blamed on the failure of the model. In
hindsight, we completely disregarded the fact that this was
not a stand-alone project. Many of the problems encoun
tered were because Project F had to be integrated with
another 130-KNCSS product.

These results indicate that adjustments are necessary in
the way values for the model parameters are derived. For
instance, currently the values for the parameters are aver-

(a)
Date

(b) â € ¢ N u m b e r o f F i n d e r s

Fig. 5 . QA pro jec t ions and s ta f f ing pro f i le on pro jec t F .

+ N u m b e r o f F i x e r s

78 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

aged from a heterogeneous population of previous software
projects. Fixing this problem means that if we want to
estimate the QA duration for project X then we must base
the model parameters on projects similar to project X. Proj
ect characteristics such as complexity, team experience,
and the development language must be formally factored
into any early estimates of QA duration.

Field Failure Results
Although the modeling process is helping to monitor

progress through system testing and is aiding in the release
decision, based upon limited defect data from our field
defect tracking system it appears that the curves may be
overestimating the number of defects customers will dis
cover by as much as forty times.1 However, it is likely that
only a portion of the actual field failures find their way
into the tracking system.

Our experience testing one firmware project that was an
enhanced version of an old instrument puts an interesting
perspective on estimated residual defect densities. This
particular product had been shipped for ten years at an
average volume of over 200 units per month. Since a market
opportunity existed for an updated version of that product,
both hardware and firmware enhancements were incorpo
rated into a new version. During system test, an obscure
defect in a math routine was discovered that had not only
existed in the original product since introduction but in
several other products shipped over the last ten years. To
the best of our knowledge, no customer or HP personnel
had previously found that failure. Its existence was further
argument that the information coming back from the field
is not giving a true perception of residual defect densities.

Not only do customer observed failures go unreported, but
it is highly likely that some failures will never be encoun
tered during operation. It was reassuring to note that LSID's
current testing process was uncovering defects so obscure
as to be unobservable in ten years of field use.

Conclusion
With data collected during system integration testing,

we have been able to use a software reliability model to
estimate total testing effort and aid in assessing a project's
readiness for release to customer shipments. Although the
model appears to be somewhat robust to its underlying
assumptions, future success will depend upon the integra
tion of customer representative testing techniques into our
existing testing process. In addition, there remains the chal
lenge of using the model to estimate test duration before
system integration begins. This will require a thorough
analysis of data on past projects and key information on
the current project to derive better early estimates of the
model's parameters. Our ultimate objective remains to
achieve validation of the modeling process through accu
rate field failure data. All of these areas will continue to
be investigated because they are important in determining
project schedules and estimating product quality.

References
1. G.A. Kruger, "Project Management Using Software Reliability
Growth Models," Hewlett-Packard Journal, Vol. 39, no. 3, June
1988.
2. J.D. Musa, A lannino, and K. Okumoto, Software Reliability:
Measurement, Prediction, Application, McGraw-Hill, 1987.
2. S.R. Blair, "A Defect Tracking System for the UNIX Environ
ment," Hewlett-Packard Journal, Vol. 37, no. 3, March 1986.

APRIL 1989 HEWLETT-PACKARD JOURNAL 79

© Copr. 1949-1998 Hewlett-Packard Co.

Comparing Structured and Unstructured
Methodologies in Firmware Development
Struc tured methodo log ies have been promoted as a
solut ion to sof tware product iv i ty and qual i ty problems. At
HP's Logic Systems Div is ion one pro ject used both
s t ruc tured and unst ruc tured techn iques, and co l lec ted
metr ics and documented oberservat ions for comparing the
two methodologies.

by Wi l l iam A. F ischer Jr . and James W. Jost

STRUCTURED METHODOLOGY in software de
velopment tends to be very much a religious issue
with many practitioners. They are either strongly

for or against it, but they can point to very little data that
supports their point of view. The purpose of this paper is
to present some objective and subjective data on the relative
merits of structured and unstructured (traditional) method
ologies.

The data for this comparison came from the development

of a medium-to-large-scale firmware project at HP's Logic
Systems Division. It was the first project at this division
to use structured methods. The project consisted of an em
bedded 68000 microprocessor design, coded in C and using
a C compiler running on the HP-UX operating system. The
firmware consisted of about 47 KNCSS (thousand lines of
noncomment source statements) of new code and about 12
KNCSS of reused code.

At the start of the project, a goal was established to use

(a)

M O D U L E M A I N P R O G R A M , B , C , D , E , F , H ;
S Y S T E M G ;
E X T E R N A L I ;
H A R D W A R E J ;
D A T A K ;
R E C U R S I V E L ;
M A I N P R O G R A M

B E G I N
B (T O _ P A R M) ;
C

B E G I N
D

B E G I N
I;
J;
E N D ;

E;
E N D ;

F (/ F R O M _ P A R M) ;
â€¢LOOP

B E G I N
G;
K;
E N D ;

" C O N D L (T O _ P A R M / F R O M _ P A R M) ;
E N D ;

(b)

Fig. different . modules. An example of a simple hierarchy chart showing the different types of modules.
M A I N s y s t e m B , C , D , E , F , a n d H (n o t c a l l e d) a r e m o d u l e s . G i s a s y s t e m m o d u l e . I i s a n
external module. J is a hardware module. K is a data module. L is a recurs ive module. Module
names three be up to 32 characters long. HCL draws each module name on up to three l ines

wi th in a symbol , (b) The commands used to create the h ierarchy char t .

80 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

structured methodologies1'2 to improve the software de
velopment process and increase product quality, but the
decision of whether to use structured methods on each
subproject was left up to the individual engineers. As a
consequence, three of the subprojects were developed
using structured techniques and the other six used tradi
tional methods. Software designers using structured tech
niques did their analysis using data flow diagrams (DFDs)
and structure charts for their design. They also did inspec
tions on most of the analysis and design documents. HP
Teamwork/SA, a graphical tool designed for structured
analysis that also performs consistency checking, was used
for structured analysis. HCL (Hierarchy Chart Language)3
was used for structured design. HCL is an internal HP tool
that plots a program structure from Pascal-like statements
(see Fig. 1).

For engineers who used the traditional methods, the
analysis phase typically consisted of creating a written
specification. Informal design methods were used and cod
ing was started earlier in the product development cycle.
Inspections were generally not part of this process.

This was not a scientifically designed experiment to de
termine the better of the two methods. Rather, we simply
collected data on the two groups of engineers as the project
developed. As such, our data suffers from many of the
common problems that beset unplanned experiments.
However, since the data was collected from a single work
group, many of the variables that are factors in most com
parisons of project experiences have been eliminated. For
example, lines of code and time expended were measured
and reported in the same way. Intangibles, such as work
environment, computer resources, complexity of task, and
management attitudes are also identical.

Many experts say the most important variable influenc
ing programmer quality and productivity is individual
skill. The difference in the experience level between our
two groups was not substantial. However, the unstructured
group was more highly regarded by management than the
structured group. It is possible that those in the unstruc
tured group had already demonstrated winning techniques
for which they had been rewarded, and so they were reluc
tant to try newer methods, while the structured group was
more willing to try new methods to improve their overall
skill level.

Data Collection
The data in this report was collected from the following

sources:
â€¢ Engineering Time. The time spent by each engineer was

reported to a central data base on a weekly basis. The
time the engineer spent doing such things as system
administration, meetings, and classes was not included
in the reported time. Only time spent in analysis, design,
test, or coding on the engineer's primary software project
was included. Time data was reported by the individual
engineers.

â€¢ Defect Data. The defect data was collected by DTS (defect
tracking system),4 an internal defect tracking tool. De
fects were reported from the beginning of system inte
gration testing. The defects discussed in this paper are
only unique, reproducible defects. Duplicate, nonre-
producible defects, operator errors, and enhancements

were not included in the defect count. Defect data was
reported by the individual development engineers and
the formal and informal testers.

â€¢ KNCSS and Complexity. All the KNCSS counts and
McCabe's Cyclomatic Complexity metrics were com
puted by an internal tool called Ccount.

â€¢ Design Weight. Design weight,5 a measure of the effort
of coding and testing, was calculated from the C code
by an internal tool. This tool counts all the decisions
and the unique data tokens that are passed into and out
of a function. Any system calls (e.g., printf) are not in
cluded in the token count.

Comparison Results
To facilitate the comparisons, the project was broken

down into subprojects that closely corresponded to the
efforts of individual software designers. Each subproject
was then categorized as being representative of either the
structured or the traditional methodology. The results of
the two methodologies were compared on the basis of pro
ductivity and quality. Development effort, manageability,
communication, and reusability were the criteria used for
productivity measurement. The FURPS (an acronym stand
ing for functionality, usability, reliability, performance,
and supportability) model was used as the basis for compar
ing quality.

We have used metrics to evaluate these factors wherever
possible. Where metrics did not exist we have presented
the subjective views of the authors who observed the proj
ect team throughout the development of the product.

All statistical tests referenced in this paper were made
at the 95% confidence level. Since the sample size used
for the comparisons between the structured and traditional
methods is small, all conclusions are very tentative.

Productivity

Achieving productivity in software development re
quires using tools and techniques that yield optimal return
on development money.

2 5 0 0 - r

_ 2 0 0 0 - -

o 1 5 0 0 - -

oÃ
Ã 1 0 0 0 - -

5 0 0 - - â € ¢ S t r u c t u r e d

â € ¢ U n s t r u c t u r e d

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Design Weight

F i g . 2 . E n g i n e e r i n g h o u r s v e r s u s d e s i g n w e i g h t . D e s i g n
weight is a measure of the ef for t o f coding and test ing. I t is
calculated by an internal tool .

APRIL 1989 HEWLETT-PACKARD JOURNAL 81

© Copr. 1949-1998 Hewlett-Packard Co.

Development Effort
Project managers tend to be most concerned with the

completion of a project on schedule. Consequently, one of
the first questions asked by managers considering the use
of structured methods is whether it will shorten the de
velopment cycle.

Since a learning curve was involved with the structured
methods, we expected that since they were being used for
the first time, the structured team would be less productive
than the unstructured team. To verify this assumption, two
measures of productivity were used, design weight per en
gineering hour worked and NCSS per engineering hour.
These graphs are shown for the various subprojects in Figs.
2 and 3. It can be seen that the three structured subprojects
have lower productivity than the unstructured subprojects.
A statistical test using general linear hypothesis tech
niques6 showed that indeed a statistical difference did exist
in the productivity rates between the two methodologies.
Using the structured methods, the average productivity rate
was 2.40 lines/engineering-hour, while using traditional
methods resulted in an average productivity rate of 6.87
lines/engineering-hour.

A central problem with analysis performed with DFDs
is that it is an iterative process. The DFDs were leveled
until the lowest-level bubbles could be completely de
scribed in a minispecification of about one page as rec
ommended by the methodology. This is a rather subjective
requirement and we discovered that every designer using
DFDs for the first time leveled them more deeply than
required. A project review also confirmed that too many
intermediate layers were created to keep the complexity
per page of DFDs to a minimum. At the project postmortem,
it was discussed that a major contributing factor to lower
productivity with the structured methods was the lack of
an on-site expert. Consultations were needed at various
points in the analysis and design phases of the project to
verify the proper application of the techniques.

Manageabil i ty
The structured work habits seemed to help the project

manager and engineers understand the software develop
ment life cycle better. Designers had a better idea when to

end one phase of the project and begin another, helping to
make their own process better understood and easier to
manage. Figs. 4 and 5 show the times spent in various
project life cycle phases for structured and traditional
methodologies, respectively. The structured methods
graph shows cleaner, better-defined phase changes. These
clear phase changes aid the management planning process
by creating a better understanding of the state of a project.
Plots showing the same data as Figs. 4 and 5 were done
for each engineer, and these individual plots showed the
same characteristics.

The regularity of the structured life cycle can be used to
improve schedule estimates. Once the percentages of time
spent in the phases are historically established, the time
taken to reach the end of a phase can be used to project
the finish date. For example, if it takes four months to
complete the analysis phase and the historical figures indi
cate that 33 percent of the time is spent in analysis, then
it could be estimated that the project would be completed
in eight more months.

It is important to measure the progress of projects against
the established schedule.7 Keeping track of the actual com
pletion time of each phase can provide an independent
verification of established scheduling methods. If problems
in meeting schedule commitments are uncovered, correc
tive action, such as adding additional resources, can be
applied to the project.

Taking a project through the system test phase is unpre
dictable. The time it takes to complete the formal abuse
testing is dependent on the quality built into the product.
If the product is well-designed and coded, less time is spent
repairing defects found during abuse testing and during
the completion of formal regression tests. A reduced testing
phase can shorten the overall project development time.
More important, if fewer defects are embedded in the prod
uct, less time will be spent in the maintenance phase, which
can consist of 50% of the project's overall cost. Fig. 6 shows
a comparison of the times spent in the various development
phases for the project. The graph indicates that a greater
percentage of time was spent in the analysis and design
phases with the structured methods. However, a very small
percentage of time in comparison to the traditional methods
was spent in testing.

2 5 0 0 - r

2 0 0 0 +

a 1 5 0 0 - -

i1
= 1000-

5 0 0 - - Structured
Unstructured

0 2 5 0 0 5 0 0 0 7 5 0 0 1 0 0 0 0 1 2 5 0 0
NCSS

Fig. 3. Engineer ing hours versus NCSS (noncomment source
statements).

Implementation

2 5 0 5 0 0 7 5 0
Time Since Project Inception (days)

1000

Fig. 4. Engineer ing hours per week for the st ructured team.
This is a 25-week moving average.

82 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

Reusab i l i t y
Reusability of code is a major productivity issue at HP

in general. Several of the products at our division have
already reached reuse figures of 50% and we are working
to increase that figure in the future. Experts suggest that,
on average, reusing a piece of software requires only 20%
of the effort of writing it from scratch. Thus, any activity
that leads to greater reuse of code will have major benefits
for productivity. Code developed using structured tech
niques encourages more reuse in the future because it has
better documentation on each function. In addition, the
interface between that function and the outside world is
more clearly stated by the structured design documenta
tion.

A major concern is the maintenance of the software
documentation. Documentation that is not kept up to date
is of less value than no documentation, since it can be
misleading. There is a very weak connection between struc
tured analysis and structured design. This makes it difficult
and often impractical to keep the structured analysis up
to date because of changes in the design and coding. The
structured team chose not to keep the structured analysis
documentation up to date when design and coding changes
were made later in the project. This takes away some of
the documentation benefits provided by the structured
methods. As back annotation methods are incorporated
into the tools, this deficiency will be corrected.

Communicat ion
One of the positive attributes cited in the literature about

the structured methods is that they serve as a good com
munication tool between team members. The project saw
some of this benefit, but not as much as was originally
expected. Structured methods are not a team communica
tions panacea.

Each software designer on this project was assigned a
nearly autonomous subproject. Although there were in
teractions between the subprojects, the subprojects were
defined to minimize these interactions. The structured
analysis documentation for each subproject was large
enough to cause difficulty in obtaining the number of de
sign reviews that were necessary. For another team member
to understand the analysis, much additional verbal expla

nation was required. However, the structured analysis was
very useful to the developers of that analysis in fully under
standing their own subprojects.

Fig. 7 shows the staffing profile of hardware and software
engineers during product development. The staffing of soft
ware engineers lagged behind hardware engineers because
of an initial underestimation of the software task and the
shortage of software engineers. As a result, there were some
problems discovered during the hardware/software integra
tion that cost valuable schedule time. Since we were de
veloping a system that consisted of both hardware and
software, it would have been beneficial to have included
the hardware interfaces into the structured analysis. This
capability would have aided the hardware/software inte
gration by providing additional communication links be
tween the hardware and software groups.

There is probably a strong benefit in communication with
structured analysis if the whole project team uses the
methodology to develop the same system model. This en
ables each team member to have a better understanding of
the product's requirements, and helps designers under
stand the task in the same way.

Quality

High product quality improves customer satisfaction,
decreases maintenance costs, and improves the overall pro
ductivity of the development team. The FURPS model was
used as the basis of comparison between the two method
ologies.

Functionality
Functionality can best be measured by customer accep

tance of the product. The product resulting from this project
is still in the early stages of its product life and customer
acceptance of its functionality is yet to be determined. It
would also be difficult to separate the functionality of the
code generated by the two methods.

However, we believe that the rigor required by the struc
tured methods is an important contribution to the develop
ment life cycle. Structured analysis was a valuable exercise
for the software designers in obtaining an understanding
of the customer requirements. Although the structured

5 0 - i -

T e s t i n g

2 5 0 5 0 0 7 5 0
T i m e S i n c e P r o j e c t I n c e p t i o n (d a y s)

1 0 0 0

Fig. 5. Engineering hours per week for the unstructured team.
This is a 25-week moving average.

5 0 T

4 0 - -

U n s t r u c t u r e d

J S t r u c t u r e d

A n a l y s i s D e s i g n I m p l e m e n t a t i o n T e s t

Fig. 6. Percentage of t ime each method spent in the var ious
phases of the sof tware l i fe cycle.

APRIL 1989 HEWLETT-PACKARD JOURNAL 83

© Copr. 1949-1998 Hewlett-Packard Co.

analysis was not used directly as a communication tool, it
helped the software designers identify the correct questions
to ask when issues related to functionality were addressed.
These benefits assist the product definition, and enhance
the chances that the product will meet all user expectations.

We also believe that the entire team benefited from the
efforts of the structured group. Since much of the initial
product definition was performed using structured
methods, software designers joining the project later bene
fited greatly from the initial structured work.

Usability
The look and feel of the user interface was of prime

importance to the project. Structured analysis was useful
in breaking up the interface functionality into its elemental
commands. However, manual pages combined with verbal
discussion proved to be more effective in defining the de
tails of the interface.

Neither methodology appeared to enhance usability
more than the other. However, the structured methods can
help the software designer define user interface functional
ity. Another method that appears to be a better method for
communicating and testing of user interface ideas is rapid
prototyping. This method was not used on the user inter
face.

Reliability
Reliability is measured by the number, types, and fre

quency of defects found in the software. The defects found
in code created using the structured methods were com
pared with those using the traditional methods. Table I
outlines the defect rate normalized to defects per NCSS for
both prerelease and postrelease defects. Prerelease defects
were found during formal abuse testing, casual use by other
individuals, and the code's designer. Postrelease defects
include prerelease defects and the defects found in the first
four months after product release. All the postrelease de
fects were found internally either by abuse testing or by
casual use. No customer defects had been reported at the
time of this study.

Table I
All Defects

Although the structured code shows a slightly lower de
fect density than the unstructured code, the differences are
not statistically significant (using a statistical test that com
pares two Poisson failure rates6).

Low-severity defects are considered to be caused by typ
ical coding errors that occur at the same frequency, inde
pendent of the analysis and design methods used. Thus,
using all the DTS defects is not truly indicative of the
underlying defect density. Another way of characterizing
the defect density is to look only at severe defects, those
classified as serious or critical. Table II examines these
defects.

Table I I
Serious and Crit ical Defects

Again, the structured code shows a slightly lower density
but the difference is not significant. We knew that the code
designers' rigor in logging defects that they found them
selves varied a great deal. Since this might affect the quality
results, we examined only the defects logged during formal
abuse testing. It was again found that there was no statistical
difference between the methodologies.

Our theory, developed from these results, is that the final
reliability of a product is mainly a function of environmen
tal factors, including management expectations and peer
pressures. For example, reliability can either be designed
in at the beginning using structured methodologies or
tested in at the end of the project with thorough regression
tests.

Performance
In the design of structured modules, one is encouraged

to reduce complexity of the modules by breaking up func
tionality. This results in more function calls, and increases
the processing time of critical functions.

The software for this project had critical performance
requirements for communication rates. The processing of
the bytes of data by the firmware was the critical path. The
critical functions had to be receded using in-line assembly
code. Although structured methods were not used on this
communication firmware, it is our opinion that the struc
tured methods as used on this project would not have
helped to identify performance-critical functions or to im
prove the performance of these functions.

A newer form of structured analysis8 has been developed
and is based on modeling of the problem data as the first
step. The data is represented in an information model with
the state control diagrams showing the data control. This
may in fact prove to be a better model for real-time appli
cations that have critical performance requirements.

5 - -

Software
Hardware

- f â€” I H
1 8 0 3 6 0 5 4 0 7 2 0

T i m e S i n c e P r o j e c t I n c e p t i o n (d a y s)

H 1
900

Fig. 7. Staf f ing levels.

84 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

A t t r i b u t e S t r u c t u r e d U n s t r u c t u r e d

P r o d u c t i v i t y

" T h e s e i t e m s h a d n o o b j e c t i v e m e t r i c s k e p t o n t h e m .

Fig . 8 . Summary o f compar ison be tween s t ruc tu red and un
structured methodologies.

Supportabil i ty
A large part of the costs of software development and

maintenance can be attributed to maintenance activities.
Software that is supportable will have lower maintenance
costs. Maintenance not only refers to the repair of defects,
but also to software enhancement and modification.

One factor that relates strongly to software Supportability
is the complexity level of each function. Functions with
lower complexity tend to make it easier to modify and
repair defects. For this project, the average complexity of
each module of the structured code was less than the aver
age for the unstructured code. Table III shows a summary
of the complexity statistics for the two code types.

Table I I I
McCabe's Cyclomat ic Complexi ty

Mean
Number of Functions

Structured

5.7
268

Unstructured

7.2
656

Modules with a cyclomatic complexity greater than 10
may be too complex and should be reviewed for possible
restructuring.5 Only 13% of the structured code had a com
plexity greater than ten, while the unstructured code had
20%. A statistical test (comparison of two binomial frac
tions9) showed this to be a significant difference.

The discipline of the structured methods helps the de
signer to write consistent documentation that can be used
by those who must support the product.

Conclusions
Our analysis of structured and unstructured techniques

produced mixed results. It was apparent that the structured
methodologies on this project did not provide improve
ment in the project development time. In fact, a longer
development time was measured. This was partially be
cause of the time required for learning the structured
methodologies. However, the manageability of designers
using structured techniques is higher because of well-de
fined development cycles. Also, the structured code ap
pears to be more reusable, so it should improve the produc
tivity of future projects reusing this code.

In this project, structured methods didn't appear to im
prove the reliability of the final code significantly. It is our
opinion that reliability is more a function of the team's
environmental factors. The structured code appears to be
more supportable since module complexity was lower.
Structured methods do not appear to be a major benefit in
developing code where performance factors are a main re
quirement. No significant benefit was seen for the areas of
functionality and usability except in those projects where
the techniques were used to enhance communication of
the product design and specification.

Some aspects of the structured methodology were disap
pointing. However, what was most important for our de
velopment team was the discipline that the structured
methods added to the early phases of the product defini
tion. We feel the results of the structured methods are posi
tive enough to continue using these methods on future
projects. Fig. 8 summarizes the results of the comparison
of the two methodologies.

References
1. T. DeMarco, Structured Analysis and System Specification,
Prentice-Hall, Englewood Cliffs, 1979.
2 . M . D e T h e P r a c t i c a l G u i d e t o S t r u c t u r e d S y s t e m s D e
sign, Prentice-Hall, Englewood Cliffs, 1980.
3. B.A. Thompson and D.J. Ellis, "Hierarchy Chart Language Aids
Software Development," Hewlett-Packard Journal, Vol. 37, no. 3,
March 1986.
4. S.R. Blair, "A Defect Tracking System for the UNIX Environ
ment," Hewlett-Packard Journal, Vol. 37, no. 3, March 1986.
5. T. New Controlling Software Projects, Yourdon Press, New
York, 1982.
6. W. Nelson, "Confidence Intervals for the Ratio of Two Poisson
Means and Poisson Predictor Intervals," IEEE Transactions on
Reliability, Volume R-19, no. 2, May 1970.
7. W.A. Fischer, "Keeping Pace on Projects," ComputerWorld,
July 25, 1988.
8. S. Shlaer and S.J. Mellor, Object-Oriented Systems Analysis:
Modeling the World in Data, Prentice-Hall, Englewood Cliffs, New
Jersey, 1987.
9. K. A. Brownlee, Statistical Theory and Methodology, John
Wiley and Sons, New York, 1965.

APRIL 1989 HEWLETT-PACKARD JOURNAL 85

© Copr. 1949-1998 Hewlett-Packard Co.

An Object-Oriented Methodology for
Systems Analysis and Specification
A methodology is proposed that enables analysts to model
and specif y a system's data, interactions, processing, and
external behavior before design.

by Barry D. Kurtz , Donna Ho, and Teresa A. Wal l

AS SOFTWARE SYSTEMS BECOME LARGER and
more complex, the task of systems analysis con
tinues to increase in effort and difficulty. Tradi

tional methodologies for systems analysis sometimes fail
to meet the analyst's expectations because of their limita
tions in properly capturing and organizing all of the infor
mation that must be considered. Object-oriented systems
analysis (OSA) is an approach to systems analysis and
specification that builds upon the strengths of existing
methodologies and, at the same time, addresses their weak
nesses. This paper describes the basic concepts of the OSA
methodology.

Systems Analysis
A system is an organized collection of people, machines,

procedures, documents, data, or any other entities interact
ing with each other to reach a predefined goal.1 Analysis
is the study of a problem, prior to taking some action.2
Systems analysis is the study of a collection of related and
interacting objects (existing or proposed) for the purpose
of understanding and specifying its data, processing, and
external behavior.

Object-oriented systems analysis (OSA) is a systematic
approach to the study of a system problem. The foundation
of OSA's conceptual model is the set of components or

objects in the system. The study of these objects is or
ganized and conducted in a manner that does not un
necessarily constrain implementation. In fact, we believe
that designs based on OSA specifications can be procedure-
oriented or object-oriented with equal success.

Objects in the OSA Methodology
An object is an abstraction of entities or concepts that

exist in or are proposed for a system. For example, the
rectangle in Fig. 1 depicts an OSA object called Jet Plane.
This object represents a class of things where each member
has the attributes and behavior of a jet plane. Two possible
members of this class are a jet fighter and a jet passenger
plane. In object-oriented terms, each member is called an
instance of the object class. Fig. 2 further demonstrates the
community of attributes and behavior required of each
member of the object class. The circle on the top in the
figure represents all of the attributes and behavior of a jet
fighter. The circle on the bottom in the figure represents
all of the attributes and behavior of a jet passenger plane.
The shaded area represents the common attributes and be
havior that allow each plane to be a member of the jet plane
object class.

The key elements of a system are the objects that exist
in the system, the data that must be processed, and the
desired behavior of the system. Traditional methodologies
offer two basic approaches to modularize these elements:
a function-oriented approach which organizes the analysis

Set of Common Attributes
and Common Behavior

Fig. 1 . An OSA object. Each member of this object c lass has
the behavior and at t r ibutes of a jet p lane.

F ig . 2 . Commonal i ty o f a t t r ibutes and behavior o f ob jects o f
Class Jet Plane.

86 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

r o b o t j d
c u r r e n t l o c a t i o n

R e a l O b j e c t i n S y s t e m O b j e c t ' s R e p r e s e n t a t i o n i n O S A M o d e l

F i g . 3 . R e p r e s e n t a t i o n o f a n o b
j e c t ' s d a t a a n d b e h a v i o r c h a r a c
teristics in the OSA system model.

model through a hierarchy of functions, and a data-oriented
approach which emphasizes a hierarchy of data structures.
OSA imposes a natural modularization on the system
model through the emphasis on objects (see Fig. 3). Each
object has associated attributes (data) and behavior (legal
states and functions). An object in the OSA system model
has a one-to-one correspondence with an actual object in
the system. This provides an easy mapping between the
analysis model and the components of the system under
study.

Collecting Preliminary Specif ications
Before attempting to construct an OSA system model, it

is important to collect or generate a preliminary list of
specifications. These specifications are gathered from dis
cussions and interviews with users and managers of the
system under study. The preliminary specifications are
rather informal and are usually documented with natural
language text and hand-drawn graphics. These specifica
tions should answer most of the following questions that
may be posed by the analysis team:
â€¢ What is the subject of the analysis? Is it an existing sys

tem, a proposed system, or a combination of both?
â€¢ What are the specific problems that need to be solved

and what are the objectives for the solution?
â€¢ What are the logical boundaries of the system study?

Does the entire system need to be studied in detail or
can a smaller subset be studied?

â€¢ What are the known constraints of the system? Are there
special performance constraints, interface constraints,
hardware constraints, and so on?

â€¢ What are the major components of the system? What
needs to be done with each component? What should
each component do in the system?
The specific format of the preliminary specifications may

vary from project to project. The important factor here is
that the preliminary specifications are collected before con
struction of the formal OSA specifications. The following
is a small example of a preliminary specification that an
analyst might use to gain a basic understanding of a system
problem.

A vending machine must be produced for dis
tributing products to customers. The customer
begins the vending process by depositing a token
in the machine's coin receptacle. The token must
be checked /or size, weight, thickness, and type of
edge. Valid tokens (coinsj are quarters, dimes, or
nickels, and anything else is considered a slug.
Slugs are rejected and sent to the coin return slot.
When a valid coin is accepted by the machine and
sent to the coin box, the amount of current customer
payment is incremented by the value of the coin.

Each product dispenser contains zero or more
products. A1J of the products in one dispenser have
the same price. The customer's product selection is
made by identifying the dispenser to be activated. If
the dispenser is not empty and the current customer
payment equals or exceeds the cost of the product,
the product should be dispensed to the product deliv
ery slot and any change due returned to the coin
return slot. If the dispenser is empty, coins equaling
the current customer payment should be dispensed
to the customer in the coin return slot.

If the customer payment is less than the price of
the products in the selected dispenser, the machine
should wait for the customer to deposit the proper
payment. If the customer decides not to make a
selection the current amount deposited should be
returned.

Building Object-Relat ionship Diagrams
After preliminary specifications are gathered for the

major components of the system, the analyst can begin
building object-relationship diagrams (ORDs). The ORD
portion of the analysis provides a formal repository for

F ig . 4 . An examp le o f an ob jec t - re la t i onsh ip d iag ram. The
coin box holds many (M) co ins.

re!2

Ml

O b j e c t i i s r e l a t e d b y r e l t t o O b j e c t 2 .
O b | e c t 2 i s r e l a t e d b y r e ! 2 t o O b j e c t i â € ¢ .
M 2 d e s i g n a t e s h o w m a n y i n s t a n c e s o f O b j e c t 2 a r e

a s s o c i a t e d w i t h e a c h i n s t a n c e o f O b j e c t i
M 1 d e s i g n a t e s h o w m a n y i n s t a n c e s o f O b j e c t i a r e

a s s o c i a t e d w i t h e a c h i n s t a n c e o f O b j e c t 2 .

Fig. 5. Formal def in i t ions in object - re lat ionship d iagrams.

APRIL 1989 HEWLETT-PACKARD JOURNAL 87

© Copr. 1949-1998 Hewlett-Packard Co.

answers to the following questions:
â€¢ What are the components of the system (both abstract

and concrete)?
â€¢ What are the important formal relationships between

the system components?
The first step for producing ORDs is to make a list of the

nouns contained in the preliminary specification. These
nouns are classified by the analyst as objects (system com
ponents), attributes of objects, or synonyms for other ob
jects or attributes. Synonyms must be eliminated and attri
butes must be associated with existing objects. From our
vending machine example, some of the nouns that repre
sent objects are token, coin receptacle, slug, coin, coin box,
nickel, dime, and quarter. Also from the same example,
the nouns that would be considered attributes include
weight, thickness, and price.

Objects are depicted in object-relationship diagrams by
the object name enclosed in a rectangle. An ORD showing
a relationship between coins and a coin box is shown in
Fig. 4. The ORD in the figure states that a coin box holds
one or more coins. The capital M in the figure is shorthand
for one or more. A relationship line without an M signifies
that the relationship is one-to-one. ORDs are similar in use
and meaning to entity-relationship diagrams.3 The formal
meaning of ORD relationships is shown in Fig. 5, and Fig.
6 shows a partial ORD for the vending machine example.

Object-relationship diagrams have a subcomponent called
concept diagrams. Concept diagrams provide a quick method
for capturing the information relationships and interac
tions between objects. For example, Fig. 7 shows a concept
diagram stating that a coin receptacle needs to know the
thickness of a token. A dotted arrow depicts an informa
tional relationship between objects. The information may
be an attribute of an object or an event that another object

Thickness

Source

Coin
Receptacle

Dest inat ion

Fig. 7. An example oÃ a concept d iagram. The coin recepta
cle needs to know thickness of the coin. The concept diagram
shows the informational relat ionship and interactions between
objects. The dashed l ine indicates in format ion f low.

F ig. 6. Par t ia l object- re lat ionship
d iagram for the vending machine
example. I t shows that a token en
ters the vending machine through
t h e c o i n r e c e p t a c l e , a n d t h a t a
token may be a coin or a slug. The
on l y ob jec t s cons ide red t o be a
leg i t imate co in in the sys tem are
nickels, dimes, or quarters.

needs to know about.
Fig. 8 shows a concept diagram that states that a customer

deposits a token into the vending machine. A solid arrow
is used to show an action that an object performs upon
another object. Since informational relationships and ob
ject interactions are relatively easy to extract from the pre
liminary specifications, concept diagrams may be used fre
quently at the beginning of the analysis.

Natural Language Object Descript ions
The object-relationship diagrams identify classes of com

ponents in the system and formal relationships between
the components. The next step is to provide more informa
tion about each object and its attributes. The object descrip
tion is documented with natural language text and contains
the following information:
â€¢ Name. The name of the class of system components rep

resented by the object.
â€¢ Description. A brief description of the general charac

teristics for instances of the object.
â€¢ Assertions. Things that must always be true regarding

attributes or behavior of instances of this class. For exam
ple, an object may need to be kept at a certain temperature
to ensure the desired behavior.

â€¢ Attributes. Required attributes for each instance (such
as identifiers, status variables, etc.). The domain or legal
range of values for each attribute must be specified here.
The specific format of the object description may vary

from project to project but it should include at least the
above information. Fig. 9 shows a natural language descrip
tion for the vending machine example.

Building Behavior Specif icat ions
Using the foundation of object-relationship diagrams

and individual object descriptions, the analyst builds a
behavior specification for each object. Since internal be
havior is usually a function of implementation, the analyst
concentrates on the external behavior of each object. Exter-

Deposits

Fig. 8. A concept diagram that shows an act ion of one object
on another. The sol id l ine indicates act ion.

88 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

O b j e c t N a m e : T o k e n

D e s c r i p t i o n :

A t o k e n i s s o m e t h i n g t h e c u s t o m e r d e p o s i t s i n t o a v e n d i n g m a c h i n e
t o p u r c h a s e a p r o d u c t .

A s s e r t i o n s :

T h e d i a m e t e r a n d t h i c k n e s s a r e s m a l l e n o u g h t o a l l o w i t t o f i t i n t h e
coin s lot .

A t t r i b u t e s :

D i a m e t e r D o m a i n : 0 d i a m e t e r - h e i g h t o f c o i n s l o t
T h i c k n e s s D o m a i n : 0 t h i c k n e s s w i d t h o f c o i n s l o t
W e i g h t D o m a i n : n o t y e t d e f i n e d
E d g e T y p e D o m a i n : (s m o o t h , s e r r a t e d)

Fig . 9 . A natura l language descr ip t ion fo r a token ob jec t in
the vending machine example.

nal behavior has three components:
â€¢ The externally perceived states or conditions of each

object
â€¢ The actions that must be performed on each object
â€¢ The actions that each object must perform.

Each of these components may be specified by natural
language text. However, experience has shown that such
an approach leads to ambiguity and confusion. To help
ensure consistent interpretation of behavior specifications,
a more formal method is required.

There are several existing formal methods for describing
external system behavior. These methods include finite
state machines, decision tables, Petri nets, R-nets, precon
dition/action/postcondition tuples and others.4'5 The fol
lowing criteria were used to choose a behavior specification
method for OSA:
â€¢ The method should encourage the analyst to identify

and classify system components before specifying be
havior.

Object
Name

Token_Deposited

R e q u i r e d -
A c t i o n

â€¢ Move Token To
Coin Box

Token

Move Token To
Return Slot

Fig. 10. SÃaÃe net showing the behavior of a token object.
When a token is deposi ted, i t t ransfers f rom the customer 's
possession to the coin receptacle. I f the token is a val id coin,
it is transferred to the coin box as a coin. Otherwise, a rejected
token is returned to the return slot as a s lug.

â€¢ The method should allow the analyst to specify an object
that exhibits multiple action conditions (concurrent ac
tivities).

â€¢ The method should provide for high traceability between
the actual system components, object-relationship dia
grams, and behavior specifications.
The behavior specification technique developed for OSA

is called state nets. State nets are based on a restricted form

B u i l d O b j e c t - R e l a t i o n s h i p
D i a g r a m s f o r S y s t e m

(I n c l u d e C o n c e p t D i a g r a m s)

C o m p l e t e a
N a t u r a l L a n g u a g e
S p e c i f i c a t i o n f o r

E a c h O b j e c t

S t a r t

\
C o l l e c t N a t u r a l L a n g u a g e

S p e c i f i c a t i o n s O b t a i n e d f r o m
U s e r / M a n a g e r I n t e r v i e w s

Simu la te Sys tem Behav io r and
Cor rec t Spec i f i ca t ion Er ro rs

Bu i l d Behav io r Spec i f i ca t i ons
fo r the Sys tem S ta r t i ng a t the

O b j e c t L e v e l

Fig. 1 1 . Process flow for the OSA
methodology and the in teract ions
b e t w e e n t h e o b j e c t a n d m e t h o d
ology steps.

APRIL 1989 HEWLETT-PACKARD JOURNAL 89

© Copr. 1949-1998 Hewlett-Packard Co.

of Petri nets. There are several possible configurations of
state nets that use the full power of Petri nets for expressing
concurrent activities. For this overview, however, we will
limit the discussion to a model similar to a finite state
machine.

A sample state net representing some of the states and
actions required for a token is shown in Fig. 10. The states
or conditions of the token object are represented by ovals
in the figure. The states are typed with the name of the
object being specified (token in this example). Labeling the
state with the object name means that instances of that
object may exhibit the specified state. The transitions be
tween states are represented by short horizontal bars. The
labels next to the transitions specify the events that cause
instances of the object to transition from one state to
another. In Fig. 10, the Token_Deposited command causes the
machine to transition from the In Customer Possession state
to the In Coin Receptacle state. The actions required to estab
lish a new state are shown as labels on the input arrow
connected to the new state. For example, the state net di
agram states that the action Move Token To Return Slot must
be performed before the machine is in the In Return Slot state.

System Behavior Simulat ion
Once the state nets for the system have been completed,

the analysis team is prepared to simulate executions of the
system. The simulation is performed using state nets to
follow conditions and states exhibited by the system. The
object-oriented nature of state nets aids in hiding complex
ity during simulations. This allows the analysis team to
achieve good behavior coverage even when automated
simulation tools are not available.

During system simulation, several classes of errors may
occur that require modifications to the current OSA model
or specifications. Simulation will aid the analyst in discov
ering the following problems:
â€¢ Missing or ambiguous information in the preliminary

specification
â€¢ Missing or incorrect object-relationship diagrams
â€¢ Missing objects or incorrect object descriptions
â€¢ Missing or incorrect behavior specifications.

Any of these errors will require another pass through
one of the analysis phases previously discussed. The object-
oriented nature of the OSA model enhances traceability to
the components of the system related to a particular error.
Fig. 11 shows the process flow for the OSA methodology
and shows possible interactions between the various
methodology steps.

Conclusion
The contributions of the object-oriented analysis

methodology include:
â€¢ It provides tools for capturing the key elements of a

system â€” components, data, and behavior.
â€¢ It emphasizes analysis before design.
â€¢ It supports a natural modularization scheme by organiz

ing the entire analysis around objects.
â€¢ Its system model provides high traceability between the

model components and the actual components of the
system under study.
The methodology is currently under research and verifi

cation. It has been applied to several problems involving
hardware and software components with encouraging re
sults. A prototype tool is being developed to aid analysts
in processing textual specifications and capturing the
meaning of systems problems using the OSA methodology.
The goals now are to finish the tool, develop training ma
terials, and continue to verify applicability of the methodol
ogy to real-world projects.

References
1. A.Z, Atkas, Structured Analysis and Design o/In/ormation Sys
tems, Prentice-Hall, 1987.
2. T. DeMarco, Structured Analysis and System Specification,
Yourdon, 1979.
3. P. Chen, The Entity-ReJationship Approach to Logical Data
Base Design, Q.E.D. Information Sciences, 1977.
4. A.M. Davis, "A Comparison of Techniques for the Specification
of External System Behavior," Communications of the ACM, Vol.
31, no. 9, 1988, pp. 1098-1115.
5. B. Pro and J. Guttag, Abstraction and Specification in Pro
gram Development, MIT Press, 1986.

90 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

VXIbus: A New Interconnect ion Standard
for Modular Instruments
This standard will allow users to mix modules from different
manufacturers in a system contained in a single mainframe.

by Kenneth Jessen

THE GOAL OF THE VXIBUS is to provide a techni
cally sound standard for modular instruments that
is based on the VMEbus (defined later) and is open

to all manufacturers. It is a specification for interconnecting
and operating various modules from a variety of manufac
turers within a single mainframe to satisfy the need for
high-performance, high-density instrumentation.

Users are able to select from four module sizes and are
free to choose modules and a mainframe from different
suppliers based on price and performance. The VXIbus
standard ensures compatibility of all the elements within
a VXIbus system. For example, a user may find that a par
ticular digital multimeter module offers the best combina
tion of price and measurement capability for a particular
job, but that the best function generator for the application
comes from another manufacturer. The user may then select
a third manufacturer for the mainframe. This amounts to
unprecedented flexibility in the creation of an instrumen
tation system.

VXIbus Evolution
Many years ago there were only bench instruments. They

had front panels for control and displays for data output.
As computers entered the picture, digital interfaces (such
as binary-coded decimal) came into use. These were typi
cally offered as options to the basic bench instrument and
varied from instrument to instrument and from manufac
turer to manufacturer. In the early 1970s, a better interface
standard, the HP Interface Bus, or HP-IB, was developed
by Hewlett-Packard. This became an industry standard
(IEEE 488, IEC 625) and is currently used by a wide range
of manufacturers.

Instruments continued to retain their front-panel con
trols, but as applications moved toward automatic test and
measurement systems, the need for front panels di
minished. Instruments began to appear on the market either
without front panels or with detachable front panels used
only during initial setup.

To reduce the size of a test system, modular instruments
have grown in popularity, but until recently there were no
industry standards for such systems, so there was no pos
sibility of mixing modules from different manufacturers
within a mainframe. Often modules from a manufacturer
were not compatible with different mainframes from that
same manufacturer.

In 1979, Motorola Semiconductor Products Corporation
published a description of what it called the VERSAbus.
It defined a computer-type backplane and cards. Eurocard

board sizes were proposed and the VERSAbus-E version
was renamed the VMEbus. In 1982 the IEC (International
Electrotechnical Commission) proposed that the VMEbus
be accepted as an international standard.

There was a great deal of pressure from both military
and commercial users to have an open architecture for
modular instruments. The U.S Air Force asked the MATE
User's Group, formed in 1984, to develop recommendations
for the standardization of instruments on cards and ex
pressed a desire to use as much commercial equipment as
possible. Out of this activity came the need for a standard
for all instrument manufacturers.

Consort ium Formed
In July 1987, a group of five instrument manufacturers

committed to the development of a modular instrument
standard based on the VMEbus standard. The original five
are Colorado Data Systems Corporation, Hewlett-Packard
Company, Racal Dana Instruments Corporation, Tektronix
Corporation, and Wavetek Corporation. Other companies
have since joined this consortium including BrÃ¼el & Kjsr
Corporation, National Instruments Corporation, Keithley
Instruments Corporation, John Fluke Manufacturing Com
pany, and GenRad Corporation.

The major limitations of the original VMEbus standard
for instrument manufacturers were insufficient board space

F i g . 1 . T h e V X I b u s s t a n d a r d (V M E b u s E x t e n s i o n s f o r I n
s t r u m e n t a t i o n) i n c l u d e s t h e t w o o r i g i n a l V M E b u s m o d u l e
sizes, A and B, plus two new larger modules, C and D. Smaller
modu les can be inser ted in to ma in f rames des igned fo r the
larger sizes. The C size mainframe is expected to be the most
popular for test systems.

APRIL 1989 HEWLETT-PACKARD JOURNAL 91

© Copr. 1949-1998 Hewlett-Packard Co.

and the lack of an adequate connector definition for in
strumentation. Space between modules was restricted to
0.8 inch. The VXIbus standard (VMEbus Extensions for
Instrumentation) adds two new larger module sizes to the
two module sizes set up under the VMEbus standard. With
the new modules, the space between modules is increased
to 1.2 inches to permit adequate shielding and cooling.
The VMEbus was developed for computers and did not
define a backplane specifically for instrumentation needs.
The VMEbus standard also did not address the problems
of electromagnetic interference (EMI), power dissipation,
or chassis cooling, and left some connector pins undefined.
The new VXIbus standard covers these items as well as
other issues such as protocols between modules, configura
tions, memory allocations, and commands.

As mentioned before, the general concept of the VXIbus
standard is an open architecture for modular electronic
instrumentation that allows a variety of manufacturers to
supply modules to operate together in the same mainframe
chassis. The intention is for the standard to be open to
anyone who wishes to use it whether they are among the
original founders or not. In keeping with its objective, the
VXIbus standard is in the public domain. There are no
copyrights on the documentation, and there are no patents
or licensing requirements. Manufacturer ID numbers are
provided free from the VXIbus consortium, and over 70
manufacturers have requested and been granted numbers.

The idea of VXIbus instrumentation is not to replace
traditional instruments but rather to offer distinct advan
tages for certain applications, including:
â€¢ High-speed communications between modules
â€¢ Multichannel data acquisition
â€¢ Precision timing between modules
â€¢ Smaller size for a typical instrument system
â€¢ Ease of integrating a test system.

The VXIbus Standard
There are four basic module sizes including the original

two sizes that were part of the VMEbus standard. These
original sizes are renamed A and B in the VXIbus standard.
The larger two sizes, C (123 in2) and D (193 in2), can include
additional connectors, as shown in Fig. 1. All the connec
tors are 96-pin DIN-type and are referred to as PI, P2, and
P3. The A size board has the Pi connector. Sizes B and C
may have the P2 connector as well as the required Pi con
nector. The largest module size, D, may have the P3 connec
tor in addition to the PI and P2 connectors. The idea is to
provide improved capability as a function of increased size.

A VXIbus mainframe may accept up to a dozen C or D
size modules in addition to a required Slot 0 module. For
very complex products, a module may span more than one
VXIbus slot.

To ensure compatibility, all pins on all three connectors
are defined by the VXIbus standard. The PI and P2 pin
definitions are shown in Fig. 2. Their functional use and
protocol are called out.. Also defined are the interfacing of
a module to the backplane and the electrical characteristics
of the backplane. The capabilities of each connector can
be viewed as a pyramid, with PI covering the VMEbus
specification. P2 adds capability required for instrumenta
tion, such as more ground pins and more power supply
pins. A 10-MHz clock and ECL and TTL trigger lines are

Fig. 2. Pin def in i t ions for the PI and P2 connectors. The P1
connector fo l lows the VME bus ass ignments. The P2 ass ign
ments shown are for s lots 1 through 12.

9 2 H E W L E T T - P A C K A R D J O U R N A L A P R I L 1 9 8 9

© Copr. 1949-1998 Hewlett-Packard Co.

also defined on P2. The P3 connector adds even more capa
bility for specialized applications, including a 100-MHz
clock similar to the 10-MHz clock on P2. a 100-MHz syn
chronizing signal, and ECL trigger lines in a star configura
tion for module-to-module triggering.

Slot 0 Module
To ensure that every mainframe can perform its

minimum functions, a Slot 0 module is defined. For VXIbus
systems with the P2 connector, the only Slot 0 module
requirement is to provide VMEbus system controller func
tions, a 10-MHz, 100-ppm system clock, and module ID
drivers. For systems with the P3 connector, the Slot 0 mod
ule must provide a 100-MHz clock. It is expected that man
ufacturers will add considerable more capability to the Slot
0 module than the standard requires.

Many Slot 0 modules will be message-based devices with
commander capability in addition to the minimum func
tions. These will be able to identify the devices in the
system, configure resources, manage self-test and diagnos
tics, configure address maps, configure the commander-ser
vant hierarchies, and perform initial system operation. The
capability of the Slot 0 module will usually be combined
with the VXIbus to HP-IB (IEEE 488, IEC 625) interface
function.

The 10-MHz clock originates in the Slot 0 module and
is buffered on the backplane. It is distributed to each mod
ule as a single-source, differential ECL signal. The objective
is to provide a high level of isolation and a common preci
sion time base. Typical performance delivers less than 25
ps of jitter.

The ECL and TTL trigger lines defined on the P2 connec
tor are bused to all modules including the Slot 0 module,
as shown in Fig. 3. Any module may send or receive triggers
over these lines, and the lines selected are user-programma
ble. Several protocols are used to ensure proper triggering
between various manufacturers' modules. For example, a
synchronous trigger protocol is defined to allow for trigger
ing from one module to another. Other protocols include
handshake responses from the receiving module. The ECL
trigger lines can deliver trigger rates in excess of 50 MHz
for high-performance applications exceeding the TTL trig
ger lines' 12-MHz capability.

System Requirements
It is a requirement that airflow and power supply capa

bility be fully specified for the mainframe. A typical main
frame is shown in Fig. 4. Likewise, the necessary degree
of cooling and power requirements must be defined for the
modules. This allows the user to match the capabilities of
the mainframe with the requirements of the modules. This
type of information must be included in the product specifi
cations, and the user will be able to determine in advance
whether or not certain modules will work in a given main
frame.

The close proximity of modules within a mainframe
makes EMI compatibility a necessary part of the specifica
tion. For this reason, tight electromagnetic compatibility
and noise requirements are imposed on module manufac
turers. In some cases, modules will have to be completely
enclosed within a shield and grounded through the back
plane. The requirements cover both near-field radiation

- 2 V 5 0 Ã I

'^p=

^ 8 TTL Trigger Lines
2 ECL Trigger Lines

F i g . 3 . T h e 1 0 - M H z c l o c k o r i g i
na tes i n t he S lo t 0 modu le . ECL
and TTL tr igger l ines are bused to
a l l modu les i nc l ud i ng t he S lo t 0
module.

APRIL 1989 HEWLETT-PACKARD JOURNAL 93

© Copr. 1949-1998 Hewlett-Packard Co.

and susceptibility and conducted radiation and suscepti
bility of the power supply pins.

The VXIbus standard does allow for flexibility in the
area of local bus communication. A local bus is one that
runs from one module to its neighbor, but no farther. The
local bus is intended for communication between modules
either within a multiple-slot module or within a family of
modules. The definition is left to the manufacturer. This
flexibility creates a new problem, that of protection of elec
trically incompatible modules accidentally configured into
adjacent slots by the user. A protection scheme using
mechanical keying provides six logical classes of keys: TTL,
ECL, analog low (- 5.5V to + 5.5V], analog medium (- 16V
to +16V), analog high (-42V to +42V), and a reserved
class.

Along with hardware, the VXIbus standard also covers
configuration and communication protocols. To avoid con
flicts between modules, manufacturers must maintain com
mon protocols. However, the VXIbus standard does not
define things such as the operating system, system hierar
chy, type of microprocessor, or type of network.

The VXIbus standard specifies device protocols so that
nonconflicting portions of the VMEbus address space are
used. A device will usually be a single module. However,
several devices may exist on a single module and a single
device may take up multiple slots. As many as 13 modules
may exist in any one VXIbus subsystem, including the Slot
0 module. Up to 256 devices may exist in one VXIbus
system, which may include several mainframes and several
Slot 0 modules.

Types of Devices
The lowest level of capability is a set of configuration

registers accessible on Pi. These registers allow the system
to identify the device type, model, manufacturer, address
space, and memory requirements. Modules with this

minimum capability are called register-based devices. All
VXIbus devices must have these registers in the upper 16K
of the 64K A16 address space. Each device is granted 64
bytes in this space, sufficient for many devices. There are
a number of registers including ID, device type, status/con
trol, and memory offset. The remaining register space is
device dependent and may be used for communication
purposes.

Memory requirements for devices needing additional ad
dress space must be readable in a defined register in the
A16 address space. A resource manager reads this value
shortly after power-on, then assigns the requested memory
space by writing the module's new address into the device's
offset register. This method positions a device's additional
memory space in the A24 or A32 address space.

Instead of register-based, a VXIbus may be message-
based. Message-based devices have a higher level of com
munication capability than register-based devices; they
communicate using a word-serial protocol. Generally, mes
sage-based devices include a microprocessor and execute
ASCII commands. They have communication registers ac
cessible to other modules in the system. Other types of
modules include memory devices and extended devices.
A RAM or ROM card is an example of a memory device.

Control hierarchy is also defined in a VXIbus system. A
commander is a module able to initiate communication
with its servants based on the servants' capabilities. A ser
vant may be either register-based or message-based. Com
mands to a message-based device can be sent using word-
serial protocol. For register-based devices, communication
is by register reads and writes and is device dependent.

The VXIbus concept of a command-servant relationship
allows the creation of a virtual instrument whose collective
capabilities yield a given measurement function. For exam
ple, a waveform generator might be teamed with a digitizer
to form a network analyzer. A particular measurement

Removable front
card guides al low
easy insert ion of
B-size cards.

Mounting brackets
provide space for
B-size cards to
pass, al lowing
them to be
inserted easily.

F i g . 4 . A t y p i c a l C s i z e m a i n
f r a m e , s h o w i n g C s i z e c a r d s ,
g u i d e s f o r B s i z e c a r d s , a n d a i r
flow.

94 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

capability is created through a combination of software and
hardware. The elements to make up a particular functional
capability are not necessarily in the same physical location
within the system. A virtual instrument can be created
within a mainframe filled with modules having a variety
of basic measurement functions and rearranged to work
together through software to create complex measurement
functions.

The VXI bus standard offers a wide range of capabilities
and communication protocols for manufacturers. However,
these are invisible to the test system user. The user simply
sets the logical address of each module and plugs it into
the mainframe.

Summary
The VXIbus standard heralds a new type of instrumenta

tion that gives users the flexibility to optimize a test and
measurement system by selecting modules from a variety
of manufacturers, knowing that they will all work together.
Distinct advantages over traditional rack-and-stack in
strumentation will also be offered, such as high-speed com
munication between modules, precise triggering, ease of
system integration, and size reduction.

Bibliography
1. L. Desjardin, "Configuring a VXIbus System: What Users Need
to Know," ATE 6- Instrument Conference East 1 988, pp. 503-506.
2. C. Glasow, "A VXI Module Designer's Guide to Mechanical,
Power, and EMC Considerations," ATE fr Instrument Conference
East 1988, pp. 491-493.
3. D.A. Haworth, "VXI Electrical Architecture, "ATE & Inslrument
Conference East 1988, pp. 491-493.
4. A. Hollister, "A VXIbus Overview," ATE & Instrumenf Confer
ence East Ã 988, pp. 469-480.
5. L.J. Klahn, Jr., "VXIbus Solidifies as Instrument Standard,"
Electronic Engineering Times, September 12, 1988, pp. T17-T19.
6. W.C. Nowlin, Jr., "VXIbus Device Communication," ATE 8-
Instrumenl Conference East 1988, pp. 1-15 (handout).
7. C.H. Small, "Virtual Instruments," EDN, September 1, 1988,
pp. 121-128.
8. C. Thomsen, "The Evolution of the VXIbus," ATE g- Inslrument
Conference East 1988, pp. 465-468.
9. R. Wolfe, "VXIbus Becomes a Reality," Evaluation Engineering,
July 1988, pp. 35-40.

APRIL 1989 HEWLETT-PACKARD JOURNAL 95

© Copr. 1949-1998 Hewlett-Packard Co.

VXIbus Product Development Tools
A VXIbus mainf rame, a pai r o f modules, sof tware, and
accessor ies wi l l he lp manufacturers develop VXIbus
modules and systems more eas i ly .

by Kenneth Jessen

TO PROVIDE MANUFACTURERS with tools to de
velop VXIbus products, Hewlett-Packard has de
veloped a VXIbus C-size mainframe, a Slot 0 module,

and VXIbus development software. Other accessories in
clude a breadboard module and a chassis shield. These
tools are designed to give the VXIbus user the ability to
develop products faster and with reduced resources. The
list of HP VXIbus development tools includes:
â€¢ C size mainframe
â€¢ C size Slot 0 and translator module
â€¢ C size register-based breadboard module
â€¢ C size carrier for adapting A size or B size modules to

the C size mainframe
â€¢ C size chassis shield for EMI reduction between modules
â€¢ VXIbus development software for use with HP 9000

Series 200 and 300 controllers
â€¢ VMEbus interface for HP 9000 Series 300 controllers
â€¢ VMEbus preprocessor for HP 1650A and 16500A Logic

Analyzers.

Select ion of the C Size Module
HP and many other manufacturers have selected the C

size module (9.187 by 13.386 inches with Pi and P2 con
nectors) as their primary module size for instrumentation.
For HP, this choice was influenced by analysis of many
existing HP modular systems, including the following
types: data acquisition, electronic switching, logic analysis,
waveform generation, microprocessor development, and
spectrum analysis. All of these products were designed
independently over a period of time, and their board sizes
and power capacities were selected to optimize economics
and performance. It was found that the module size chosen
for all of these modular systems was equivalent to C size
or smaller. Independent analysis confirmed that the vast
majority of instrument functions could be provided within
a B size or C size system, and a C size mainframe can
support both sizes.

VXIbus Mainframe
The HP C size mainframe (Fig. 1) uses a carefully de

signed 12-layer printed circuit board for its backplane to
provide the best possible noise immunity and signal integ
rity. This mainframe is designed to support the smaller
VMEbus boards (A size and B size) using a hardware adapt
er kit. An optional chassis shield fits between the card slots
to provide additional electromagnetic isolation between
modules.

For cooling, two dc fans are used. Their speed is controlled
by cooling needs based on a measurement of ambient intake
air temperature. Air is delivered through a pressurized

plenum to ensure even airflow through each module inde
pendent of the number or location of modules in the main
frame. In other words, unused slots need not be blocked
off, so easy access is retained during module development.
The variable-speed fans dramatically reduce acoustical
noise in bench environments while delivering adequate
cooling in warmer environments up to 55Â°C.

VXIbus Slot 0 Module
The HP Slot 0 module is aimed at operation directly from

a VMEbus interface or VMEbus computer. This module
includes word-serial communication registers, allowing
communication between other VXIbus devices and com
puters such as HP 9000 Series 300 Computers with a VME
bus interface. Many other VMEbus computers will be able
to communicate with VXIbus message-based devices using
this module as a translator.

The translator consists of a VXIbus register-based device
and a VXIbus message-based device. The register-based
device is used to monitor and control the message-based
device's word-serial communication register. It also pro
vides the required Slot 0 backplane services. Each of these
devices is a collection of registers in the VXIbus memory
space that can communicate over the VXIbus. The benefit
to the user of this structure is that it allows operation of
the module as a message-based device from almost any
VMEbus device.

Fig. 1 . HP VXIbus development hardware inc ludes a C s ize
ma in f rame , a S lo t 0 modu le , a reg i s te r -based b readboa rd
modu le , and a car r ie r modu le fo r smal le r A s ize and B s ize
cards.

96 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

F ig . 2 . HP VXIbus deve lopment so f tware runs on HP 9000
Ser ies 200 and 300 Computers . I t i s des igned to ver i fy the
operat ion of VXIbus modules and to serve as a learning tool
for the VXIbus standard.

The HP Slot 0 module also supports the synchronous
and asynchronous (two-line handshake) trigger protocols.
External BNC connectors allow the user to use external
triggers from traditional HP-IB (IEEE 488/IEC 625) in
strumentation with any of the VXIbus TTL trigger lines.

VXIbus Breadboard Module
HP also offers a C size register-based breadboard module

which includes a 16-bit hardware interface to the VXIbus
backplane. This module is designed to allow users to con
struct custom assemblies with minimum effort. This mod
ule includes backplane buffering to the VXIbus data lines
and address lines. It also supports VXIbus autoconfigura-
tion, bidirectional data transfers, interrupts, system fail,
system status, and manufacturer's ID code. Module shield
ing and ejector hardware are also included.

Software
The HP VXIbus development software runs on HP 9000

Series 200 and 300 Computers (Fig. 2). It is used primarily
to verify the operation of a VXIbus module. It is also a
learning tool for the VXIbus standard. The program set is

Fig. 3. The HP 98646A VMEbus Interface for HP 9000 Series
200 and 300 Computers .

a combination of callable subroutines written in BASIC.
The code is not protected so that users can modify lines
to suit their specific needs.

The development software implements the VXIbus re
source manager functions when used in conjunction with
the Slot 0 module and the HP 98646A VMEbus Interface
(Fig. 3). The resource manager configures the mainframe,
assigns memory spaces to each module, reports what mod
ules are in the system, and allows access to their VXIbus
capabilities. Access routines allow the user to read and
write to any register and implement the word-serial pro
tocol for message-based devices.

The 22 routines in the VXIbus development software
package include six for memory devices, six for message-
based devices, and six for system configuration.

A VXIbus development system exerciser program allows
interactive access to other programs included in this pack
age. It prompts for parameter values and generates a call
to a particular subprogram.

APRIL 1 989 HEWLETT-PACKARD JOURNAL 97

© Copr. 1949-1998 Hewlett-Packard Co.

Authors 22 â€” Multimeter Calibration '

A p r i l 1 9 8 9

6 â€” Digital Multimeter ;

Scott D. Stever
Author 's b iography appears e lsewhere in th is

section.

8 I n t e g r a t i n g A - t o - D C o n v e r t e r ;

Wayne C . Goeke
Author 's b iography appears e lsewhere in th is

section.

1 5 A C V o l t a g e M e a s u r e m e n t s I

Ronald L. Swerlein
Author 's b iography appears e lsewhere in th is

section.

Scott D. Stever
Scott Stever was project
manager for the HP 3458A
Mult imeter. He has wri t ten
for the HP Journal before;
in the February 1 985 issue
he reported on his work on
the dc and ohms measure
ment sect ions for the HP
3457A Mul t imeter . He a lso
is the coinventor of a

patented automat ic a t tenuator compensator for
this instrument. He joined HP in 1 979, after graduat
ing f rom the Georgia Inst i tu te of Technology wi th
a BSEE degree. Analog circuit design has become
his main professional interest . Scot t was born in
Corpus Chr is t i , Texas, is marr ied, and has a s ix-
year-old son. He lives in Loveland, Colorado. When
he is networking on or flying his airplane, he likes
to ski and play tennis.

Wayne C. Goeke
Design of the analog-to-
digital converter for the HP
3458A Mul t imeter was
Wayne Goeke ' s ma in re
sponsibil i ty. As a specialist
in analog circuit design, he
has con t r ibu ted to the de
ve lopment o f a number o f
instruments, including the
HP 3497A Da ta Acqu i s i

t ion/Control Unit, the HP 3468A Digital Multimeter,
and the HP 3478A Mu l t ime te r . Two pend ing pa t
ents on the HP 3458A are based on h is ideas.
Wayne studied at the Univers i ty of Wisconsin at
Madison, where he received both his BSEE (1977)
and h is MSEE (1979) degrees. He was born in
Freeport , I l l inois, is marr ied, and l ives in Fort Col
lins, Colorado. In his spare time, he is active in his
church and en joys vo l leyba l l , sk i ing , and back
packing.

Stephen B. Venzke
Since Steve Venzke jo ined

" * â „ ¢ * H P i n 1 9 6 5 , h e h a s b e e n a s
sociated with a wide range
of products , inc lud ing the
HP 3455A D ig i ta l Vo l t
meter, the HP 3585A Spec
t rum Analyzer , and the HP
3577A Network Analyzer .
He des igned the input
ampl i f ier , ohms converter ,

current shunts, and autocalibration circuits for the
HP 3458A Mult imeter and has now become a pro
duct ion engineer for the product . He is the
or ig inator of two patents, one for a low-f requency
current divider for function generators, the other for
an analog-to-digi tal converter technique. Steve re

ceived his BSEE degree from the University of Min
nesota (1965) , and h is MSEE degree f rom Col
orado State University (1 968). Born in Minneapolis,
Minnesota, he is marr ied and has two daughters.
He lives in Loveland, Colorado, where he teaches
e ighth-grade Sunday school as an avocat ion. He
is a lso in terested in audio equipment and enjoys
backpack ing and f ish ing.

Ronald L. Swerlein
The design of the ac f ront
end , the d ig i ta l ac a l
gor i thms, the transformer,
and the power supp l ies
were Ron Swer le in 's major
con t r ibu t ions to the de
velopment of the HP 3458A
Mul t imeter . H is ana log c i r
cuitry was also used in ear
lier instruments, like the HP

3468A Digital Multimeter and the HP 3478A and HP
3457A Multimeters. He is named inventor in a pat
ent descr ib ing ac autocal ibrat ion c i rcu i ts , and he
has pub l i shed two papers abou t d ig i ta l ac mea
surement . His bachelor 's degree in engineer ing
phys ics (1978) and h is MSEE degree (1979) are
from Ohio State University. Ron was born in Toledo,
Ohio, is married, and lives in Longmont, Colorado.
He spends his leisure time reading science fiction.

3 1 H i g h - T h r o u g h p u t D e s i g n :

Gary A. Ceely
^ ^ ^ S h o r t l y a f t e r g r a d u a t i n g

4 E ^ ^ K f e f r o m V i r g i n i a P o l y t e c h n i c
f f " ^ ^ l U n i v e r s i t y w i t h a B S E E d e -
P"jp* F 9ree in 1979' Gary Cee|y

jo ined HP's Loveland In-
W i ^ * 4 > s t r u m e n t D i v i s i o n . H i s d e

ve lopment pro jects have
inc luded f i rmware des ign

l . - v f o r t h e H P 3 4 5 6 A S y s t e m s
' â€¢ j f \ DVM, t he HP 3488A Sw i t ch /

Contro l Uni t , the HP 3852A Acquis i t ion/Contro l
Unit, and the HP 3054A Data Acquisition System.
Dur ing development o f the HP 3458A Mul t imeter ,
Gary's responsibil i t ies included the ERS, f irmware
archi tecture, operat ing system inter face, and
language parsing. Born in Alexandria, Virginia, he
l ives in Loveland, Colorado. His favor i te le isure
activit ies are ski ing, waterskiing, kayaking, volley
bal l , tennis, and aerobics.

David J. Rustici
The measurement and
cal ibrat ion f i rmware of the
HP 3458A Multimeter were
Dav id Rust ic i ' s foca l re
sponsibil it ies at HP's Love-
land Instrument Division.
He is now a firmware man
ager . Or ig inal ly , he had
joined the Civil Engineering
Division in 1976, after

98 HEWLETT-PACKARD JOURNAL APRIL 1989

© Copr. 1949-1998 Hewlett-Packard Co.

graduat ing f rom the Univers i ty of Wisconsin at
Madison wi th a BSEE degree His responsib i l i t ies
the re inc luded the HP 3808A and HP 3850A D is
tance Meters. His work on the lat ter resul ted in a
patent, and another patent for the HP 3458 is pend
ing. David is the coauthor o f a paper descr ib ing
firmware for an intelligent digital voltmeter. He was
bom in Racine, Wisconsin, is marr ied, and has a
son and a daugh te r He l i ves in Love land , Co l
orado. In his off-hours, he enjoys skiing, bicycling,
golf, and travel.

39 â€” H igh-Reso lu t ion D ig i t i z ing :

Oav id A . Czenkusch
As R&D engineer in the volt
meter laboratory of the
Love land Ins t rument D iv i
sion, Dave Czenkusch has
been involved in a number
of voltmeter and multimeter
developments, inc luding
the HP 3458A, and a digital
vol tmeter for the HP 3235
SwitchATest Unit. One of his

ideas for the HP 3458A resulted in a patent appli
cation. Dave's BSEE degree is from Purdue Univer
sity (1 983). He joined HP the year of his graduation
and developed a professional interest in d ig i ta l
des ign and f i rmware. He was born in Speedway,
Indiana, is single, and lives in Loveland, Colorado.
He enjoys skiing in the winter and looking forward
to the sk i ing season and bowl ing in the summer.

50 â€ ” S t ruc tu red De fec t Ana lys i s :

T a k e s h i N a k a j o
Software defect analysis
and the ef fects of human
error on system quality are
Takeshi Nakajo 's main pro
fessional interests. He has
written a number of papers
on the subject of obviating
program faults and flaws in
deve lopmen t and manu
factur ing. Takeshi

graduated f rom Tokyo Univers i ty wi th a master 's
degree in engineering (1981) and received a PhD
degree in 1986 f rom the same inst i tu t ion. He has
been a research assistant at the Univers i ty s ince
1987.

K a t s u h i k o S a s a b u c h i
As a qual i ty manager, Kat
suhiko Sasabuchi works in
the product assurance de
par tment o f Yokogawa
Hewlett-Packard in
Hachioji, near Tokyo. He is
c losely associated wi th a
special program to improve
sof tware product iv i ty and
quality. In the study of soft

ware defect analysis described in this issue of the
HP Journal , he funct ioned as one of the pr inc ipal

con tac ts w i th the Kume Labora tory o f Tokyo Un i
versity Katsuhiko was bom on Hokkaido, and his
bachelor 's degree in app l ied phys ics is f rom the
University of Hokkaido. He joined VHP in 1973. He
is married, has two sons, and lives in Hachioji. His
favorite pastimes are playing baseball and reading
historical novels

T a d a s h i A k i y a m a
Tadash i Ak iyama i s a so f t
ware engineer at Yokogawa
Hewlet t -Packard. He is
responsible for qual i ty
assurance for new software
projects, and his current in
terests focus on techniques
to improve qual i ty and
product iv i ty in software
development. He at tended

the Science University of Tokyo, graduating with a
degree in mathemat ics. Tadashi is a nat ive of
Yokohama and is married. His 2-year-old son and
infant daughter monopolize most of his spare time.

5 7 ~ D i s s e c t i n g S o f t w a r e F a i l u r e s :

R o b e r t B . G r a d y
Software development and
project management using
software metrics have been
the focal professional in-

^ _ t e r e s t s f o r m u c h o f B o b
| ^ 5 G r a d y ' s 1 9 - y e a r c a r e e r a t

â€¢ HP. He has been manager
of a var iety of major proj-

< Ã € 4 t e c t s , i n c l u d i n g t h e H P A t l a s
f t * ' * C o m p i l a t i o n S y s t e m , t h e

HP 2240A Measurement and Cont ro l Processor
hardware, the HP 1 2050A Fiber Optic HP-IB Link,
manufacturing and information systems, and HP's
sof tware engineer ing laboratory. Present ly, he is
sec t ion manager in the so f tware methods labora
tory of HP's Data and Languages Division. Bob is
a member of the IEEE Computer Society , is
coauthor o f a book on sof tware metr ics , and has
wri t ten and coauthored numerous papers and ar
t ic les on sof tware subjects, inc luding several for
the HP Journal. A native of Chicago, Il l inois, he re
ce ived h is BSEE degree f rom the Massachuset ts
Ins t i tu te o f Technology (1965) and h is MSEE de
gree f rom Stanford Univers i ty (1969). He and h is
wife, who is a section manager at HP's Data Prod
ucts Operation, have a daughter and a son and live
in Los Altos, California. In addition to managing his
son 's basketba l l team, Bob p lays basketba l l h im
sel f and enjoys h ik ing, camping, and sk i ing.

64 â€ ”Comp lex i t y Me t r i c :

W i l l i a m T . W a r d
â€¢â€¢ With software engineering

f m e t h o d o l o g i e s a n d t o o l s
h is main pro fess iona l in
terest, Jack Ward has writ
ten a number of articles on
the subject of sof tware
quali ty. He is software qual
i ty engineering manager at
HP's Waltham Divis ion
(Massachuset ts) , and

heads a group responsible for testing all software/
f irmware As a software quality engineer in earl ier
ass ignments he was invo lved in tes t ing ECG
arrhythmia moni tor ing systems Before jo in ing HP
in 1982, he was a sof tware suppor t engineer for
Data General Corporation. Jack's BS degree in l in
guistics is from the University of Illinois (1972), and
his MS degree in computer science is from Boston
University (1 984). A native of Winona, Mississippi,
he is marr ied and has two chi ldren. He l ives in
Brookline, Massachusetts. In his spare time, Jack
teaches computer science courses at Boston Uni
vers i ty. He also l ikes jogging.

69 â€ ” Ob jec t -Or ien ted Un i t Tes t ing :

S teven P . F ied le r
I The object-or iented unit
test ing d iscussed in Steve
Fiedler 's art ic le forms part
of h is responsibi l i t ies as a
software qual i ty engineer.
In th is part icular study, he
implemented processes for

I assuring software quality in
c l in ica l in format ion sys
tems. Before transferring to

the Waltham Division of HP, he was a systems sup
port engineer for computer products and networks
in the Valley Forge, Pennsylvania, sales office. He
came to HP in a par t - t ime posi t ion in 1979, then
joined full-time in 1 981 , after receiving his BS de
gree in computer science from West Chester Uni
versity. Steve is a member of the ACM. He was born
in Mi lwaukee, Wisconsin, is marr ied, and has two
children. He resides in Leominster, Massachusetts.
He pursues musica l in terests in h is church and,
wi th h is wi fe , o f ten s ings at weddings and smal l
gather ings. He also enjoys sk i ing, h ik ing, and
travel.

7 5 ~ R e l i a b i l i t y G r o w t h M o d e l s :

G r e g o r y A . K r u g e r
| | In the product iv i ty sec t ion

o f HP 's Lake Stevens In
s t rument Div is ion, s tat is
t ic ian Greg Kruger 's main
responsibi l i t ies include
R&D metr ics, sof tware
rel iabi l i ty model ing, and
process analysis. When he
first joined HP at the Love-
land Instrument Divis ion

a lmost e igh t years ago, Greg 's ass ignment in
c luded implement ing stat is t ica l qual i ty contro l
practices in manufacturing and training people to
use and unders tand them. La te r he was commis
s ioned to spread Tota l Qual i ty Contro l pract ices
throughout the Lake Stevens Instrument Div is ion.
Greg was born in Water loo, Iowa. His BS in
mathemat ics/stat is t ics (1979) and MS in stat is t ics
(1981) are both f rom Iowa State Univers i ty . He is

APRIL 1989 HEWLETT-PACKARD JOURNAL 99

© Copr. 1949-1998 Hewlett-Packard Co.

marr ied, has two ch i ldren, and of fers much of h is
leisure time to his duties as deacon of his church.
Greg is an av id archer , serves on the board o f
directors of the Washington State Bowhunters, and
edi ts a newslet ter on the subject . Vocal music is
another of his interests.

8 0 C o m p a r i n g M e t h o d o l o g i e s ' .

Wil l iam A. Fischer, Jr .
Bil l Fischer is the coauthor
of the comparative study of
s t ructured methodolog ies
in this issue of the HP Jour
nal . He is an R&D sect ion
manager in charge of In te l
and Motorola emulat ion
products. Previously, he
has been an R&D pro jec t
manager , a t echn i ca l sup

port engineer, and a product marketing engineer.
In the ten years before he jo ined HP in 1984, Bi l l
was an engineer at the Hamilton Standard Division
of United Technologies, designing automated test
equipment for the space shuttle. He holds a BSEE
degree (1973) , an MSEE degree (1978) , and a
master 's degree in management (1980) , a l l f rom
Rensselaer Polytechnic Institute. He has authored
and coauthored a number of papers and art icles,
main ly about sof tware pro ject management . B i l l
was born in At t leboro, Massachuset ts , and l ives
wi th h is wi fe and four ch i ldren in Colorado
Springs, Colorado. He enjoys running and playing
basketball .

James W. Jost
As a stat ist ic ian at HP's
Logic Systems Div is ion,
J im Jost is responsib le for
so f tware met r i cs and p ro
cess improvements . He
co l l abo ra ted on t he com
parative study of structured
methodo log ies d iscussed
in this issue of the HP Jour
nal. Before he joined HP in

1 984, he spent eight years doing breeder nuclear
reactor research, part icular ly in the f ie ld of fuels.
Jim holds a BA degree in chemistry from Tabor Col

lege (1970) and an MS degree in s ta t is t ics f rom
Oregon State Univers i ty (1976). He was born in
Hi l lsboro, Kansas, and l ives in Colorado Spr ings,
Colorado. He is married and has three children. His
favori te off-hours act iv i t ies are basketbal l , ski ing,
and read ing b iograph ies .

86 â€” Object-Oriented Systems Analysis

Barry D. Kurtz
Barry Kurtz authored the
OSA methodo logy and
ac ted as a t echn i ca l con
su l tan t . Among o ther so f t
wa re p ro jec ts he has han
d led s ince he jo ined HP in
1976 were des ign of CAE
tools for electr ical schema
t ic capture and pr inted cir
cuit design and, as an R&D

engineer and project manager, design of the Ma
ter ia ls Management /3000 sof tware for HP 3000
Business Computers. Barry's BS and MS degrees
in computer science are from Brigham Young Uni
vers i ty (1987, 1988) , and he is a member of both
the ACM and the IEEE. He was born in Richmond,
Indiana, and lives in Boise, Idaho. He's married and
has a son. He is act ive in h is church and en joys
fami ly out ings, f ishing, and amateur radio.

Teresa A. Wal l
Born in Norman, Ok la
homa, Teresa Wal l
g radua ted w i t h a BS de
gree in computer sc ience
from the Universi ty of
Oklahoma in 1983. She
joined the Fort Coll ins Sys
tems Div is ion of HP the
same year. Among the proj
ects she has been working

on a re command g roups and HP-UX sys tems in
tegration for the HP 9000 Series 300 and 500 Com
puters. Her contributions to the OSA development
focused on the analysis methodology and toolset.
Teresa's main professional interests are analysis
and des ign methodo log ies and ob jec t -or ien ted
languages. She l ives in Santa Clara, Cal i fornia.

Donna Ho
Donna Ho is a sof tware
development engineer a t
HP's Software Engineering
Systems Divis ion. On the
OSA p ro jec t , she was re
sponsible for the analysis
me thodo logy , too l p ro
t o t ype , and documen ta
tion. When she came to HP
in 1 985, she joined Corpo

rate Engineering to work on software development.
Previous professional experience includes work on
DG-UX command groups at Data General. Donna
attended Duke University, graduating in 1 985 with
a BS degree in computer science/psychology. Sr-?
was born in Honolu lu, Hawai i , and l ives in Santa
Clara, California.

91 VXIbus In terconnect ion Standard ' .

Kenneth Jessen
Author 's b iography appears e lsewhere in th is

section.

96 ZZ VXIbus Tools

Kenneth Jessen
Ken Jessen i s a manu fac
tu r i ng deve lopmen t en
gineer associated with new
products and the develop
ment of new processes for
HP's Manufactur ing Test
Div is ion. He jo ined HP in
1965 and, among var ious
assignments, has held
pos i t ions as serv ice man

ager and d is t r ibut ion manager . Dur ing the past
nineteen years, he has written many technical art i
cles describing HP products for a variety of trade
journals, some of them translated into foreign lan
guages for publ icat ion abroad. He has publ ished
four books on Colorado history and contributed to
two technica l books. Ken 's BSEE degree (1962)
and MBA degree (1 964) are both from the Univer
s i ty of Utah. He was born in Evanston, I l l inois, is
married, and has three children. He lives in Love-
land, Colorado. His hobbies are writ ing, hiking, ski
ing, and rai l road history.

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i fornia 94304

ADDRESS CORRECTION REQUESTED

1989 Volume 40

Technical Information from the Laborator ies of
Hewlet t -Packard Company

Hewlet t -Packard Company. 3200 Hi l lv iew Avenue
Palo Al to. Cal i fornia 94304 U.S.A

Hewlet t -Packard Centra l Mai l ing Department
P O. Box 529. Star tbaan 16

1 180 AM Amstelveen. The Nether lands
Yokogawa-Hewle t t -Packard L id . . Sug inami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) L td
877 Goreway Dr ive. Miss issauga. Ontar io L4V 1MB Canada

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

0 0 0 5 5 6 0 1 H P J 1 3 / 8 8
C BLACKBURN
JOHNS HOPKINS UNIV
APPLIED PHYSICS LAB
JOHNS HOPKINS RD
L A U R E L . Â « D 2 0 7 0 T

C H A N G E O F A D D R E S S : To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journal . 3200 Hi l lv iew Avenue, Palo Al to, CA 94304 U.S.A. Inc lude your o ld address label , i f any. Al low 60 days.

© Copr. 1949-1998 Hewlett-Packard Co.

	An 8 1/2-Digit Digital Multimeter Capable of 100,000 Readings per Second and Two-Source Calibration
	An 8 1/2-Digit Integrating Analog-to-Digital Converter with 16-bit, 100,000-Sample-per-Second Performance
	Precision AC Voltage Measurements Using Digital Sampling Techniques
	Calibration of an 8 1/2-Digit Multimeter from only Two External Standards
	Josephson Junction Arrays
	A High-Stability Voltage Reference
	Design for High Throughput in a System Digital Multimeter
	Firmware Development System
	Custom UART Design
	High-Resolution Digitizing Techniques with an Integrating Digital Multimeter
	Time Interpolation
	Measurement of Capacitor Dissipation Factor using Digitizing
	A Structural Approach to Software Defect Analysis
	Dissecting Software Failures
	Defect Origins and Types
	Software Defect Prevention Using McCabe's Complexity Metric
	The Cyclomatic Complexity Metric
	Object-Oriented Unit Testing
	Validation and Further Application of Software Reliability Growth Models
	Comparing Structured and Unstructured Methodologies in Firmware Development
	An Object-Oriented Methodology for Systems Analysis and Specification
	VXIbus: A New Interconnection Standard for Modular Instruments
	VXIbus Product Development Tools

