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In this Issue 
If you thought that voltmeters, those ancient and fundamental instruments, 

had evolved about as far as possible and that there couldn' t  be much more 
to  say  d ig i ta l  them,  you 'd  be  wrong .  Today ,  they ' re  usua l l y  ca l led  d ig i ta l  
mul t imeters or  DMMs rather  than vol tmeters.  You can f ind h ighly  accurate 

â€¢>,â€¢ automated ones in cal ibrat ion laborator ies,  very fast  ones in automated test  systems, 
i j f  V H B I  m  a n d  a  w h o l e  s p e c t r u m  o f  p e r f o r m a n c e  l e v e l s  a n d  a p p l i c a t i o n s  i n  b e t w e e n  

II these extremes. Generally, more speed means less resolution â€” that is, fewer 
~JJ^^^^Â¿2 d ig i ts  in  the measurement  resul t .  Conversely ,  a  h igher- resolut ion measure-  

HM ^mmamÃˆ  I  men t  gene ra l l y  t akes  l onge r .  Some DMMs a re  capab le  o f  a  range  o f  speeds  
and resolut ions and a l low the user  to  t rade one for  the other .  The HP 3458A Dig i ta l  Mul t imeter  
does this to an unprecedented degree. I t  can make 100,000 41/2-digi t  measurements per second 
or six cont inuous measurements per second, and al lows the user an almost cont inuous select ion 
of  speed-versus-resolut ion t rade-of fs between these l imi ts.  You' l l  f ind an int roduct ion to the HP 
3458A on page 6.  The basis of  i ts  performance is a state-of- the-art  integrat ing analog-to-dig i ta l  
converter  (ADC) that  uses both mul t is lope runup and mul t is lope rundown along wi th a two- input  
s t ructure to achieve both h igh speed and high precis ion (page 8) .  So precise is  th is  ADC that  i t  
can function as a rat io transfer device for cal ibrat ion purposes. With the ADC and a tr io of bui l t- in 
t r ans fe r  on l y  a l l  o f  t he  f unc t i ons  and  ranges  o f  t he  HP  3458A  can  be  ca l i b ra ted  us i ng  on l y  
two external  t raceable standards â€” 10V and 10 ki l .  The art ic le on page 22 explains how this is 
poss ib le .  A t  t he  h igh  end  o f  i t s  speed  range ,  t he  ADC a l l ows  the  HP 3458A to  func t i on  as  a  
high-speed digi t izer,  an unusual role for a DMM (page 39).  In fact,  ac vol tage measurements are 
made eliminating analog the input signal and computing its rms value, eliminating the analog rms-to-dc 
converters of  older designs (page 15).  Final ly,  moving data fast enough to keep up with the ADC 
was a des ign chal lenge in  i tse l f .  How i t  was met  wi th  a combinat ion of  h igh-speed c i rcu i ts  and 
eff icient f i rmware is detai led in the art icle on page 31 . 

The seven papers on pages 50 to 90 are f rom the 1988 HP Software Engineer ing Product iv i ty  
Conference and should be of  in terest  to  sof tware engineers and users concerned wi th sof tware 
defect  prevent ion.  Col lect ively,  the papers spot l ight  areas where v igorous sof tware engineer ing 
activity testing, occurring today, namely in structured and object-oriented analysis, design, and testing, 
and  i n  t he  pape r  o f  r e l i ab l e  me t r i c s  w i t h  wh i ch  t o  measu re  so f twa re  qua l i t y .  ^  I n  t he  pape r  
on page describe engineers from Yokogawa Hewlett-Packard and Tokyo University describe a joint 
effort to f ind the f laws in design procedures that increase the l ikelihood of human errors that result 
in  p rogram fau l ts .  Work ing  backwards  f rom fau l ts  to  human er rors  to  f lawed procedures ,  they  
propose var ious structured analysis and design solut ions to el iminate the f laws. > The paper on 
page 57 project expansion of the software defect data collection process so that project managers 
can not  only determine how best  to prevent  future defects,  but  a lso bui ld a case for  making the 
necessary changes in  procedures.  The t ime requi red to co l lect  and analyze the addi t ional  data 
is shown to be minimal.  ^ That complexi ty leads to defects is wel l -establ ished, so monitor ing the 
complexity of software modules during implementation should point out modules that wil l  be defect 
prone. The paper on page 64 tel ls how HP's Waltham Divis ion is taking this approach to improve 
the  so f tware  deve lopment  p rocess ,  us ing  McCabe 's  cyc lomat ic  complex i ty  met r i c  to  measure  
complexi ty.  ^ Object-or iented programming, or iginal ly conceived for art i f ic ial  intel l igence appl ica 
t ions, and now f inding wider acceptance. The paper on page 69 reports on problems and methods 
associated with test ing software modules developed with an object-or iented language, C + + ,  for 
a  c l in ica l  in fo rmat ion  sys tem.  >  In  the  paper  on  page 75,  Greg Kruger  updates  h is  June 1988 
paper on the use of a software rel iabi l i ty growth model at HP's Lake Stevens Instrument Division. 
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The mode l  i t .  genera l l y  been success fu l ,  bu t  there  a re  p i t fa l l s  to  be  avo ided in  app ly ing  i t .  >  
On a sof tware pro jec t  a t  HP's  Log ic  Systems Div is ion,  some of  the eng ineers  used s t ruc tured 
methods the some used unstructured methods.  Was st ructured design bet ter? According to the 
paper offered page 80, the results were mixed, but the structured methods offered enough benefits 
to justify their continued use. *â€¢ In software development, system analysis precedes design. The 
paper on increas 86 describes a new object-oriented approach suitable for analyzing today's increas 
ingly based and more complex systems. The authors believe that designs based on object-oriented 
speci f icat ions can be procedure-or iented or object-or iented with equal success. 

Modular  measurement  systems consis t  o f  inst ruments on cards that  p lug in to a card cage or  
mainf rame.  A user  can ta i lor  a  system to an appl icat ion by p lugging the r ight  modules in to  the 
mainf rame.  The VXIbus is  a new industry  s tandard for  such systems.  Modules and mainf rames 
conforming to the VXIbus standard are compat ible no matter what company manufactured them. 
The  a r t i c les  on  pages  91  and  96  in t roduce  the  VXIbus  and  some new HP p roduc ts  tha t  he lp  
manufacturers  develop VXIbus modules more quick ly .  HP's  own modular  measurement  system 
archi tecture conforms to the VXIbus standard where appl icable.  However,  for  h igh-performance 
R F  a n d  s y s t e m  i n s t r u m e n t a t i o n ,  H P  h a s  u s e d  a  p r o p r i e t a r y  m o d u l a r  s y s t e m  i n t e r f a c e  b u s  
(HP-MSIB) .  Pa ten t  r i gh ts  to  the  HP-MSIB have  now been  ass igned  to  the  pub l i c  so  tha t  th i s  
archi tecture can be used by everyone as the high-frequency counterpart  of  the VXIbus.  

P .P .  Do lan  
Editor 

Cover 
So prec ise is  the 3458A Dig i ta l  Mul t imeter  that  ver i fy ing some aspects  o f  i ts  per formance is  

beyond Division limits of conventional standards. In the HP Loveland Instrument Division Standards 
Laboratory ,  the HP 3458A's  l inear i ty  is  measured us ing a 10-vo l t  Josephson junct ion ar ray de 
veloped by the U.S.  Nat ional  Inst i tu te of  Standards and Technology.  The array is  in  a specia l ly  
magnet ica l ly  sh ie lded cryoprobe in  the center  of  a  l iqu id-hel ium-f i l led dewar ( the tank wi th the 
protect ive "steer ing wheel . " )  On top of  the dewar are a Gunn-diode s ignal  source (72 GHz) and 
v a r i o u s  t o  c o m p o n e n t s .  A  w a v e g u i d e  a n d  v o l t a g e  a n d  s e n s e  l e a d s  c o n n e c t  t h e  a r r a y  t o  
the external  components.  For more detai ls  see page 24.  

What's Ahead 
Subjects to be covered in the June issue include: 
â€¢ The Architecture 9000 Model 835 and HP 3000 Series 935 Midrange HP Precision Architecture 

Computers 
â€¢ Programming with neurons 
â€¢ A new 2D simulation model for electromigration in thin metal f i lms 
â€¢ Data compression and blocking in the HP 7980XC Tape Drive 
â€¢ Design and appl icat ions of  HP 8702A Lightwave Component Analyzer systems 
â€¢ A data base for real-t ime applications and environments 
â€¢ A hardware/software tool to automate test ing of software for the HP Vectra Personal 

Computer.  
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An 81/2-Digit Digital Multimeter Capable of 
100,000 Readings per  Second and 
Two-Source Cal ibrat ion 
A highly l inear and extremely f lex ib le analog-to-dig i ta l  
converter and a state-of-the-art design give this DM M new 
performance and measurement capabi l i t ies for automated 
test ,  cal ibrat ion laboratory,  or  R&D appl icat ions.  

by Scott  D.  Stever 

THE DIGITAL MULTIMETER OR DMM is among the 
most common and most versatile instruments avail 
able for low-frequency and dc measurements in auto 

mated test, calibration laboratory, and bench R&D applica 
tions. The use of general-purpose instrumentation in auto 
mated measurement systems has steadily grown over the 
past decade. While early users of programmable instru 
ments were elated to be able to automate costly, tedious, 
error-prone measurements or characterization processes, 
the sophistication and needs of today's users are orders of 
magnitude greater. The computing power of instrument 
controllers has increased manyfold since the mid-1970s 
and so have user expectations for the performance of mea 
surement systems. Test efficiency in many applications is 
no longer limited by the device under test or the instrument 
controller's horsepower. Often either the configuration 
speed or the measurement speed of the test instrumentation 
has become the limiting factor for achieving greater test 
throughput. In many systems, the DMM is required to per 
form hundreds of measurements and be capable of multiple 
functions with various resolutions and accuracies. 

In some applications, several DMMs may be required to 
characterize a single device. For example, measurements 
requiring high precision may need a slower DMM with 
calibration laboratory performance. Usually, the majority 
of measurements can be satisfied by the faster, moderate- 
resolution capabilities of a traditional system DMM. In ex 

treme cases, where speed or sample timing are critical to 
the application, a lower-resolution high-speed DMM may 
be required. A single digital multimeter capable of fulfilling 
this broad range of measurement capabilities can reduce 
system complexity and development costs. If it also pro 
vides shorter reconfiguration time and increased measure 
ment speed, test throughput can also be improved for au 
tomated test applications. 

The HP 3458A Digital Multimeter (Fig. 1) was developed 
to address the increasing requirements for flexible, accu 
rate, and cost-effective solutions in today's automated test 
applications. The product concept centers upon the syner- 
gistic application of state-of-the-art technologies to meet 
these needs. While it is tuned for high throughput in com 
puter-aided testing, the HP 3458A also offers calibration 
laboratory accuracy in dc volts, ac volts, and resistance. 
Owners can trade speed for resolution, from 100,000 mea 
surements per second with 4V2-digit (16-bit) resolution to 
six measurements per second with 8V2-digit resolution. At 
5V2-digit resolution, the DMM achieves 50,000 readings 
per second. To maximize the measurement speed for the 
resolution selected, the integration time is selectable from 
500 nanoseconds to one second in 100-ns steps. The effect 
is an almost continuous range of speed-versus-resolution 
trade-offs. 

Fig. 1 .  The HP 3458 A Digital  Mul 
t ime te r  can  make  700 ,000  41 /2 -  
digi t  readings per second for high 
s p e e d  a u t o m a t e d  t e s t  a p p l i c a  
t i ons .  Fo r  ca l i b ra t i on  l abo ra to ry  
appl icat ions, i t  can make six 8V?- 
d / g i t  r e a d i n g s  p e r  s e c o n d .  F i n e  
control  of  the integrat ion aperture 
a/ lows a near ly  cont inuous range 
o f  speed-versus- resou l t ion  t rade 
offs. 
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Measurement Capabilities 
Measurement ranges for the HP 3458A's functions are: 

â€¢ Voltage: 10 nV to 1000V dc 
<1 mV to 700V rms ac 

â€¢ Current: 1 p A to 1A dc 
100 p A to 1A rms ac 

â€¢ Resistance: 10 pÂ£l to 1 Gil, 2-wire or 4-wire 
â€¢ Frequency: 1 Hz to 10 MHz 
â€¢ Period: 100 ns to 1 s 
â€¢ 16-bit digitizing at effective sample rates to 100 

megasamples/second . 
The ac voltage bandwidth is 1 Hz to 10 MHz, either ac or 
dc coupled. 

To increase uptime, the HP 3458A is capable of two- 
source electronic calibration and self-verifying autocalibra- 
tion. Autocalibration enhances accuracy by eliminating 
drift errors with time and temperature. The dc voltage sta 
bility is specified at eight parts per million over one year, 
or 4 ppm with the high-stability option. Linearity is speci 
fied at 0.1 ppm, transfer accuracy at 0.1 ppm, and rms inter 
nal noise at 0.01 ppm. Maximum accuracies are 0.5 ppm 
for 24 hours in dc volts and 100 ppm in ac volts. Midrange 
resistance and direct current accuracies are 3 ppm and 10 

ppm, respectively. 
The HP 3458 A can transfer 16-bit readings to an HP 9000 

Series 200 or 300 Computer via the HP-IB (IEEE 488. IEC 
625) at 100,000 readings per second. It can change functions 
or ranges and deliver a measurement 200 times per second 
(over 300/s from the internal program memory), about four 
times faster than any earlier HP multimeter. 

The following five articles describe the technologies re 
quired to achieve this performance and the benefits that 
result. In the first paper, the development of a single analog- 
to-digital converter capable of both high resolution and 
high speed is discussed. The second paper describes the 
development of a technique for the precise measurement 
of rms ac voltages. The application of these technologies 
to provide improved measurement accuracy over extended 
operating conditions and to provide complete calibration 
of the DMM from only two external traceable sources (10V 
dc, 10 kfl) is discussed in the third article. Hardware and 
firmware design to achieve increased measurement through 
put is the topic of the fourth paper. The final paper dis 
cusses several applications for the HP 3458A's ability to 
perform high-resolution, high-speed digitizing. 
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An 81/2-Digit Integrating Analog-to-Digital 
Converter with 16-Bit, 100,000-Sample-per- 
Second Performance 
This integrat ing- type ADC uses mul t is lope runup,  
mul t is lope rundown,  and a two- input  s t ructure to achieve 
the required speed, resolut ion,  and l inear i ty.  

by Wayne C.  Goeke 

THE ANALOG-TO-DIGITAL CONVERTER (ADC) 
design for the HP 3458A Digital Multimeter was driv 
en by the state-of-the-art requirements for the system 

design. For example, autocalibration required an ADC with 
SVz-digit (28-bit] resolution and 7V2-digit (25-bit) integral 
linearity, and the digital ac technique (see article, page 22) 
required an ADC capable of making 50,000 readings per 
second with 18-bit resolution. 

Integrating ADCs have always been known for their abil 
ity to make high-resolution measurements, but tend to be 
relatively slow. When the HP 3458A's design was started, 
the fastest integrating ADC known was in the HP 3456A 
DMM. This ADC uses a technique known as multislope 
and is capable of making 330 readings per second. The HP 
3458A's ADC uses an enhanced implementation of the 
same multislope technique to achieve a range of speeds 
and resolutions never before achieved â€” from 16-bit resolu 
tion at 100,000 readings per second to 28-bit resolution at 
six readings per second. In addition to high resolution, the 
ADC has high integral linearity â€” deviations are less than 
0.1 ppm (parts per million) of input. 

Multislope is a versatile ADC technique, allowing speed 
to be traded off for resolution within a single circuit. It is 
easier to understand multislope by first understanding its 
predecessor, dual-slope. 

Basic Dual-Slope Theory 
Dual-slope is a simple integrating-type ADC algorithm. 

Fig. 1 shows a simple circuit for implementing a dual-slope 
ADC. 

The algorithm starts with the integrator at zero volts. 
(This is achieved by shorting the integrator capacitor, C.) 
At time 0 the unknown input voltage Vin is applied to the 
resistor R by closing switch SWl for a fixed length of time 
tu. This portion of the algorithm, in which the unknown 
input is being integrated, is known as runup. At the end 
of  runup ( i .e . ,  when SWl is  opened),  the output  of  the 
integrator, V0, can be shown to be 

V0( t J  =  - (1 /RC)  P"v in ( t )d t  
J o  

or, when Vin is time invariant, 

V0(tu) = -(l/RC)Vintu. 

Next a known reference voltage Vref with polarity oppo 
site to that of Vin is connected to the same resistor R by 
closing SW2. A counter is started at this time and is stopped 
when the output of the integrator crosses through zero volts. 
This portion of the algorithm is known as rundown. The 
counter contents can be shown to be proportional to the 
unknown input. 

V0(t2) = V0(tu) - (l/RC)Vreftd = 0, 

where td is the time required to complete rundown (i.e., 
td = t2 - tj .  Solving for Vin, 

vin=-vref(td/tj. 

Letting Nu be the number of clock periods (Tck) during 

SW1 

V i n    O  

Vre t  

Time 

Runup Rundown 

F ig .  1 .  Dua l - s l ope  i n t eg ra t i ng  ADC (ana log - t o -d i g i t a l  con  
verter)  c i rcui t  and a typical  waveform. 
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runup and Nd the number of clock periods during rundown, 
time cancels and 

Vin = - Vref{Nd/Nu). 

The beauty of the dual-slope ADC technique is its insen- 
sitivity to the value of most of the circuit parameters. The 
values of R, C, and Tck all cancel from the final equation. 
Another advantage of the dual-slope ADC is that a single 
circuit can be designed to trade speed for resolution. If the 
runup time is shortened, the resolution will be reduced, 
but so will the time required to make the measurement. 

The problem with the dual-slope algorithm is that its 
resolution and speed are limited. The time Tm for a dual- 
slope ADC to make a measurement is determined by: 

Tm = 2TckM, 

where Tm is the minimum theoretical time to make a full- 
scale measurement, Tck is the period of the ADC clock, and 
M is the number of counts of resolution in a full-scale 
measurement. Even with a clock frequency of 20 MHz, to 
measure a signal with a resolution of 10,000 counts requires 
at least 1 millisecond. 

The resolution of the dual-slope ADC is limited by the 
wideband circuit noise and the maximum voltage swing 
of the integrator, about Â±10 volts. The wideband circuit 
noise limits how precisely the zero crossing can be deter 
mined. Determining the zero crossing to much better than 
a millivolt becomes very difficult. Thus, dual-slope is lim 
ited in a practical sense to four or five digits of resolution 
(i.e., 10V/1 mV). 

Rundown 

Fig.  2 .  Enhanced dual -s lope ADC c i rcu i t  uses two res is tors ,  
one lor  runup and one for  rundown.  

Enhanced Dual-Slope 
The speed of the dual-slope ADC can be nearly doubled 

simply by using a pair of resistors, one for runup and the 
other for rundown, as shown in Fig. 2. 

The unknown voltage, Vin, is connected to resistor Ru. 
which is much smaller than resistor Rd, which is used 
during rundown. This allows the runup time to be short 
ened by the ratio of the two resistors while maintaining 
the same resolution during rundown. The cost of the added 
speed is an additional resistor and a sensitivity to the ratio 
of the two resistors: 

Vin = - Vref(Nd/NJ(Ru/Rd). 

Because resistor networks can be produced with excel 
lent ratio tracking characteristics, the enhancement is very 
feasible. 

Mult is lope Rundown 
Enhanced dual-slope reduces the time to perform runup. 

Multislope rundown reduces the time to perform rundown. 
Instead of using a single resistor (i.e., a single slope) to 
seek zero, multislope uses several resistors (i.e., multiple 
slopes) and seeks zero several times, each time more pre 
cisely. The ratio of one slope to another is a power of some 
number base, such as base 2 or base 10. 

Fig. 3 shows a multislope circuit using base 10. Four 
slopes are used in this circuit, with weights of 1000, 100, 
10, and 1. Each slope is given a name denoting its weight 

+Vrel  

- V r e f  

Time 

+ S 1 0 0 0  + S 1 0  - S 1  
- S 1 0 0  

R u n u p  R u n d o w n  

Fig.  3 .  Base-  W mul t is lope rundown c i rcu i t .  
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and polarity. For example, S1000 is a positive slope worth 
1000 counts per clock period and -SlOO is a negative 
slope worth - 100 counts per clock period. A slope is con 
sidered to be positive if it transfers charge into the inte 
grator. This may be confusing because the integrator (an 
inverting circuit] actually moves in a negative direction 
during a positive slope and vice versa. 

The multislope rundown begins by switching on the 
steepest slope, SlOOO. This slope remains on until the inte 
grator output crosses zero, at which time it is turned off 
and the next slope, -SlOO, is turned on until the output 
crosses back through zero. The SlO slope follows next, and 
finally, the -Si slope. Each slope determines the inte 
grator's zero crossing ten times more precisely than the 
previous slope. This can be viewed as a process in which 
each slope adds another digit of resolution to the rundown. 

If each slope is turned off within one clock period of 
crossing zero, then each subsequent slope should take ten 
or fewer clock periods to cross zero. Theoretically, then, 
the time td to complete a multislope rundown is: 

td < NBTck, 

where N is the number of slopes and B is the number base 
of the slope ratios. In practice, the time to complete run 
down is higher, because it isn't always possible to to turn 
off each slope within a clock period of its zero crossing. 
Delays in detecting the zero crossings and delays in re 
sponding by turning off the slopes cause the actual time 
to be: 

td < kNBTck, 

where k is a factor greater than one. The delay in turning 
off a slope results in the integrator output's overshooting 
zero. For each clock period of overshoot, the following 
slope must take B clock periods to overcome the overshoot. 
Typical values of k range from two to four. The multislope 
rundown shown in Fig. 3 completes a measurement yield 
ing 10,000 counts of resolution in 4.0 /JLS assuming a 20- 
MHz clock and k = 2. This is 125 times faster than the 
equivalent dual-slope rundown. 

Multislope can be optimized for even faster measure 
ments by choosing the optimum base. Noting that the 
number of slopes, N, can be written as logB(M), where M 
is the number of counts of resolution required from run 
down, 

td < kBlogB(M)Tck. 

This yields base e as the optimum base regardless of the 
required resolution. Using base e in the above example 

SWa 
+ V r e f  

- V r e l  

results in a rundown time of 2.5 Â¿Â¿s. This is a 60% increase 
in multislope rundown speed as a result of using base e 
instead of base 10. 

There is a cost associated with implementing multislope 
rundown. A resistor network must be produced with sev 
eral resistors that have precise ratios. The tightest ratio 
tolerance is the reciprocal of the weight of the steepest 
slope and must be maintained to ensure linear ADC oper 
ation. If the ratio tolerances are no tighter than 0.05%, then 
this requirement is feasible. Multislope also requires a more 
complex circuit to control and accumulate the measure 
ment, but with the reduced cost and increased density of 
digital circuits, this is also feasible. 

Mult islope Runup 
Multislope runup is a modification of dual-slope runup 

with the purpose of increasing the resolution of the ADC. 
As mentioned earlier, the dual-slope technique's resolution 
is limited by the maximum voltage swing of the integrator 
and the wideband circuit noise. Multislope runup allows 
the ADC to have an effective voltage swing much larger 
than the physical limitations of the integrator circuit 
hardware. 

The technique involves periodically adding and subtract 
ing reference charge to or from the integrator during runup 
such that the charge from the unknown input plus the total 
reference charge is never large enough to saturate the inte 
grator. By accounting for the total amount of reference 
charge transferred to the integrator during runup and add 
ing this number to the result of rundown, a measurement 
can be made with much higher resolution. Fig. 4 shows a 
circuit for implementing multislope runup. 

A precise amount of reference charge is generated by 
applying either a positive reference voltage to resistor Ra 
or a negative reference voltage to resistor Rb for a fixed 
amount of time. The following table shows the four possible 
runup reference currents using this circuit. 

Slope 
Name 

s_ 

S W a  S W b  Integrator 
Direction 

+Vref 
0 
0 

+vref 

0 
0 

-vref 
-vref 

Current 

+ 1 
0 

- I  
0 

Fig.  4 .  Mul t is lope runup c i rcu i t .  

Notice that, like multislope rundown, S+ adds charge to 
the integrator and S_ subtracts charge from the integrator. 
If we design the S+ and S_ currents to have equal mag 
nitudes that are slightly greater than that of the current 
generated by a full-scale input signal, then the reference 
currents will always be able to remove the charge ac 
cumulating from the input signal. Therefore, the integrator 
can be kept from being saturated by periodically sensing 
the polarity of the integrator output and turning on either 
S+ or S_ such that the integrator output is forced to move 
towards or across zero. 

Fig. 5 shows a typical multislope runup waveform. The 
dashed line shows the effective voltage swing, that is, the 
voltage swing without reference charge being put into the 
integrator. The integrator output is staying within the limits 
of the circuit while the effective voltage swing ramps far 
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beyond the limit. The HP 3458A has an effective voltage 
swing of Â±120,000 volts when making 8V2-digit readings, 
which means the rundown needs to resolve a millivolt to 
achieve an SVz-digit reading (i.e.. 120.000V 0.001Y = 
120.000,000 counts). 

The multislope runup algorithm has two advantages over 
dual-slope runup: (1) the runup can be continued for any 
length of time without saturating the integrator, and (2) 
resolution can be achieved during runup as well as during 
rundown. The HP 3458A resolves the first 4Vi digits during 
runup and the final 4 digits during rundown to achieve an 
SVz-digit reading. 

An important requirement for any ADC is that it be linear. 
With the algorithm described above, multislope runup 
would not be linear. This is because each switch transition 
transfers an unpredictable amount of charge into the inte 
grator during the rise and fall times. Fig. 6 shows two 
waveforms that should result in the same amount of charge 
transferred to the integrator, but because of the different 
number of switch transitions, do not. 

This problem can be overcome if each switch is operated 
a constant number of times for each reading, regardless of 
the input signal. If this is done, the charge transferred dur 
ing the transitions will result in an offset in all readings. 
Offsets can be easily removed by applying a zero input 
periodically and subtracting the result from all subsequent 
readings. The zero measurement must be repeated period 
ically because the rise and fall times of the switches drift 
with temperature and thus the offset will drift. 

Multislope runup algorithms can be implemented with 
constant numbers of switch transitions by alternately plac 
ing an S+0 and an S_0 between each runup slope. Fig. 7 
shows the four possible slope patterns between any two 
S+o slopes. Varying input voltages will cause the algorithm 
to change between these four patterns, but regardless of 
which pattern is chosen, each switch makes one and only 
one transition between the first S+0 slope and the S_0 slope, 
and the opposite transition between the S_0 slope and the 
second S+0 slope. 

The cost of multislope runup is relatively small. The 
runup slopes can have the same weight as the first slope 
of multislope rundown. Therefore, only the opposite-polar 

ity slope has to be added, along with the logic to implement 
the algorithm. 

HP 3458A ADC Design 
The design of the HP 3458A's ADC is based on these 

theories for a multislope ADC. Decisions had to be made 
on how to control the ADC, what number base to use, how 
fast the integrator can be slewed and remain linear, how 
much current to force into the integrator (i.e., the size of 
the resistors), and many other questions. The decisions 
were affected by both the high-speed goals and the high-res 
olution goals. For example, very steep slopes are needed 
to achieve high speed, but steep slopes cause integrator 
circuits to behave too nonlinearly for high-resolution mea 
surement performance. 

One of the easier decisions was to choose a number base 
for the ADC's multislope rundown. Base e is the optimum 
to achieve the highest speed, but the task of accumulating 
an answer is difficult, requiring a conversion to binary. 
Base 2 and base 4 are both well-suited for binary systems 
and are close to base e. Base 2 and base 4 are actually 
equally fast, about 6% slower than base e, but base 2 uses 
twice as many slopes to achieve the same resolution. There 
fore, base 4 was chosen to achieve the required speed with 
minimum hardware cost. 

Microprocessors have always been used to control mul 
tislope ADCs, but the speed goals for the HP 3458A quickly 

V o  

SWb 

7 T  8T 

SWa 

SWb 

Fig.  5.  In tegrator  output  waveform for  mul t is lope runup.  The 
dashed  l i ne  shows  the  e f f ec t i ve  i n teg ra to r  ou tpu t  vo l t age  
swing. 

F ig .  6 .  I dea l l y ,  t hese  two  wave fo rms  wou ld  t r ans fe r  equa l  
charge into the integrator, but because of the different number 
of switch transit ions, they do not.  
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SWa 

SWb 

SWa 

SWb 

S + o  S -  S - o  S  +  S + o  
Pattern No. 1 

S + o  S -  S - o  S -  S + o  
Pattern No. 3 

SWa 

SWb 

SWa 

SWb 

S + o  S +  S - o  S -  S + o  
Pattern No. 2 

S + o  S +  S - o  S +  S + o  
Pattern No. 4 

Fig.  7.  Mul t is lope runup pat terns for  an algor i thm that  keeps 
the number of  swi tch t ransi t ions constant.  

eliminated the possibility of using a microprocessor to con 
trol the ADC algorithm. It was anticipated that the ADC 
clock frequency would have to be between 10 and 20 MHz, 
and making decisions at these rates requires dedicated 
hardware. Therefore, a gate array was chosen to implement 
state machines running at 20 MHz for ADC control. The 
ADC control and accumulator functions consume approx 
imately half of a 6000-gate CMOS gate array. The other half 

of the gate array is devoted to the timing and counting of 
triggers and a UART (universal asynchronous receiver/ 
transmitter) to transfer data and commands through a 2- 
Mbit/s fiber optic link to and from the ground-referenced 
logic (see article, page 31). 

The number of slopes and the magnitude of the currents 
for each slope are more subtle decisions. If the slope cur 
rents get too large, they stress the output stage of the inte 
grator's operational amplifier, which can cause nonlinear 
behavior. If the currents are too small, switch and amplifier 
leakage currents can become larger than the smallest slope 
current, and the slope current would not be able to converge 
the integrator toward zero. A minimum of a microampere 
for the smallest slope was set to avoid leakage current prob 
lems. Also, it was believed that the integrator could handle 
several milliamperes of input current and remain linear 
over five or six digits, but that less than a milliampere of 
input current would be required to achieve linearity over 
seven or eight digits. On the other hand, greater than a 
milliampere of current was needed to achieve the high 
speed reading rate goal. Therefore, a two-input ADC struc 
ture was chosen. 

As shown in Fig. 8, when making high-speed measure 
ments, the input voltage is applied through a 1 0-kÃÃ resistor, 
and the ADC's largest slopes, having currents greater than 
a milliampere, are used. When making high-resolution 
measurements, the input voltage is applied through a 50-kfl 
resistor and the largest slopes used have less than a milliam 
pere of current. The largest slope was chosen to be Si 024, 
having 1.2 /u.A of current. This led to a total of six slopes 
(S1024, S256, S64, S16, S4, and Si) with Si having about 
1.2 Â¡Â¿A of current. S1024 and S256 are both used during 
multislope runup; therefore, both polarities exist for both 
slopes. The Â±8256 slopes (0.3 mA) are used when the 
50-kohm input is used and both the Â±81024 and the Â±5256 
slopes (1.5 mA total) are used in parallel when the 10-kil 
input is used. The 8256 slope is 25% stronger than a full- 
scale input to the 50-kfi resistor, which allows it to keep 
the integrator from saturating. The 10-kfl input is five times 

+vre f  

-v, 

Fig .  8 .  S impl i f ied  HP 3458A ADC 
circuit. 
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stronger than the 50-kohm input: thus, by using both S1024 
and S256. 25% stronger reference slopes can be maintained 
during high-speed measurements. 

Integrator 
The integrator's operational amplifier behaves more non- 

linearly as the integrator slew rate (i.e.. the steepest slope) 
approaches the slew rate of the amplifier. Two factors de 
termine the integrator slew rate: the total current into the 
integrator and the size of the integrator capacitor. Wanting 
to keep the integrator slew rate less than 10V//u.s led to an 
integrator capacitor of 330 pF. This capacitor must have a 
very small amount of dielectric absorption since 50 fC of 
charge is one count. 

The integrator circuit has to respond to a change in refer 
ence current and settle to near 0.01% before the next pos 
sible switch transition (about 200 ns). It also has to have 
low voltage and current noise, about IOOV//J.S slew rate, a 
dc gain of at least 25,000, an offset voltage less than 5 mV, 
and a bias current of less than 10 n A. A custom amplifier 
design was necessary to achieve all the specifications. 

Resistor Network 
The resistor network has several requirements. The most 

stringent is to obtain the lowest ratio-tracking temperature 
coefficient possible. It is important to keep this coefficient 
low because the gain of the ADC is dependent on the ratio 
of the input resistor to the runup reference slope resistors. 
An overall temperature coefficient of 0.4 ppm/Â°C was 
achieved for the ADC. Even at this level, a temperature 
change of 0.1Â°C results in a five-count change in a full-scale 
8V2-digit measurement. (Autocalibration increases the gain 
stability to greater than 0.15 ppm/Â°C.) 

Another requirement for the resistor network is to have 
a low enough absolute temperature coefficient that non- 
linearities are not introduced by the self-heating of the 
resistors. For example, the 50-kil input resistor has a input 
voltage that ranges from +12V to -12V. There is a 2.88- 
milliwatt power difference between a 0V input and a 12V 
input. If this power difference causes the resistor to change 
its value, the result is a nonlinearity in the ADC. A 0.01Â°C 
temperature change in a resistor that has an absolute tem 
perature coefficient of 1 ppm/Â°C causes a one-count error 
in an SVi-digit measurement. The network used in the HP 
3458A's ADC shows no measurable self-heating non- 
linearities. 

The final requirement of the resistor network is that it 
maintain the ratios of the six slopes throughout the life of 
the HP3458A. The tightest ratio tolerance is approximately 
0.1% and is required to maintain linearity of the high-speed 
measurements. This is a relatively easy requirement. To 
maintain the ADC's SVz-digit differential linearity at less 
than 0.02 ppm requires ratio tolerances of only 3%. 

Switches 
A last major concern for the ADC design was the switches 

required to control the inputs and the slopes. Because the 
switches are in series with the resistors, they can add to 
the temperature coefficient of the ADC. A custom chip 
design was chosen so that each switch could be scaled to 
the size of the resistor to which it is connected. This allows 

the ADC to be sensitive to the ratio-tracking temperature 
coefficient of the switches and not to the absolute temper 
ature coefficient. Another advantage of the custom design 
is that it allows the control signals to be latched just before 
the drives to the switches. This resynchronizes the signal 
with the clock and reduces the timing jitter in the switch 
transitions. The result is a reduction in the noise of the 
ADC. 

Performance 
The performance of an ADC is limited by several non- 

ideal behaviors. Often the stated resolution of an ADC is 
limited by differential linearity or noise even though the 
number of counts generated would indicate much finer 
resolution. For example, the HP 3458A's ADC generates 
more than 9Vz digits of counts but is only rated at 8V2 digits 
because the ninth digit is very noisy and the differential 
linearity is about one eight-digit count. Therefore, when 
stating an ADC's speed and resolution, it is important to 
specify under what conditions the parameters are valid. 
Fig. 9 shows the speed-versus-resolution relationship of 
the HP 345 8 A ADC assuming less than one count of rms 
noise. 

Given a noise level, there is a theoretical limit to the 
resolution of an ADC for a given speed. It can be shown 
that the white noise bandwidth of a signal that is the output 
of an integration over time T is 

ADC Switch 
between 10-ki i  

and 50-ki !  Inputs 
at  100 us 

100 nV//Hz 
Theoretical Limit 

10 s 
6  8  

Measurement Resolution (Digits) 

Fig.  9.  HP 3458A ADC speed versus resolut ion for  one count 
of rms noise. 
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BW = 1/2T. 

If rundown took zero time then an integrating ADC could 
sample once every T seconds. At this rate, the counts of 
resolution, M, of an ADC are noise-limited to 

M = (VfsV2T)/Vn. 

where Vfs is the full-scale input voltagejo the ADC and Vn 
is the white noise of the ADC in V/VHz. Fig. 9 shows the 
best theoretical resolution for an ADC with rms noise of 
100 nV/VÃÃz and a full-scale input of 10 volts. The HP 
3458A comes very close to the theoretical limit of an ADC 
with a white noise of 130 nV/V^iz near the 7-digit resolu 
tion region. At lower resolutions the ADC's rundown time 
becomes a more significant portion of the overall measure 
ment time and therefore pulls the ADC away from the 
theoretical limit. At higher resolutions the 1/f noise of the 
ADC forces a measurement of zero several times within 
the measurement cycle to reduce the noise to the 8Vz-digit 
level. This also reduces the measurement speed. 

Another way of viewing the ADC's performance is to 
plot resolution versus aperture. The aperture is the integra 
tion time, that is, the length of runup. This is shown in 
Fig. 10 along with the 100-nV/VlÂ·lz noise limit and the 
ADC's resolution without regard to noise. At smaller aper 
tures, the HP 3458A's resolution is less than the theoretical 

1  f l S  

1 0 - k l l  I n p u t  
Idea l  Reso lu t ion  

10 
5 6 7 8 9  

M e a s u r e m e n t  R e s o l u t i o n  ( D i g i t s )  

Fig.  1 0.  HP 3458A ADC aperture ( runup t ime) versus resolu 
tion. 

noise limit because it is limited by noise in detecting the 
final zero of rundown. That is, the algorithm does not have 
enough resolution to achieve the theoretical resolution. 

Linearity 
High-resolution linearity was one of the major challenges 

of the ADC design. The autocalibration technique requires 
an integral linearity of 0.1 ppm and an differential linearity 
of 0.02 ppm. One of the more significant problems was 
verifying the integral linearity. The most linear commer 
cially available device we could find was a Kelvin-Varley 
divider, and its best specification was 0.1 ppm of input. 
Fig. 11 compares this with the ADC's requirements, show 
ing that it is not adequate. 

Using low-thermal-EMF switches, any even-ordered de 
viations from an ideal straight line can be detected by doing 
a turnover test. A turnover test consists of three steps: (1) 
measure and remove any offset, (2) measure a voltage, and 
(3) switch the polarity of the voltage (i.e., turn the voltage 
over) and remeasure it. Any even-order errors will produce 
a difference in the magnitude of the two nonzero voltages 
measured. Measurements of this type can be made to within 
0.01 ppm of a 10V signal. This left us with only the odd- 
order errors to detect. Fortunately, the U.S. National Bureau 
of Standards had developed a Josephson junction array 
capable of generating voltages from â€” 10V to + 10V. Using 
a 10V array we were able to measure both even-order and 
odd-order errors with confidence to a few hundredths of 
a ppm. Fig. 4a on page 23 shows the integral linearity error 
of an HP 3458 A measured using a Josephson junction array. 

The differential linearity can be best seen by looking at 
a small interval about zero volts. Here a variable source 
need only be linear within 1 ppm on its 100-mV range to 
produce an output that is within 0.01 ppm of 10 volts. Fig. 
4b on page 23 shows the differential linearity of an HP 
3458A. 

K e l v i n - V a r l e y  
S p e c i f i c a t i o n  

- 1 0 V  10V 
I n p u t  V o l t a g e  

F ig .  11 .  HP 3458  A  l i near i t y  spec i f i ca t ion  compared  w i th  a  
Kelvin-Varley divider. 
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Precision AC Voltage Measurements Using 
Digital  Sampling Techniques 
Instead of  t rad i t ional  DMM techniques such as thermal  
convers ion or  ana log computa t ion ,  the  HP 3458A DMM 
measures rms ac voltages by sampling the input signal and 
comput ing the rms value d ig i ta l ly  in  real  t ime.  Track-and- 
hold c i rcu i t  per formance is  cr i t ica l  to  the accuracy of  the 
method. 

by Ronald L.  Swerlein 

THE HP 3458A DIGITAL MULTIMETER implements 
a digital method for the precise measurement of rms 
ac voltages. A technique similar to that of a modern 

digitizing oscilloscope is used to sample the input voltage 
waveform. The rms value of the data is computed in real 
time to produce the final measurement result. The HP 
3458A objectives for high-precision digital ac measure 
ments required the development of both new measurement 
algorithms and a track-and-hold circuit capable of fulfilling 
these needs. 

Limitat ions of  Conventional  Techniques 
All methods for making ac rms measurements tend to 

have various performance limitations. Depending on the 
needs of the measurement, these limitations take on differ 
ent levels of importance. 

Perhaps the most basic specification of performance is 
accuracy. For ac measurements, accuracy has to be 
specified over a frequency band. Usually, the best accuracy 
is for sine waves at midband frequencies (typically 1 kHz 
to 20 kHz). Low-frequency accuracy usually refers to fre 
quencies below 200 Hz (some techniques can work down 
to 1 Hz). Bandwidth is a measure of the technique's perfor 
mance at higher frequencies. 

Linearity is another measure of accuracy. Linearity is a 
measure of how much the measurement accuracy changes 
when the applied signal voltage changes. In general, linear 
ity is a function of frequency just as accuracy is, and can 

be included in the accuracy specifications. For instance, 
the accuracy at 1 kHz may be specified as 0.02% of reading 
+ 0.01% of range while the accuracy at 100 kHz may be 
specified as 0.1% of reading + 0.1% of range. The percent- 
of-range part of the specification is where most of the linear 
ity error is found. 

If a nonsinusoid is being measured, most ac rms measure 
ment techniques exhibit additional error. Crest-factor error 
is one way to characterize this performance. Crest factor 
is defined as the ratio of the peak value of a waveform to 
its rms value. For example, a sine wave has a crest factor 
of 1.4 and a pulse train with a duty cycle of 1/25 has a 
crest factor of 5. Even when crest factor error is specified, 
one should use caution when applying this additional error 
if it is not given as a function of frequency. A signal with 
a moderately high crest factor may have significant fre 
quency components at 40,000 times the fundamental fre 
quency. Thus crest factor error should be coupled with 
bandwidth information in estimating the accuracy of a mea 
surement. In some ac voltmeters, crest factor specifications 
mean only that the voltmeter's internal amplifiers will re 
main unsaturated with this signal, and the accuracy for 
nonsinusoids may actually be unspecified. 

Some of the secondary performance specifications for 
rms measurements are short-term reading stability, settling 
time, and reading rate. These parameters may have primary 
importance, however, depending on the need of the mea 
surement. Short-term stability is self-explanatory, but the 
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difference between settling time and reading rate is some 
times confusing. Settling time is usually specified as the 
time that one should wait after a full-scale signal amplitude 
change before accepting a reading as having full accuracy. 
Reading rate is the rate at which readings can be taken. Its 
possible for an ac voltmeter that has a one-second settling 
time to be able to take more than 300 readings per second. 
Of course, after a full-scale signal swing, the next 299 read 
ings would have degraded accuracy. But if the input signal 
swing is smaller than full-scale, the settling time to 
specified accuracy is faster. Therefore, in some situations, 
the 300 readings/second capability is actually useful even 
though the settling time is one second. 

The traditional methods for measuring ac rms voltage 
are thermal conversion and analog computation. The basis 
of thermal conversion is that the heat generated in a resis 
tive element is proportional to the square of the rms voltage 
applied to the element. A thermocouple is used to measure 
this generated heat. Thermal conversion can be highly ac 
curate with both sine waves and waveforms of higher crest 
factor. Indeed, this accuracy is part of the reason that the 
U.S. National Institute of Standards and Technology (for 
merly the National Bureau of Standards) uses this method 
to supply ac voltage traceability. It can also be used at very 
high frequencies (in the hundreds of MHz). But thermal 
conversion tends to be slow (near one minute per reading) 
and tends to exhibit degraded performance at low frequen 
cies (below 20 Hz). The other major limitation of thermal 
conversion is dynamic range. Low output voltage, low ther 
mal coupling to the ambient environment, and other factors 
limit this technique to a dynamic range of around 10 dB. 
This compares to the greater than 20 dB range typical of 
other techniques. 

Analog computation is the other common technology 
used for rms measurements. Essentially, the analog con 
verter uses logging and antilogging circuitry to implement 
an analog computer that calculates the squares and square 
roots involved in an rms measurement. Since the rms av 
eraging is implemented using electronic filters (instead of 
the physical thermal mass of the thermal converter), analog 
computation is very flexible in terms of reading rate. This 
flexibility is the reason that this technique is offered in the 
HP 3458A Multimeter as an ATE-optimized ac measure 
ment function (SETACV ANA). Switchable filters offer set 
tling times as fast as 0.01 second for frequencies above 10 
kHz. With such a filter, reading rates up to 1000 readings/ 
second may be useful. 

Analog computation does have some severe accuracy 
drawbacks, however. It can be very accurate in the midband 
audio range, but both its accuracy and its linearity tend to 
suffer severe degradations at higher frequencies. Also, the 
emitter resistances of the transistors commonly used to 
implement the logging and antilogging functions tend to 
cause errors that are crest-factor dependent. 

Digi ta l  AC Technique 
Dig i t a l  a c  i s  ano the r  way  to  measu re  t he  rms  va lue  o f  a  

s i g n a l .  T h e  s i g n a l  i s  s a m p l e d  b y  a n  a n a l o g - t o - d i g i t a l  c o n  
v e r t e r  ( A D C )  a t  g r e a t e r  t h a n  t h e  s i g n a l ' s  N y q u i s t  r a t e  t o  
a v o i d  a l i a s i n g  e r r o r s .  A  d i g i t a l  c o m p u t e r  i s  t h e n  u s e d  t o  
compute  the  rms va lue  of  the  appl ied  s ignal .  Digi ta l  ac  can  

exh ib i t  exce l l en t  l inea r i ty  tha t  doesn ' t  degrade  a t  h igh  f re  
q u e n c i e s  a s  a n a l o g  a c  c o m p u t a t i o n  d o e s .  A c c u r a c y  w i t h  
a l l  waveforms is  comparable  to  thermal  techniques  wi thout  
the i r  long  se t t l ing  t imes .  I t  i s  poss ib le  to  measure  low f re  
quencies  faster  and with bet ter  accuracy than other  methods 
u s i n g  d i g i t a l  a c  m e a s u r e m e n t s .  A l s o ,  t h e  t e c h n i q u e  l e n d s  
i tself  to autocalibration of both gain and frequency response 
e r ro r s  us ing  on ly  an  ex te rna l  dc  vo l t age  s t andard  ( see  a r t i  
cle,  page 22).  

I n  i t s  ba s i c  fo rm,  a  d ig i t a l  rms  vo l tme te r  wou ld  s ample  
t h e  i n p u t  w a v e f o r m  w i t h  a n  A D C  a t  a  f a s t  e n o u g h  r a t e  t o  
a v o i d  a l i a s i n g  e r r o r s .  T h e  s a m p l e d  v o l t a g e  p o i n t s  ( i n  t h e  
fo rm of  d ig i t a l  da ta )  would  then  be  opera ted  on  by  an  rms  
e s t ima t ion  a lgo r i t hm.  One  example  i s  shown  be low:  

N u m  =  n u m b e r  o f  d i g i t a l  s a m p l e s  
S u m  =  s u m  o f  d i g i t a l  d a t a  
Sumsq  =  sum o f  squa re s  o f  d ig i t a l  da t a  
acrms = SQR((Sumsq-Sum*Sum/Nurn)/Num) 

Concep tua l ly ,  d ig i t a l  rms  es t imat ion  has  many  po ten t ia l  
a d v a n t a g e s  t h a t  c a n  b e  e x p l o i t e d  i n  a  d i g i t a l  m u l t i m e t e r  
(DMM) .  Accu racy ,  l i nea r i t y  ove r  t he  measu remen t  r ange ,  
f requency  response ,  shor t - te rm read ing  s tab i l i ty ,  and  c res t  
f a c t o r  p e r f o r m a n c e  c a n  a l l  b e  e x c e l l e n t  a n d  l i m i t e d  o n l y  
by  t he  e r ro r s  o f  t he  ADC.  The  pe r fo rmance  l im i t a t i ons  o f  
d ig i ta l  ac  a re  unknown a t  the  p resen t  t ime  s ince  ADC tech  
no logy  i s  con t inua l ly  improv ing .  

Read ing  ra tes  can  be  as  fas t  a s  theore t i ca l ly  poss ib le  be  
c a u s e  i d e a l  a v e r a g i n g  f i l t e r s  c a n  b e  i m p l e m e n t e d  i n  

f i rmware .  Low-frequency se t t l ing  t ime can  be  improved by  
measur ing  the  pe r iod  o f  t he  inpu t  wavefo rm and  sampl ing  
o n l y  o v e r  i n t e g r a l  n u m b e r s  o f  p e r i o d s .  T h i s  w o u l d  a l l o w  
a 1-Hz waveform to be measured in only two seconds â€” one 
s e c o n d  t o  m e a s u r e  t h e  p e r i o d  a n d  o n e  s e c o n d  t o  s a m p l e  
the  wavefo rm.  

Synchronous Subsampl ing 
A thermal converter can measure ac voltages in the fre 

quency band of 20 Hz to 10 MHz with state-of-the-art accu 
racy. Sampling rates near 50 MHz are required to measure 
these same frequencies digitally, but present ADCs that can 
sample at this rate have far less linearity and stability than 
is required for state-of-the-art accuracy in the audio band. 
If the restriction is made that the signal being measured 
must be repetitive, however, a track-and-hold circuit can 
be used ahead of a slower ADC with higher stability to 
create an ADC that can effectively sample at a much higher 
rate. The terms "effective time sampling," "equivalent time 

Analog-to- 
Digital 

Converter 

Trigger Level 
Circuit 

Timing 
Circuitry 

Fig. 1 .  Simpl i f ied block diagram of a Subsampl ing ac vol tme 
ter. 
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sampling," and "subsampling" are used interchangeably 
to describe this technique. 

The concept of subsampling is used by digitizing oscil 
loscopes to extend their sample rate to well beyond the 
intrinsic speed of the ADC. The concept is to use a trigger 
level circuit to establish a time reference relative to a point 
on a repetitive input signal. A timing circuit, or time base, 
is used to select sample delays from this reference point 
in increments determined by the required effective sam 
pling rate. For example, moving the sampling point in 10-ns 
increments corresponds to an effective sampling rate of 
100 MHz. A block diagram of a subsampling ac voltmeter 
is shown in Fig. 1. 

Fig. 2 is a simple graphic example of subsampling. Here 
we have an ADC that can sample at the rate of five samples 
for one period of the waveform being measured. We want 
to sample one period of this waveform at an effective rate 
of 20 samples per period. First, the timing circuit waits for 
a positive zero crossing and then takes a burst of five read 
ings at its fastest sample rate. This is shown as "First Pass" 
in Fig. 2. On a subsequent positive slope, the time base 
delays an amount of time equal to one fourth of the ADC's 
minimum time between samples and again takes a burst 
of five readings. This is shown as "Second Pass." This 
continues through the fourth pass, at which time the 
applied repetitive waveform has been equivalent time sam 
pled as if the ADC could acquire data at a rate four times 
faster than it actually can. 

The digital ac measurement technique of the HP 3458A 
is optimized for precision calibration laboratory measure 
ments. Short-term measurement stability better than 1 ppm 
has been demonstrated. Absolute accuracy better than 100 
ppm has been shown. This accuracy is achieved by auto 
matic internal adjustment relative to an external 10V dc 
standard. No ac source is required (see article, page 22). 
The internal adjustments have the added benefit of provid 
ing a quick, independent check of the voltage ratios and 
transfers that are typically performed in a standards labo- 

First Pass 

Second Pass 

M  f  K  M  f t  f  

t / f  t  t  M  M X  M  t  t  t  t    

Fourth Pass 

t / f  *  *  I  I  T  I  T  f H  t  T  t  T  M  T  f  I  I  

Fig. 2. An example oÃ subsampling. 

ratory every day. Fast, accurate 1-Hz measurements and 
superb performance with nonsinusoids allow calibration 
laboratories to make measurements easily that were previ 
ously very difficult. 

The HP 3458A enters into the synchronously subsampled 
ac mode through the command SETACV SYNC. For optimal 
sampling of the input signal, one must determine the period 
of the signal, the number of samples required, and the 
signal bandwidth. The measurement resolution desired 
and the potential bandwidth of the input waveform are 
described using the commands RES and ACBAND. The 
period of the input signal is measured by the instrument. 
The more the HP 3458A knows about the bandwidth of 
the input and the required measurement resolution, the 
better the job it can do of optimizing accuracy and reading 
rate. Default values are assumed if the user chooses not to 
enter more complete information. An ac measurement 
using the SYNC mode appears to function almost exactly 
the same to the user as one made using the more conven 
tional analog mode. 

Subsampled AC Algor i thm 
The algorithm applied internally by the HP 3458A during 

each subsampled ac measurement is totally invisible to the 
user. The first part of a subsampled ac measurement is 
autolevel. The input waveform is randomly sampled for a 
period of time long enough to get an idea of its minimum 
and maximum voltage points. This time is at least one cycle 
of the lowest expected frequency value (the low-frequency 
value of ACBAND). The trigger level is then set to a point 
midway between the minimum and maximum voltages, a 
good triggering point for most waveforms. In the unlikely 
event that this triggering point does not generate a reliable 
trigger, provision is made for the user to generate a trigger 
signal and apply it to an external trigger input. An example 
of such a waveform is a video signal. Even though video 
signals can be repetitive, they are difficult to trigger on 
correctly with just a standard trigger level. 

With the trigger level determined, the period of the input 
waveform is measured. The measured period is used along 
with the global parameter RES to determine subsampling 
parameters. These parameters are used by the timing cir 
cuitry in the HP 3458A to select the effective sample rate, 
the number of samples, and the order in which these sam 
ples are to be taken. In general, the HP 3458A tries to 
sample at the highest effective sample rate consistent with 
meeting the twin constraints of subsampling over an inte 
gral number of input waveform periods and restricting the 
total number of samples to a minimum value large enough 
to meet the specified resolution. This pushes the frequency 
where aliasing may occur as high as possible and also per 
forms the best rms measurement of arbitrary waveforms of 
high crest factor. The number of samples taken will lie 
somewhere between 4/RES and 8/RES depending on the 
measured period of the input waveform. 

The final step is to acquire samples. As samples are taken, 
the data is processed in real time at a rate of up to 50,000 
samples per second to compute a sum of the readings 
squared and a sum of the readings. After all the samples 
are taken, the two sum registers are used to determine 
standard deviation (ACV function), or rms value (ACDCV 
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function). For example, suppose a 1-kHz waveform is being 
measured and the specified measurement resolution is 
0.001%. When triggered, the HP 3458A will take 400,000 
samples using an effective sample rate of 100 MHz. The 
timing circuit waits for a positive-slope trigger level. Then, 
after a small fixed delay, it takes a burst of 200 readings 
spaced 20 /us apart. It waits for another trigger, and when 
this occurs the timing circuit adds 10 ns to the previous 
delay before starting another burst of 200 readings. This is 
repeated 2,000 times, generating 400,000 samples. Effec 
tively, four periods of the 1-kHz signal are sampled with 
samples placed every 10 ns. 

Sources of  Error 
Internal time base jitter and trigger jitter during subsam- 

pling contribute measurement uncertainty to the rms mea 
surement. The magnitude of this uncertainty depends on 
the magnitude of these timing errors. The internal time 
base jitter in the HP 3458A is less than 100 ps rms. Trigger 
jitter is dependent on the input signal's amplitude and 
frequency, since internal noise will create greater time un 
certainties for slow-slew-rate signals than for faster ones. 
A readily achievable trigger jitter is 100 ps rms for a 1-MHz 
input. Fig. 3 is a plot generated by mathematical modeling 
of the performance of a 400,000-sample ac measurement 
using the HP 3458A's subsampling algorithm (RES = 
0.001%) in the presence of 100-ps time base and trigger 
jitters. The modeled errors suggest the possibility of stable 
and accurate ac measurements with better than 6-digit ac 
curacy. 

Errors other than time jitter and trigger jitter limit the 
typical absolute accuracy of the HP 3458A to about 50 ppm, 
but there is reason to believe that short-term stability is 
better than 1 ppm. Many five-minute stability tests using 
a Datron 4200 AC Calibrator show reading-to-reading stan 
dard deviations between 0.7 ppm and 3 ppm. Other mea 
surements independently show the Datron 4200 to have 
similar short-term stability. More recently, tests performed 
using a Fluke 5700 Calibrator, which uses a theoretically 
quieter leveling loop, show standard deviations under 0.6 
ppm. 

The above algorithm tries to sample the applied signal 
over an integral number of periods. To do this, the period 
of the signal must first be measured. Errors in measuring 
the period of the input waveform will cause the subsequent 
sampling to cover more or less than an integral number of 
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periods. Thus, the accuracy of the subsampled ac rms mea 
surement is directly related to how accurately the period 
of the input waveform is known relative to the internal 
sample time base clock. 

Period measurements in the HP 3458A are performed 
using reciprocal frequency counting techniques. This 
method allows accuracy to be traded off for measurement 
speed by selecting different gate times. A shorter gate time 
contributes to a faster measurement, but the lower accuracy 
of the period determination contributes to a less accurate 
ac measurement. Fig. 4 is a graph of the error introduced 
into the rms measurement by various gate times. At high 
frequencies, this error is a constant dependent on the res 
olution of the frequency counter for a given gate time. At 
lower in t r igger  t ime j i t ter  increases,  causing in 
creased error, because random noise has a larger effect on 
slower signals. At still lower frequencies, where the period 
being measured is longer than the selected gate time, this 
error becomes constant again. This is because the gate time 
is always at least one period in length, and as the frequency 
is lowered, the gate time increases just fast enough to cancel 
the effect of increasing trigger jitter. 

Any violation of the restriction that the input waveform 
be repetitive will also lead to errors. A common condition 
is amplitude and frequency modulation of the input. If this 
modulation is of a fairly small magnitude and is fast com 
pared to the total measurement time this violation of the 
repetitive requirement will probably be negligible. At most, 
reading-to-reading variation might increase slightly. If 
these modulations become large, however, subsampled ac 
accuracy can be seriously compromised. The signal sources 
typically present on a lab bench or in a calibration labora 
tory work quite well with the subsampling algorithm of 
the HP 3458A. 

Random noise spikes superimposed on an input can 
make an otherwise repetitive input waveform appear non- 
repetitive. Induced current caused by motors and electrical 
devices turning on and off is just one of many ways to 
generate such spikes. Large test systems tend to generate 
more of this than bench and calibration laboratory environ 
ments. Low-voltage input signals (below 100 mV) at low 

0.1% 
G a t e  0 . 1  m s  

G a t e  1 . 0 m s  
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F ig .  3 .  Subsampl ing  e r ro rs  resu l t i ng  f rom t im ing  uncer ta in  
ties. 
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Fig.  4 .  Subsampl ing er ror  as a funct ion of  gate t ime.  
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frequencies are the signals most susceptible to these errors. 
Two ways are provided by the HP 3458A to deal with 

these potential errors. The first is to use the internal 80-kHz 
low-pass trigger filter to reduce high-frequency trigger 
noise (LFILTER ON). If this is not enough, provision is made 
for accepting external synchronization pulses. In principle, 
getting subsampled ac to work in a noisy environment is 
no more difficult than getting a frequency counter to work 
in the same environment. 

If nonsinusoidal signals are being measured, the subsam- 
pling algorithm has some additional random errors that 
become greater for signals of large crest factor. All non- 
sinusoidal repetitive signals have some of their spectral 
energy at frequencies higher than their fundamental fre 
quency. Signals of high crest factor generally have more of 
this high-frequency energy than those of lower crest factor. 
Random timing jitter, which tends to affect higher frequen 
cies the most, will create measurement errors that are 
greater for large-crest-factor signals. These random errors 
can be reduced by specifying a higher-resolution measure 
ment, which forces more samples per reading to be ac 
quired. The additional measurement error induced by a 
signal crest factor of 5 can be as low as 50 ppm in the HP 
3458A. 

Track-and-Hold Circuit  
Track-and-hold performance is critical to the accuracy 

of digital ac measurements. Track-and-hold linearity, 
bandwidth, frequency flatness, and aperture jitter all affect 
the error in a sampled measurement. To meet the HP 3458A 
performance objectives, track-and-hold frequency response 
flatness of Â±0.0015% (15 ppm) was required from dc to 50 
kHz, along with a 3-dB bandwidth of 15 MHz. In addition, 
16-bit linearity below 50 kHz and low aperture jitter were 
needed. A custom track-and-hold amplifier was developed 
to meet these requirements. 

The most basic implementation of a track-and-hold cir 
cuit â€” a switch and a capacitor â€” is shown in Fig. 5. If the 
assumption is made that the switch is perfect (when open 
it has infinite impedance and when closed it has zero im 
pedance) and if it assumed that the capacitor is perfect (no 
dielectric absorption), then this is a perfect track-and-hold 
circuit. The voltage on the capacitor will track the input 
signal perfectly in track mode, and when the switch is 
opened, the capacitor will hold its value until the switch 
is closed. Also, as long as the buffer amplifier's input im 
pedance is high and well-behaved, its bandwidth can be 
much lower than the bandwidth of the signal being sam 
pled. When the switch is opened, the buffer amplifier's 
output might not have been keeping up with the input 
signal, but since the voltage at the input of the amplifier 
.is now static, the buffer will eventually settle out to the 
hold capacitor's voltage. 

The problem with building Fig. 5 is that it is impossible 
at the present time to build a perfect switch. When the 
switch is opened it is not truly turned off; it has some 

V o u t  

Fig.  5 .  Bas ic  t rack-and-ho ld  c i rcu i t  w i th  idea l  components .  

residual leakage capacitance and resistance. In hold mode, 
there is some residual coupling to the input signal because 
of this leakage capacitance. This error term is commonly 
called feedthrough. Another error term is pedestal voltage. 
The process of turning real-world switches off induces a 
charge transfer that causes the hold capacitor to experience 
a fixed voltage step (a pedestal) when entering hold mode. 

Another problem with Fig. 5 is that it is impossible in 
the real world to build a perfect capacitor. Real-world 
capacitors have nonideal behaviors because of dielectric 
absorption and other factors. This dielectric absorption will 
manifest itself as a pedestal that is different for different 
input-voltage slew rates. Even if the capacitor is refined 
until it is "perfect enough," the switch and the buffer 
amplifier may contribute enough capacitance in parallel 
with Chold that the resultant capacitance has dielectric ab 
sorption problems. 

Fig. 6 is an implementation of Fig. 5 using real-world 
components. The switch is implemented with a p-channel 
MOS FET. When the drive voltage is â€”15V, the circuit is 
in track mode. If the FET has an on resistance of R, then 
the 3-dB bandwidth of the circuit is l/(27rRChold). Cdg (the 
drain-to-gate capacitance) is always in parallel with Cho|d, 
so even if Choid and the buffer amplifier have low dielectric 
absorption, the dielectric absorption associated with Cdg 
will cause this circuit to exhibit pedestal changes with 
different input signal slew rates. 

When the drive voltage is changed to +15V, the FET 
turns off and puts the circuit into hold mode. The drain-to- 
source capacitance (Cds) contributes feedthrough error 
equal to Cds/Chold. If the drive voltage changes infinitely 
fast, the pedestal error is (30V)(Cdg/Chold). If the drive volt 
age changes at a slower rate, the pedestal error will be less, 
but a gain error term will now appear. Assume that the 
drive voltage changes slowly relative to the bandwidth of 
the track-and-hold circuit (l/(27rRC|u,id)). Assume also that 
the FET is on until the drive voltage is equal to Vin and 
that it is off when the drive voltage is greater than Vin. The 
process of going into hold mode begins with the drive 
voltage changing from â€”15V to +15V. As the voltage 
changes from â€”15V to Vin, C^0[Â¿ experiences very little 
pedestal error since the current CtÂ¡g(dv/dt) mostly flows 
into the FET, which is on. When the drive voltage reaches 
Vin> the FET turns off and all of the Cdg(dv/dt) current flows 
into Chold. The pedestal in this case is (15V -- Vin)(Cdg/ 
Choid)- Notice that this is a smaller pedestal than in the 
previous case where the drive voltage changed infinitely 
fast. Also notice that there is a Vin term in the pedestal 
equation. This is a gain error. 

Pedestal errors are easy to deal with in the real world. 
There are a number of easy ways to remove offset errors. 

C d s  

Gate 
Drive 

- 1 5 V ,  + 1 5 V  V  

V o u t  

Fig.  6 .  8as/c  t rack-and-ho ld  c i rcu i t  w i th  rea l  components .  
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Gain errors are not necessarily bad either, since ideal gain 
errors can be corrected with a compensating gain stage. 
But because Cdg is a semiconductor capacitance, it tends 
to change value with the applied voltage. This leads to a 
form of error called nonlinearity. In general, gain errors 
that are caused by semiconductor capacitances (like that 
calculated in the above paragraph) lead to nonlinearity 
errors. A track-and-hold circuit application that is affected 
by nonlinearity errors is sampling a signal and calculating 
its Fourier transform. Feedthrough and dielectric absorp 
tion errors also are hard to deal with. Commonly, a different 
track-and-hold architecture is used to achieve better linear 
ity, feedthrough, and dielectric absorption performance. 

Fig. 7 is a diagram of the track-and-hold architecture 
used most often to achieve 16-bit or better resolution along 
with 2-MHz bandwidths. In track mode the drive voltage 
is - 15V, turning Ql on. The output voltage is the inverse 
of the input voltage. The inverse of the input voltage is 
impressed across Chold during track mode. When the drive 
voltage is changed to + 15V, Ql turns off and Vout is held. 

Fig. 7 has several advantages over Fig. 6. Since the switch 
(Ql) is at a virtual ground point, the pedestal voltage is 
constant with Vin and equal to (30V)(Cdg/Chold). This is 
because the drain and source are always at zero so that 
when Ql is turned off the same amount of charge is always 
transferred to Choid. Also, since no point on Ql moves with 
Vin, the FET does not contribute any dielectric absorption 
error terms. 

Fig. 7 does have feedthrough error. It is equal to V2(Cds/ 
Choid)- Theoretically this error could be substantially elimi 
nated if a second switch could be turned on after entering 
hold mode to ground the junction of the two resistors. 
However, a real drawback of this circuit is that the op amp 
Ul has to have the same bandwidth and slew rate capabil 
ities as the signal being sampled. In the descriptions of 
Figs. 5 and 6 it was mentioned that the buffer amplifier 
need not have the same bandwidth as the signal being 
sampled. So in summary, Fig. 7 eliminates some of the 
errors of the previous circuits but introduces at least one 
new limitation. 

HP 3458A Track-and-Hold Archi tecture 
Fig. 8 is a modification of Fig. 6 that has most of the 

advantages and very few of the disadvantages of the previ 
ous circuits. Here the switch is implemented with two 
n-channel JFETs and one p-channel MOS FET. In track 
mode the JFETs Ql and Q2 are on and the MOS FET Q3 
is off. Ql and Q2 are on because their gate-to-source volt 
ages are zero, since their gates track Vin. Their gates track 
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Vin because in track mode point B is an open circuit and 
CR1 and CR2 act like resistances of about 1 kÃl CR1 and 
CR2 are current regulator diodes, which are simply JFETs 
with their gates wired to their sources. In hold mode, Ql 
and Q2 are off and Q3 is on. Ql is now off because point 
B is now at - 15V and thus the gate of Ql is at - 15V. CR2 
now appears as a current source of high resistance and the 
gate of Q2 is clamped at about 7V below Vout, turning off 
Q2. Q3 is on because its gate (point A) is at â€”15V. 

In hold mode, feedthrough error is very low, since the 
feedthrough caused by Cdsl is shunted into the ac ground 
created by Q3's being on. Also, the pedestal error caused 
by Cdg2 is constant for all Vin , since the gate of Q2 is clamped 
at 7V below Vout. Since Vout is tracking Vin during track 
mode (or will settle out to Vin after hold mode is entered), 
the pedestal error caused by Cdg2 is (- 7V)(Cdg2/Choid) and 
has no Vin dependent terms. Therefore it makes no differ 
ence to the linearity errors of the track-and-hold circuit 
whether Cdg2 is nonlinear with bias voltage. 

It is not so obvious that Cds2 contributes almost nothing 
to the pedestal errors and the nonlinearity errors of the 
circuit. In addition to being a T-switch that reduces feed- 
through errors in hold mode, Ql, Q2, and Q3 when 
switched in the correct sequence act to remove almost all 
of the pedestal errors caused by Cds2. This is very important, 
since Cds2 is nonlinear, and if its pedestal errors remained, 
the linearity of the circuit would be no better than that of 
Fig. 6. Ql is selected such that its pinchoff voltage (Vgsoff) 
is greater than that of Q2. Thus, as point B is driven to 
-15V, Q2 turns off before Ql. Once Q2 is off, the only 
coupling path to Choid is through the capacitance Cds2. 

Fig. 9 shows the various waveforms present in the circuit. 
When Ql is finally turned off, the voltage on Cl has a 
pedestal error of (Vin l5V)(Cd^/C^). This pedestal 
couples into Choid through Cds2. The magnitude is (Vin - 
15V)(Cdgl/C1)(Cds2/Chold). Since Cdgl is nonlinear and the 
coupling has a Vin dependent term, the pedestal on Choid 
now has a nonlinear component. But after Ql and Q2 are 
off, point A is driven to - 15V, turning Q3 on. C-Â¡ is now 
connected to Vout through the on resistance of Q3 and ap 
proaches the voltage Voul. This voltage movement, which 

_  r ~  .  '  "  -  

T r a c k :  B  =  O p e n  
A  =  + 1 5 V  

H o l d :  B  =  - 1 5 V  
A  =  - 1 5 V  

Fig.  7 .  Convent ional  t rack-and-hold arch i tecture.  

CR1, CR2: 
ldÂ« = 1 mA Â£ 

Fig.  8 .  HP 3458A t rack-and-ho ld  arch i tec ture.  

-15V 
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V i n -  
Pedestal  

Voot  

V i n "  

VC1 

G )  G o e s  L o w  Q3 Turns  On 

Fig.  9.  Waveforms in the c i rcui t  o f  F ig.  8.  

is of the same magnitude as C-^'s previous change but in 
the opposite direction, couples into Chold through Cds2 and 
totally removes the pedestal error previously coupled into 
Chold through Cds2. 

Another point that also might not be so obvious is that 
Ql, Q2, and Q3 do not contribute any dielectric absorption 
errors to the track-and-hold circuit. Since in track mode 
the drains, sources, and gates of Ql and Q2 are at the same 
potential (Vin), none of the FET capacitances has charge 
on it before it is put in hold mode. Therefore, the charge 
transferred to Choid through the FET capacitances when 
hold mode is entered is the same for any value or slew rate 
of Vin, so it doesn't matter whether the FET capacitances 
have high dielectric absorption. 

Summary 
The performance of the HP 3458A with sinusoidal and 

nonsinusoidal inputs is known to be very good. The DNÃN! 
was tested against a synthesized arbitrary waveform 
generator under development at the U.S. National Bureau 
of Standards which was capable of generating sine waves 
and ANSI-standard distorted sine waves with an absolute 
uncertainty of 10 ppm. The HP 3458A measured all of the 
various test waveforms with errors ranging from 5 ppm to 
50 ppm for 7V rms inputs from 100 Hz to 10 kHz. 

The digital ac measurement capability of the HP 3458A 
combines the best features of the traditional thermal and 
analog computational ac rms techniques in addition to add 
ing several advantages of its own. Measurement accuracies 
for digital ac are comparable to thermal techniques for both 
sinusoidal (crest factor 1.4) and large-crest-factor non- 
sinusoidal waveforms. Like analog computation, digital ac 
reading rates are reasonably fast compared to thermal rms 
techniques. The major advantages of digital ac include 
linearity superior to traditional analog rms detection 
methods and significantly faster low-frequency rms ac mea 
surements (less than six seconds for a 1-Hz input). Short- 
term dif stability is excellent, allowing previously dif 
ficult characterizations to be performed easily. 
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Calibration of an 81/2-Digit Multimeter from 
Only Two External  Standards 
Internal  t ransfer  standards and autocal ibrat ion s impl i fy  
external calibration and extend the period between external 
cal ibrat ions to two years. 

by Wayne C.  Goeke,  Ronald L.  Swer le in ,  Stephen B.  Venzke,  and Scott  D.  Stever  

ONE OF THE EARLIEST PRODUCT CONCEPTS for 
the HP 3458A Digital Multimeter was to develop 
a means for calibrating its measurement accuracies 

from only two external reference standards. This is not 
possible with the traditional design for a DMM, which 
requires independent adjustment of the full-scale gain and 
zero offset for each measurement range and function. 

Calibration is a process in which individual gain and 
offset values are adjusted, manually or electronically, to 
yield minimum error relative to an applied input, as shown 
in Fig. 1. Gain and offset calibration values are generally 
determined using precision ratio transfer measurements 
relative to a smaller set of working standards whose errors 
are directly traceable to national standards. In the United 
States, standards are kept by the National Institute of Stan 
dards and Technology (NIST), formerly the National Bureau 
of Standards (NBS). DC voltages are often derived from a 
1.018-volt saturated electrochemical cell known as a Wes- 
ton standard cell. The output voltage is divided, or other 
wise ratioed, to yield other traceable values. For example, 
the output would be divided by 10.18 to produce 0.1V. 
The ratio transfer process is, in general, different for each 
calibration value. It is prone to both random and systematic 
errors, which may propagate undetected into instrumenta 
tion through the calibration process. This calibration (or 
verification) uncertainty will produce a "floor" measure 
ment error sometimes equal to or greater than the uncer 
tainty of the instrument alone. 

The objectives for two-source calibration are to reduce 
this floor uncertainty and to provide an independent 
method to increase confidence in the overall calibration 
process. The HP 3458A uses a highly linear analog-to-digi- 
tal converter (ADC) to measure the ratio between a trace 
able reference and its divided output. The ADC performs 
the function of the precise ratio transfer device. 

Sources of  Error  
The errors in any ratio measurement can be divided into 

two general types: differential errors (D) and integral errors 
(I). A differential error is a constant percent of full scale 
and is independent of the input. These errors are handled 
like dc offsets. An integral error is a function of the input, 
and the relationship is usually nonlinear. These errors are 
generally thought of as gain errors. The maximum total 
error can be expressed as: 

EJx) = I(x/100%) + D, 

where x is the input to the ratio device and E^x) is the 
error, both expressed as a percent of full scale. The general 
form of the error bound is shown in Fig. 2. 

What is of concern is the error in the output or measured 
value expressed as a percent of that value. Expressed in 
this form, the maximum error is: 

E2(x) = I + D(100%/x), 

Where E2(x) is the total error in the output or measured 
value expressed as a percent of x. The general form of this 
error bound is shown in Fig. 3. For ratios less than one, 
the total error is dominated by the differential errors of the 
ratio transfer device. Since the differential error term is 
equal to the differential linearity error multiplied by one 
over the divider ratio, this error grows to infinity as the 
divider ratio grows smaller. 

HP 3458A Uncertainty 
The design goal for the HP 3458A DMM was for internal 

ratio transfer errors to be equal to or lower than those 
achievable with commercially available external ratio di 
viders. This set the total ratio measurement error (linearity) 
requirement for the ADC for a 10:1 transfer to approxi 
mately 0.5 ppm of output or 0.05 ppm of input. 

Fig. 4 illustrates the integral and differential linearity 
achieved with the HP 3458A ADC design. The test data 
was generated using a Josephson junction array intrinsic 
voltage standard (see "Josephson Junction Arrays," page 

Calibrated , 

Uncalibrated 

Input (x) 

Fig.  1 .  Cal ibrated and uncal ibrated gain and of fset  in a mea 
surement. 

22  HEWLETT-PACKARD JOURNAL APRIL  1989  

© Copr. 1949-1998 Hewlett-Packard Co.



Differential 
Integral 

H    1 -  

100% 
Percent of Range 

Fig.  2.  L inear i ty  error  as a percent  of  range.  

24). Fig. 4a shows typical deviation from a straight line for 
the input voltage range from minus full scale to plus full 
scale expressed in ppm of full scale. This expresses the 
test data in a form dominated by the integral linearity ef 
fects. Integral error less than 0.1 ppm of full scale was 
achieved. Fig. 4b shows typical test data expressed as ppm 
of reading (output). This data indicates differential linearity 
error less than 0.02 ppm of reading. For a 10:1 ratio transfer 
the predicted error would be approximately I + lODorO.3 
ppm. Fig. 4c shows measured data, again using a Josephson 
junction array standard to characterize the error at 1/10 of 
full scale relative to a full-scale measured value. The data 
indicates a 10:1 ratio error of 0.01 ppm of the input or 0.1 
ppm of the measured (output) value. This represents typical 
results; the specified 3o- ratio transfer error is greater than 
0.3 ppm. Measurement noise contributes additional error, 
which can be combined in a root-sum-of-squares manner 
with the linearity errors. 

Offset Errors 
Linear measurement errors in a DMM are of two general 

types, offset errors and gain errors. Offset error sources 
include amplifier offset voltages, leakage current effects 

Differential 
Integral 

1    h  

- \    r -  - I    h  

H    h  H  

Percent of Range 

Fig.  3.  L inear i ty  error  as a percent  of  reading.  

100% 

(IR). and thermocouple effects generated by dissimilar met 
als used in component construction or interconnection. 
Fig. 5 shows a simplified schematic of the dc measurement 
function. Switches Si and S2 are used to provide a zero 
reference during each measurement cycle. Offset errors 
common to both measurement paths, for example the offset 
voltage introduced by amplifier Al, are sampled and sub 
tracted during each measurement sequence. This is referred 
to as the autozero process. 

Correction of the remaining offset error is achieved by 

+0.06 

IK  +0 .04  -  

i- +0.02 -â€¢ 

5. 

~  - 0 . 0 4  

- 0 . 0 2 - '  

0 . 0 3  - r  

0 . 0 2 -  -  

0.01 

-0.01 - â€¢ 

- 0 . 0 2 -  -  

- 0 . 03  
- 1 0 0  

+ 0.015 T- 

+ 1 0  
Input (Volts) 

- 5 0  

Input (mV) 

4  6  
Input (Volts) 

Fig. 4. Results of HP 3458/4 l inearity tests using a Josephson 
junc t ion  ar ray ,  (a )  Seven passes and the  average resu l t  fo r  
l inearity error characterization, (b) Differential l inearity charac 
ter ist ic,  (c) Lineari ty error for an internal 10:1 rat io transfer. 
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Josephson Junction Arrays 

A Josephson junct ion is  formed by two superconductors sepa 
rated by a th in  insu lat ing barr ier .  When cooled to  l iqu id  he l ium 
tempera tu res  (4 .2K) ,  t hese  dev i ces  exh ib i t  ve ry  comp lex  non  
l inear  behav io r  tha t  has  led  to  a  w ide  range o f  app l i ca t ions  in  
ana log and d ig i ta l  e lec t ron ics .  A quantum mechanica l  ana lys is  
shows  tha t  t hese  j unc t i ons  genera te  an  ac  cu r ren t  whose  f re  
quency is related to the junction voltage by the relat ion f = 2eV/h 
where e is the electron charge and h is Planck's constant.  When 
the  j unc t i on  i s  d r i ven  by  an  ac  cu r ren t  t he  e f f ec t  ope ra tes  i n  
reverse.  The junct ion osc i l la t ion phase locks to  the app l ied ac  
current  and the junct ion vol tage locks to a value V = hf /2e.  This 
phase locking can also occur between harmonics of  the appl ied 
ac current  and the Josephson osci l la t ion.  Thus,  the junct ion I -V 
cu rve  d i sp lays  a  se t  o f  cons tan t - vo l tage  s teps  (F ig .  1 )  a t  t he  
vol tages V = nhf /2e,  where n is  an in teger .  The Josephson junc 
t ion  thereby prov ides a  means o f  t rans la t ing  the inherent  accu 
racy of  the f requency scale to  vo l tage measurements.  

In  Ju ly  o f  1972 the Josephson ef fect  was adopted as the def  
init ion of the U.S. legal volt.  For the purpose of this definit ion the 
quant i ty  2e /h  was ass igned the va lue 483593.42 GHz/V.  S ince 
then,  have of  the Josephson vol tage-to- f requency re lat ion have 
ver i f ied  i t s  p rec is ion  and independence o f  exper imenta l  cond i  
t ions to the level of a few parts in 1017.1 

The Josephson voltage standards of 1 972 had only one or two 
junct ions and cou ld  generate  vo l tages on ly  up to  about  10 mV.  
Th is  low vo l tage requ i red the use o f  a  complex  vo l tage d iv ider  
to  ca l ib ra te  the  1 .018V s tandard  ce l ls  used by  most  s tandards  
laborator ies.  To overcome the l imi tat ions of  these low vol tages,  

Q  
<  

3  
O  

Voltage Step Present 
under RF Excitation 

- t -  
Voltage (5V/Div) 

Fig. 1 . Partial I-V curve of an 18,992-junction Josephson junc 
t ion ar ray wi thout  RF exc i ta t ion.  A lso shown is  a  typ ica l  I -V 
curve under  75-GHz exc i ta t ion,  which is  a  constant -vo l tage 
step at  a vol tage V = nhf/2e.  The vol tage V is between -  12V 
and + 12V, and is  determined by contro l l ing the b ias current  
and source impedance to  se lect  the va lue of  n .  

researchers at the U.S. Nat ional Inst i tute of Standards and Tech 
nology ( formerly the Nat ional  Bureau of  Standards),  and PTB in 
West  Germany have deve loped superconduct ing  in tegra ted c i r  
cu i ts  that  combine the vo l tages o f  severa l  thousand junct ions.  
The most  complex o f  these ch ips  uses 18,992 junct ions to  gen 
era te  150,000 constant -vo l tage s teps spanning the range f rom 
-12V to +12V (Fig.  2) .  The chip uses a f in l ine to col lect  75-GHz 

providing a copper short across the input terminals. A re 
ference measurement is taken and the measured offset is 
stored. Values are determined for each measurement func 
tion and range configuration. The offset is subtracted from 
all subsequent measurements. The HP 3458A performs all 
zero offset corrections by automatically sequencing through 
each of the required configurations and storing the appro 
priate offset correction during the external calibration pro 
cess. These offsets are the b term in the linear equation 
y = mx + b, where y is the calibrated output result and x 
is the internal uncalibrated measurement. These calibrated 
offsets can be made small and stable through careful printed 
circuit layout and component selection. 

Gain Errors 
Gain errors in a DMM result from changes in amplifier 

gains, divider ratios, or internal reference voltages. Each 
gain term exhibits a temperature coefficient and some finite 
aging rate, and can potentially change value following ex 
posure to high-humidity environments or severe shock or 
vibration. Periodically, known values close to the full scale 
of each measurement function and range are applied to the 
DMM to calibrate the gain ratio m such that y = mx + b 
is precisely equal to the known input value, y. However, 
even after gain calibration, a DMM can easily be exposed 
to conditions that may introduce new errors. The HP 3458A 
DMM implements a special method for self-adjusting all 
instrument gain errors and many offset errors relative to 
its own internal references. 

DC Calibration 
Calibration of the dc function begins by establishing 

traceability of the internal voltage reference. The internal 
7V Zener reference (see "A High-Stability Voltage Refer 
ence," page 28) is measured relative to an externally applied 
traceable standard. A traceable value for this internal refer 
ence is stored in secure calibration memory until the next 
external calibration is performed. Next, the gain of the 10V 
range is determined by measuring the internal 7V reference 
on this range. The gain value is stored in secure autocali- 
bration memory. This gain value can be recomputed at any 
time by simply remeasuring the internal 7V reference. The 
stability, temperature coefficient, and time drift errors of 
the internal 7V reference are sufficiently small (and speci 
fied) compared with other gain errors that remeasurement 
or autocalibration of these gains will yield smaller measure 
ment errors in all cases. Adjustment of the full-scale gain 
values of all other ranges relies on the precise ratio measure 
ment capabilities of the HP 3458A ADC as demonstrated 
in Fig. 4c. For the IV-range gain adjustment, the traceable 
internal 7V reference is divided to produce a nominal IV 
output. The exact value of this nominal IV is measured on 
the previously adjusted 10V measurement range at approx 
imately 1/10 of full scale. The measured value, a ratio trans 
fer from the internal 7V reference, is used to adjust the 
gain of the IV range of the dc voltage function. This gain 
value is again stored in secure autocalibration memory. 
Neither the precise value nor the long-term stability of the 
nominal IV internal source is important. The internal IV 
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Ser ies  Ar ray  

Capac i t i va  Coup le r  

F in l ine 

Ground  P lane  

Res is t i ve  Termina t ion  
DC Contac t  

- 1 9  m m -  

Fig .  2 .  The layout  fo r  an  18,992-  
j u n c t i o n  v o l t a g e  s t a n d a r d  a r r a y  
c a p a b l e  o f  g e n e r a t i n g  v o l t a g e  
s t e p s  i n  t h e  r a n g e  o f  -  1 2 V  t o  
+ 12V. The hor izonta l  l ines repre 
sent  16  s t r ip l ines ,  each o f  wh ich  
p a s s e s  t h r o u g h  1 1 8 7  j u n c t i o n s .  
The Â¡unctions are too small to be 
dist inguished on th is drawing.  

power  f rom a wavegu ide and d i rec t  Â¡ t  th rough a  se t  o f  power  
sp l i t t e r s  t o  16  s t r i p l i nes ,  each  o f  wh ich  passes  th rough  1187  
junct ions. A network of high-pass and low-pass f i l ters al lows the 
microwave power to be appl ied in paral le l  whi le the dc vol tages 
add in series.2 

In  ope ra t i on ,  t he  a r ray  i s  coo led  to  4 .2K  in  a  l i qu id -he l i um 
dewar .  A Gunn-d iode source a t  room temperature  prov ides the 
requ i red  40  mW o f  75 -GHz power .  I t  i s  poss ib le  to  se lec t  any  
one of bias 150,000 constant-voltage steps by controll ing the bias 
current level  and source impedance. A cont inuous vol tage scale 
can be obta ined by  f ine- tun ing the  f requency.  The accuracy  o f  
the vol tage at the array terminals is equal to the accuracy of the 
t ime s tandard  used to  s tab i l i ze  the  Gunn-d iode source.  Ac tua l  
cal ibrat ions, however,  are l imi ted by noise and thermal vol tages 
to an accuracy of a few parts in 1 09. 

The abi l i ty to generate exact ly known voltages between - 1 2V 
and + 1 2V can eliminate the problems and uncertainties of poten- 

t iometry from many standards laboratory functions, r-or example, 
Josephson array standards make i t  possible to perform absolute 
cal ibrat ion of voltmeters at levels between 0.1 V and 10V without 
the uncer ta in ty  o f  a  res is tor  ra t io  t ransfer  f rom s tandard ce l ls .  
Another application is the measurement of voltmeter l inearity with 
an accuracy h igher  than ever  before poss ib le .  
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source must only be stable for the short time required to 
perform the two measurements of the transfer. 

Each of the remaining dc voltage ranges is automatically 
gain adjusted relative to the internal 7V reference through 
a similar sequence of full-scale-to-1/lO-full-scale transfer 
measurements. All gain errors can then be readjusted rela 
tive to the internal reference to remove measurement errors 
at any later time. The only gain error that cannot be adjusted 
during autocalibration is the time and temperature drift of 
the internal 7V reference. 

Ohms and DC Current  Cal ibrat ion 
Calibration of the ohms functions is similar to that of 

the dc voltage function. Traceability for the internal 40-kfi 
reference resistor is established first. The internal reference 
resistor is measured relative to an externally applied trace 
able 10-kil standard resistor. The traceable value for this 
internal reference is stored in secure calibration memory 
until the next external calibration is performed. Resistance 
measurements are made by driving a known current I 
through an unknown resistance R and measuring the resul 
tant voltage V. The unknown resistance value R is com 
puted from Ohm's law, R = V/I. Since the dc voltage mea 

surement function has been previously traceably adjusted, 
only the values of the ohms current sources (I) need be 
determined to establish calibration. 

Adjustment of the ohms current source values begins by 
applying the nominal 100-microampere current source (10- 
kfl range) to the traceable 40-kft internal resistance stan 
dard. The value of the current source is computed from 
the traceable measurements and stored in secure autocali 
bration memory. The 100-/U.A current source can be remea- 
sured (autocalibrated) at any time to correct for changes in 
its value. Residual errors in this autocalibrated measure 
ment are reduced to those of the internal reference resistor 
and the autocalibrated error of the 10V dc voltage range â€” 
essentially the drift of the internal voltage reference. For 
resistance measurements, only drift in the internal resis 
tance reference will affect measurement accuracies. The 
gains of the voltage measurements V and the current 
sources I, which are derived from the internal voltage refer 
ence, will also change as this reference drifts, but the com 
puted value for R is not affected since the V/I ratio remains 
unchanged. 

The known 100-/iA current, its value determined in the 
previous step, is next applied to an internal 5.2-kfi resistor 
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(an internal 10-to-l ratio transfer measurement). The value 
of this resistor is determined, again from Ohm's law. This 
new resistor R is computed (R = V/I) from the 100-/H.A 
current previously determined relative to known traceable 
standards and the previously calibrated dc voltage func 
tion. The value of this resistor is stored in autocalibration 
memory. This resistor is actually the 10-/uA dc current 
function shunt resistor. With the shunt resistor R traceably 
determined, traceable dc current measurements can be 
computed from Ohm's law, I = V/R. 

Now that the 5.2-kfl internal shunt resistor is known, 
the 1-mA ohms current source (1-kfl range) is applied and 
its value computed as a ratio relative to the 100- Â¿iA current 
source value. The 1-mA current source value is stored in 
autocalibration memory. This combined ohms current 
source and dc current shunt resistor ratio transfer process 
continues until all six currents and all eight shunt resistors 
are known relative to the two external standards. 

As we set out to show, all gain errors for dc voltage, 
ohms, and dc current measurements have been traceably 
adjusted relative to only two external standard values: 10V 
dc and 10 kfl. Table I summarizes the HP 3458A errors for 
the internal ratio transfer measurements described so far. 

Table I  
Internal  Ratio Transfer Errors 

Addit ional Errors 
Gain and offset variations are the dominant sources of 

measurement error in a DMM, but they are by no means 
the only sources of error. Measurement errors are also pro 
duced by changes in leakage currents in the input signal 
path. These may be dynamic or quasistatic leakages. A 
more complete schematic of the input circuit of the HP 
3458A is shown in Fig. 6. Recall that switches Si and S2 

are used to null the dc offsets of amplifier Al and its input 
bias current. However, the capacitance Cl causes an error 
current Ierr to flow when Si is turned on. This current, 
sourced by the input, generates an exponentially decaying 
error voltage Ierr(R + RÂ¡)- If RÂ¡ is large, as it is for ohms 
measurements, significant measurement errors can result. 

These errors can be reduced by providing a substitute 
source (shown in the shaded section of Fig. 6) to provide 
the charging current for the parasitic capacitance Cl. 
Amplifier A2 follows the input voltage so that when switch 
S3 is turned on between the S2 and SI measurement 
periods, Cl will be precharged to the input voltage. Second- 
order dynamic currents flow because of the gate-to-drain 
and gate-to-source capacitances of the switches, which are 
FETs. The HP 3458A performs complementary switching 
to minimize these effects. During an autocalibration, the 
offset of buffer amplifier A2 is nulled and the gain of the 
complementary switching loop is adjusted to reduce errors 
further. 

High ohms measurements are particularly sensitive to 
parasitic leakage currents. For example, 10 ppm of error 
in the measurement of a 10-Mfl resistor will result from a 
change of 5 pA in the 500-nA current source used for the 
measurement. Over the 0Â°C-to-55Â°C operating temperature 
range a 5-pA change can easily occur. During autocalibra 
tion, which can be performed at any operating temperature, 
several internal measurements are performed with various 
hardware configurations. The results are used to solve 
simultaneous equations for leakage current sources. Know 
ing these leakage currents allows precise calculation of the 
ohms current source value for enhanced measurement ac 
curacy. 

Many other errors are also recomputed during autocali 
bration. Autocalibration can be performed in its entirety 
or in pieces (dc, ohms, or ac) optimized for particular mea 
surement functions. The dc voltage autocalibration, for 
example, executes in approximately two minutes. The au 
tocalibration process for the ohms functions, which also 
calibrates the dc current function, takes about eight minutes 
to complete. If the user is only concerned with correcting 
errors for dc or ac measurements, the ohms autocalibration 

S 2 :  0  +  V o s  
R e s u l t :  ( V i n  +  V o s )  -  ( 0  +  V o s )  =  V l n  

Fig.  5 .  S impl i f ied schemat ic  o f  the dc vo l tage measurement  
function. 

F ig .  6 .  A  more  comp le te  schema t i c  o f  t he  HP  3458A  i npu t  
circuit. 
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Fig.  7.  f lC at tenuator  gain-versus- f requency character is t ic .  

sequence can be omitted to save time. 

AC Frequency Response Cal ibrat ion 
The goals for self-calibration of the HP 3458A extended 

beyond the dc measurement functions. Just as the concept 
of sampling a signal and digitally computing its true-rms 
value goes against traditional DMM methods, so does the 
idea of adjusting the frequency response and gain of an ac 
voltmeter without applying external ac calibration sources. 
Normally, the first step in the calibration of an ac voltmeter 
would be to adjust the instrument for constant gain at all 
frequencies. This frequency flatness correction is generally 
performed by manually adjusting either resistive or capaci- 
tive circuit components. Resistive components usually de 
termine gains at lower frequencies and capacitive compo 
nents usually determine gains at higher frequencies. The 
frequency response characteristic of the HP 3458A ac mea 
surement function is dominated by five compensated RC 
divider networks, which are used to condition the input 
signal for each measurement range. The gain-versus-fre 
quency characteristic of an RC attenuator circuit is shown 
in Fig. 7. When the attenuator is properly compensated 
(-ra = T2), the resulting divide ratio is a frequency indepen 
dent constant determined solely by the resistive elements. 

It can be shown using Fourier transforms that if the input 
to a linear circuit is a perfect voltage step and the output 

of the same circuit is also a perfect voltage step, then the 
circuit transfer function is constant with frequency. The 
hardware used to implement the digital ac measurement 
technique of the HP 3458A is also used to sample a step 
output of the RC attenuator. The sampled data is used to 
compensate the internal RC divider networks for flat gain 
versus frequency without external inputs. 

A simplified schematic for the 10V ac measurement range 
is shown in Fig. 8. The active compensation of the divider 
network is achieved by generating a "virtual trimmer" cir 
cuit element to allow the adjustment of the divider time 
constants. The trimmer is a programmable-gain bootstrap 
amplifier connected across resistor Rl. The variable-gain 
amplifier allows control of the voltage across Rl , effectively 
varying Rl 's value. The resistive divider ratio can be elec 
tronically servoed to match the fixed capacitive divider 
ratio given a measurable error function. The servo error 
signal is generated by applying an extremely square voltage 
step to the network. The step output is sampled at least 
twice. An amplitude difference between samples indicates 
the presence of an exponential component resulting from 
miscompensation of the attenuator. The digitally con 
trolled loop servos the difference signal to adjust the virtual 
trimmer to achieve precise cancellation of frequency de 
pendent errors. Sample times can be optimized for 
maximum sensitivity to the attenuator time constant RC, 
thus improving servo-loop rejection of second-order time 
constants resulting from capacitor dielectric absorption or 
other parasitic effects. 

Sampling of the voltage step uses the same internal tools 
required to perform the digital ac measurement function. 
The flatness autocalibration voltage step is sampled with 
the integrating ADC configured for 18-bit measurement res 
olution at 50,000 conversions per second. An internal pre 
cision sampling time base is used to place samples with 
100-ns resolution and less than 100-ps time jitter. Fig. 9 
shows the range of attenuator output waveforms present 
during frequency flatness autocalibration. When the at 
tenuator is compensated correctly, the output waveform 
will closely resemble an ideal voltage step as shown. Test 
data has shown that the automated compensation yields 
less than 50 ppm of frequency response error from dc to 
30 kHz. Autocalibration of the frequency response will 
correct for component changes caused by temperature, 
humidity, aging, and other drift mechanisms. Correction 

A p p r o x i m a t e l y  
1 0  M l  

T o  A D C  

A m p l i f i e r  O u t p u t  

V a r i a b l e - G a i n  g  
A m p l i f i e r  

T i m e  

Â±10V 

F i g .  8 .  S i m p l i f i e d  s c h e m a t i c  o f  
the 10V ac measurement  range.  
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A High-Stability Voltage Reference 

Autocalibration in the HP 3458A Digital Mult imeter is a process 
o f  t rans fer r ing  the  ga in  accuracy  o f  a  s ing le  vo l tage re ference 
to a l l  measurement gains.  The design goal  for  the internal  refer  
ence  o f  t he  HP  3458A  was  t o  p rov ide  l ong - te rm  s tab i l i t y  and  
t e m p e r a t u r e  s t a b i l i t y  c o m p a r a b l e  t o  e x t e r n a l  s t a n d a r d s  t h a t  
wou ld  no rma l l y  be  used  to  ca l i b ra te  an  81 /2 -d ig i t  mu l t ime te r .  
These  goa ls  were  ach ieved  by  us ing  a  tempera tu re -s tab i l i zed  
so l id-s ta te  Zener  re ference.  Wi thout  temperature s tab i l iza t ion,  
the  Zener 's  vo l tage  d r i f t  w i th  tempera tu re  i s  approx imate ly  50  
ppm/Â°C. A proportional temperature control loop senses the chip 
temperature of the reference device and reduces this dri f t  to less 
than 0.15 ppm/Â°C. 

The long-term dr i f t  of  each vol tage reference assembly is mea 

sured by an automated dr i f t  moni tor ing and screening process.  
Reference assembl ies,  including the temperature control ler ,  are 
mon i to red  un t i l  t he  ag ing  ra te  i s  shown  to  be  l ess  than  the  8  
ppm/yr  s tabi l i ty  requirement of  the HP 3458A. Summarized test  
da ta  fo r  a  number  o f  8  ppm/yr  re fe rence  assembl ies  i s  shown 
in Fig. the . Monitoring the references for additional time allows the 
selection of assemblies that exhibit aging rates less than 4 ppm/yr 
for the high-stabi l i ty opt ion. 

David E. Smith 
Development Engineer 

Loveland Instrument Divis ion 

5 â€¢â€¢ 

â€¢ Mean Drift 
â€¢ Mean + 3-sigma Drift 

3 0  6 0  9 0  1 2 0  
Days Since Shipment 

180 Fig. 1. HP 3458 A internal vol tage 
reference dri f t  distr ibut ion. 

of these errors allows a single specification to apply for 
extended operating conditions. 

AC Gain Cal ibrat ion 
Once the frequency flatness characteristics are adjusted, 

the second step of calibration can be completed. Gain cor 
rection for the measurement must still be achieved. In Fig. 
7 it can be seen that when frequency compensation is 
achieved, the attenuator gain can be established equally 
well at any frequency as long as the calibration signal 
amplitude is precisely known. Adjustment of the circuit 
gain using a dc signal is convenient since a traceably cali 
brated dc voltage reference and a dc voltage measurement 
function are available. Gain adjustment of the ac measure 
ment function using known dc voltages allows complete 
autocalibration of ac measurement accuracy in much the 
same manner as the dc voltage measurement function. 

Several mechanisms can limit the accuracy of a dc gain 
adjustment. Dc offsets or turnover errors can be minimized 
by performing gain adjustment calculations using known 
positive and negative voltages. Errors caused by white noise 

are reduced by averaging 40,000 samples for each voltage 
measurement made through the wide-bandwidth track- 
and-hold circuit. Low-frequency 1/f noise is minimized by 
chopping these 40,000 readings into groups of 1000, each 
group sampling alternating polarities of the known internal 

F ig .  9 .  The  range  o f  a t tenua to r  ou tpu t  wave fo rms  p resen t  
d u r i n g  f r e q u e n c y  f l a t n e s s  c o m p e n s a t i o n .  T h e  o u t p u t  
waveform closely resembles an ideal  vol tage step when com 
pensat ion is correct.  
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dc calibration voltages. This voltage chop is performed at 
a fast enough rate to achieve maximum cancellation of the 
1/f noise voltage. A final error mechanism results from 
aliasing of internal spurious signals. The internal 10-MHz 
clock signal tends to be present in small amounts every 
where. The ac signal path and the track-and-hold circuit 
(2-ns sample aperture) each have sufficient bandwidth to 
couple the internal clock into measurements. If the sample 
spacing is a multiple of the 100-ns clock period, the internal 
spurious clock will be aliased or mixed down to contribute 
a dc offset in the measurement. A 100-/nV-peak spurious 
clock signal can lead directly to a 100-yu.V error in measuring 
the internal dc calibration signal as shown in Fig. 10. The 
HP 3458A uses a random sampling time base mode during 
this calibration sequence. The time base generates ran 
domly spaced sample intervals with a resolution of 10 ns. 
The chopped groups of random samples, 40,000 in all, are 
averaged together to obtain the net gain of the divider. 
Errors caused by dc offsets, white noise, 1/f noise, and 
clock aliasing are reduced using this internal calibration 
algorithm. Gain calibration of the ac measurement function 
relative to the internal dc reference is accomplished with 
less than 10 ppm error for intervals extending to two years. 
The residual dc gain calibration error will limit the absolute 
measurement accuracy for low-frequency inputs. 

Additional Errors 
Besides adjusting the frequency response and gain of 

each ac measurement range, other corrections are per 
formed during autocalibration. Offset voltage corrections 
are determined for each ac amplifier configuration. The 
offset of the analog true-rms-to-dc converter is determined. 
The offset of the analog trigger level circuit is nulled. Inter 
nal gain adjustments for various measurement paths are 
performed. For example, the track-and-hold amplifier gain 
is precisely determined by applying a known dc voltage 

100 

3 0 s  

a) 

100 ,*V + 

3 0 s  

Time 

and measuring the output in track mode using 7V2-digit 
internal dc measurements. A gain ratio is computed using 
this measurement and the hold mode gain is determined 
by averaging 40.000 samples using the 6-Â¿Â¿s. 50,000-read- 
ing-per-second, 18-bit conversion mode of the integrating 
ADC. This gain is critical to the accuracy of the digitally 
computed rms ac voltage function and to the wideband 
sampling functions. Ac current measurements use the same 
shunt resistors as the dc currents. A differential amplifier 
is used to sample the voltage across the shunt resistors for 
ac current measurements, and the gain of this amplifier is 
computed during autocalibration. 

As a result of autocalibration, the ac measurement accu 
racy of the HP 3458A is unchanged for temperatures from 
0Â°C to 55Â°C, for humidity to 95% at 40Â°C, and for a period 
of two years following external calibration. Execution of 
only the ac portion of the autocalibration process is com 
pleted in approximately one minute. 

Summary  
Two-source calibration of a state-of-the-art digital mul 

timeter provides several benefits: 
â€¢ Increased process control within the standards labora- 

National DC 
Standards 

Primary DC 
Standards 

Working DC 
Standards 

Ratio 
Transfers 

National AC 
Standards 

Primary AC 
Standards 

Working AC 
Standards 

Ratio 
Transfers 

(a) 

National DC 
Standards 

Primary DC 
Standards 

b) 

National AC 
Standards 

Primary AC 
Standards 

j r  

T  
Working AC 
Standards 

Ratio 
Transfers 

F i g .  1 0 .  ( a )  U s i n g  t h e  c l o c k - d e r i v e d  t i m e  b a s e ,  a  7 0 0 - p V  
spur ious c lock  s igna l  can lead d i rec t ly  to  a  lOO-^V er ror  in  
measuring the internal dc calibration signal, (b) The HP 3458 A 
uses  a  random samp l ing  t ime  base  mode  to  e l im ina te  th i s  
error source. 

(b) 

Fig. 1 1 . (a) Traditional calibration chain for dc and ac voltage, 
(b)  HP 3458A cal ibrat ion chain,  showing the increased ver i f i  
cat ion conf idence that  resul ts f rom internal  cal ibrat ion.  
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tory through the independent ratio transfers of the DMM 
â€¢ Reduced calibration time 
â€¢ Increased measurement accuracies in real environments 
â€¢ Increased confidence through complete self-testing. 

The greatest benefit of two-source calibration is seen not 
by the instrument end user but by the calibration facility 
supporting those instruments. Fig. 11 shows the normal 
instrument and two-source calibrated instrument traceabil- 
ity chain. When verifying the results of the two-source 
calibration process, the metrologist now has the indepen 
dent checks of the HP 3458A to catch inadvertent human 
errors in the normal process. Technique, cabling, and other 
instruments used in the generation of calibration values 
are no longer open-loop errors that may propagate through 
a calibration laboratory. Two-source calibration can iden 
tify errors anywhere within the traceability chain, from 
primary standards to final values. 

The HP 3458A autocalibration procedures are also per 
formed during the instrument self-test, which takes about 
one minute. The only difference is reduced averaging of 
the internal results for faster execution. Also, the results 
are not retained in memory afterward. The self-test proce 
dures perform highly accurate measurements on each range 
of each function, thereby providing a comprehensive 
analog and digital confidence test of the system. 
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Design for  High Throughput  in  a  System 
Digital Multimeter 
High-speed custom gate  ar rays ,  microprocessors ,  and 
suppor t ing hardware and a substant ia l  investment  in  
firmware design contributed to the design of the HP 3458 A 
DMM as a system for  moving data ef f ic ient ly .  

by Gary A.  Ceely and David J.  Rustic!  

MANUFACTURERS OF ELECTRONIC and other 
types of products have learned that high test system 
throughput is vital to maintaining production ca 

pacity. As a primary component of automated test and data 
acquisition systems, the system digital multimeter (DMM) 
has become a major factor in determining system through 
put. A DMM must not only be able to take and transfer high 
speed bursts of readings, but must also have the ability to 
reconfigure itself quickly when measuring several different 
parameters in rapid succession. 

Historically, DMM performance has been hindered by a 
number of factors, such as relay switching times, ADC con 
version delays, and the limited processing power of early- 
generation microprocessors. In addition to controlling the 
ADC hardware, taking and transferring readings, and pars 
ing commands, the microprocessor has been saddled with 
scanning the front-panel keyboard, updating the display, 
and polling various peripheral ICs to monitor and update 
status information. Increasing demands on the capabilities 

of firmware written for these machines have only com 
pounded the problem. Adoption of more English-like pro 
gramming languages has added greatly to both bus over 
head (because of the length of these commands) and parsing 
time, which formerly was a minor factor. 

Another performance limitation in system DMMs has 
resulted from the need to make floating measurements, that 
is, measurements referenced to the LO terminal instead of 
earth ground. Since the LO terminal may be raised to a 
potential several hundred volts above ground, the ADC 
hardware must also float with this voltage. The problem 
here is that the HP-IB (IEEE 488, IEC 625), and therefore 
the hardware that interfaces to it, is earth-referenced, re 
quiring that the ADC hardware be isolated from the control 
ling microprocessor. In many cases, the ADC hardware is 
designed around a second microprocessor which com 
municates with the main microprocessor via an isolated 
serial link, forming a bottleneck in high-speed ADC pro 
gramming and data transfers. 

System Controller Section (Outguard) 

MC68COOO 8-MHz 
Microprocessor 

Floating Guarded Measurement Section ( Inguard) 

Calibration 
Hardware 

Protection 

RAM 
32K x  16  

RAM 
(optional) 
64K x  16  

80C51 
Microprocessor 

Gate Array 

Fiber Optic 
Isolation 

Time 
Interpolator 

80CS1 
Microprocessor 

Communication 
Controller 

Analog-to-Digital 
Converter Control 

Analog-to- Digital 
Converter 

Input 

Fig.  1 .  HP 3458 A Dig i ta l  Mul t imeter  system block d iagram. 
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Considering the history of DMM performance, it becomes 
obvious that the design of the instrument as a system in 
itself is critical to the performance of the surrounding auto 
matic test system as well. Two key design goals for the HP 
3458A were that it be able to reconfigure itself and take a 
reading 200 times per second, and that it be able to take 
and transfer readings (or store them internally) at a burst 
rate of 100,000/s. To achieve these goals, system design for 
the HP 3458A focused on expediting the flow of data 
through the instrument, both in the hardware and in the 
firmware. 

Design Overview 
A simplified block diagram of the HP 3458A is shown 

in Fig. 1. Like previous designs, the DMM is divided into 
two sections, inguard and outguard, which correspond to 
the hardware inside and outside of the guarded (isolated) 
section of the DMM. In this design, however, the bottleneck 
of the serial interface between the two sections is overcome 
by the use of a high-speed (5 Mbits/s) fiber optic data link 
and custom gate arrays on each end to decode and buffer 
received data. 

Performance features on the outguard side include an 
8-MHz MC68COOO main processor, high-speed RAM and 
ROM (requiring no wait states from the processor), a sepa 
rate 80C51 microprocessor to control the front-panel inter 
face, and a programmable timer used as an operating system 
clock. This represents a significant upgrade in the outguard 
hardware over previous 6800-based designs, and not only 
yields faster execution of instructions, but also frees the 
main processor from polling peripherals, since all I/O and 
interprocessor communications are now interrupt-driven. 
Additional gains are realized through the use of a double- 
buffered HP-IB input scheme (the parser reads data from 
one buffer while an interrupt service routine fills the other) 
and a hardware HP-IB output buffer, which allows the main 
processor to write data to the HP-IB in words (16 bits) 
instead of bytes (8 bits). 

Outguard RAM is divided into three sections: an EEPROM 
for storing calibration constants, standard RAM (non 
volatile), and optional RAM (volatile). Calibration RAM is 
distinct from the rest of RAM because it is protected from 
accidental overwrites by a hardware mechanism that also 
makes writing to it rather slow. Standard RAM is divided 
into program memory, reading memory (10K 16-bit read 
ings), state storage, and system overhead (stacks, buffers, 
etc.). Nonvolatile RAM is used here to protect stored instru 
ment states, subroutines, and user key definitions. Optional 
RAM is available only as additional reading storage (64K 
readings). 

Inguard hardware is also under microprocessor control 
(an 80C51, in this case), but the heart of the inguard section 
is a 6000-gate, 20-MHz CMOS gate array. Functions per 
formed by the gate array include communications with the 
outguard section through a custom UART, trigger logic con 
trol, analog-to-digital conversion, and communications be 
tween the UART and other parts of the inguard section. 
Shift registers are incorporated to minimize the number of 
interconnections between the gate array and other inguard 
circuits (the ADC, the ac and dc front ends, and the trigger 
control logic). Five shift registers containing 460 bits of 

information reduce the number of interface lines to just 
three per circuit. Communications are directed by the pro 
cessor, which also interprets messages sent from the out 
guard section and generates response messages (see "Cus 
tom UART Design," page 36. 

Firmware Structure 
The division of tasks between the inguard and outguard 

processors is based on the need to minimize the flow of 
messages between them. Inguard firmware is responsible 
for controlling the ADC measurement sequence, controlling 
the trigger logic during measurements, and directing con 
figuration data to the other inguard circuits. Outguard 
firmware responsibilities are as shown in Fig. 2. Primary 
functions, such as parsing, command execution, display 
updating, and keyboard input are performed by separate 
tasks under operating system control. Other functions, such 
as HP-IB I/O and interprocessor communications, are inter 
rupt-driven, are coded in assembly language for maximum 
speed, and communicate with the primary tasks via signals 
and message exchanges. High firmware throughput is 
achieved by focusing on optimization of time-intensive 
tasks, such as data transfer and manipulation, parsing and 
execution of commands, task switching overhead, and the 
measurements themselves. 

Fig. 3 shows the flow of data through the HP 3458A. 
Data flow is divided into two main paths: the input path 
for messages received from the controller, and the output 
path for measurements generated by the instrument. When 
a controller sends a command such as DCV 10, the data flow 
is from the controller to the HP 3458A through the HP-IB. 
The HP-IB handler accepts incoming data and passes it on 
to the outguard processor's parser, which interprets the 
command and then passes control to an execution routine. 
After determining the necessary actions, the execution 
routine sends state change data to RAM and inguard-bound 
messages to the UART. Messages sent to the inguard section 
are of two types: measurement messages, which control 
the type of measurement (e.g., dc voltage or ac voltage), 
and configuration messages, which define the state of the 
front ends and the ADC and timer control circuits. Data is 
received by the inguard UART and passed to the inguard 
processor, which parses the message and either acts upon 
it or directs it through the communication controller to 
one of the other inguard circuits. Once the configuration 
phase is complete, the ADC is ready to take a reading, and 
throughput becomes a matter of getting the reading out of 
the instrument quickly. Referring again to Fig. 3, the output 
data path is from the ADC to the inguard UART, through 
the fiber optic link, and on to the outguard processor. The 
processor performs any required math and formatting op 
erations, and then directs the data either to reading storage 
or to the HP-IB. 

Data Input ,  Configurat ion,  and Measurements 
Programming commands coming in over the HP-IB are 

received and buffered by an interrupt service routine, 
which in turn signals the HP-IB parser/execution task. The 
interrupt code is designed to continue reading characters 
from the HP-IB chip as long as they continue to come in 
at a rate of 100 /xs/character or faster. In this manner, an 
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Firmware Development System 

Fi rmware  fo r  the  HP 3458A DMM was deve loped on  four  HP 
9000 Computers (Models 320 and 350)  under the HP 64000-UX 
m ic rop rocesso r  deve lopmen t  env i r onmen t .  Each  sys tem was  
fu l l y  equ ipped  to  opera te  as  an  independent  deve lopment  s ta  
t i on ,  and  the  sys tems were  ne tworked  to  fac i l i t a te  t rans fe r  o f  
code revisions (see Fig. 1 ). A fifth station was used for consolidat 
ing code modif icat ions to be tested using a prototype HP 3458A 
and the HP 3458A product ion test  system. Af ter  pass ing an ex-  

IEEE 802.3 LAN 

tens ive bat tery  o f  tes ts ,  code was re leased in  EPROM form for  
other prototype instruments 

Firmware tasks were div ided along l ines intended to minimize 
in terdependence between the des igners  The areas o f  respons i  
b i l i ty  were (1)  measurements and cal ibrat ion,  (2)  d ig i t iz ing,  (3)  
data process ing,  format t ing,  and s torage,  and (4)  pars ing,  I /O,  
and  opera t ing  sys tem overhead.  F ig .  2  shows a  b reakdown o f  
the  amoun t  o f  ob jec t  code  genera ted  by  va r ious  modu les .  A l -  
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F i rmware  Deve lopment  

SRM Network  

HP 9000 Model 350 

H P 6 4 1 2 0 A  
Development 
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HP 9000 
Model 220 

Production/ 
QA Test 
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HP 1631 D 
Logic Analyzer 

Fi rmware QA/Release 
F i g .  1 .  H P  3 4 5 8  A  f i r m w a r e  d e  
velopment and QA regression test 
systems. 

entire command or string of commands can be read in 
during a single invocation of the interrupt routine, thereby 
generating only one signal to the parser task. In reality, two 
input buffers are used: one that is filled by the interrupt 
routine, and another that is read by the parser task. After 
the interrupt routine signals the parser that data is present 
in one buffer, that buffer belongs to the parser task, and 
the other buffer is used for the next command that comes 
in. When the parser empties a buffer, that buffer is freed 
for later use by the interrupt routine. Using two buffers 
simplifies pointer manipulation so that data can be read 
in and passed to the parser quickly. 

To maximize the flow of data to the HP-IB parser/execu 
tion task, the instrument must first be programmed to an 
idle state (e.g., using TARM HOLD). This allows the operating 
system to keep the HP-IB parser task active so that no task 
switching is necessary when an HP-IB command is re 
ceived. The parser is a table-driven SLR (simple left-right) 
design, with all critical components coded in assembly 
language. Simple commands can be parsed in as little as 

I ms; longer commands take as much as 3 ms. For a further 
increase in system throughput, command sequences can 
be stored as subprograms, in which case they are first com 
piled into assembly language by the parser/code generator. 
Executing command sequences in this fashion eliminates 
most of the overhead of bus I/O and parsing and allows 
the HP 3458A to perform reconfiguration and trigger oper 
ations almost twice as fast as the same sequence with indi 
vidual commands (340/s instead of 180/s). 

In many situations, the HP 3458A will be reconfigured 
for a different measurement setup with each test, which 
may include only one measurement. The setup changes in 
these cases may take more time than the measurement, so 
the configuration time must be minimized. To perform 180 
reconfiguration and trigger operations per second, the in 
strument must be able to transfer, parse, and execute a 
command in slightly over 5 ms. Of this total, several 
hundred microseconds are spent in bus transfer and system 
overhead, and up to 3 ms may be spent parsing the com 
mand. Given that an additional several hundred microsec- 
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System 10.7% 

Formatting 11.4% 

Parsing 14.4%- 

Measurements 19.8% 

Library 6.2% 

I/O 5.5% 

Memory 5.1% 

Processing 
4.4% 

Digitizing 
1.3% 

Calibration 21.1% 

Total 364,570 bytes 

Fig .  2 .  Outguard  f i rmware modu les .  

together,  over 28,000 l ines of  C code were wri t ten,  represent ing 
rough ly  80% o f  the  356K by tes  o f  ob jec t  code  genera ted .  The  
r e m a i n d e r  ( 1 2 , 0 0 0  l i n e s )  w a s  w r i t t e n  i n  6 8 0 0 0  a s s e m b l y  l a n  
guage. 

During the most intense period of f i rmware development,  code 
revisions were released on a weekly basis. To relieve the firmware 
team of  the t ime-consuming task of  generat ing and test ing code 
rev i s i ons ,  a  f i f t h  t eam member  was  g i ven  th i s  respons ib i l i t y .  
F i rmware  des igners  up loaded  source  code  week ly  to  the  f i f t h  
sys tem,  where  i t  was  comp i led ,  l i nked ,  and  down loaded  to  an  
emulator .  Hav ing source code ava i lab le  on th is  system made i t  
p o s s i b l e  t o  t r a c e  a n d  a n a l y z e  d e f e c t s  u s i n g  a  d e d i c a t e d  Q A  
sys tem to  rep roduce  them.  The  f i f t h  deve lopment  sys tem was  
a lso rev i  for  arch iv ing f i rmware rev is ions us ing PCS (UNIX rev i  
s ion  con t ro l  sys tem) .  To  reduce  dup l i ca t i on  o f  e f fo r t ,  t he  tes t  
sys tem used for  f i rmware deve lopment  was a  rep l ica  o f  the HP 

3458A product ion test system, which had been developed earl ier 
i n  t he  p ro j ec t  c yc l e  t o  be  used  i n  env i r onmen ta l  t es t i ng  and  
prototype character izat ion. 

As  the  f i rmware  cons t ruc t ion  phase  neared  comple t ion ,  two  
engineers were added to the project  so that  test  sof tware could 
be  deve loped in  para l le l  w i th  the  f i rmware  e f fo r t .  To  save tes t  
writers the trouble of learning the details of test system operation, 
dr ivers  and u t i l i t ies  were wr i t ten that  a l lowed each new tes t  to  
be wr i t ten as an isolated subrout ine.  The test  system execut ive 
s imply  loaded and ran each tes t  as  i t  was needed,  thereby pro 
v id ing an e f f ic ien t  mechanism for  add ing new tes ts  th roughout  
the const ruc t ion  and tes t  phases.  Both  hardware and f i rmware 
des igners  wro te  tes ts  fo r  the  tes t  su i te .  Each  was  ass igned  a  
speci f ic  area of  funct ional i ty  to be tested,  us ing both whi te-box 
and b lack-box  approaches.  

In  addi t ion to  the tests  wr i t ten spec i f ica l ly  to  ver i fy  f i rmware 
operat ion, each revision of code was subjected to the production 
test  sof tware (which mainly tested the analog hardware for  mea 
surement accuracy).  Addit ional test coverage included the ent ire 
HP 3458A user 's  manual ,  w i th  emphasis  on the command re fer  
ence, example programs, and randomly generated combinat ions 
o f  va l i d  and  inva l i d  syn tax .  As  de fec ts  were  found ,  they  were  
f i x e d  a  t h e  t e s t  c o d e  r u n  a g a i n  f o r  v e r i f i c a t i o n .  F o l l o w i n g  a  
success fu l  run  th rough  the  tes t  su i te ,  code  was  re leased  and  
source  code was  saved us ing  PCS.  Sav ing  o ld  code  rev is ions  
enabled the f i rmware team to recreate ear l ier  code rev is ions to 
he lp  t rack  down de fec ts  tha t  may  no t  have  been  rep roduc ib le  
on a newer  code rev is ion.  When a new defect  was found,  tes ts  
were writ ten and added to the test suite to ensure that the defect 
wou ld  no t  recu r .  By  the  end  o f  t he  p ro jec t ,  t he  tes t  su i t e  had  
grown to where 1 2 hours were required to run all tests. To assess 
tes t ing  p rogress  and e f fec t i veness ,  de fec ts  were  submi t ted  to  
HP 's  DTS (de fec t  t rack ing  sys tem) .  Met r i c  repor ts  were  gener  
ated and analyzed on a weekly basis to help assess the f irmware 
status. 

Victor ia K.  Sweetser 
Development Engineer 

Loveland Instrument Divis ion 

onds will be spent taking and transferring the reading, only 
about 1 ms is left for the execution of the command. In 
this millisecond, the execution routine must range-check 
parameters, calculate the gain and offset values, and config 
ure the trigger controller, the ADC, the front-end hardware, 
and the inguard processor. In the worst case, performing 
these operations takes considerably longer than a mil 
lisecond. A complete configuration of all the inguard sec 
tions takes 1.4 ms, and settling time for the front-end relays 
adds another 1.3 ms. In addition, a function command may 
require as many as six floating-point calculations, each 
taking 0.3 ms. This all adds up to well over 4 ms; therefore, 
a number of optimizations have been incorporated to re 
duce configuration time. 

The first step is to avoid reconfiguring the instrument or 
a section of inguard if there is no change. For example, if 
the present function is ac volts and the new command is 
ACV, only the range is configured (if it changes), not the 
function. The ADC configuration is the same for dc volts, 
ohms, and dc current, so the ADC section is not reconfi 
gured for changes between these functions. The trigger con 
figuration changes only for digital ac voltage or frequency 
measurements, so a new configuration is sent only when 

entering or leaving these functions. In general, reconfigura 
tion occurs only to the extent required by a given command. 

Each combination of function and range uses different 
gain and offset values for the ADC readings. The gain and 
offset values are scaled by the ADC's aperture, so if the 
aperture increases by 2, the gain and offset are scaled by 
2. An execution routine retrieves the gain and offset values 
from calibration memory and scales them by the aperture. 
Then the 120%- and 10%-of-full-scale points are calculated 
for overload detection and autoranging. The autoranging 
algorithm uses a different ADC aperture and has a separate 
set of 120% and 10% points. These two calculations were 
removed from the execution routine, and are done at cali 
bration time since the autoranging algorithm always uses 
the same ADC aperture. To reduce the effect of the other 
four calculations, a data structure is used that saves the 
gain and offset for each function and range as it is needed. 
If the aperture of the ADC is changed, the data structure 
is cleared, and as function and ranges are revisited, the 
data of is filled in. This eliminates recalculation of 
values that are constant for a given aperture. 

An operation that is not always necessary but takes con 
siderable time during a range or function change is a special 
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sequence of relay closures in the front-end circuitry. This 
sequence protects the relays from damage when high volt 
age is on the input terminals during range changes, but is 
not needed when measuring low voltages or if high voltage 
is only present when the instrument is set to a high voltage 
range. Therefore, the HP 3458A provides an HP-IB program 
mable command to defeat the protection scheme, speeding 
up the relay sequence by a factor of five. If an overvoltage 
condition occurs while protection is inactive, an interrupt 
is generated and the relay sequence is reversed, thereby 
protecting the relays from damage. A delay of 0.4 second 
is then inserted to prevent a rapid recurrence of the over 
load condition, and the instrument reverts to normal (pro 
tective) relay sequencing thereafter. 

Another technique used to reduce the configuration time 
is to defer computations until the last possible moment. 
The scale factor used in the format conversion of ADC 
readings from integer format to real or ASCII format is an 
example of this technique. Many commands cause the scale 
factor to change, so instead of each command computing 
the scale factor, a flag is set and the calculation is performed 
when the scale factor is first used. This eliminates wasted 
time from unnecessary calculations when many inter 
mediate configuration changes are sent to the instrument, 
and reduces the time spent responding to even a single 
HP-IB command. 

Data flow between the outguard and inguard sections 

has the potential to be a bottleneck, because the UART and 
the inguard processor can only accept configuration data 
at a rate of 20.000 words s. Furthermore, commands to 
change relays can take a millisecond for the inguard proces 
sor to execute. To relieve the outguard processor of the 
need to wait on the inguard processor, a buffer was added 
to store messages bound for the UART. This buffer is deep 
enough to hold an entire configuration change â€” 128 com 
mands. This allows the outguard processor to overlap its 
activities with the inguard processor's. If the buffer is empty 
and the UART is not busy sending data, the 68000 will 
send a command directly to the UART, avoiding the over 
head of the buffer. If the UART is busy, data is written to 
the buffer instead. In this case, the UART generates an 
interrupt when it is ready to accept the next word, which 
is then retrieved from the buffer and sent. 

In addition to fast reconfiguration, system throughput 
depends on the time required to make a measurement. Fig. 
4 shows the steps an ADC reading goes through before it 
is sent to the HP-IB . The first step is autoranging: if a reading 
is less than 10% of the range or greater than 120%, the 
instrument switches to the next range, changes the ADC's 
aperture for a fast measurement, and takes a reading. This 
procedure is repeated until the correct range is found, and 
then the final measurement is made with the ADC's original 
aperture. Although this algorithm is very fast (typically 8 
milliseconds), it usually requires that the ADC take several 

Measurements 

(a) 

I n g u a r d -  T i m e r  
O u t g u a r d  |  ( O S  C l o c k )  

Communication 

Hardware 
Protected 

Callibration- 
RAM Write 
Operations 

(b) 

F ig .  2 .  HP 3458A f i rmware  s t ruc  
t u r e ,  ( a )  T a s k s  u n d e r  o p e r a t i n g  
sys tem con t ro l ,  (b )  I n te r rup t  se r  
vice routines. 
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Custom UART Design 

At the center  of  the communicat ions l ink between the inguard 
a n d  o u t g u a r d  s e c t i o n s  o f  t h e  H P  3 4 5 8 A  D M  M  i s  t h e  c u s t o m  
UART (universal  asynchronous receiver / t ransmit ter) .  A ser ia l  in  
terface was chosen because an isolated paral le l  interface would 
have been prohib i t ive ly  expensive.  Unfor tunate ly ,  convent ional  
UARTs are too s low to  meet  the HP 3458A's  requi red data ra te  
of  200 kbytes/s,  which corresponds to a baud rate of  2 Mbi ts /s ,  
count ing start  and stop bi ts.  Therefore, f iber opt ic couplers were 
chosen,  which a lso provide the benef i t  o f  in f in i te iso lat ion resis 
tance. 

Convent ional  UARTs requi re  a c lock ra te that  is  16 t imes the 
baud the thus,  to  generate the 3458A's  requi red baud ra te ,  the 
c l o c k  r a t e  w o u l d  h a v e  t o  b e  3 2  M H z .  T h e  1 6  x  c l o c k  r a t e  i s  
needed  to  compensa te  fo r  m ismatched  c lock  f requenc ies  and  
waveform distor t ion.  These two factors can be contro l led wi th in 
the  HP 3458A,  so  a  c lock  ra te  o f  th ree  t imes  the  baud  ra te  i s  
used.  The UART design is  implemented as part  of  a CMOS gate 
a r ray  d r i ven  by  a  10-MHz c lock .  Th is  c lock  ra te  y ie lds  a  baud  
rate of  3.3 Mbi ts /s ,  which meets the design goal  wi th some mar 
gin. 

The data format  for  the UART is  shown in  F ig.  1 .  The f i rs t  b i t  
i s  the  s ta r t  b i t  and  ind ica tes  the  beg inn ing  o f  a  message.  The  
next b i t  is  the handshake bi t .  I f  th is bi t  is  h igh,  a data/command 
message wi l l  fo l low immedia te ly .  I f  the  b i t  i s  low,  the  message 
is  a  handshake and the next  b i t  w i l l  be a s top b i t .  A handshake 
message i s  sen t  each  t ime a  da ta  message i s  read  by  the  p ro  
cessor ,  ensur ing  tha t  a  new message w i l l  no t  be  sent  un t i l  the  
previous message has been read. The next-to- last bi t  is the inter 
r up t  o r  command  b i t ,  used  to  i nd i ca te  whe the r  t he  p reced ing  
message  was  da ta  o r  a  command .  A  command  message  f r om 
the inguard sect ion could be an ADC convers ion fa i lure,  an end 
of sequence message, or a change in the front or rear terminals. 
Command messages genera te  in te r rup ts ,  e l im ina t ing  the  need 
for  so f tware to  check the data  f rom the UART to  determine the 
message type.  The middle 16 bi ts  of  the message represent  the 
data or  command,  and the last  b i t  is  the s top b i t .  

F ig .  2  shows a  b lock  d iagram o f  the  UART and the  communi  
cat ion contro l ler .  When the decoding state machine detects that  
a  s t a r t  b i t  has  been  rece i ved ,  i t  wa i t s  t h ree  cyc l es  t o  dec ide  
whether  the  message is  a  handshake.  I f  so ,  the  s ta te  mach ine  
returns to i ts ini t ial  state. I f  the message is data, the next 16 bits 
are c locked into the input  shi f t  register .  The state machine then 
examines the next  b i t  ( the command/data bi t ) .  I f  the message is 
a  command,  an in ter rupt  is  generated.  

U A R T  Communication 
Controller 

Shift Register 

Decode 
State Machine 

1 0 - M H z  
C l o c k  

Encode 
State Machine 

Interrupt 
Logic 

Message 
Control 

Out -  

D 1 5  

Stop 
Fig.  1 .  In terprocessor  message formats .  

For transmitted messages, the encode machine f irst generates 
a start bit. If the message is a handshake, the next bit is set high; 
o therwise  ( i f  the  message is  da ta) ,  the  next  b i t  i s  se t  low.  The 
16 bi ts of  data are sent next  ( i f  required),  and i f  the message is 
a command,  the last  b i t  is  set  h igh.  

Buf fers in the UART are used both for  received data and data 
to be transmitted. This al lows the ADC to leave data in the buffer 
while start ing the next measurement, thus maximizing the overlap 
b e t w e e n  o u t g u a r d  a n d  i n g u a r d .  O n c e  t h e  b u f f e r  h a s  b e e n  
empt ied ,  the  handshake message is  sen t  and an  in te r rup t  can  
be generated.  The in ter rupt  can be used as a  request  for  more 
data to  be sent .  The buf fer  queues requests f rom four  sources:  
the  ADC's  e r ro r  de tec t ion  c i rcu i t r y ,  the  ADC's  ou tpu t  reg is te r ,  
the t r igger  cont ro l ler  messages,  and the inguard processor .  

The  i npu t  bu f f e r  a l so  has  a  d i r ec t  ou tpu t  mode  t o  t he  sh i f t  
registers. When data is sent to the inguard section, the processor 
is  in ter rupted,  the data is  parsed,  and,  i f  the message is  a  con 
f i gu ra t i on  message ,  the  d i rec t  ou tpu t  mode  i s  se lec ted  in  the  
communica t ion  cont ro l le r .  Th is  mode a l lows the  nex t  message 
to  be sent  to  both  the processor  and the sh i f t  reg is ter ,  thereby 
sending the configuration data directly to the appropriate section. 
In  th is  case,  the processor  rece ives the message but  does not  
act  upon i t ,  thereby e l iminat ing the overhead of  processor  in ter  
vent ion in the conf igurat ion process.  

Al though the use of  microprocessors has enabled instruments 
t o  o f f e r  g r e a t l y  e n h a n c e d  m e a s u r e m e n t  c a p a b i l i t y ,  a  s e v e r e  
speed penalty may be incurred i f  f i rmware is burdened with tasks 
that  are best  le f t  to  hardware.  The HP 3458A's use of  a custom 
UART coupled d i rect ly  to  the measurement  hardware opt imizes 
per formance by ba lanc ing the work load between hardware and 
firmware. 

Dav id  J .  Rus t id  
Development  Engineer  

Loveland Instrument Divis ion 

ADC Controller 
â€¢ *â€¢ ADC Offset 
(  h-^ Trigger Controller 
(  h>  DC Front  End  
<  h>  AC Front  End 

80C51 
Processor 

Â»N- ADC Data 
Error 

-^â€”Trigger Control 
F i g .  2 .  B l o c k  d i a g r a m  o f  t h e  
U A R T  a n d  d a t a  c o m m u n i c a t i o n  
portions of the inguard gate array. 
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samples to generate one reading. Therefore, a faster mea 
surement will be made if autoranging is turned off. 

Throughput is also enhanced by minimizing operating 
system overhead. In cases where high throughput is not 
an issue (e.g., long integration times), measurements are 
handled by a background task, which runs whenever the 
instrument is not actively executing commands. This task 
simply monitors the trigger and trigger arm states to see if 
a measurement should be taken. When throughput is an 
issue, however, measurements are initiated directly by the 
HP-IB command parser/execution task. In this case, the 
overhead of task switching (approximately 250 /xs) is elimi 
nated, leaving only the overhead of communication be 
tween the interrupt service routine and the HP-IB task. 
Another speed enhancement is the use of preprogrammed 
states, which fall into two categories: predefined states (ac 
tivated using the PRESET command), and user-defined 
states (stored using the SSTATE command and activated 
using the RSTATE command). Since these commands cause 
an extensive reconfiguration, their primary benefit is in 
putting the instrument in a known desired state. However, 
they can also save time when the alternative is to send 
long strings of commands to program the instrument to the 
same state. 

Output Data Path 
Once the instrument has been configured and triggered, 

a measurement is taken by the ADC and transmitted 
through the fiber optic link to the outguard processor. The 
format for this reading is either a 16-bit or a 32-bit two's 
complement result with the range offset subtracted. The 
next step is to convert the readings into volts, ohms, or 
amperes by multiplying by the gain of the range. If a math 
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operation is active, it is initiated using a procedure variable 
that points to the math subroutine. At this point, the reading 
is in a 64-bit floating-point format, and a format conversion 
is required for an integer, ASCII, or short real format. The 
last step is to display the result and send it to memory or 
the HP-IB. Some steps can be eliminated using the appro 
priate HP-IB command; for example, the display operation 
is deleted using the DISP OFF command. 

If autoranging, math, and the display are turned off and 
the output format matches the ADC's internal format, the 
measurement can be sent directly to the HP-IB or memory. 
Special assembly language routines were written to handle 
these high-speed modes. The time allowed to read the mea 
surement and send it out is 10 fis (given a maximum reading 
rate of 100,000 per second). There are two data paths: one 
that sends readings to memory and one that sends them to 
the HP-IB. 
Reading Storage. The memory structure dictated by HP's 
multimeter language is a general circular buffer in which 
readings may be added or removed at any time. This buffer 
can be used in either of two modes: FIFO (first in, first out) 
or LIFO (last in, first out), the main distinction being that 
the LIFO mode will overwrite the oldest readings when 
memory fills, whereas the FIFO mode will terminate when 
memory fills, thus preserving the oldest samples. A general 
program loop for receiving readings from the ADC and 
writing them into memory is as follows: 
â€¢ Wait until the ADC has taken a reading. 
â€¢ Write the reading into the current fill location and incre 

ment the fill pointer. 
â€¢ Has the fill pointer reached the top of memory (buffer 

pointer wrap-around)? 
â€¢ If memory is full and the memory mode is FIFO, stop. 
â€¢ Terminate the loop when the end of sequence is sent. 

Within 10 (Â¿s, the 68000 will allow only about three 
decisions to be made. Even using hand-optimized assembly 

Analog-to- 
Digital 

Converter 

Reading 
Gain 

Format 
Conversions 

Reading 
Storage 

Fig.  3 .  Input  and output  data  f low paths.  F ig .  4 .  Process ing o f  read ings.  
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language, a single program loop could not be written to 
implement the general memory model in the allotted time. 
The solution uses the fact that if enough decisions are made 
before the start of the burst, the number of on-the-fly deci 
sions can be reduced. Before the start of a burst of samples, 
it is known how many readings can be added before the 
buffer pointers wrap around, and how much room is left 
before the circular buffer fills. The problem is divided into 
a set of special cases. For example, assume that 1000 read 
ings are expected from the ADC. Memory fill and empty 
pointers indicate space for 2000 readings, but the fill 
pointer is only 100 samples from buffer wraparound. Under 
these conditions, the memory fill algorithm can be stated 
as follows: 
â€¢ Fill memory with samples until the buffer fill pointer 

reaches the top of memory. 
â€¢ Wrap around the fill pointer to the bottom of memory. 
â€¢ Fill memory with samples until the sequence is com 

plete. 
â€¢ Exit the routine. 

Any memory scenario can be expressed as a combination 
of the following special-case loops: 
â€¢ Fill memory with samples until the fill pointer reaches 

the top of memory, then wrap around the fill pointer to 
the bottom of memory. 

â€¢ Fill memory with samples until memory is full (fill 
pointer = empty pointer). 

â€¢ Fill memory with samples until the sequence is com 
plete. 
Four factors influence the algorithm used: memory mode, 

number of readings expected, total available memory, and 
number of samples before wraparound. All possible com 
binations of these factors can be accommodated using only 
ten special-case combinations. Any particular special case 
can be built out of one to four of the routines listed above. 
Routines are linked together by pushing their addresses 
onto the stack in the reverse of the order in which they are 
to be executed (the address of the exit routine is pushed 
first), and the first routine is called. In the example above, 
the first routine is called to fill memory until it detects 
buffer wraparound. It then loads the fill pointer with the 
address of the bottom of memory and executes an RTS (re 
turn from subroutine) instruction, which pops the address 
of the next routine from the stack and jumps to it. The next 
routine continues filling memory until the burst is com 
plete, then terminates in another RTS instruction, which 
pops the address of the exit routine. The exit routine per 
forms some minor cleanup (restoring pointers, setting flags, 
etc.) and leaves. 

HP-IB Output. The high-speed output routine for the HP-IB 
uses some of the same concepts as the memory routines. 
In this case, the algorithm is as follows: 
â€¢ Initialize pointers. 
â€¢ Wait until the ADC has taken a reading, then enter the 

readings. 
â€¢ Wait until the HP-IB buffer is ready to accept more data. 
â€¢ Transfer the reading to the HP-IB buffer. 
â€¢ Terminate the loop when the end-of-sequence command 

is sent. 
The HP-IB buffer accepts a 16-bit word from the processor 

and sends the lower eight bits to the HP-IB interface chip. 
Once this byte has been transmitted, the HP-IB chip signals 
the buffer, and the buffer then sends the upper eight bits 
without intervention from the processor. Use of a buffer 
relieves a congestion point in the output data flow that 
would occur if the processor wrote directly to the HP-IB 
chip, since the HP-IB is an eight-bit bus while all other 
internal data paths are 16 bits wide. Using this scheme, 
the HP 3458A is able to offer complete memory and HP-IB 
functionality at the full speed of 100,000 16-bit dc voltage 
readings per second. 

Summary  
Achieving high throughput in a system DMM is a matter 

of designing the instrument as a system for moving data 
efficiently. Hardware and firmware must be designed as 
integral elements of this system, not as isolated entities. In 
the design of the HP 3458A, experience with DMM perfor 
mance limitations provided invaluable insight into key 
areas of concern. As a result, significant improvements in 
throughput were achieved through the development of 
high-speed custom gate arrays for ADC control and inter- 
processor communications. Use of high-performance mi 
croprocessors and supporting hardware also contributed 
greatly to meeting design goals, as did the substantial in 
vestment in firmware design and development that was 
necessary to translate increased hardware performance into 
increased system performance. 
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High-Resolut ion Digit iz ing Techniques 
with an Integrating Digital  Mult imeter 
Capabi l i t ies and l imitat ions of the HP 3458 A Digi tal  
Mult imeter as a high-resolut ion digi t izer are summarized. 
Per formance data is  presented for  se lected appl icat ions.  

by David A.  Czenkusch 

WITH ITS INTEGRATING analog-to-digital con 
verter (ADC) capable of making 100,000 conver 
sions per second, the HP 3458A Digital Multi 

meter (DMM) raises the possibility that, for the first time, 
a voltmeter can satisfy many requirements for high-resolu 
tion digitizing. 

What are the characteristics of a high-resolution digi 
tizer? Digitizing requires a combination of fast, accurate 
sampling and precise timing. It also needs a flexible trigger 
ing capability. The HP 3458A allows sampling through two 
different signal paths, each optimized for particular appli 
cations. 

Converting a signal using the dc volts function (which 
does not use a sample-and-hold circuit, but depends on 
the short integration time of the ADC) provides the highest 
resolution and noise rejection. The direct sampling and 
subsampling functions, which use a fast-sampling track- 
and-hold circuit, provide higher signal bandwidth and 
more precise timing. 

High-Resolution Digit izer Requirements 
As the block diagram in Fig. 1 illustrates, a digitizer 

consists of an analog input signal conditioner followed by 
a sampling circuit. A trigger circuit and time base generator 
controls the timing of samples. The output of the sampling 
circuit is converted to a number by an analog-to-digital 
converter (ADC). Once converted to a number, the sample 
data can be processed digitally and displayed to the user. 

Many types of instruments fit this definition of a digi 
tizer, including digital oscilloscopes, dynamic signal ana 
lyzers, and digital multimeters (DMMs). Digitizing products 
can be roughly differentiated by four characteristics: analog 
signal bandwidth, sample rate, signal-to-noise ratio (which 
can be expressed as effective bits of resolution), and type 
of data displayed (time, frequency, etc.). In general, digital 
oscilloscopes tend to have high bandwidth and sample rate 
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Control 
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Digital 

Converter 
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Processing 
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and relatively low resolution, while DMMs and dynamic 
signal analyzers tend to have much higher resolution and 
correspondingly lower bandwidth and sample rate. 

Digital oscilloscopes are known for their high bandwidth, 
typically 100 MHz or greater, and their digitizing rates of 
50 megasamples to one gigasample per second, making 
them useful for capturing very fast, single-shot events. 
Their resolution of five to eight effective bits is well-suited 
for displaying waveforms on a CRT, since one part in 200 
is perfectly adequate for the human eye. 

Dynamic signal analyzers, on the other hand, are used 
in applications that call for higher resolution â€” typically 
10 to 14 bits. Examples include dynamic digital-to-analog 
converter testing, telecommunications, SONAR, and seis 
mic or mechanical measurements that require digital signal 
processing. These applications require higher resolution 
and typically involve frequency-domain analysis. There 
fore, to judge the attributes of a high-resolution digitizer, 
we should also examine the characteristics of discrete 
Fourier transforms (DFTs) performed on the digitizer's out 
put data. 

Digitizer Spectral Attributes 
"Effective bits" is a measure of the resolution of an ADC. 

Essentially, it is a measure of the signal-to-noise ratio in a 

2 1  T  

2 0 - -  20-Bit ADC 
, -    
19-Bit ADC 

60 7 0  8 0  9 0  1 0 0  1 1 0  1 2 0  
Signal-to-Noise Ratio (dB) 

140 

Fig.  1 .  General ized b lock d iagram of  a d ig i t izer .  

F ig .  2 .  Analog- to-d ig i ta l  conver ter  (ADC) e f fec t ive  b i t  l imi ta  
t ion  because o f  excess ADC no ise and no ise present  in  the 
ADC input s ignal .  
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digitizing system expressed as a power of two. This can be 
expressed mathematically as: 

N(effective) = (S/(N + D) - 1.8)/6.02 

where S/(N + D) is the ratio of the signal power of a full- 
scale input to the total power of noise plus distortion, ex 
pressed in dB. Notice that the effective bits rating and the 
signal-to-noise ratio expressed in dB are both logarithmic 
scales related by the constant 6.02. This means that increas 
ing the resolution of a measurement by one effective bit 
results in a 6-dB improvement in the signal-to-noise ratio. 
The system noise term, N + D, is the rms result of the 
power contributions of harmonic distortion and noise from 
various sources. For an otherwise noise-free, distortion 
free-system, there is minimum noise component because 
of the fundamental quantization error of the ADC. If this 
is the only source of error, the number of effective bits 
approaches the basic resolution of the ADC. Fig. 2 shows 
how the number of effective bits decreases as errors from 
other sources increase. 

Other types of errors will appear as random noise. These 
include noise in the input signal, noise in the analog input 
circuits, random jitter in the timing of samples, and noise 
and differential nonlinearity in the ADC. 

Linearity error is a measure of the deviation of the output 
of an ADC from the ideal straight-line relationship it should 
have with the input voltage. Fig. 3 shows a graph of the 
linearity error of a typical ADC as a function of input volt 
age. Integral linearity error is the large-scale bow in the 
total linearity error plot. This deviation from a straight line 
can often be described by a second-order or third-order 
function. Differential linearity error, on the other hand, has 
no large-scale structure, so it looks very much like noise. 

If the noise in a digitizer is truly random, then a point-by- 
point average of many independent ensembles of waveform 
data taken with the same input signal will reduce this noise 
by the square root of the number of ensembles, provided 
the different ensembles of data have the same phase re 
lationship to the input signal. Analog noise in the input 
amplifier and ADC and noise caused by random timing 
errors tend to be uncorrelated with the input signal, and 
so can be reduced by waveform averaging. On the other 
hand, differential linearity error in the ADC and systematic 
timing errors, while appearing like random noise in a single 
pass of data, are repeatable from pass to pass, and so are 
correlated with the input and cannot be reduced by averag 
ing. This provides a way of determining if the signal-to- 
noise ratio of a given digitizing system is dominated by 
input noise or by differential linearity error. 

Effect ive Bits from the DFT 
One way to characterize the signal-to-noise ratio of a 

digitizer is to sample a quiet (low-noise) and spectrally 
pure full-scale sine wave and perform a discrete Fourier 
transform (DFT) on the resulting data. The dynamic range 
(in dB) from the peak of the fundamental to the noise floor 
of the DFT gives an idea of the low-level signals that can 
be resolved. The level of the noise floor depends on the 
number of frequency points (bins) in the DFT, and hence 
on the number of samples taken, since if the same noise 

power is spread over more frequency bins, there will be 
less noise power per bin. 

The DFT spectrum can be used to produce an estimate 
of the signal-to-noise ratio of a digitizer by performing es 
sentially the same measurement digitally that a distortion 
analyzer performs electronically. A distortion analyzer 
supplies a low-distortion sine wave as the input to a circuit 
under test. A notch filter is used to remove the fundamental 
frequency from the output signal. The power in the filtered 
signal is measured and a ratio is formed with the total 
output power of the circuit under test. A distortion analyzer 
measurement assumes that the power in the filtered output 
signal is dominated by harmonic terms generated by distor 
tion in the circuit under test. In practice, however, the 
analyzer is unable to separate this power from the power 
contribution of wideband noise, and hence is actually- 
measuring the signal-to-noise ratio of the output signal. 

An analogous operation can be performed on the DFT 
spectrum of a digitized pure sine wave. A certain number 
of frequency bins on either side of the fundamental peak 
are removed from the DFT data. The data in each of the 
other frequency bins is squared (to yield a power term) and 
summed with similar results from the other frequency bins 
to calculate the total noise power. The data within the 
narrow band around the fundamental is squared and summed 
to give the total signal power. The ratio of these two terms, 

(a) 

D  T  

(b) 

(c) 

Fig. 3.  Lineari ty errors in an ADC. (a) Integral  l ineari ty error,  
(b) Dif ferential  l ineari ty error, (c) Total l ineari ty error. 
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expressed in dB. can be used to compute the number of 
effective bits of resolution of the digitizer. 

Calculations of effective bits from DFT spectra will show 
variations if the test is performed repeatedly. This variation 
can be reduced if the spectral values from many indepen 
dent trials are averaged point by point (as opposed to av 
eraging the time-domain data). Spectral averaging will not 
reduce the level of the noise floor in the DFT data, but only 
the amount it varies. Therefore, if enough ensembles of 
spectral data are averaged, the number of effective bits 
calculated will converge to a single number. 

Fig. 4 shows the DFT for 4096 samples of a mathemati 
cally generated ideal sine wave quantized to 16 bits 
(Â±32,767 counts). From this, we see that a perfect 16-bit 
digitizer will show a noise floor of about - 127 dB when 
quantization error is the only source of noise. If the signal- 
to-noise ratio is calculated using the method described 
above, the result is 97.0 dB, or 16.0 effective bits, which 
is what we would expect. 

Other types of digitizer errors can show up on a DFT 
plot. Distortion reveals itself as harmonic components at 
multiples of the fundamental input frequency. This can be 
distortion in the input signal, harmonic distortion in the 
input amplifier, or integral nonlinearity in the ADC. As 
mentioned before, integral linearity error can be approxi 
mated by a second-order or third-order term in the transfer 
function of the ADC. These higher-order terms generate 
spurious harmonic components in the DFT spectrum. 

Other spurious signals can show up in the DFT spectrum 
besides harmonic distortion. Internal clock signals can pro 
duce unwanted signal components (spurs) either by direct 
cross talk or through intermodulation with the input signal. 
These effects are commonly grouped together into a single 
specification of spurious DFT signals. 

Effect  of  Sample Aperture 
Another aspect of digitizers that should be considered 

is the effect of the finite acquisition time of the sampling 
circuit that provides the input to the ADC. This is typically 
some type of sample-and-hold or track-and-hold circuit. 
For maximal time certainty, an ideal track-and-hold circuit 
would acquire a voltage instantaneously when triggered to 
take a sample. In reality, of course, all sampling circuits 
require some finite time to acquire a sample. This sampling 

function can be approximated by a rectangular window of 
time T over which the input signal is sampled. 

The Fourier transform of a square pulse defined over the 
interval â€” T2=Â£t=sT2in the time domain has the form 
[sin(TrfT)] TTÃT. which is the familiar function sinc(fT). This 
means that sampling a signal for a time T is equivalent in 
the frequency domain to multiplying the input spectrum 
by the function sinc(fT). Fig. 5 shows that the spectral 
envelope of the sine function approximates a single-pole 
low-pass filter with a 3-dB corner frequency of fc = 0.45/T. 

From this analysis we can conclude that making the sam 
ple time as short as possible produces the flattest possible 
response because it maximizes the aperture roll-off corner 
frequency. A less desirable trade-off, however, is that this 
also increases the equivalent white noise bandwidth of the 
sampler, thereby increasing its sensitivity to noise. There 
fore, in applications where noise is a greater problem than 
frequency roll-off, it would be desirable to have a wider 
sample aperture to reduce the noise bandwidth. 

The transform above was defined for a square pulse ex 
tending from â€” T/2 to T/2. Since a real sampler cannot 
anticipate its input, the sample must actually occur over 
the interval O =s t =Â£ T. This implies that any sampler that 
acquires a signal over a nonzero time interval T will intro 
duce an apparent time delay equal to T/2 to the output. In 
most real applications, however, this distinction is not sig 
nificant. 

Another characteristic of the sine function that can be 
useful is that its transfer function goes to zero at all frequen 
cies that are multiples of 1/T. This means the sampler will 
reject all harmonics of a signal whose fundamental period 
is equal to the sample aperture. Therefore, a selectable 
aperture allows the rejection of specific interference fre 
quencies that may be present in the measurement environ 
ment. 

HP 3458A Digit iz ing Characterist ics 
Many of the same design characteristics required to make 

0.01/T 
Frequency  

0 .1 /T  0 .45 /T  1 /T  
H r  

10/T 

- 2 0 - -  

03 
T3 

3  - 4 0 -  

- 6 0 -  

1 0  1 5  
FREQUENCY (KHz)  

Fig.  4.  Discrete Four ier  t ransform of  an ideal  s ine wave sam 
pled wi th  an ideal  16-b i t  ADC. 

F ig .  5 .  A t tenua t i on  o f  t he  i npu t  s i gna l  as  a  f unc t i on  o f  f r e  
quency resul t ing f rom sampl ing wi th  an aper ture of  width T.  
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Time Interpolation 

To  imp lemen t  t he  subsamp l i ng  (e f f ec t i ve  t ime  samp l i ng )  re  
q u i r e d  f o r  t h e  H P  3 4 5 8 A  D M M ' s  d i g i t a l  a c  m e a s u r e m e n t  
technique,  some means of  synchronizat ion wi th the input  s ignal  
was  necessa ry .  To  m in im ize  e r ro r s  caused  by  a l i as i ng  o f  t he  
sampled  da ta ,  a  t ime base  w i th  10-ns  reso lu t ion  was  des i red .  
However ,  the in terna l  10-MHz c lock would  on ly  a l low a sample 
reso lu t ion  o f  100  ns  re la t i ve  to  a  synchron iz ing  t r igger  even t .  
These t ime requ i rements  d ic ta ted  the  deve lopment  o f  the  t ime 
interpolat ion circui t  of  the HP 3458A. 

The  i ns t rumen t ' s  10 -MHz  c lock  i s  used  to  genera te  samp le  
t iming pu lses o f  var iab le  per iod in  100-ns (10-MHz)  s teps.  The 
t ime in te rpo la to r  ex tends  the  reso lu t ion  o f  the  t ime base  f rom 
100-ns  s teps  to  10-ns  s teps  fo r  i n i t i a l  bu rs t  de lays  ( the  de lay  
from the tr igger event to the start  of  sampl ing).  This enables the 
HP 3458A to d ig i t ize s ignals wi th spectra l  content  up to 50 MHz 
without introducing al iasing errors.  

The time interpolator, Fig. 1 , uses analog techniques to convert 
t ime  to  s to red  charge  on  a  capac i to r .  Be fo re  an  inpu t  t r i gge r ,  
the in terpolator  is  reset  by shor t ing both capaci tors (S1 and S2 
c losed) wi th the current  source shorted to ground (S3 and S4 in 
pos i t ion B) .  An asynchronous input  t r igger ,  generated e i ther  by 
the ac path 's t r igger level  c i rcui t  or  by an external  t r igger input ,  
in i t ia tes charge accumulat ion on C1 by opening S1 and set t ing 
S3 and S4 to posi t ion A.  This  charge accumulat ion process con 
t inues unt i l  the next  pos i t ive edge of  the 10-MHz c lock occurs.  

On th is  edge  S3  and  S4  sw i tch  to  pos i t ion  B ,  fo rc ing  the  ac  
cumulated charge to be held on C1. This charge,  Q-, ,  is  d i rect ly  

RAMP 

proportional to the elapsed t ime (Tvar1) between the input tr igger 
and the next  10-MHz c lock  edge.  L ikewise,  the  vo l tage across  
C1 (Vvar1) is also proportional to Tvar1, which varies between 50 
ns  and  150  ns  depend ing  on  t he  t im ing  o f  t he  asynch ronous  
input t r igger relat ive to the internal  10-MHz clock.  

The  in te rpo la to r  rema ins  in  th i s  "ho ld "  s ta te  fo r  an  in teg ra l  
number  o f  c lock  cyc les ,  Tde iay .  The nex t  pos i t i ve -go ing  c lock  
edge af ter  Tde]ay in i t ia tes the second charge accumulat ion pro 
c e s s .  A t  t h i s  t i m e ,  S 2  o p e n s  a n d  S 3  a n d  S 4  a r e  s w i t c h e d  t o  
posit ion A. During this t ime, the same charge, Q2, is accumulated 
on C1 and C2.  Th is  process cont inues unt i l  the vo l tage on C1,  
Vramp, crosses the programmable comparator threshold V,.  This 
transit ion generates an output tr igger that signals the track-and- 
hold c i rcui t  in the ac sect ion to enter  hold mode, thus acquir ing 
a  sample  fo r  subsequent  ADC convers ion .  By  p rogramming  V ,  
to var ious values,  the system can al ter  th is  delay in increments 
o f  10 ns,  a l lowing prec ise t iming of  a  burs t  o f  samples re la t ive 
to an asynchronous star t ing event.  

The output t r igger also switches S3 and S4 to posi t ion B. This 
no t  on l y  tu rns  o f f  t he  cu r ren t  sou rce ,  bu t  a l so  c rea tes  a  l oop  
be tween  C2 ,  R1 ,  and  the  bu f fe r  amp l i f i e r ' s  i npu t  and  ou tpu t .  
Feedback forces a current through C2, removing i ts accumulated 
charge, Q2. The result ing current f lows through both C1 and C2, 
remov ing  the  charge  Q2 f rom capac i to r  C1 .  The  process  com 
pletes wi th C1 hold ing the or ig ina l  charge,  Q-, ,  which is  propor  
t ional  to  the delay between the f i rs t  t r igger  and the r is ing edge 
o f  t he  i n te rna l  10 -MHz  c l ock .  Du r i ng  t he  ADC conve rs i on ,  ( a  

T r i g g e r  O u t  JL  n 
V r ,  â€¢amp Vvan ; V t  Vvan!  Vt  

Vvar l  

Fig. 1 .  HP 3458 A DMM time inter 
p o l a t o r  b l o c k  a n d  t i m i n g  d i a  
grams. 
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Fig. 2.  77)e f /me interpolator 's accuracy is adjusted by cal ibrat ing l ramp. (a) A digi t ized 1-MHz 
waveform after lramp calibration, (b) Fourier transform of (a), showing a noise f loor 80 dB below 
the  f undamen ta l  and  spu r i ous  s i gna l s  be low  -55  dB .  ( c )  A  d ig i t i zed  1 -MHz  s ine  wave  w i th  

L  ,  misadjusted. (d) Fourier t ransform of (c).  

minimum of 20 /Â¿s for subsampl ing) the t ime base circui t  waits 
an interval  T, imer before repeat ing the charge/discharge cycle.  

The accuracy of the 1 0-ns increments Â¡s ensured by calibration 
o f  the  de lay  ga in .  S ince the  t ime in te rpo la tor 's  abso lu te  de lay  
is a function of lramp, C1 , and V,, many variables can prevent the 
10-ns increments f rom being exact ly  one tenth of  a 100-ns t ime 
base s tep.  In terpo la t ion  fo r  ten  10-ns  In terva ls  must  prec ise ly  
equa l  one 100-ns  c lock  per iod  (10  MHz)  to  min imize  sampl ing  
er rors .  By adjust ing l ,amp (F ig.  2) ,  the s lew rate and threshold 
errors are adjusted to yield 1 0-ns steps within Â±50 ps. Time jitter 
is held to less than 100 ps rms. Low temperature coeff ic ients for 
C1 and the DAC that  generates V,  ensure in terpolator  accuracy 
ove r  i s  opera t ing  tempera tu re  range .  The  t ime  in te rpo la to r  i s  
adjusted by applying a 2-MHz sine wave to the input and execut 
ing a  ca l ib ra t ion rout ine which a l ternate ly  programs 100-ns de 
lays into either the time base or the time interpolator. By adjusting 

the DAC that controls lramp, the routine converges the two delays. 
Th i s  80  base  pe r fo rmance  con t r i bu tes  to  the  a  no i se  f l oo r  80  
dB below the fundamantal and spurious signals below - 55 dB. 

The des ign o f  the  t ime in terpo la tor  c i rcu i t  was re f ined us ing 
analog simulat ion methods on an HP 9000 Model 320 Computer.  
Compute r -a ided  eng ineer ing  p rov ided  t ime ly  feedback  du r ing  
deve lopment ,  a l lowing rap id  eva luat ion o f  a l ternat ive c i rcu i t  to  
pologies. Cri t ical design characterizat ions, di f f icult  to achieve by 
t rad i t ional  means,  were per formed accurate ly  and s imply  us ing 
CAE s imu la t ions .  The  resu l t i ng  c i r cu i t  pe r fo rmance  exceeded  
our or ig inal  design goals.  

David E.  Smith 
Development  Engineer  

Loveland Instrument Divis ion 

high-accuracy ac and dc measurements also allow the HP 
3458A to perform well as a high-resolution digitizer. For 
instance, because it makes true-rms ac measurements using 
digital techniques, it has a scope-like trigger level circuit 
for waveform synchronization. A precise trigger timing cir 
cuit allows sample intervals to be specified to a resolution 
of 100 nanoseconds and initial delays from a trigger event 
to the first sample of a burst can be specified to a resolution 

of 10 nanoseconds using an analog time interpolator. 
As the block diagram in Fig. 6 shows, the HP 3458A 

provides two distinct input paths for digitizing, corres 
ponding to the two amplifiers used for the dc volts and ac 
volts functions. Each path has advantages and disadvan 
tages. The dc input path should be used when maximum 
resolution and noise rejection are required and the 
bandwidth of the input signal is relatively low. Because it 
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uses a track-and-hold circuit, the ac input path can be used 
on signals of higher bandwidth or when the signal must 
be sampled at a very precise point in time. 

High-Resolut ion DC Input  Path 
The dc input path allows higher-resolution sampling as 

well as a higher single-shot measurement speed, providing 
16-bit samples at up to 100,000 samples per second. The 
bandwidth of this amplifier varies from 50 kHz to 150 kHz, 
depending on the range selected. The widest bandwidth 
is available on the 10V range, when the amplifier is operat 
ing at unity gain. In this path, the sampling function is 
performed by the ADC itself with its selectable integration 
time (sample aperture). Historically, digital multimeters 
with integrating ADCs have allowed only a few discrete 
values for integration time. These values were chosen to 
be multiples of the power-line frequency â€” the most com 
mon signal to interfere with a high-resolution voltage mea 
surement. In the HP 3458A, integration times can be 
specified from 500 ns to 1 s in increments of 100 ns. This 
allows the rejection of an interference signal of arbitrary 
frequency that may be present in the input, and provides 
attenuation of other frequencies above the sample rate by 
the approximate single-pole roll-off characteristic of the 
sample aperture's sine function. The longer the integration 
aperture specified, the more resolution is provided by the 
ADC. Fig. 7 shows the resolution that can be obtained for 
a given aperture. 

Because the dc input path is designed for extremely low 
noise, low offset, and part-per-million (ppm) accuracy, the 
DFT spectra produced in this mode are quite good. In fact, 
it is difficult to determine whether the harmonic distortion 
and noise floor measurements are dominated by the HP 
3458A or by the input signal. 

Fig. 8a shows the DFT calculated on 4096 samples of a 
1-kHz waveform aquired at a rate of 50,000 samples/s with 
an integration time of 10 microseconds. The noise floor 
and spurious DFT signals are below â€”120 dB, and har 
monic spurs are below â€” 106 dB. If the signal-to-noise ratio 
is computed from the spectral data, the result is approxi 
mately 93.9 dB, yielding 15.3 effective bits. 

The input signal for this test was provided by the oscil 
lator output of an HP 339A Distortion Measurement Set, 
whose distortion at this frequency is specified to be less 
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than - 96 dB at the first harmonic. It is unclear whether 
the first-harmonic term at - 107 dB is caused by distortion 
in the source signal or distortion in the HP 3458A at this 
sample rate. However, tests performed at slower sample 
rates (and greater resolution) also exhibit this second-har 
monic term. 

The averaging effect of the relatively wide sample aper 
ture (10 fjis vs. 2 ns) reduces random noise contributions 
to the DFT noise floor to a level comparable to those of 
systematic nonlinearities. Because of this, waveform av 
eraging only provides an extra 4.4 dB improvement in the 
signal-to-noise ratio, yielding an extra 0.7 effective bit. Fig. 
8b shows the DFT spectrum that results if 64 waveforms 
are averaged. 

A striking example of the high-resolution digitizing capa 
bility of the dc volts sampling mode involves measuring 
an ultralow-distortion signal source used to characterize 
the performance of seismic measurement systems. The out 
put of the source is a 0.03-Hz sine wave whose noise and 
harmonic distortion products are guaranteed by design to 
be at least 140 dB below the level of the fundamental. 
Superimposed on this is a 1-Hz sine wave whose amplitude 
is 120 dB below the level of the 0.03-Hz signal. The goal 
of the measurement system two-tone test is to be able to 
see the 1-Hz tone clearly in the presence of the full-scale 

10  MS- .  

100 / js - -  
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g .  1 0 m s - -  

100 ms- - 

1 s - -  

4 5  
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( 2 1  b i t s )  ( 2 4 . 5  b i t s )  

8 
( 2 8  b i t s )  

F ig .  6 .  HP 3458A b lock  d iagram,  showing  the  two  measure  
ment paths. 

F ig .  7 .  HP 3458A measurement  reso lu t ion as a  funct ion oÃ  
aperture t ime (speed).  
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(lOVpeak) input without introducing extraneous distortion 
products. The HP 3458A was used to acquire 4096 samples 
with an ADC aperture of 20 milliseconds and a sample 
interval of 50 milliseconds, resulting in a resolution of 24 
bits (7V2 digits). 

The DFT plot in Fig. 9 shows the result of this test. Only 
a portion of the full 10-Hz bandwidth is shown to make 
the component at 0.03 Hz more apparent. The 1-Hz spike 
at - 120 dB is clearly visible above a noise floor of - 150 
dB. If the 1-Hz component is notched out along with the 
0.03-Hz fundamental, and the remaining power is consid 
ered noise, a signal-to-noise calculation yields 19.6 effec 
tive bits. As before, it is not clear whether the DFT noise 
floor in this measurement is dominated by noise in the 
input signal or noise in the HP 3458A. If the rms noise of 
the HP 3458A is characterized with the same ADC aperture 
(20 ms) and a quiet dc source is substituted as input, mea 
surements demonstrate a performance of 22 effective bits. 
The HP 3458A is clearly capable of verifying the perfor 
mance of this source to the levels guaranteed by its design 
ers. We are told that earlier measurements had never been 
able to achieve these low levels of noise and distortion. 

In the dc volts mode, the input signal is sampled directly 
by the ADC. The sampling is synchronous with the instru 
ment's internal 10-MHz clock. This leads to a 100-nano- 
second peak uncertainty in the time latency of a sample 
or group of samples relative to an external or level trigger 
event. While a time uncertainty of 100 nanoseconds from 
an asynchronous trigger event is perfectly adequate for 

most applications, other applications require more precise 
sample timing. 

Digital  AC Input Path 
The ac input path provides a wider analog bandwidth 

and more precise timing than the dc path. The bandwidth 
of the ac amplifier is 12 MHz on all ranges except the 
10-mV and 1000V ranges, where the bandwidth is 2 MHz. 
Autocalibration guarantees a frequency response flatter 
than 0.01% (0.001 dB) throughout the frequency band from 
200 Hz to 20 kHz, making this path ideal for characterizing 
frequency response in the audio band. While the maximum 
single-shot sample rate of 50,000 samples per second is 
somewhat lower than the dc input path because of the 
additional settling time required by the track-and-hold cir 
cuit, a precise timing circuit allows effective time sampling 
(subsampling) of repetitive input signals with effective 
sample intervals as short as 10 ns. 

Achieving true-rms ac measurements with 100-ppm ac 
curacy using digital techniques requires an extremely 
linear track-and-hold circuit. This same track-and-hold cir 
cuit provides 16-bit linearity in digitizing applications. A 
sample acquisition time of approximately 2 ns results in a 
3-dB aperture roll-off frequency of at least 225 MHz. This 
means that amplitude errors caused by the sample aperture 
are insignificant through the entire measurement band. The 
timing of the track-and-hold circuit is controlled by an 
analog ramp interpolator circuit which operates asynchro- 
nously with the internal 10-MHz clock, giving a burst-to- 
burst timing repeatability error less than 100 picoseconds. 
The time interpolator allows programming of delays from 
an external or internal trigger with a resolution of 10 ns, 
allowing single samples to be timed very precisely. 

While the greater equivalent noise bandwidth of the 
input amplifier and track-and-hold circuit results in fewer 
effective bits of resolution in a single-shot measurement 
than the dc input path, the DFT performance for this path 
is still quite good. Fig. 10a shows a typical 2048-point DFT 
plot for a 1-kHz sine wave sampled at the single-shot limit 
of 50,000 samples per second. A signal-to-noise ratio calcu 
lation on this data yields 10.4 effective bits. The ac input 
path has a greater equivalent noise bandwidth than the dc 
input path, so random noise dominates the signal-to-noise 

1  . 2  
F R E Q U E N C Y  ( H z )  

F ig .  8 .  (a )  S ing le -sho t ,  4096- t ime-sample  d isc re te  Four ie r  
t ransform (DFT) of  a 1-kHz input  s ignal ,  (b)  DFT for  64 aver 
aged acquisi t ions of the 1-kHz input signal.  Effect ive bi ts are 
15.3 for (a) and 16.0 for (b).  

F i g .  9 .  DFT  f o r  a  4096 -samp /e  HP  3458A  acqu i s i t i on  o f  a  
0 .3-Hz s ine wave wi th  a  T  -Hz,  -  120-dB s ine wave super im 
posed.  The ef fect ive b i ts  rat ing is  19.6.  
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Measurement of Capacitor Dissipation Factor Using Digitizing 

No capaci tor outside of  a textbook exhibi ts the theoret ical  cur 
rent- to-vol tage phase lag of  90 degrees.  This  is  another  way of  
say ing  tha t  i n  the  rea l  wor ld  a l l  capac i to rs  a re  l ossy  to  some 
ex ten t .  These losses  are  caused by  a  number  o f  fac to rs ,  such 
as lead resistance and die lectr ic  hysteresis.  

A t  a  g iven f requency,  the  d iss ipat ion  fac tor  o f  a  capac i to r  i s  
def ined to be the rat io of  the equivalent ser ies resistance (ESR) 
and the capaci t ive reactance.  Dissipat ion factor  is  important  for  
many  app l i ca t ions .  A t  h igh  power  leve ls ,  capac i to rs  w i th  poor  
d i ss ipa t ion  fac to r  can  overhea t .  The  p rec is ion  o f  capac i t i ve l y  
compensa ted  a t tenua to rs  can  be  compromised  by  d i ss ipa t ion  
fac to r .  A lso ,  the  capab i l i t i es  o f  t rack -and-ho ld  c i r cu i t s  a re  de  
graded by the d iss ipat ion factors of  the i r  ho ld capaci tors .  

There are two common ways to measure diss ipat ion factor .  In 
the f irst method, the impedance of the capacitor under test (CUT) 
i s  measu red  a t  a  g i ven  f requency  and  the  dev ia t i on  i n  phase  
angle f rom the ideal  90 degrees is  used to calculate the diss ipa 
t ion factor.  Br idges are another method used to measure dissipa 
t ion  fac tor .  In  essence,  the  CUT is  in  a  br idge wi th  th ree o ther  
capaci tors,  one of  which is adjustable in both C and ESR. When 
the br idge is  nul led,  the values of  the adjustable C and i ts  ESR 
determine the d iss ipat ion factor  of  the CUT. 

The ac attenuator in the HP 3458A uses a 20-pF capacitor that 
has  a  kHz .  fac to r  requ i remen t  o f  0 .0001  (0 .01  %)  a t  1  0  kHz .  
Commerc ia l ly  ava i lab le  automated equipment  exh ib i ts  reading-  
to - read ing no ise  o f  0 .01% and d iss ipa t ion  fac tor  accurac ies  o f  
0.04%. This is inadequate to screen this capacitor rel iably. High- 

v, 
T 2  

V ,  =  V p  s i n e  

V2  =  -Vp  s in , / ,  

V ,  -  V 2  
=  s in~1  

2 V n  

Fig.  1 .  Measur ing phase shi f t  in a s ine wave. 

qual i ty manual br idges can do this job, but their  operat ion is not 
wel l -sui ted to a product ion environment.  

By making use of  the h igh-resolut ion d ig i t iz ing and prec is ion 
ac measurement  capabi l i t ies  o f  the HP 3458A,  i t  i s  poss ib le  to  
construct  an automated d iss ipat ion factor  meter  that  is  capable 
o f  mak ing  accura te  and  s tab le  0 .001% d iss ipa t ion  fac to r  mea  
su remen ts  and  capac i t ance  measu remen ts  t ha t  a re  s tab le  t o  
0.001 pF. 

Circuit Description 
In  F ig .  1 ,  a  method  o f  de te rmin ing  the  phase  sh i f t  o f  a  s ine  

wave re la t ive  to  an  ex terna l  t im ing pu lse  occur r ing  a t  the  s ine  
wave's zero crossing is shown. Theoret ical ly,  only V-,  is  needed 
to determine th is  phase shi f t .  The advantage of  us ing a second 
sample (V2) spaced one hal f  cyc le la ter  in  t ime is  that  (V,  -  V2)  

measurement to a much greater extent. Because of this, the 
noise floor can be lowered another 20.6 dB by waveform 
averaging, producing 13.8 effective bits as shown in Fig. 
lOb. 

The ac input path supports two digitizing functions: di 
rect sampling and subsampling, which is also referred to 
as effective time sampling. The article on page 15 describes 
the subsampling technique. Subsampling allows the sam 
pling of repetitive waveforms with effective sample inter 
vals as short as 10 ns, thus allowing the user to take full 
advantage of the 12-MHz analog input bandwidth. The sub- 
sampling parameters are somewhat complex to calculate 
for an arbitrary effective interval and number of samples, 
but the user need not understand the details of the al 
gorithm. All that need be specified is the desired effective 
sample interval and number of samples, and the HP 3458A 
will compute the number of passes, the number of samples 
per pass, the delay increment per pass, and the ADC sample 
rate required to complete the task most efficiently. Further 
more, if the samples are directed to the instrument's inter 
nal memory, they will be sorted into the correct time order 
on the fly. 

If the number of samples required for a subsampled mea 
surement exceeds the size of the instrument's internal 
memory, the samples can be sent directly from the ADC 
to a computer via the HP-IB. Since the HP 3458A cannot 
sort the data in this mode, the samples recieved by the 
computer generally will not be in the correct time order. 
If this is the case, the waveform can be reconstructed in 

the computer's memory using an algorithm requiring three 
sorting parameters supplied by the HP 3458A. 

Subsampling is essentially the same as direct sampling 
when the effective sample rate is less than or equal to 
50,000 samples per second. Why, then, is direct sampling 
even offered? The answer is that the subsampling technique 
only allows sampling based on the internal time base, 
whereas the direct sampling function includes all the same 
trigger modes as the dc volts function. This means that the 
user can supply an external time base via the external trig 
ger input to allow sampling at odd frequencies that cannot 
be realized with the 100-ns quantization of the internal 
time base. An example would be the 44.1-kHz sample rate 
required by many digital audio applications. Direct sam 
pling is also useful for acquiring single samples with 
minimum time uncertainty. Samples can be precisely 
placed with 10-ns delay resolution relative to an external 
trigger event and with 2-ns rms time jitter. "Measurement 
of Capacitor Dissipation Factor Using Digitizing" on this 
page shows an example of these measurement capabilities 
of the HP 3458A. 

HP 3458A Limitat ions 
Since the HP 3458A must be a voltmeter first and a digi 

tizer second, it is not surprising that it has some limitations 
as a digitizer. Perhaps the most significant is the lack of 
an anti-aliasing filter. Because no single filter could be 
included to cover all possible sample rates, and because it 
would degrade the analog performance, the design team 
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E x t e r n a l  
O u t  

I n p u t  T o  
H P 3 4 5 8 A  

E x t e r n a l  
T r i g g e r  I n  

Fig.  2 .  Ci rcu i t  to  measure d iss ipat ion factor .  

is  insensi t ive to vol tage offsets on the sine wave. 
F ig .  2  shows  a  c i r cu i t  us ing  the  techn ique  o f  F ig .  1 .  A  s ine  

wave i s  app l ied  to  one  o f  two  capac i t i ve  d iv iders ,  one  fo rmed 
by the CUT and Ctow and the other formed by Chigh and Clow (R 
prov ides the dc b ias for  the buf fer  ampl i f ier ) .  This  s ine wave is  
a lso  app l ied  to  a  compara to r  tha t  de tec ts  zero  c ross ings .  The 
output  o f  the comparator  Is  routed to  the externa l  t r igger  Input  
of  the HP 3458A and the output of  the buffer ampl i f ier  is appl ied 
t o  t h e  i n p u t  o f  t h e  H P  3 4 5 8 A .  T h e  H P  3 4 5 8 A  c a n  u s e  I t s  a c  
sec t ion  to  measure  the  rms va lue  o f  th is  ou tput  waveform and 
thus Vp In Fig. 1 can be determined very precisely. The HP 3458A 
can a lso measure the per iod of  the output  waveform and set  up 
sample t iming parameters to sample the output sine wave relative 
to  the  ex te rna l  t r i gge r  s igna l  as  shown In  F ig .  1 .  Thus  a l l  t he  
in format ion  is  p resent  to  determine the  phase sh i f t  o f  the  s ine  
wave through the capaci tor  d iv ider  network.  

The abso lu te  phase sh i f t  o f  one s ide o f  the capac i tor  d iv ider  
is  not  the in format ion des i red,  however .  What  is  des i red is  the 
phase sh i f t  caused by  the  d iss ipa t ion  fac to r  o f  the  CUT In  the  
divider formed by the CUT and C,ow. This wil l  provide the informa 
t ion needed to determine the d iss ipat ion factor  of  the CUT. 

Comput ing the di f ference between the absolute phase shi f t  of  

the reference divider (Chigh and C,oJ and the input divider (CUT 
and CfcvJ is the first step towards determining the phase shift Â¡n 
the input divider result ing from the dissipat ion factor of the CUT. 
The  HP 3458A  s  EXT  OUT ou tpu t  i s  used  to  se lec t  e i t he r  t he  
reference divider or the input divider. Taking the phase difference 
between the reference and input  measurements removes errors 
caused by the buf fer  ampl i f ier  and the comparator .  I f  Chigh had 
zero dissipat ion factor,  CUT had the same capaci tance value as 
Ch,gh, and the switching relay was perfect,  this phase dif ference 
would be ent i re ly a resul t  of  the dissipat ion factor of  the CUT. I f  
this phase difference is <t>, the dissipation factor of the CUT is: 

DF = tan(<Â« ( C U T  +  C , o J  

In general ,  the CUT wi l l  not be the same size as Chigh, Chigh 
wi l l  not have zero dissipat ion factor,  and the switching relay wi l l  
not  be perfect .  However,  these condi t ions are easi ly  contro l led.  
The feedthrough capacitance of the relay Â¡n Fig. 2 can be reduced 
by implement ing the re lay as a T-swi tch.  I f  the CUT Is  d i f ferent  
Â¡n magni tude f rom Chigh,  a phase di f ference wi l l  be measured 
even I f  the CUT has zero dissipat ion factor .  This is  because the 
phase shi f t  of  the paral le l  combinat ion of  R and Chigh and C!ow 
is  d i f fe rent  f rom that  o f  the  combinat ion o f  R and the CUT and 
C|OVV. This error can be removed by appropriate correction factors 
Implemented Â¡n software. Also, in general, the dissipation factor 
of the CUT wil l  not be zero. A zero calibration against a reference 
capaci tor  can remove th is  error .  

Summary  
The  p rec i s i on  d ig i t i z i ng  capab i l i t i es  o f  t he  HP  3458A  DMM 

have been appl ied to make a t radi t ional ly  d i f f icul t  measurement 
o f  capac i tor  d iss ipat ion fac tor .  Test  resu l ts  show measurement  
accurac ies  approach ing  0 .001%.  Th is  cor responds  to  a  phase  
error of  0.0005 degree or a t ime error of  150 ps at 10 kHz. Also, 
s i nce  t he  capac i t ance  o f  t he  CUT i s  compu ted  as  pa r t  o f  t he  
d i ss ipa t i on  fac to r  ca l cu la t i on ,  accu ra te  capac i tance  measure  
ments are a lso generated that  are s table to 0.001 pF.  

Ronald L.  Swer le in  
Development  Engineer  

Loveland Instrument Div is ion 

decided it would be impractical to include one. 
Another limitation is the latency from an external or 

internal trigger to the start of sampling. The ramp time of 
the analog time interpolator produces a minimum delay of 
at least 400 ns. This means that if the input frequency is 
greater than about 500 kHz, the signal edge that is used to 
synchronize the waveform in a subsampled measurement 
will not even show up in the output data. Oscilloscopes 
typically include some form of analog delay to match the 
timing of the signal path to the trigger circuit, but again 
this was not compatible with the requirements of a high- 
precision DMM. 

Another effect inherent in the design of the analog time 
interpolator is voltage droop. Essentially, the phase of the 
input signal relative to the internal 10-MHz clock is rep 
resented by a voltage stored on a hold capacitor, which is 
captured at the beginning of a measurement burst and held 
throughout the burst. Since there will always be some leak 
age in the circuits attached to this node, the voltage on this 

capacitor will slowly leak off, causing an apparent length 
ening in the time between samples. This produces an appar 
ent frequency modulation in the output data, which con 
tinues until the charge leaks off completely, at which time 
the sample interval will again be stable. This droop rate 
gets worse as leakage increases with higher temperature. 
Measurements on a typical unit at room temperature show 
a droop rate of about 500 ns/s, which persists for about 140 
ms. In other words, during the first 140 ms of a reading 
burst, a sample interval of 20 /us will be lengthened by 
about 10 ps per sample. 

Waveform Analysis  Software 
One factor limiting the effectiveness of the HP 3458A as 

a stand-alone digitizer is the lack of a built-in CRT for 
waveform display. This shortcoming has been addressed 
with a software library that turns an HP 3458A and a com 
puter into a real-time single-channel digital oscilloscope 
and DFT analyzer. 
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The optional waveform analysis library allows a user 
with an HP 9000 Series 200 or 300 workstation or an IBM 
PC/AT-compatible computer with HP BASIC Language Pro 
cessor to display waveforms in real time. In addition, 
routines are included to perform parametric analysis, 
waveform comparisons, and FFT spectral calculations and 
to store and recall waveforms from mass storage. 

The real-time oscilloscope subprogram, ScopeSS, began 
as a means to demonstrate how quickly waveforms could 
be acquired by the HP 3458A and displayed. It soon became 
an indispensable tool in the development of the ADC and 
high-speed firmware. Since the program had proven so 
valuable during development, we decided it should be in 
cluded in the waveform analysis library. A user interface 
was added to give the look and feel of a digital oscilloscope, 
including horizontal and vertical ranging, voltage and time 
markers, and an FFT display mode. The program can ac 
quire and plot waveforms at a rate of approximately 10 
updates per second â€” fast enough to provide a real-time feel. 

The heart of the Scope58 subprogram is a set of 
specialized compiled subroutines for fast plotting, averag 
ing, and interpolation of waveforms. Since speed was the 
overriding design consideration for these routines, most of 
these subroutines were written in MC68000 assembly lan 
guage rather than a higher-level language like Pascal or 
BASIC. The fast plotting routine, in particular, required 
certain design compromises to achieve its high speed. It 
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F ig .  10 .  (a )  Typ i ca l  DFT  fo r  2048  samp les  o f  a  1 -kHz  s ine  
wave sampled at  the HP 3458A ac path 's  s ing le-shot  l imi t  o f  
50,000 samples per second. Effect ive bi ts are 10.4.  (b) Effec 
t ive b i ts  can be increased to  13.8 by averaging data for  sev 
eral acquisit ions. 

uses a simplified plotting algorithm which requires that 
there be one sample per horizontal display pixel, which 
means that the only way to change the horizontal scale is 
to change the sample rate unless the waveform data is 
interpolated to increase its time resolution before plotting. 
Also, the plotting routine bypasses the machine independent 
graphics routines and writes directly to the bit-mapped 
frame buffer of the graphics screen. This makes the routine 
fast, but it complicates the programming task, since a spe 
cial version of the routine must be written for every sup 
ported display interface. 

In addition to the Scope58 subprogram, the waveform 
analysis library includes routines that help with waveform 
acquisition, analysis, and storage. Since the HP 3458A is 
capable of synchronizing with external switching instru 
ments like a normal DMM, it can be switched to acquire a 
waveform per channel in a multichannel data acquisition 
system. This feature, combined with the waveform analysis 
library, can be used to make many complex measurements 
in automated test applications. 

The library's analysis capabilities include routines to 
extract parametric data such as rise time, pulse width, over 
shoot, and peak-to-peak voltage, and routines to compare 
waveforms against high and low limit arrays. There is also 
a compiled utility for calculating Fourier and inverse 
Fourier transforms. This routine can compute a 2048-time- 
point-to-1024-frequency-point transform in as little as 1.2 s 
if the computer's CPU includes a 68881 floating-point co 
processor. Finally, routines are provided for the interpola 
tion of waveforms using the time convolution property of 
the sinc(x) function. This technique is common in digital 
oscilloscopes, and allows the accurate reconstruction of 
waveforms with frequency components approaching the 
Nyquist limit of half the sampling frequency. 

The precision digitizing characteristics of the HP 3458A 
and the display capabilities of the waveform analysis li 
brary combine to form a powerful waveform analysis tool 
in R&D or automated test applications. For instance, an HP 
3458A together with a digital pattern generator can be used 
to test digital-to-analog converters (DACs). The waveform 
comparison capability of the waveform analysis library can 
be used to provide a pass/fail indication. Assuming a DAC 
settling time of 10 /LIS and an HP 3458A measurement time 
of 20 fj.s (only 10 /us of which is spent integrating the input 
signal), all codes of a 14-bit DAC (16,384 levels) can be 
acquired in approximately 328 ms. The dynamic charac 
teristics of the DAC can be tested using the FFT library 
routine. The DAC can be programmed to output a sine 
wave, which the HP 3458A can digitize. A DFT on the 
resulting data can be analyzed to characterize the DAC for 
noise floor and total harmonic distortion (THD). 

Summary  
The capabilities of a high-resolution digitizer can best 

be characterized by examining its performance in the fre 
quency domain. To be able to resolve very low-level 
phenomena, it must have a wide dynamic range and very 
low levels of distortion and spurious signals. The excep- 
* l f  you  10  16 .384  by  30  us ,  t he  resu l t  i s  ac tua l l y  492  ms .  Howeve r ,  l o r  a t  l eas t  10  us  
o f  each  TTL  convers ion ,  the  HP 3458A i s  no t  measur ing  the  inpu t ,  and  p rov ides  a  TTL  
signal indicating this fact. This t ime can be overlapped with the DAC's sett l ing t ime, thereby 
reducing the total  acquisi t ion t ime. 
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tional DFT performance of the HP 3458A results from its 
combination of precise timing and the nearly ideal noise 
rejection capability of an integrating ADC. Also, its high- 
resolution track-and-hold circuit allows very fast sampling 
with maximal time certainty. These features, combined 
\vith the display capabilities of a host computer, are all 
that is needed to implement a high-resolution single-chan 
nel oscilloscope or DFT analyzer. 
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A Structured Approach to Software Defect 
Analysis 
An ef fect ive sof tware defect  analys is requires that  the 
re la t ionships between program faul ts ,  human errors ,  and 
f laws in  the  des ign  process  be  unders tood and 
character ized before  cor rec t ive  measures can be 
implemented.  

by Takeshi  Nakajo ,  Katsuhiko Sasabuchi ,  and Tadashi  Akiyama 

PROBLEMS THAT OCCUR IN SOFTWARE DEVEL 
OPMENT because of human error negatively affect 
product quality and project productivity. To detect 

these problems as early as possible and prevent their recur 
rence, one approach is to identify flaws in present software 
development methodologies and procedures and recom 
mend changes that will yield long-term defect prevention 
and process improvement. Typical approaches to software 
defect prevention have been to: 
â€¢ Investigate only design methodologies and procedures 

and then recommend such things as different languages 
or more tools as defect prevention measures. 

â€¢ Analyze the problems resulting from current design 
methodologies and procedures and develop solutions 
for each class of problem. 
The first approach is the most widely used and has 

tended not to be data-driven, thus making the investigation 
tedious and the results ambiguous. In contrast, the analysis 
of problems tends to produce less ambiguous results and 
data collection is easier, but it has typically been used only 
to solve immediate problems and therefore has produced 
only short-term solutions. 

To break out of the status quo, the instrument division 
of Yokogawa Hewlett-Packard (VHP) joined with Kume 
Laboratory of Tokyo University to analyze 523 software 
defects that occurred in three products developed by YHP. 
We tried to identify the flaws hiding in our current software 
design methodologies and procedures, and examine the 
impact of using the structured analysis and structured de 
sign (SA/SD) methods.1'2 This paper discusses the results 
of this joint investigation. 

Projects Investigated 
The 523 software defects used for our investigation oc 

curred during the development of three projects at YHP, 
which shall be called projects A, B, and C in this paper. 
Project A is a large all-software measurement system for 
analog-to-digital and digital-to-analog converters, and proj 
ects B and C are firmware for measurement instruments. 
360 defects were studied from project A and 163 defects 
from projects B and C. These software systems have the 
following common characteristics: 
â€¢ They are intended to control hardware, that is, initializa 

tion, setting registers, data retrieval, and so on. Therefore, 

they are greatly affected by the accuracy and clarity of 
hardware specifications. 
Their main parts are intrinsics, which are functions that 
can be used in measurement programs, or commands, 
which can be used sequentially to control devices. 
They are used to control hardware status, which means 
that they need many global variables to keep track of 
hardware states. 

Module Interface Faults 

Matching Faults 

Program 
Faults 

Examples 
â€¢ Wrong names of global variables or constants 
â€¢ Wrong type or structure of module arguments 
â€¢ Wrong number of hardware units 
â€¢ Wrong procedures for writing data to hardware 

Restriction Fauns 

Examples 
â€¢ Omission of procedures to prevent invalid input 

or output data 
â€¢ Wrong limit value for validity check of arguments 

Module Function Faults 

Examples 
â€¢ Omission of saving data to global variables 
â€¢ Unnecessary calling of modules 
â€¢ Wrong limit value for judging whether or not 

hardware is set 

Module Internal Process Faults 

Logic Faults 

Examples 
â€¢ Reference of undefined local variables 
â€¢ Omission of loop variable incrementation 
â€¢ Logic expressions that are always true 

Programming Faults 

Examples 
â€¢ Comparison of local variables of different types 
â€¢ Omission of comment marks 

Fig .  1 .  Types o f  program fau l ts .  
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A n a l y z i n g  S o f t w a r e  D e f e c t s  
Three types of information useful for a defect analysis 

can be derived from a software defect: the human error (on 
the part of the developer), the program faults caused by 
the human error, and the flaws in the process causing the 
human error. Human error is an unintended departure from 
work standards or plans. Program faults are outright errors 
in the software which result in the system's crashing, pro 
ducing wrong results, and in general not behaving as 
specified. Flaws are imperfections in the design method 
ologies or development procedures that affect the occur 
rence rate of human errors and the possibility of detecting 
human errors before they become program faults. Examples 
of flaws include no documentation, confusing specifica 
tions, nonstandard coding practices, bad methodology, no 
inspections, poor test planning, and so on. 

To identify the flaws hiding in the design methodologies 
and procedures, we need to understand the mechanisms 
that cause human errors, and determine the relationship 
of these errors to program faults. This analysis is not easy 
because the human error process cannot be observed by 
objective methods, and usually, there isn't enough error 
data to analyze the relationship to program faults. However, 
the flaws must have some common factors, and they are 
reflected in the program faults caused by the human errors 
that occur during the design process. By design process 
we mean the portion of the software life cycle devoted to 
the definition and design of a product's features, software 
architecture, modules, and data structures. 

Program Faults 
To identify the types of faults that occur in programs, it 

is necessary to study what caused the problem and what 
corrections were made to fix the problem. Classification of 
faults based only on their outward appearance does not 
work well. Categories of faults such as "wrong range of 
loop counters in DO statements" or "omission of conditions 
in IF statements" define the coding problem, but they do 

Pro jec t  A  
360 Faul ts 

Pro ject  B 
97 Faul ts 

Pro ject  C 
66 Faul ts  

|  I n t e r f a c e  ^ F u n c t i o n  

Size (KNCSS)"  

Project A 
Project B 
Project C 

In te rna l  Process  

Language 

Pascal, C 
Assembly,  C 
Assembly,  Pascal 

"182 Match ing  Fau l ts  and 42 Rest r ic t ion  Fau l ts  
" K N C S S  =  t h o u s a n d s  o f  n o n c o m m e n t  s o u r c e  s t a t e m e n t s  

Fig. in Distr ibut ion of  program faul ts for the three projects in 
this study. 

not provide a clear correspondence between the fault and 
the design process. We still need to know the role of each 
program segment in the system. For instance, in the DO 
loop range problem, was the range error related to the 
number of hardware units, or the length of the data file? 
Understanding program faults from the designer's point of 
view can help us link program faults to flaws in the design 
process. Fig. 1 shows our categorization of program faults 
along with examples of each category1. Module interface 
faults relate to transferring data between modules, global 
variables, and hardware. Module function faults relate to 
a module's performing the wrong function. Module internal 
process faults correspond to logic errors, internal inconsis 
tency, and programming rule violations. 

Based upon the program fault classification given in Fig. 
1, Fig. 2 shows the distribution of these faults among the 
three projects studied in this paper. The percentages of 
module interface faults and module function faults are 
similar for all three products (91%, 81%, and 85%). Since 
our design process was relatively the same for all three 
projects, we guessed that there must be some flaws in our 
design process associated with the way we do module in 
terface definitions and module function definitions. Since 
module internal process faults had the lowest frequency 
of occurrence and because these faults are more directly 
related to the coding phase, they were not given further 
analysis. 
Module Interface Faults. From Fig. 1 , interface faults can 
be further classified into matching faults (mismatched data 
transfer between modules or hardware), and restriction 
faults (omission of checks on transferred data). The ratio 
of the number of matching faults to restriction faults turns 
out to be the same for all three projects and is about four 
to one. Consequently, we decided to focus our attention 
on matching faults for further study. Fig. 3 shows the five 
types of matching faults and their distribution for project 
A. These five types of matching faults are defined as fol 
lows: 
â€¢ Wrong correspondence between values of data and their 

meanings (e.g., storing the value r into a global variable 
that is supposed to contain the value râ€” 1, or selecting 
the wrong destination hardware) 

â€¢ Wrong data type, structure, or order (e.g., mismatch in 
the structure or order of arguments passed between pro 
grams, or mismatch in the order of arguments read from 
a data file or a hardware interface) 

â€¢ Wrong correspondence between names and their mean- 
"The same fault types and very similar distributions were discovered lor projects B and C. 

1 8 2  F a u l t s  

N a m e  a n d  
M e a n i n g  

1 9 . 2 %  

D a t a  T y p e  
a n d  S t r u c t u r e  

2 9 . 7 %  

N a m e  
3 . 3 %  

D a t a  V a l u e  
a n d  M e a n i n g  

3 3 . 5 %  

Fig .  3 .  D is t r ibu t ion  and types o f  modu le  in ter face match ing 
faults for project A. 
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ings (e.g., using the wrong argument in a calling se 
quence, reading from the wrong global variable, or setting 
the wrong hardware registers) 

â€¢ Wrong method of processing data (e.g., omission of cer 
tain steps when setting up hardware for some task such 
as a DMA transfer, or omission of initialization condi 
tions or variables when calling other routines) 

â€¢ Wrong name (e.g. , using the wrong name to call a module 
or to access a global variable). 

Module Function Faults. Function faults are program faults 
resulting from a module's performing the wrong internal 
operations. Fig. 4 shows the four types and the distribution 
of module function faults for project A. These four types 
of function faults are defined as follows: 
â€¢ Missing or unnecessary operations (e.g., failure to save 

calculated data to a global variable, or unnecessary cali 
bration of hardware) 

â€¢ Missing condition checks (e.g., saving data to a global 
variable before checking to see if it is permitted to save 
data to that particular variable) 

â€¢ Wrong behavior of functions (e.g., making the wrong 
decision, or calculating the wrong value because the 
wrong coefficients are used in an equation) 

â€¢ Wrong order of functions (e.g., checking whether a 
hardware unit exists after setting it). 

The Design Process 
Our design process for instrument control software con 

sists of the following steps: 
â€¢ Definition of unit functions and product features which 

are documented in the system external reference specifi 
cations (ERS) 

â€¢ Definition of data structures and module interfaces 
"The same C. types and very similar distr ibutions were discovered for projects B and C. 

103 Faults 

Condit ion- 
Checks 
29.1% 

Behav io r  
15.5% 

- Order 
10.7% 

â€” Unnecessary 
Operations 

44.7% 

Fig .  4 .  D is t r ibu t ion  and  types  o f  modu le  func t ion  fau l ts  fo r  
project  A.  

which are documented in the internal reference specifi 
cations (IRS) 

â€¢ Coding of each module 
â€¢ Iteration through the previous steps as necessary. 

Each of these steps includes the appropriate deliverables 
(specifications, test plans, etc.), and verification activities, 
such as design reviews and code inspections. Design re 
views are done on the external and internal reference 
specifications, and code inspections are performed on 
selected modules. 

These documents and procedures are intended to ensure 
that a defect-free product is eventually produced. However, 
this goal cannot be attained if we do not have a clear knowl 
edge of the types of human errors that occur in the design 
process and of the features of the documents and proce 
dures that affect the error occurrence rate and error detec 
tion. Consequently, we need to identify the types of human 
errors that cause program faults, the flaws in the present 
design documents and procedures, and the relationships 

Fault! Flaws 

Module interface 
matching faults 
(See Fig. 3) 

Error in recognition of 
hardware specifications 

Error in recognition of the 
interface specifications of 
modules or global variables 

Hardware specifications that 
are incomplete and difficult to 
understand 

Unsystematic and ambiguous 
specifications of module 
interface 

Module interface not well 
defined 

Module function 
faults 
(See Fig. 4) 

Error in recognition of 
the functions of intrinsics 
or  commands 

Insufficient examination of 
the independence between 
intrinsics or commands 

Error in translation from 
ERS to module structure 
and/tecognition of the 
module functions 

Unsystematic specification of 
the functions of intrinsics or 
commands 

Unsystematic correspondence 
between ERS and the module 
structure 

Unsystematic and ambiguous 
specifications of the module 
functions 

Fig .  5 .  Re la t ionsh ip  between pro  
gram faults, human errors, and de 
sign process f laws. 
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between them. From this perspective, we used the informa 
tion gathered from investigating the two prevalent program 
fault types â€” module interface matching faults and module 
function faults â€” to derive the human errors associated with 
each fault type. These relationships were derived from inter 
views with the design engineers and our own analysis. Fig. 
5 summarizes the relationships between the two main types 
of program faults, human errors, and flaws in the design 
process. 

Human Errors and Process Flaws 
Fig. 6 shows the distribution of the different types of 

human errors we discovered during our analysis. The 
human error that caused each software defect was not al 
ways clearly recorded. However, as we did for deriving the 
information in Fig. 5, we analyzed various documents and 
interviewed the designers and programmers who de 
veloped the system to come up with the numbers and per 
centages shown in Fig. 6. 
Human Errors and Matching Faults. The human errors 
responsible for causing module interface matching faults 
are defined as follows: 
â€¢ Module or Variable Specifications. Module interfaces 

and global variable definitions are missing or misun 
derstood. 

â€¢ Hardware Specifications. Software developers overlook 
and misinterpret hardware specifications or other tech 
nical requirements of the hardware. 

â€¢ Design Changes. Changes to the hardware interfaces, 
other related systems, or module interfaces are not com 
municated properly. 

â€¢ Related System Requirements. Technical requirements 
are not communicated clearly between development 
groups and other related systems. 
As shown in Fig. 6a, human errors associated with 

hardware interface specifications and module interfaces 
were the most frequent. Therefore, we examined the design 
process and found the following flaws associated with 
these error types. 
â€¢ Hardware Specifications. Hardware specifications are 

difficult to read and understand for software engineers, 
and as a result, some important technical requirements 
about their interfaces were omitted. This flaw affected 
our external and internal design steps. We found that 
hardware interface information for writing software driv 
ers was being derived from circuit diagrams, which were 
difficult for software developers to use without error. 

â€¢ Module or Variable Specifications. The results of defin 
ing interfaces in the lower-level modules were not well- 
documented before defining internal algorithms and 
coding modules. Therefore, it was difficult to find mod 
ule interface mismatching faults in design reviews. There 
was a lack of uniformity in the definition of certain fea 
tures, and complicated interfaces between modules were 
not taken into consideration. These flaws also affect our 
internal design activities. 

Human Errors and Function Faults. The human errors re 
sponsible for causing module function faults are defined 
as follows: 
â€¢ Module Specifications. Errors in the translation from 

external specification to internal module specifications 
or misunderstanding of module specifications. 

â€¢ Commands and Intrinsic Specifications. Misunderstand 
ing the system external specification and providing the 
wrong or incomplete functionality for system features. 

â€¢ Status Transition. Missing or misunderstanding the val 
ues of global variables that define the different state 
transitions of the system or hardware. 

â€¢ Related System Requirements. Missing or misunder 
standing the technical requirements of other related sys 
tems or hardware, resulting in such mishaps as the use 
of the wrong information from another subprogram to 
set hardware. 
As shown in Fig. 6b, human errors associated with com 

mands, instrinsics, and module functions were the most 
frequent. Therefore, we examined the design process and 
found the following flaws associated with these error types. 
â€¢ Commands and Intrinsics. During the first part of our 

design process, when the external specification is de 
fined, the independence between the functions of the 
commands and intrinsics was not sufficiently defined. 
For example, functions associated with the user interface 
were not partitioned properly, resulting in overlap in 
functionality, thereby causing program faults. Another 
problem was that the external specification documenting 
the commands, intrinsics, and other system require 
ments was not systematic. The specifications were 
mainly written in natural languages, which resulted in 
ambiguity regarding the uses and functions of commands 
and intrinsics. 

â€¢ Module functions. During the internal design phase of 
our design process, when the modules and data struc 
tures are defined, developers designed the module struc 
tures based mainly on considerations about system per 

' l  82 Faults 

H a r d w a r e  
S p e c i f i c a t i o n s  

28.6Â°/< 

M o d u l e  J  
o r  V a r i a b l e  s  

S p e c i f i c a t i o n s  
5 2 . 2 %  

(a) 

D e s i g n  
â € ”  C h a n g e s  

9.9% 

â€” Related 
S y s t e m  

R e q u i r e m e n t s  
9 . 3 %  

1 0 3  F a u l t s  

I n t r i n s i c  a n d  
C o m m a n d  

S p e c i f i c a t i o n s  
29.1% 

Module â€” 
S p e c i f i c a t i o n s  

4 8 . 5 %  

(b) 

Sta tus 
T rans i t i on  

14.6% 

R e l a t e d  
S y s t e m  

R e q u i r e m e n t s  
7.8% 

Fig. 6. Distr ibut ion of human error 
t y p e s  a n d  f r e q u e n c y  o f  o c c u r  
rence  fo r  p ro jec t  A .  a )  Human e r  
r o r s  r e l a ted  t o  modu le  i n te r f ace  
match ing fau l ts ,  b)  Human er rors  
related to module funct ion faul ts.  
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formance. This resulted in modules that had no clear 
correspondence with the system external specification. 
Another problem was that module functions were not 
completely specified before the internal algorithm and 
coding of each module were started. Internal design 
specifications also suffered from a lack of systematic 
documentation, resulting in ambiguous module func 
tions. 

Design Process Issues 
In the previous section we determined the flaws in our 

design process that caused the human errors resulting in 
program faults in our products. Based upon what we 
learned about these flaws, three issues were derived from 
our analysis. Fig. 7 shows an example of the relationship 
between these issues and our design process. 

Issue 1. A systematic method is needed to translate sys 
tem features defined during product investigation into the 
details of a clear system external reference specification. 

Issue 2. A systematic method is needed to translate exter 
nal specifications into module structure and module func 
tions. 

Issue 3. A systematic method is needed to specify the 
technical requirements of hardware and to translate these 
requirements into software module interface specifica 
tions. 

The above issues are vital to our design process. Since 
most of our products have similar characteristics, any solu 
tions to these issues would pertain to all our software prod 
ucts. Issues 1 and 2 indicate that we need a method to 
translate from one level of abstraction to another, with each 
translation making it easier to perform a systematic en 
gineering analysis of the system. With a good analysis 
methodology we can check the independence and suffi 
ciency of functions and review their specifications to find 
unsuitable function definitions. Issue 3 requires that we 
have a methodology that enables hardware engineers to 
communicate hardware interfaces effectively to software 
engineers, and enables software engineers to communicate 
module interfaces and other system interfaces among them 
selves. With such a methodology, module structure and 
design can be effectively reviewed by the hardware and 
software engineers of the design team as well as those who 
must test and support the product. 

SA/SD and Design Process Issues 
Our investigation led us to believe that the structured 

analysis and structured design (SA/SD) methodology is the 
most suitable candidate for dealing with the three design 
process issues. We believe that SA/SD design methods can 
help prevent program faults by enabling us to detect and 
correct these problems before they become real defects. 

Inves t iga t ion  

CODE Command 
Process 

5555 
I  Some part of the comparator function is in 

the interpreter module. 
Ã I  HP-IB comparator commands are located Â¡n 

interpreter and comparator modules. 

ERS - External Reference Specifications 
IRS - Internal Reference Specifications F ig .  7 .  An  examp le  o f  where  the  

design issues occur in the design 
process. 
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Fig. 8 shows the correspondence between the three design 
issues and the solutions offered by SA/SD methods. 
Proposed Solution for Issue 1. The key elements of struc 
tured analysis we found useful for dealing with issue 1 
include: 
â€¢ Context diagrams, which define the relationship be 

tween the software system and its environment (e.g., 
relationship between the hardware and the firmware ele 
ments in an instrument) 

â€¢ Data flow diagrams, which define the actions of pro 
cesses (modules or functions) in the system, and the data 
and control flows between these modules 

â€¢ Process specifications, which define the functions and 
behavior of the processes in a precise structured lan 
guage. 
The functions we define for our systems are organized 

based on their relationship with data. The functions that 
depend on each other are difficult to classify into simple 
groups. In structured analysis, detailed functions of each 
intrinsic or command and their relationships can be rep 
resented by data flow diagrams. Also, the data relationships 
are clearly specified, and the operation of each function is 
defined in a structured language in the process specifica 

tion. 
Proposed Solution for Issue 2. The system external specifi 
cation can be smoothly translated to the module structure 
by using the transformation analysis technique provided 
by SA/SD. Transformation analysis enables us to take each 
data flow diagram and transform it into more detailed data 
flow diagrams or module structure. By applying this 
method, we can make a module structure that has a clear 
correspondence to the system external specification. 
Proposed Solution for Issue 3. The key elements of struc 
tured design we found useful for dealing with issue 3 in 
clude: 
â€¢ Structure charts, which define the module hierarchy 

within a data flow diagram or within a module 
â€¢ Module specifications, which define in a structured lan 

guage the function of each module 
â€¢ Data dictionaries, which define the data that flows be 

tween modules. 
Among these elements, the data dictionary provides us 

with the greatest leverage to solve issue 3. With the data 
dictionary we can systematically specify the interfaces to 
the hardware and the interfaces between the software mod 
ules. With these interfaces consistently defined we can 
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easily detect mismatches between modules and hardware. 

Conclusion 
In this investigation, we tried to identify the flaws hiding 

in our current software design methodology and proce 
dures and examine possible countermeasures against them. 
We analyzed about five hundred actual problems that oc 
curred during software development for three instruments 
and used these defects as a basis for our investigation. 

We believe that SA/SD methods can solve some of our 
design problems. However, there are still some challenges, 
which include: 
â€¢ Elimination of the inconsistencies between the present 

specifications using natural languages and the new 
specifications using the SA/SD methods 

â€¢ Installation of automated tools for using the SA/SD 
methods 

â€¢ Establishment of an appropriate education and training 
system on the SA/SD methods for the software engineers 

â€¢ Preparation of other groups in our division for dealing 
with documents written using SA/SD methods 

â€¢ Establishment of design review methods based on the 

SA/SD methods 
â€¢ Investigation and use of other tools and techniques pro 

vided by SA/SD, such as state transition diagrams and 
transactional analysis 

â€¢ Investigation to find ways to model software behavior 
that cannot be analyzed with current SA/SD methods. 
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CORRECTIONS 

Author  New Chu has sent  us two correct ions for  h is  ar t ic le ,  "Phase Dig i t iz ing;  A New 
Method issue. Capturing and Analyzing Spread-Spectrum Signals," in the February issue. 
Page 32,  second co lumn,  las t  paragraph ( jus t  above F ig .  7)  shou ld  read "Advanced 
phase in earl ier in t ime, so 8Â¿,(tÂ¡) and S,(t ,)  are always opposite in sign." In Fig. 2, 
the s ignal  shown is BFSK. not BPSK. 

Also three places, February issue, in Fig. 2b on page 7, AE should be 2miE in three places, 
and in F ig.  4a on page 9,  fc  should be 2 i r fc .  
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Dissecting Software Failures 
Beyond collecting software defect data just to study defect 
f requency,  th is  paper out l ines a qual i ty  data col lect ion 
process,  an ef fect ive analys is  process,  and a method to  
just i fy changes in the software development process based 
on the defect analysis.  

by Robert  B.  Grady 

MOST PEOPLE DON'T LIKE TO BE TOLD that 
they've made a mistake. It's only human not to 
want to be wrong. On the other hand, software engi 

neers don't intentionally make mistakes, so if we can under 
stand why mistakes occur without accusing individuals, 
we might eliminate the causes of those mistakes. Unfortu 
nately, discussions concerning software defects are confus 
ing because different people describe them from different 
perspectives. 

This paper discusses some of the terminology of these 
different views. It then examines some simple data collec 
tion and analysis techniques that help identify causes of 
defects and point to areas where improvements can be 
made. Finally, it presents some guidelines for justifying 
change based upon the results of analyses. 

"A defect is any flaw in the specification, design, or 
implementation of a product."1 Such flaws cause managers 
to lose control by reducing their ability to predict when 
development or maintenance will be completed. Thus, we 
encounter another human trait: people like to be in control 
of a situation. The opportunity, then, is for software de 
velopers and managers to record sufficient defect data 
while analyzing and resolving defects to understand and 
remove the causes of those defects. 

Defect Perspectives 
Fig. 1 illustrates three views of a defect. Each of these 

views is characterized by its own terminology and focus. 
When users of a product have a problem, they know that 
they can't get their job done because the software product 
isn't performing the way they expect it to. The level of 
their concern reflects how much their business is impacted, 
and terms like critical or serious mean that they stand to 
lose substantial time and/or money if something isn't done 
soon. 

On the other hand, individuals responsible for com 
municating defect information and status to and from cus 
tomers refer to which component is at fault, whether a 
patch exists, and when a permanent fix can be expected. 
They must extract enough detail from customers to discover 
workarounds and to provide maintainers enough informa 
tion to seek a permanent fix. 

The third perspective is that of the people responsible 
for maintaining and enhancing software. They speak in 
terms of what code was at fault, the priority associated 
with correcting the defect, how difficult it will be to fix, 
and when to expect the fix. 

If we draw an analogy to medicine, the patient describes 
the problem in terms of what hurts and how much. The 
nurse setting up the appointment must ask enough ques 
tions to tell the doctor enough to form preliminary conclu 
sions and to determine how urgent it is for the doctor to 
see the patient. The doctor must run tests to discover the 
real cause of the ailment and must prescribe the correct 
treatment to heal the patient. 

Data Collection 
The first step in treating software defects is data collec 

tion. Most organizations already gather much of the neces 
sary data. What is proposed is a method to use the data for 
a long-term quality improvement effort, not just to solve 
the current problems. 

For example, there is always justifiable pressure to fix 
urgent problems. The goal is to maximize customer satisfac 
tion (with an emphasis on timeliness, in this case). In pur 
suit of that goal, data is collected to optimize the flow of 
information from the customer about a defect (see Fig. 2). 
Additional data is collected as engineers investigate the 
problem to provide information to the customer regarding 
status and possible fixes. Once customer satisfaction is 

Customer 
View 

Current 
Product 

Engineer 
View 

Response 
Center/ 
On-Line 
Support 

View 

Description 

-Symptoms 
-Effect on 
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-Source 
-Type 
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-Workaround 
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Definition 
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Miss ing  Log i c  
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Operating System 

Component 
Application 

Component 
Documentation 

Fig .  1 .  D i f fe rent  v iews o f  a  defec t  based upon the respons i  
bi l i ty  for  deal ing with the defect.  
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achieved and the customer has a workaround or permanent 
fix for the problem, data collection should not stop. 

If we want to learn from past mistakes to improve de 
velopment or support practices, then a small additional 
amount of time must be spent to collect additional data. 
What are some of the questions that this long-term goal 
prompts, and what data is needed to answer the questions? 
Some of the more obvious questions are: 
1. What development or maintenance process failed? 
2. How often do such failures occur? 
3. How expensive is it to fix such failures? 
4. Which components are most subject to failure? 
5. What process change will detect or eliminate these 

failures? 
Fig. 3 shows an example of the additional data needed 

for the defect described in Fig. 2. The numbers in Fig. 3 
are related to the questions above. Question 2 could only 
be answered by analyzing the defect type information for 
a number of similar defect fix reports. 

Resistance to data collection when defects are being fixed 
is natural, because there may be a backlog of defects and 
strong schedule pressures. A common request is for addi 
tional automation aids to capture the information suggested 
in Fig. 3, and until then, no data is collected. Such requests 
sometimes miss the point, however, and fall into the trap 
of what we'll call the "automation syndrome." In fact it is 
unlikely that entry of such data into an automated system 
would shorten the time involved on the part of the en 
gineers reporting it. The problem with the automation syn 
drome is that it can prevent the collection of needed data 
for years if simple solutions and firm management don't 
prevail. 

We need to ask what it costs (in time) to collect this 
additional data. Let's take a typical product of 100 KNCSS 
(thousands of noncomment source statements). We have 
seen average postrelease defect densities from less than 0.1 
to as high as 1 or 2 defects per KNCSS in the first year after 
release of a product. For the sake of calculations, let us 
assume a very high value of 1 defect/KNCSS. For our prod 
uct, then, we would expect 100 defects in the first year. If 
we look at the data requested in Fig. 3, it seems likely that 
it would take between five and ten minutes per defect to 
provide the fix information requested in Fig. 3. This means 
that the total incremental engineering hours for our defect- 
plagued 100-KNCSS product might vary from one to 
slightly over two days (see Fig. 4). Not a very large invest 
ment for such valuable data. 

S u b m i t t e r :  B r u c e  D a v i s  
C o m p a n y  N a m e :  H e w l e t t - P a c k a r d  
S u p p o r t  E n g i n e e r :  J o h n  M i c h a e l s  
C o m p u t e r  S y s t e m  M o d e l :  3 0 0 0  9 3 0  
D e f e c t i v e  S o f t w a r e :  M P E - X L  
S e v e r i t y  ( C r i t i c a l .  S e r i o u s .  

M e d i u m .  L o w ) :  S e r i o u s  
W o r k a r o u n d ?  ( Y  N ) :  Y  

D a t e  S u b m i t t e d :  8  2 2  8 4  
D e p t . :  S E L  
S u p p o r t  O f f i c e :  F a c t o r y  
I d e n t i f i c a t i o n  N o . :  0 - 1 3 - 8 2 1 8 4 4 - 7  
R e l e a s e  V e r s i o n :  M I T  X . B 6 . 0 6  

( e a s y  d i f f i c u l t ) ? :  D i f f i c u l t  

S y m p t o m s :  S y s t e m  c r a s h e s  w i t h  a b o r t  n u m b e r  o f  1  0 7 2 .  T h i s  h a s  
h a p p e n e d  t w i c e  i n  t h e  l a s t  w e e k .  A t  t h e  t i m e  o f  t h e  c r a s h ,  
t h e r e  w a s  o n e  u s e r  o n  t h e  s y s t e m ,  m g r .  o f f i c i a l .  T h e  j o b  r u n n i n g  
w a s  n e w j o b x l  .  

Fig.  2 .  S impl i f ied defect  repor t .  

Suppose the product that you are going to perform post- 
release analysis on is ten times as large, or that you want 
to perform your analysis before product release (where we 
typically see about ten times the number of defects as in 
postrelease). Data collection time is always a sensitive 
issue, so you should consider how to capture the informa 
tion that you need while minimizing the data collection 
time. This is done by collecting sufficient samples of defect 
data to yield an effective distribution of causes. The total 
will be adequate as long as the sample size is large enough 
(probably 100 to 150 samples) and sufficiently random. 
For example, you might restrict the capture of the addi 
tional data shown in Fig. 3 to just critical and serious de 
fects, or turn selection into a game by rolling dice before 
starting work on each defect. 

The goal of the data collection scheme is to optimize the 
amount and quality of information and to minimize the 
time (cost) spent by those supplying the information, 
whether the collection method is manual or automated. 

Data Validation 
When you initiate the collection of a new set of data, 

adjustments are needed in people's activities and existing 
processes. It is particularly important at the start to include 
procedures to ensure valid data. 

A common cause of invalid data is different interpreta 
tions of definitions. These are somewhat alleviated by 
proper training before collection begins, but all too often 
we incorrectly assume that everyone will interpret instruc 
tions in the same way. For example, two different HP divi 
sions reported that many defects labeled as coding defects 
were really caused by changed requirements or design. The 
incorrect labeling occurred because the defects were discov 
ered or fixed during the coding phase. 

It is desirable to reinforce initial collection of defect in 
formation with subsequent interviews. These should be 
initiated by the project manager or a representative to en 
sure that the data is accurate and to emphasize the impor 
tance of accuracy to the engineers reporting the data. These 
checks should examine a large cross section of the data in 
depth. Once this is accomplished, spot checks are probably 
all that are needed to maintain the flow of good data. 

Data Analysis 
In the previous sections, the focus was on collection of 

F i x e d  b y :  L y n n  S m i t h  
D a t e  f i x e d :  9 1 9 - 8 4  

( D  E n g i n e e r i n g  H o u r s  t o  F i n d  a n d  F i x :  6 6  
( T )  D e f e c t  O r i g i n :  D e s i g n  
@  D e f e c t  T y p e :  D a t a  D e f i n i t i o n  

C a t e g o r y  o f  D e f e c t  
( M i s s i n g ,  U n c l e a r ,  W r o n g ,  C h a n g e d ,  O t h e r ) :  W r o n g  

@  M o d u l e s  C h a n g e d :  D i s c j o ,  T a b l e  5  
O t h e r  m o d u l e s  a f f e c t e d :  I n t e r x  

@  H o w  c o u l d  d e f e c t  h a v e  b e e n  f o u n d  e a r l i e r :  
D e s i g n  w a l k t h r o u g h ;  m o r e  c o m p l e t e  t e s t  c o v e r a g e ;  
m o r e  t i m e l y  d a t a  d i c t i o n a r y  u p d a t e s .  

Fig.  3.  Defect  f ix  informat ion.  The numbers refer  to the ques 
t ions in the art icle. 
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valid data. The next step of the process is the analysis of 
the data collected. Again, there is a danger that nothing 
will happen, because many managers have never taken the 
time to perform such an analysis. They believe that the 
time involved will be too great. Perhaps this belief is as 
unfounded as the one concerning the data collection time. 

What are the steps involved in a typical analysis? The 
following estimates assume that the analysis is begun with 
100 one-page completed defect reports and is done manu 
ally. 
\. Sort the data collection forms by defect origin. Count 
the number in each group and total the number of engineer 
ing hours to fix the defects for each group. Arrange the 
totals in descending order of total engineering hours (30 
min). 
2. Calculate the average fix time for each of the totals from 
step 1 (5 min). 
3. For the top two or three totals in step 1 , count the defects 
sorted by defect type and multiply by the appropriate av 
erage fix times. Limit the number of types to the largest 
totals plus a single total for all others (15 min). 
4. Add up the defects sorted by module changed. Limit 
the number of choices to the five most frequent plus a 
single total for all others (15 min). 
5. Review the defect reports for the defects included in 
the largest totals from steps 3 and 4, and summarize the 
suggestions for how the defects could have been found 
earlier (1 hour). 

Following the procedure above, project managers would 
know several valuable facts after only about two hours 
time. They would know what the most costly defects were, 
when they occurred, where they occurred, and the most 
likely steps to take to prevent their occurrence in the future. 

But even two hours of a project manager's time is some- 

Produc t  S i ze  x  H igh  Ave rage  x  T ime  to  Reco rd  =  Eng inee r i ng  
P o s t r e l e a s e  D a t a  C o s t  
Defect  Dens i ty  

100  KNCSS x  1  De fec t  KNCSS x  1  1 2  H o u r  D e f e c t  =  8 1 3  H o u r s  
1 6  H o u r  D e f e c t  =  1 6  2 3  H o u r s  

F ig .  4 .  Samp le  ca l cu la t i on  o f  t he  cos t  o f  co l l ec t i ng  de fec t  
cause data. 

times difficult to find. Other useful alternatives that have 
been successfully tried are to use engineers from a quality 
or metrics organization or to hire a student from a local 
university to perform the analysis. 

A  M o d e l  f o r  A n a l y z i n g  D e f e c t  C a u s e s  
Various reports have documented successful efforts to 

analyze defects, their causes, and proposed solutions.2"1 
But the terminology among them has differed considerably, 
and the definitions could possibly mean different things 
to different people. In the fall of 1986 the HP Software 
Metrics Council addressed the definition of standard 
categories of defect causes. Our goal was to provide stan 
dard terminology for defects that different HP projects and 
labs could use to report, analyze, and focus efforts to elimi 
nate defects and their causes. 

Fortunately, the IEEE had a subcommittee working on a 
standard for defect classification,12 so it was possible to 
start from their working documents. The IEEE definitions 
covered all phases of defect tracking in an extensive general 
way. These will undoubtedly be of value to the people 
supporting defect tracking systems. Unfortunately, the 
IEEE document at that time was very long and too general 
to be applied specifically to any project. As a result, the 
metrics council extracted only the material related to defect 
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causes and produced a metrics guideline that is easier to 
use.13 Fig. 5 illustrates a model of defect sources taken 
from the guideline, and the box on page 62 gives the defi 
nitions from the guideline. 

The model is used by selecting one descriptor each from 
origins, types, and modes for each defect report as it is 
resolved. For example, a defect might be a design defect 
where part of the user interface described in the internal 
specification is missing. Another defect might be a coding 
defect where some logic is wrong. 

An Example  
Let us look at a specific example using the model pre 

sented in Fig. 5. The data for this example is taken from a 
detailed study of defect causes done at HP.11 In the study, 
defect data was gathered after testing began. Fig. 6 shows 
the data sorted by the primary origins of defects. 

It is desirable to focus attention on the causes of defects 
that cost the most to fix. The net cost of any given classifi 
cation is represented by the total defects for the classifica 
tion times the average cost to fix those defects. This study 
didn't accurately record the engineering times to fix the 
defects, so we will use average times summarized from 
several other studies to weight the defect origins.14 In par 
ticular, the average engineering cost to fix coding defects 
that are not found until testing is about 2.5 times the cost 
of those found during coding. The factors for design and 
specification defects that are not found until testing are 
about 6.25 and 14.25, respectively. Fig. 7 shows the relative 
costs to fix the defect population from Fig. 6 when the 
weighting factors are applied. For the sake of this example, 
the other origins are assumed to have a multiplier of one, 
and we will normalize all fix times to assume that a coding 
defect fixed during coding takes one hour. The weighting 
factors then simply become engineering hours to fix the 
various defect categories. 

These two figures illustrate step 1 of the five-step proce 
dure described earlier and the weighting factors in Fig. 7 
represent step 2. The study from which this data was taken 
only provided defect type data for coding and design de 
fects. Therefore, we will perform step 3 of our procedure 
with a breakdown of data for only coding and design. This 
is shown in Fig. 8. It suggests that efforts should be focused 

400 -â€¢ 

Â¡I 300- 
Weighting Factors: 

Specification 
Design 
Code 

14.25 
6.25 

2.5 

a  
O 

Fig.  7.  Weighted d is t r ibut ion of  defect  or ig ins.  

on eliminating logic errors, computation errors, and pro 
cess communication errors before final test. 

These brief examples show how easy it is to apply the 
analysis procedure to discover where changes with the 
greatest impact can be made. They also show how incom 
plete data can force us to make assumptions that might 
impact the accuracy of our conclusions. In this example 
we didn't have complete data regarding specifications de 
fects or data detailing engineering hours for all defects. 
These are probably not serious drawbacks in this case, but 
one must be certain to identify such uncertainties and their 
potential effects every time an analysis is performed. 

Here is an interesting note to conclude our example. The 
use of weighting factors in the analysis above emphasized 
working on eliminating causes of problems that cost the 
most to resolve. The assumption was that we would insti 
tute process changes to eliminate the causes of those de 
fects. An excellent source of these changes would be the 
suggestions collected when defects are resolved. If the em 
phasis is to reduce the defect backlog as quickly as possible, 
then the effort must be focused on those problems that are 

(  )  =  Actua l  number  o f  defects  repor ted .  

140 - - 

1 2 0 - -  

100- - 

(50) 

Fig.  6.  Dist r ibut ion of  defect  or ig ins.  
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F i g .  8 .  W e i g h t e d  d i s t r i b u t i o n  o f  d e f e c t  t y p e s  ( c o d i n g  a n d  
design defects only) .  
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easiest to fix quickly. In that case, we would simply view 
the data differently to learn the answer. We would look for 
defect groups consisting of large numbers of defects that 
can be resolved quickly (e.g., documentation or some types 
of coding defects). 

Justifying Change 
Once you have collected the data necessary to under 

stand which defects impact your operation and analyzed 
the data to determine what your tactics should be, you 
encounter the most difficult step. This step is to recom 
mend and implement change based upon the discovered 
facts. It is the most difficult because of another human 
characteristic: resistance to change. There are many facets 
to such resistance that span the entire implementation pro 
cess. These are discussed in detail elsewhere,15 so this 
paper will focus on the first step in the change process 
only, that of initial justification of change. Recommenda 
tions for change take many forms, but most successful 
changes are based upon a cost/benefit analysis built from 
components such as those outlined in Fig. 9. 

Most of the entries in the benefit column of an actual 
table would be represented in measurable units based on 
data already collected and analyzed using the techniques 
described earlier. The remaining items would be estimates. 
The entire table should be bound to a specific time period, 
such as one year. A summary table can be constructed from 
an appropriate subset of items, costs, and benefits given in 
Fig. 9 that should be convincing by itself. For extra em 
phasis, it can be supplemented by benefits beyond a year 
and by more-difficult-to-measure customer satisfaction 
benefits and increased sales. 

An Example 
Let's build a case for change based on data from two 

studies done at HP. The first study investigated the number 
of engineering hours used to find and fix different defect 
types primarily during implementation and test.16 It found: 

Average number of design defects = 18% of total defects. 

The second study evaluated various factors related to 
design and code inspections.17 It found: 
â€¢ Optimum number of inspectors = 4 to 5 
â€¢ Ratio of preparation to inspection time > 1.75 
â€¢ Inspection rate = 300 to 400 lines of design text/hour 
â€¢ Average number of defects found per inspection hour 

Estimated number of design defects (average of 8 defects KNCSS1 8) 
Â¡mOOKNCSSofcode:  

1 0 0  K N C S S .  8 d e f e c t s  v  1 8  d e s i g n  d e f e c t s  .  1 4 4  d e s i g n  
K N C S S  1 0 0  d e f e c t s  d e f e c t s  

Time cost to f ind the design defects using inspections (assume 
might be found'9): 

1 44 design 
defects x 0.55 

2.5 defects found 
inspection hour 

4.5 
engineers 

(1 .75 preparation 4 
1 inspection hour) 392 

= engineering 
1  i n s p e c t i o n  h o u r  h o u r s  

Time (same find the same 79 (144 x 0.55) design defects during test (same 
cost ratio used in Fig. 714): 

3 9 2  d e s i g n -  6 . 2 5  f i n d / f i x  h o u r s  i n  t e s t  2 4 5 0  e n g i n e e r i n g  
find hours 1 find/fix hour in design hours 

Net savings: 2450 engineering hours -  392 engineering hours = 2058 
engineering hours to f ind defects 

(a) 

Benef i ts  

Reduced defect 
finding time 

Time to market 

(b) 

2058 engineering hours 
2 to 4 months 

1-1 2 to 3-1 2 months 

Fig.  to  Resu l ts  o f  us ing in format ion f rom severa l  s tud ies  to  
show times justification for design inspections, a) Analysis of times 
t o  f i nd  des ign  de fec t s ,  b )  Samp le  cos t / bene f i t  ana l ys i s  o f  
design inspect ions. 

= 2.5. 
Fig. 10 shows the results of combining the information 

from these two studies into a justification of design inspec 
tions for a 100-KNCSS project. 

Note that neither costs nor benefits were specified for 
the item management. For simplification we assume that 
roughly the same management time will be needed to intro 
duce the new concepts to a project team as would have 
normally been needed to manage the additional engineer 
ing hours using the old techniques. 

In summary, the introduction of design reviews seems 

Items Costs Benefits 

Fig .  9 .  Fac tors  to  cons ider  when 
r e c o m m e n d i n g  c h a n g e  a n d  m e a  
sur ing progress.  
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Defect Origins and Types 

Enhancement .  A  change tha t  cou ld  no t  poss ib ly  have  been  de  
tec ted,  or ,  i f  detected,  would  not  have been cor rected.  

An enhancement is  not  a defect .  Restra int  must  be exerc ised 
when a software change is labeled as an enhancement.  The use 
o f  t he  te rm enhancement  shou ld  be  res t r i c ted  to  those  cases  
where the customer's needs and/or the product scope have truly 
changed s ince the re lease of  the product ,  thereby creat ing new 
requirements that could not have been anticipated in the original 
development ef for t .  For example,  the performance of  a sof tware 
p roduc t  was  compet i t i ve  upon  re lease ,  bu t  i t  needed  to  be  im 
proved two years la ter  to  remain compet i t ive.  Such a change is  
an enhancement .  I f  the per formance was not  compet i t ive at  the 
or iginal  t ime of release, then any subsequent change to improve 
per formance is  considered a defect  f ix .  
Speci f icat ion Defect .  A mistake in a speci f icat ion that  sets for th 
the requ i rements  fo r  a  sys tem or  sys tem component .  Such mis  
takes  can  be  in  func t iona l  requ i rements ,  pe r fo rmance  requ i re  
men ts ,  i n te r face  requ i remen ts ,  des ign  requ i remen ts ,  deve lop  
ment standards,  etc.  
â€¢ Requi rements  or  Spec i f i ca t ions .  The spec i f i ca t ions  do not  

adequate ly  descr ibe the needs of  target  users.  A lso inc ludes 
the  e f fec t s  o f  p roduc t  s t ra tegy  red i rec t i on  and  nonex i s ten t  
product  speci f icat ions.  

â€¢ Funct ional i ty.  Problems with the product feature set (e.g.,  in 
correct  or  incompat ib le  features) .  Inc ludes cases where func 
t ional i ty  is  increased to add market  value.  

â€¢ Hardware, Software, and User Interface. Problems with incor 
r e c t  e n v i  o f  h o w  t h e  p r o d u c t  w i l l  i n t e r a c t  w i t h  i t s  e n v i  
ronment and/or users.  

â€¢ Functional Description. Incorrect description of what the prod 
uct does. General ly discovered dur ing requirements or design 
inspection. 

Des ign  Defec t .  A  m is take  in  the  des ign  o f  a  sys tem or  sys tem 
componen t .  Such  m is takes  can  be  in  sys tem o r  componen t  a l  
gori thms, control logic, data structures, data set use information, 
input /output  formats,  and inter face descr ipt ions.  
â€¢ Hardware, Software, and User Interface. Problems with incor 

rect design of how the product wil l  interact with its environment 
and/or  users .  For  example,  incorrect  use of  l ib rar ies ,  des ign 
does  no t  imp lemen t  requ i remen ts ,  dev i ce  capab i l i t i es  ove r  
looked or  unused,  or  des ign does not  meet  usabi l i ty  goals .  

â€¢ Funct ional  Descr ip t ion.  Design does not  e f fect ive ly  convey 
what  the  in tended module  or  product  shou ld  do.  Genera l ly  a  
de fec t  found dur ing  des ign  inspec t ion  or  dur ing  imp lementa  
t ion (coding).  

â€¢ Process or Interprocess Communicat ions. Problems with the 
inter faces and communicat ions between processes wi th in the 
product.  

â€¢ Data Defini t ion. Incorrect design of the data structures to be 
used in  the module/product .  

â€¢ Module  Des ign.  Prob lems wi th  the  cont ro l  ( log ic )  f low and 

execut ion wi th in processes.  
â€¢ Log ic  Descr ip t ion .  Des ign  is  incor rec t  in  convey ing  the  in  

tended algorithm or logic f low. General ly a defect found during 
design inspect ion or  implementat ion.  

â€¢ Error Checking. Incorrect error condit ion checking. 
â€¢ Standards. Design does not adhere to locally accepted design 

standards. 
Code Defect .  A mistake in entry of  a computer  program into the 
symbol ic  fo rm tha t  can be  accepted by  a  processor .  
â€¢ Logic. Forgotten cases or steps, duplicate logic, extreme con 

di t ions neglected,  unnecessary funct ion,  or  mis interpretat ion 
errors. 

â€¢ Computation Problems. Equation insuff icient or incorrect, pre 
cis ion loss, or s ign convent ion faul t .  

â€¢ Data Handling Problems. Initialized data incorrectly, accessed 
or  s tored data  incor rec t ly ,  sca l ing or  un i ts  o f  data  incor rec t ,  
d imensioned data incorrect ly ,  or  scope of  data incorrect .  

â€¢ Module interface/Implementation. Problems related to the call 
ing of,  parameter def ini t ion of,  and termination of subprocess- 
es.  For instance,  incorrect  number of ,  or  order of ,  subrout ine 
arguments, ambiguous termination value for a function, or data 
types incorrect.  

â€¢ Comments. Insuff icient or incorrect commenting. 
â€¢ Standards. Code does not adhere to local ly accepted coding 

standard. 
â€¢ Miscellaneous (other): This classification should be used spar 

ingly,  and when i t  is  used, the defect should be very careful ly 
and extens ive ly  descr ibed in  assoc ia ted documentat ion.  

Documentat ion Defect .  A mistake in  any documentat ion re la ted 
to  the  p roduc t  so f tware ,  excep t  i n  requ i remen ts  spec i f i ca t i on  
documents,  design documents,  or  code l is t ings.  Mistakes in the 
la t te r  th ree  a re  assumed to  be  spec i f i ca t ions  de fec ts ,  des ign  
defects ,  and coding defects ,  respect ive ly .  
Operator  Defect :  Any s i tuat ion that  invo lves the operator 's  mis  
understanding of  procedures,  h i t t ing the wrong but ton,  enter ing 
the wrong input,  etc. Does not necessari ly imply that the product 
is in error. 
Envi ronmenta l  Suppor t  Defect .  Defects  that  ar ise as a resul t  o f  
the system development  and/or  test ing envi ronment .  
â€¢ Test Software. Problems in software used to test the product 

sof tware 's  capabi l i t ies.  For  example,  another  appl icat ion pro 
gram, the operat ing system, or  s imulat ion sof tware.  

â€¢ Test  Hardware.  Problems wi th the hardware used to run the 
test software, not the hardware on which the product software 
runs. 

â€¢ Development Tools. Problems that are a result of development 
too ls  no t  behav ing accord ing  to  spec i f i ca t ion  or  in  a  pred ic t  
able manner.  

Other .  Th is  c lass i f i ca t ion  shou ld  be  used  spar ing ly ,  and  when 
i t  i s  used,  the  de fec t  shou ld  be  very  care fu l l y  and  ex tens ive ly  
descr ibed in  assoc ia ted documentat ion.  

62  HEWLETT-PACKARD JOURNAL APRIL  1989  

© Copr. 1949-1998 Hewlett-Packard Co.



to be very desirable. The benefits in this example totally 
overwhelm the costs, so why aren't inspections more 
widely used today? It gets back to the issue of resistance 
to change. Remember that while this example is based on 
real data, it is suspect since the data was measured by 
someone else and is derived from several sources. When 
you justify change, you must organize your arguments as 
clearly and persuasively as possible, and you must be pre 
pared to continue trying to persuade the people involved 
until the change has occurred. 

The example was selected to illustrate the process of 
justifying change. The core of the justification was the data 
recorded in previous studies of defects and the times taken 
to resolve them. You can use such published data to help 
guide your decisions, but ultimately you must also collect 
enough data that is specific to your process or products to 
verify that the problems you pursue are the most important 
ones. 

Conclusion 
Managers of software development cannot afford to con 

tinue producing and supporting products with the same 
old techniques and processes. The field is changing rapidly, 
and improvements in both quality and productivity are 
necessary to remain competitive. The history of the appli 
cation of software metrics includes the continuous applica 
tion of basic scientific methods. We collect data and estab 
lish hypotheses for improvements. We take additional mea 
surements to prove or disprove the hypotheses. And we 
revise our hypotheses accordingly and start the process 
again. The major problem of management without the use 
of data is that the hypotheses can never be really validated 
and institutionalized. 

If we return to our medical analogy, it is like medical 
doctors having to practice medicine without understanding 
the human body through dissections and autopsies. For 
over a thousand years before the fifteenth century, medical 
doctors were prevented from dissecting human bodies be 
cause of fear and superstition. When the rules against dis 
sections were eased, great progress occurred in a relatively 
short time. We must experience a similar renaissance 
period in software development. Perhaps it is time that our 
schools began to teach "software autopsies." 

The techniques described here for collecting, analyzing, 
and presenting data are simple, yet effective means to im 
prove software development. We saw that the collection 
of a small amount of additional data can yield a large 
payback in terms of useful information that fits into a stan 
dard framework for analysis. A five-step process for data 
analysis was given that organizes this information to point 
to areas and methods for improvement. And a framework 
for justifying change to both management and engineers 
suggests how changes are proposed initially and justified. 
What remains is for managers to use these techniques as 
quickly as possible to promote positive change. 
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Software Defect  Prevention Using 
McCabe's Complexi ty  Metr ic  
HP's Waltham Division has started to use this methodology 
and i ts  associated too ls  to  catch defect  prone sof tware 
modules ear ly  and to assist  in  the test ing process.  

by Wi l l iam T.  Ward 

IT IS POSSIBLE TO STUDY, MEASURE, AND QUAN 
TIFY many aspects of the software development process, 
and if sufficient data about good practices used in recently 

released projects is available, real-time adjustments can be 
made to ongoing projects to minimize past mistakes and 
to leverage ideas from past successes. 

HP's Waltham Division has maintained an extensive soft 
ware quality metrics data base for products developed here 
over the past three years. We have been able to use this 
data base during project postmortem studies to provide 
insight into the strengths and weaknesses of Waltham's 
software development process. 

Fig. 1 lists the basic software quality metrics for two 
major Waltham Division products that have been released 
within the past two years. Based on the extensive amount 
of code, both of these products can be classified as large- 
scale firmware projects. These projects had a short develop 
ment time and a very low postrelease defect density. Since 
these products are considered technical successes, it was 
suggested that the software development data we had about 
them could be studied to improve our understanding of 
Waltham's software development process. This resulted in 
a formal effort to examine the project data in more detail. 

A substantial amount of software process data was 
evaluated during the course of the study. This data rep 
resented each phase of the development process and ad- 

dressed both quality and productivity issues (e.g., defect 
density and engineering hours). The results of the evalua 
tion resulted in a set of recommendations that covered code 
inspections, development tools, testing, and people and 
process issues such as code reuse and code leveraging. 

Since every issue could not be addressed at once, we 
decided to find one area in the development process that 
had the greatest need for improvement and would provide 
the greatest return on our process improvement funds. We 
wanted to select methodologies and tools that could be 
used to improve the weak process area and could be easily 
integrated into our development environment. 

Process Improvement  Area 
Fig. 2 shows the relative percentage of prerelease soft 

ware defects based on the development phase where the 
defect was inserted. The data shown here is from Project 
B, but similar results were found for Project A. Initially we 
were surprised by this data. It might be assumed, for in 
stance, that defects are introduced into a product in equal 
amounts throughout each phase of development, or that 
the product design phase might be the most troublesome. 
However, the data presented here accurately represents the 
Waltham process, which of course may be different from 
other environments. 

Since 60% of the total prerelease defects were introduced 
into the product during the implementation phase, it was 
obvious that any improvement in this phase would yield 
the greatest benefit. During the implementation phase the 
activities that occur include coding, inspections, debug- 

'KNCSS: Thousands of  l ines of  noncomment source statements.  

F ig .  1 .  8as /c  so f tware  qua l i t y  me t r i cs  fo r  two  HP Wa l tham 
Divis ion products.  

-  Design 28.2% (35) 

  O t h e r  4 . 0 %  ( 5 )  

Specification 2.4% (3) 
Optimization 2.4% (3) 

  R e p a i r  1 . 6 %  ( 2 )  

Implementation 61 .3% (76) 

Fig .  2 .  Summary o f  defec ts  by  phase for  pro jec t  B.  
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ging, and all testing. 

Finding a Methodology 
Closer investigation of our metrics data base revealed 

that some modules were more defect-prone than others. 
These troublesome modules consumed a great deal of time 
and effort during the implementation phase. Therefore, we 
needed a method to identify these modules early so that 
we could take the appropriate corrective measures, such 
as more intensive code inspections. 

After examining the current software engineering litera- 
ture1'2'3 and further scrutinizing of our project data, we 
found McCabe's cyclomatic complexity metric and its as 
sociated methodologies best suited our needs. This metric 
provided us with a measure for detecting error-prone mod 
ules and a methodology that fit right into our development 
process. The McCabe metric is a number that represents 
the complexity of a module. It is based on the number of 
decision statements in the module. It has been found that 
if the complexity measure of a module exceeds 10 the 
chance of that module being error-prone also increases. 
See the article on page 66 for more details. 

Fig. 3 shows some of the project data we used to help 
us evaluate the utility of the McCabe metric. This graph 
shows a comparison between prerelease defect density and 
the complexity metric for programs belonging to project B 
(similar results were found for project A). Each program 
in Fig. 3 is a collection of many small modules and the 
complexity value shown is the sum of the complexity mea 
sures for all of the modules in a particular program. From 
this data we were able to compute a 0.8 (or 64%) statistical 
correlation between complexity and defect density. 

Methodology and Tools  
The McCabe metric has been around for a while and its 

correlation between the metric and defect-prone modules 
has been validated in the literature.4'5'6 We found the fol 
lowing additional issues during our investigation of the 
McCabe metric and its associated methodology. 
â€¢ The algorithm for calculating the McCabe metric for each 

module is very simple and the process for gathering the 

data to compute the metric can be automated. 
â€¢ The McCabe metric is expressed as a unitless number. 

Industry' experience suggests that a complexity measure 
in the range of 1 to 10 per code module is optimal for 
producing quality code, hi fact, some organizations place 
a limit of 10 on all modules. 

â€¢ The McCabe metric can play an important role in the 
module testing process. A methodology has been de 
veloped that allows determination of test paths and test 
cases using the complexity metric and the accompanying 
program flow graphs. 

â€¢ The cyclomatic complexity of a code module can be 
presented graphically as well as numerically, and there 
are tools for plotting representations of modules as cy 
clomatic flow graphs. 

Implementing Process Improvements 
The primary goal of this effort was to find a methodology 

that would help reduce the number of defects introduced 
into a product during the implementation phase of develop 
ment. Once a methodology was found, our next goal was 
to integrate it into the real, heavily loaded, often skeptical 
R&D environment. We have successfully incorporated the 
McCabe methodology into our software development pro 
cess by using it in early recognition of code quality, testing, 
code inspections, and the software quality engineering pro 
cess. 
Recogition of Code Quality. As mentioned previously, the 
cyclomatic complexity of a module can be represented 
either numerically or graphically. As an example, consider 
Fig. 4. This diagram is the flow graph of a module written 
in C, which is part of a current development project at 
Waltham. This module has a cyclomatic complexity value 
of seven, which indicates a well-constructed module that 
may have a low defect density, or possibly no defects at 
all. The flow graph has been constructed using specific 
shapes to represent various programming structures. For 
instance, in this example IF statements are shown as 
branches and WHILE statements are shown as loops. The 
complete syntax of a language such as C can be illustrated 
in this manner. The numbers on the flow graph correspond 

Fig.  3 .  Compar ison of  defect  den 
s i t i e s  a n d  M c C a b e ' s  c o m p l e x i t y  
f o r  p r o g r a m s  i n  p r o j e c t  B .  T h e  
McCabe  comp lex i t y  va lue  i s  t he  
summation of  a l l  the complexi t ies 
for the modules in a part icular pro 
g ram.  Reused  code  i s  code  tha t  
is used with no changes, and lever 
a g e d  c o d e  i s  m o d i f i e d  r e u s e d  
code. 
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The Cyclomatic Complexity Metric 

T h e  q u a n t i f i c a t i o n  o f  p r o g r a m  c o m p l e x i t y  i s  r e l a t e d  t o  t h e  
number  o f  dec is ions  (changes in  cont ro l )  in  the  program.  Th is  
i s  opposed to  the  v iewpo in t  tha t  complex i ty  can  be  quant i f ied  
from program size or the number of  independent program paths. 
Program s ize is  mis leading because a large program may have 
very few decision statements. For example, a 2-KNCSS program 
may have only  one or  two decis ions imply ing one or  two paths,  
whereas a 50-l ine program with 25 if-then statements in sequence 
could generate 33.5 mil l ion paths. Basing code complexity str ict ly 
on the number  o f  paths is  a lso mis leading because the number  
of  paths can be in f in i te  for  programs that  have loops.  

To provide a metr ic that indicates a meaningful  set of  program 
p a t h s ,  t h e  c y c l o m a t i c  c o m p l e x i t y  m e t r i c  q u a n t i f i e s  a  b a s i c  
number of  paths that  have the fo l lowing propert ies:  
â€¢ They v is i t  every node (program statement)  in a graph of  the 

program, and they v is i t  every edge (change of  contro l )  in  the 
graph. 

â€¢ When taken together the basic paths can generate all possible 
paths in the program. 
T o  d e v e l o p  t h e s e  c o n c e p t s ,  a  d e f i n i t i o n  a n d  t h e o r e m  a r e  

needed f rom graph theory .  
Def in i t ion 1 .  The cyclomat ic number v(G) of  a graph G with n 

nodes ,  e  edges ,  and 1  connected  component  i s :  

v ( G )  =  e  -  n  +  1  

A  c o n n e c t e d  c o m p o n e n t  i s  a  c o d e  m o d u l e  ( f u n c t i o n  o r  p r o c e  
dure) f rom start  to end. 

Nodes 

G: 

Edges 

G ' :  

(b) 

Added 
Edge 

Fig. 1 . a) Program flow graph for a program with seven nodes 
(b locks o l  code)  and ten edges (branches) ,  b)  Same cont ro l  
g raph  w i th  added  edge  to  sa t i s f y  t he  regu i remen t  t ha t  t he  
graph must  be s t rong ly  connected.  

Theorem 1.  In  a  s t rong ly  connected graph G,  the cyc lomat ic  
number is equal to the maximum number of l inearly independent 
paths. 

T o  a p p l y  t h i s  t h e o r y  a  p r o g r a m  m u s t  b e  r e p r e s e n t e d  a s  a  
d i rec ted  g raph  in  wh ich  a  node  represen ts  a  sequen t ia l  b lock  
o f  code,  and an edge cor responds to  a  branch ( t ransfer  o f  con 
t ro l )  between nodes (see F ig .  1) .  I t  is  assumed that  each node 
is  entered at  the beginning and exi ts  only at  the end.  

The program f low graph in Fig.  1 has seven blocks (a through 
g ) ,  en t ry  and  ex i t  nodes  a  and  g ,  and  ten  edges .  To  app ly  the  
theo rem the  g raph  mus t  be  s t rong ly  connec ted ,  wh ich  means  
that ,  g iven the two nodes a and b,  there exists a path f rom a to 
b and a path from b to a. To satisfy this, we associate an additional 
edge w i th  the  g raph tha t  b ranches  f rom the  ex i t  node g  to  the  
ent ry  node a as shown in  F ig .  1b.  Theorem 1 now appl ies ,  and 
Â ¡ t s t a t e s t h a t t h e m a x i m a l n u m b e r o f s t a t e s i n G ' i s 1 1  - 7 + 1 = 5 .  
The impl ica t ion  is  tha t  there  is  a  bas ic  se t  o f  f i ve  independent  
paths that when taken in combination wil l  generate al l  paths. The 
f ive sets of  paths for  G'  are:  

b1 :  abcg 
b2 :  a(bc)*2g { (bc)*2 means i terate loop be twice } 
b3 :  abefg 
b4 :  adefg 
b5 : adfg 

I f  any arb i t rary  path is  chosen,  i t  should be equal  to  a  l inear  
combinat ion of  the basis  paths b1 to  b5.  For  example,  the path 
a b c b e f g  i s  e q u a l  t o  b 2  +  b 3  -  b 1  ,  a n d  p a t h  a ( b c ) * 3 g  e q u a l s  
2 * b 2  -  b 1 .  

T h e  g e n e r a l  f o r m  o f  t h e  c o m p l e x i t y  m e t r i c  f o r  a  m o d u l e  i s  
v (G )  =  e  -  n  +  2 .  The  assoc ia t i on  o f  an  add i t i ona l  edge  f r om  
exi t  to entry for  each module is impl ic i t .  Therefore,  we have: 

v ( G )  =  ( e  +  1 )  -  n  +  1  = e - n  +  2  

Applications of v(G) 
The cyc lomat ic  complex i ty  met r ic  has  app l ica t ions  in  the  fo l  

lowing areas: 
â€¢ The cyc lomat ic  number  has of ten been used in  l imi t ing the 

complex i ty  o f  modules in  a sof tware pro ject .  Exper ience and 
empir ica l  data1 have suggested that  there is  a  s tep funct ion 
in  de fec t  dens i t y  above  a  comp lex i t y  o f  10 .  There fo re ,  i t  i s  
good pract ice to l imi t  the complexi ty of  each software module 
to 1 0. The one exception to this rule is a case statement, which 
contains an arbi trary number of independent paths. This struc 
tu re  can  have  a  h igh  cyc lomat i c  comp lex i t y  and  have  a  low 
defect densi ty.  

â€¢ The cyclomatic number can be used as a predictor of defects. 
Var ious  pro jec ts  have cor re la ted  cyc lomat ic  complex i ty  and 
defect  densi ty and have reported correlat ions of  0.8 as in the 
accompany ing paper  to  9 .6 .2  

â€¢ The cyclomat ic number and the accompanying program con 
trol f low graph can be used to identify test cases. The cyclomat 
i c  number  co r responds  to  the  number  o f  tes t  pa ths  and  the  
t es t  pa ths  co r respond  t o  t he  bas i c  pa ths  de r i ved  f r om  t he  
control  f low graph. With th is informat ion,  test  condi t ions ( test  
cases)  can be genera ted fo r  a  program.  Th is  en t i re  process  
can be automated wi th  a  language dependent  preprocessor .  
The fo l lowing example i l lust rates the der ivat ion of  test  paths 
and tes t  cases us ing the  cyc lomat ic  number  and the  cont ro l  
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to actual C source statements. This representation provides 
a useful reference between the flow graph and the code. 

Fig. 5 is a similar diagram for another C code module 
from the same development project. Note here that the 
cyclomatic complexity is 36, and that the flow graph for 
the code is more complex. Since this module's complexity 
metric exceeds the optimal value of 10 it is likely that this 
module will be error-prone. In addition, Fig. 5 provides 
visual evidence that a complex module may be hard to 
understand, test, and maintain. 

Our experience at Waltham indicates that the graphical 
representation of code complexity is a very effective vehicle 
for focusing lab-wide attention on code quality. The visual 

impact of an image of tangled code appears to attract more 
interest than mere correlation of numbers. Therefore, cur 
rent projects are actively using cyclomatic flow graphs dur 
ing the coding process to focus engineering and manage 
ment attention on code quality. 
Testing Process. The test case generation capability of the 
McCabe methodology has been very useful in establishing 
rigorous module testing procedures. The cyclomatic com 
plexity values have been used as an indicator of which 
modules should be subjected to the most active scrutiny 
by the test group. Modules with abnormally high complex 
ity values are selected as candidates for the most extensive 
test activities. 
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Cyclomatic 36 

Cyclomatic 7 

Nodes 

Upward 
Flows 

Control Statement 
(e.g., IF, Switch) 

Fig. 4. The program flow graph for a module with a cyclomatic 
complexi ty of  7.  

Code Inspections. Recent studies have suggested that one 
of the most effective techniques for software defect preven 
tion and detection is the use of formal inspections.7'8 The 
complexity data and the flow graphs can be used to help 
evaluate various code paths during an inspection, and to 
help determine which modules should be given an inspec 
tion. 
The Software Quality Engineering Process. The software 
quality engineering (SQE) group at Waltham has been ac 
tively promoting the use of McCabe's technology within 
the lab. Specifically, the SQE group is working with current 
projects so that all code is subjected to calculation of the 
cyclomatic complexity of each module. This process has 
been established as part of our software product release 
criteria. In addition, the SQE group has purchased and 
maintains a tool that computes complexity and generates 
program flow graphs. As each project completes major 
blocks of code, the SQE group generates the flow graphs 
for that code and then provides feedback to project manage 
ment and team members. 

Conclusion 
The McCabe methodology and toolset have been inte 

grated into the Waltham software development process 
over the past year. This process has been accomplished 
with no disruption to current lab projects and has resulted 
in the following successes: 

Fig. 5. The program f low graph fora module with a cyclomatic 
complex i ty  o f  36 .  The h igh  complex i ty  va lue  and the  v isua l  
p resen ta t i on  i nd i ca tes  tha t  t h i s  modu le  i s  e r ro r -p rone  and  
very l ikely hard to maintain. 

â€¢ Automatic identification of potentially faulty software 
before actual testing is started 

â€¢ Automatic identification of code modules that could ben 
efit from code inspections 

â€¢ Automatic generation of test case data for all software 
modules 

â€¢ Well-defined coding standards accepted throughout the 
lab 

â€¢ Effective code defect prevention strategies based on re 
structuring of overly complex code. 
Each of these successes has contributed to the overall 

success of the software defect prevention program pres 
ently underway at the Waltham lab. By identifying and 
correcting software code defects very early in the coding 
phase of product development, the McCabe methodology 
and toolset continue to have a major impact on our efforts 
to improve the productivity of the Waltham development 
process and the quality of the resultant products. 

'ACTÂ® (Analys is  of  Complexi ty  Tool) ,  a product  of  McCabe and Associates.  

68  HEWLETT-PACKARD JOURNAL APRIL  1989  

© Copr. 1949-1998 Hewlett-Packard Co.



References 
1. S.D. Conte, H.E. Dunsmore, and V.Y. Shen, So/tivare Engineer 
ing Metrics and Models. Benjamin Cummings Publishing Com 
pany, 1986. 
2. R.S. Pressman, So/tware Engineering: A Practioner's Approach, 
McGraw-Hill, 1982. 
3. C.G. Schulmeyer and J.I. McManus, Handbook of Software 
Quaiity Assurance, Van Nostrand Reinhold Company Inc.. 1987. 
4. T.J. McCabe, Structured Testing: A So/tware Testing Method 
ology Using The Cyclomatic Complexity Metric, National Bureau 
of Standards Special Publication 500-99. 

5. T.J. McCabe. "A Complexity Measure," IEEE Transactions on 
Software Engineering, Vol. SE-2, no. 4, Dec. 1976, pp. 308-320. 
6. T.J. McCabe, and Associates, Inc. Structured Testing Workbook, 
14th Edition. 
7. M.E. Fagan. "Design and Code Inspections to Reduce Errors in 
Program Development," IBM System Journal, no. 3, 1976, pp 182- 
211. 
8. M.E. Fagan, "Advances in Software Inspections," IEEE Trans 
actions on Software Engineering, Vol. SE-12, no. 1, July 1986, pp. 
144-151. 

Object-Oriented Unit Testing 
HP's Wa/tham Division has taken a first step in applying new 
and traditional unit testing concepts to a software product 
implemented in  an object -or iented language.  

by Steven P.  Fiedler  

ALTHOUGH OBJECT-ORIENTED ENVIRONMENTS 
are being used more frequently in software develop 
ment, little has been published that addresses ob 

ject-oriented testing. This article describes the processes 
and experiences of doing unit testing on modules devel 
oped with an object-oriented language. The language is 
C++1 and the modules are for a clinical information sys 
tem. Because the system must acquire real-time data from 
other devices over a bedside local area network and the 
user requires instant information access, extensions were 
made to the language to include exception handling and 
process concurrency. We call this enhanced version Ex 
tended C+ + . Test routines were developed and executed 
in an environment similar to that used in development of 
the product. This consists of an HP 9000 Series 300 HP-UX 
6.01 system. 

Unit Testing 
Unit testing is the first formal test activity performed in 

the software life cycle and it occurs during the implemen 
tation phase after each software unit is finished. A software 
unit can be one module, a group of modules, or a subsystem, 
and depending on the architecture of the system, it is gen 
erally part of a larger system. Unit tests are typically de 
signed to test software units, and they form the foundation 
upon which the system tests are built. Since software units 
and unit tests are fundamental entities, unit testing is crit 
ical to ensuring the final quality of the completed system. 

The unit testing process involves test design, construc 
tion, and execution. The test design activity results in a 
test plan. Because the primary intent of unit testing is to 
find discrepancies between unit specifications and the 
coded implementation,2 the unit specification is the pri 
mary reference for the test plan. Test construction involves 

building the test cases based on the test plan, and test 
execution involves performing the tests and evaluating the 
results. 

Both structural (white box) testing and functional (black 
box) testing techniques are used in unit testing. Since struc 
tural testing requires intimate knowledge of the design and 
construction of the software, unit testing requires intense 
developer involvement in the process. 

Message 

objx.  movejtem (xnew. ynew) 

(a) 

Methods 
movej tem (xnew,  ynew)  

Un i t  

Global 
Data Structure 

draw i tem (  )  

ÃÃ 
(b) Unit 

F i g .  1 .  ( a )  O b j e c t  i n s t a n c e  o b j x  b e i n g  s e n t  t h e  m e s s a g e  
move   Â¡tem(xnew,ynew) fo invoke the method to move a graphi 
cal i tem from one location to another, (b) The same operat ion 
be ing processed in  a  procedura l  language env i ronment .  
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Objects 
An object is the fundamental building block in an object- 

oriented environment and it is used to model some entity 
in an application. For example, in an office automation 
system, objects might include mail messages, documents, 
and spreadsheets. An object is composed of data and 
methods. The data constitutes the information in the object, 
and the methods, which are analogous to procedures and 
functions in non-object-oriented languages, manipulate the 
data. In most applications, there are many objects of the 
same kind or class (e.g., many mail messages, devices, etc.). 
C+ + defines the data and methods f or these similar objects 
in a data type called a class. Each object in an object- 
oriented language is an instance of a particular class. Also 
in C+ +, a data item is referred to as a member and the 
methods, member /unctions. 

One of the main differences between object-oriented and 
procedural languages (non-object-oriented languages) is in 
the handling of data. In a procedural language environment 
such as Pascal, C, or Fortran, system design is based on 
the data structures in the system, and operations are per 
formed on data passed to procedures and functions. The 
primary data items are typically global and accessible to 
all the modules in the system. In an object-oriented envi 
ronment, the object's internal data structures and current 
values are accessible only to the methods within the object. 
The methods within an object are activated through mes 
sages passed from other objects. The messages indicate the 
method to be activated and any parameters required. 

Fig. 1 illustrates these diferences in architecture between 
object-oriented systems and procedural-language-based 
systems. In Fig. la, to move a graphical item (objx) from 
one location to another, the message move_item(xnew,ynew) 
is sent to the object instance objx to perform the operation. 
The current location and geometric characteristics of the 
item are contained in the data structures of objx. The 
methods in objx will handle the transformation and transla 
tion of the item to a new location. Fig. Ib depicts the same 
operation in a procedural language environment. The 
graphical items's data structure and current values are kept 
in a global data structure which is accessible to all the 
modules in the system. 

Objects and Unit  Test ing 
The issues related to objects and unit testing include: 

â€¢ When should testing begin? In a procedural language 
environment, a complete unit may not exist until several 
functions or procedures are implemented. In an object- 
oriented environment, once a class has been defined and 
coded, it can be considered a complete unit and ready 
for use by other modules in the system. This means that 

Array <*Objecl> 

C l a s s :  S t r i n g  R e v :  1 . 9 8 7 . 0 8 1 2  

Derived Ciass: Sequence <char> 

Include File : ^include "include 'generic-'String.h" 

Role characters String may be used whenever a general-purpose sequence of characters is 
required. It can be used to store and manipulate character strings of any size. 

Abst rac t  i ts  (s ta tements  about  the proper t ies  o f  a  c lass that  he lp  to  exp la in  i ts  
behavior). 

1 . The characters in String are terminated by a null character. This null is not accessible 
to the user. 

2. Length: (int, 0 <- Length) number of characters in String not including the null 
terminator. 

3. Firstlndex: (int) index of the first character in the character portion of String. 
4. Lastlndex: (int) index of the last character in the character portion of String. 

Pub l i c  Func t ions  :  S t r ing  -S t r ing  Append De le teSt r ing  
L o w e r c a s e  P r i n t  Q  +  =  =  =  !  =  

Inher i ted  Func t ions :  AddF i rs t  Capac i ty  Empty  F lush  S ize  S to re  

Public Function Specifications: 

String 0 
R e t u r n s  ( S t r i n g )  
Constructor (s = StringQ) 

String is constructed with Length = 0 and character string 
portion set to null. 

-Str ing 
Returns 
Destructor 

If the character portion of String is not null, DeleteString. is 
called to free the allocated heap area. 

Append (const String s1) 
void 

Appends s1 to characters in String this.Length = this.Length - 
s1 .Length 

DeleteString 

Returns 
Signals 

(const int Startlndex, 
const int Nchars) 

void 
(InvalidNumberOfChars, 
InvalidStartlndex) 

Remove Nchars characters from String starling at 
Startlndex. If Nchars > this.Length - Startlndex then all the characters from 
Startindex to the end of String are deleted and this.Length = Startlndex, 
otherwise, this.Length = this.Length - Nchars. 

If this.Firstlndex > Startlndex or Startlndex > this.Lastlndex, then 
InvalidStartlndex is raised. If Nchars < 0, then InvalidNumberOfChars is 
raised- 

Lowercase 
Returns 

0 
void 

Converts all characters in String to lowercase. 

(i 
R e t u r n s  v o i d  

For debugging purposes, prints the internal representation of String. 

O p e r a t o r  [ ]  ( c o n s t  Â ¡ n t  i n d e x )  
R e t u r n s  c h a r  
S i g n a l s  ( i n v a l i d l n d e x ,  

EmptyString) 

Returns the character at this.[index] of String. If index 
> this.Lastlndex or index < this.Firstlndex, then Invalidlndex is 
raised. If String is empty, then EmptyString Â¡s raised. 

O p e r a t o r  -  ( c o n s t  S t r i n g  s 1 )  
R e t u r n s  S t r i n g  

This function has the same behavior as String:: Append 

O p e r a t o r  =  ( c o n s t  S t r i n g  s 1 )  
R e t u r n s  v o i d  

Assigns the value of s1 to this String. 

Operator = = 
Returns 

(const Siring s1) 
Boolean 

Returns TRUE ifthis.Size = s1. Size and each character in String Â¡s matched 
by the corresponding character in s1, otherwise it returns FALSE. 

Operator ! = 

Returns 

(const String s1) 

Boolean 

Array <*char> Array <*String> Array <*othrObJ! Returns TRUE if this.Size = S1 .Size and at least one character in String Â¡s not 
matched by the corresponding character in s1. otherwise it returns FALSE. 

Fig .  2 .  An  example  o f  parameter iza t ion  in  ex tended C+ +  .  Fig. 3.  Class specif icat ion for the class Str ing. 
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unit testing must be considered much earlier in an object- 
oriented environment. 

â€¢ What testing techniques should be used? Since the 
paradigm of object-oriented programming emphasizes 
the external behavior of data abstractions rather than the 
internals, one would expect to employ only black box, 
functional testing techniques. However, a more robust 
testing structure employing complete path testing is ac 
tually needed. 

â€¢ What should be tested? In an ideal situation, the answer 
to this question would be that all classes should be com 
pletely path tested, particularly for critical application 
systems. However, the resources required to meet this 
goal may be substantial and, in working towards it, trade 
offs are likely to be made. Nonetheless, refinements can 
be added to the testing process that simplify labor inten 
sive phases and improve chances that a minimal set of 
tests will be executed. 

â€¢ Who should do unit testing? To answer this question, 
we need to consider what is being tested and the exper 
tise required of the tester. Remember that units are typ 
ically modules that eventually become part of a larger 
system and only the developers know the detailed inter 
nals of the units they are responsible for building. As a 
result, an independent tester or a developer who is not 
involved in the design and generation of code for a spe 
cific class may find it difficult to perform adequate test 
ing on that class. For example, a developer may design 
a data base class which is intended to make it easier for 
a user to perform transactions in a data base. The methods 
within the data base class are responsible for performing 
the data base interface tasks. An independent tester who 
is unfamiliar with the way in which these low-level func 
tions work would certainly be ineffective in testing the 
internals of this class. 
In the clinical information system, knowledge of Ex 

tended C++ was sufficient to become an effective tester 
for certain classes in the system. This was because of the 
formulation of generic classes. A generic class in the clin 
ical information system is a class that provides general 
functionality. It can be considered an extension of the lan 
guage's built-in data types that fills a utilitarian purpose 

for other components of the system. Strings and linked 
lists are examples of objects that provide such universal 
functionality. 

To build on this generic concept, parameterized type 
classes were introduced.3 Parameterization permits a gen 
eral definition of a class to be extended to create a family 
of type-safe classes, all with the same abstract behavior. 
For example, suppose we design a class called Array which 
contains pointers to some object. Through parameteriza 
tion, we can extend this class definition to create arrays 
that point to characters, arrays that point to strings, or 
arrays that point to any other type of object (Fig. 2). The 
testing of a parameterized type class can provide a high 
level of reliability for a growing family of similar classes. 
From the experience gained in testing generic classes, we 
have developed an approach to the testing of other C+ + 
classes. 

Test  Process 
The tasks associated with the testing process for objects 

are the same as for regular unit testing: design, construction, 
and test execution. 
Design. During the design phase, the tester determines the 
test approach, what needs and does not need to be tested, 
the test cases, and the required test resources. The inputs 
required to conduct the design phase for objects include: 
â€¢ The header and source files of the target class (the class 

being tested], and a well-defined specification of the 
class.4 An example of a class specification is shown in 
Fig. 3. 

â€¢ An analysis of the effects of inheritance on the target 
class. When a class uses another class as a base to build 
additional functionality, it is said to be derived from 
that class and consequently inherits data and methods 
from the base (parent) class. If the target class is derived, 
we want to know if the base class has been thoroughly 
tested. Provided that the functionality of the base class 
has been proven, any member function of the target test 
class that leverages directly from a base class member 
function will require minimal testing. For example, the 
specification in Fig. 3 shows that String is derived from 
a parameterized class called Sequence. The functions that 
String inherits from Sequence (AddFirst, Capacity, etc.) require 

Path Test  Cases:  
1.  Str ing contains no characters.  
2 .  s t r ing  con ta ins  on ly  lowercase  charac te rs .  
3 .  S t r ing  conta ins  both  uppercase and lowercase characters .  

Fig. 4. Path test cases for the function Lowercase. Fig.  5.  Dependencies lor  c lass Str ing.  
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only a basic functionality test. 
â€¢ The cyclomatic complexity metric5 of the individual 

member functions belonging to the target class. The com 
plexity measure and its accompanying testing methodol 
ogy play a key role in the implementation of this test 
strategy. Through their use, we can ensure that all the 
independent paths in the target member functions are 
tested. Fig. 4 shows an example of path test cases for 
the member function Lowercase. In our project, the predi 
cate method6 of calculating cyclomatic complexity has 
been built into the Extended C++ parser. 

â€¢ A hierarchy or structure list which shows member func 
tion dependencies. In simple terms, what member func 
tions call what other member functions of this class? 
Private member functions, which are not accessible to 
the end user directly, should also be included in this 
list. For example, in Fig. 5, the function operator + 
performs its task by invoking the Append function, which 
indicates that Append should be tested first. 

â€¢ The signals or exceptions that are raised (not propagated) 
by each function. Extended C++ includes linguistic 
support of exception handling,7 which permits a special 
kind of transfer of control for processing unusual but 
not necessarily erroneous conditions. These signals 
should not be confused with HP-UX operating system 
signals. Signals are defined for the various member func 
tions in a class specification. For example, the specifica 
tion for String indicates that the member function Delete- 
String raises a signal called InvalidStartlndex if the Startlndex 
parameter passed to the member function is not valid. 
The last step of the design phase is to determine the 

approach to use to verify the test results. There are a number 
of options in this area. One approach is to print out the 
expected results for a test case and the actual results gen 
erated by the target class test to two different files. At the 
end of the test, the two files can be compared using the 
standard UNIXÂ® tool diff (see Fig. 6). A second option for 
results verification uses similar ideas, but may require less 
actual programming time. An expected results file can be 
constructed by hand and the file can be used for comparison 
with actual target class output. If these two approaches 
prove impractical because of the behavior of the class being 
tested, a third alternative might be to include the expected 
UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries. 

Actual Results Expected Results 

Actual 
Results 

Actual 
Resul ts  F i le  

Messages  

Target Class 
Expected 
Results 

File 

' 9  B 1  
Differences 

File 

observations in a test plan using the class specification as 
a basis for deriving these observations. 

Fig. 7 shows an excerpt from the test plan for the class 
String. A test plan is the culmination of the test design 
process, and in addition to guiding test activities, it is an 
excellent respository of information regarding what was 
done to test an object. 
Construction and Execution. The strategy for developing 
test cases for execution is to determine all the paths in a 
module that require test coverage, and then to create test 
cases based on the class specification (black box approach) 
and certain features in the code (white box approach). The 
white box strategy is based on the structured testing 
methodology resulting from McCabe's work (see article on 
page 64 for a discussion of the use of the McCabe complex 
ity metric in our division). In this methodology, test cases are 
created to execute each decision path in the code. In the 
clinical information system, except for paths that contained 
code for exception handling, test cases were written to 
ensure complete path coverage of each member function. 
Exception handling situations were dealt with separately 
because they disrupt the normal control flow of a program. 
Based on the class specification and source code, test cases 
designed to ensure path coverage were derived using the 
other well-understood methodologies of equivalence parti 
tioning and boundary-value analysis.2 

In creating test cases for valid equivalence classes, realis 
tic input values for the member functions were preferred 
over those that lacked relevance from an application 
standpoint. For example, if the primary use for our sample 
String class is to hold a single line of information on an 
electronic index card, we might expect it to hold, on aver 
age, 12 to 50 characters. Our test case would be to create 

Test Plan for Class: String 

Date S Revision: 87/08/12 Rev. 1.9 

Source: Â¿include "include/generic String. h" 

Link/Load: EC $1.o -IGC -lorte -leorte -o $1 

Test from Str ing is the only i tem under test.  Str ing is derived from Sequence<char>. 

Features to be Tested: All of the functions and operators of the class are tested. 

Features not to be Tested: No functions of this class will go untested. 

Approach to Testing: After one or more String member functions are called, the String::Prlnt 
member uses is used to verify the success of the functions. String: Print uses coutÂ«form. 
Another also structure that emulates the operation being performed on the Str ing is also 
constructed. It, too. is output and the results of the String and emulator are compared. At 
times, tested. may also act as an emulator if the needed fuctions have been tested. 

Pass/Fall Verification: The results of each String test are compared to the results from the 
emulator, using the HP-UX diff comand. No differences should be detected. 

Tes t  these  No  works ta t i on  i n te rac t i on  i s  requ i red  fo r  these  tes ts .  Tes ts  run  on  
HP-UX 6.01, HP 9000 Model 350. 

Test  S t r ing .  The fo l lowing tes ts  ver i fy  the  opera t ion  o f  S t r ing .  

StrTestO.c. This module tests the following: 

â€¢ Append with char' parameter 

â€¢ Print with String empty and with String NOT empty 

StrTest! .c. This module tests all of the String constructors using the heap and stack-based 
variables. 

Fig .  6 .  Data  f low d iagram for  c rea t ing  ver i f i ca t ion  f i les  and 
per forming the resul t  compar isons.  Fig. 7. Port/on of the test plan for the class Str ing. 
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T  I  I  I    1    
0 1 2 3 4  

Defects Detected 

F i g .  8 .  D e f e c t s  d e t e c t e d  i n  t h e  
c l asses  t es ted  a f t e r  deve lope rs  
had completed b lack box test ing.  
(a )  Compos i te  complex i ty  versus 
defects for generic classes tested. 
(b )  NCSS ve rsus  de fec ts  fo r  the  
same classes. 

a string of 40 characters rather than 140. 
Boundary-value analysis dictates that tests be built that 

create objects of extremes. Instances of null strings 
(size = 0) should respond as any non-null string would 
unless the specification states otherwise. Clearly, a null 
string appended with the value abc should yield the same 
result as the string abc appended with a null value. At the 
other extreme, tests should exist to stress objects (usually 
in size) beyond all expectations of normal use. For example, 
in HP-UX, main memory is managed in pages of 4096 bytes. 
Therefore, it should be valid to create a string that holds 
4097 characters. 

Tests to invoke exception handling capabilities were also 
included in class test suites. Boundary-value conditions 
were used to invoke these facilities. For example, if an 
exception is encountered when we index beyond the legal 
boundary of a string, the test case invokes the exception 
by trying to access the character just past the end of the 
string, not ninety-nine characters past it. Special care must 
be taken in coding exception test cases, because if a signal 
raised by a member function is not handled correctly, an 
aborted test program may result. 

There are other areas for test cases that do not show up 
using the structured technique. For example, the effects of 
implicitly and explicitly invoking a class's constructor and 
destructor functions should be examined for consistency. 
Initialization and casting operations should also be tested. 
In addition, defects have been discovered by applying as 
sociativity rules to member functions. That is, if string s1 
is null, and string s2 is not null, s1 > s2 should yield the 
same results as s2 < s1. In addition, the use of the object 
itself as a member function input parameter proved valu 
able in uncovering subtle implementation errors. For in 
stance, given s1 is a string, the test s1.Append(sl) becomes a 
legitimate and creative way of triggering certain test condi 
tions. Much of this type of testing can be integrated into 
standard testing without creation of separate tests. 

Results 
The methodology presented here was applied to testing 

several generic classes after the development group had 
completed their testing using black box testing techniques. 
The results show the shortcomings of strict black box test 
ing. Even though development group testing was extensive 
and appeared to be thorough, defects were still uncovered. 

Tln C + + for constructor and a destructor perform the init ial ization and termination for class 
objects, respect ively. 

Defects were found in each of the generic classes tested. 
The number of defects found seemed to be related to the 
composite (total) complexity of all of the class member 
functions and more directly to the number of noncomment 
source statements (NCSS) contained in the source and in 
clude files. The general relationship of complexity to de 
fects is shown in Fig. 8a, and the correlation between de 
fects and the NCSS of each class is shown in Fig. 8b. Each 
point represents a generic class. On average, a defect was 
uncovered for every 150 lines of code, and correspondingly, 
the mean defect density exceeded 5.1 per 1000 lines. Only 
the code contained in the source and include files for each 
class was counted for this metric. Code from inherited func 
tions was not considered. These defect rates pertain to a 
small set of actual product code produced during the early 
stages of development. Another interesting relationship 
was observed when the NCSS values of source and test 
code were compared (see Fig. 9). 

Conclusion 
There is a cost associated with class testing. A significant 

investment of time is required to perform the testing pro 
posed here. Assuming testers are already competent with 
the object-oriented environment, they must acquire famil 
iarity with McCabe's complexity concepts as well as a basic 
understanding of the class being tested. Because testing so 
far has taken place concurrently with development, time 
estimates for the testing phase have been somewhat incon- 

1600-r- 

1200 --  

i  o  
800  -  -  

4 0 0  - -  

ByteString 

Array i 

Str ing 

Stack 

â€¢ Bag 

0  2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0  
Class NCSS (Header and Source) 

Fig .  9 .  Tes t  code NCSS versus  c lass  source  code NCSS.  
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Fig.  10.  Metr ics for  test ing gener  
ic classes. 

sistent and do not yet suggest any clear conclusions. Fig. 
10 summarizes the metrics we have collected thus far. (The 
classes are listed in the order they were tested). 

In the object-oriented environment, objects and their def 
initions, rather than procedures, occupy the lowest level 
of program specification. Therefore, it is necessary to focus 
on them when implementing a thorough test methodology. 
Practices used in testing traditional procedural systems can 
be integrated in the approach to object-oriented testing. 
The main difference we have found so far is that each object 
must be treated as a unit, which means that unit testing in 
an object-oriented environment must begin earlier in the 
life cycle. Through continued collection of the class metrics 
and test results, we hope to gain more insight and continue 
to improve our object-oriented unit test efforts. 
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Validat ion and Further Applicat ion of  
Software Rel iabi l i ty Growth Models 
After two years of  use,  a sof tware rel iabi l i ty  growth model  
has been validated with empirical data, and now it is being 
expanded to est imate test  durat ion before i t  begins.  

b y  G r e g o r y  A .  K r u g e r  

AT HP'S LAKE STEVENS INSTRUMENT DIVISION, 
a software reliability growth model has demon 
strated its applicability to projects ranging in size 

from 6 KNCSS to 150 KNCSS (thousand lines of noncom- 
ment source statements), and in function from instrument 
firmware to application software. Reliability modeling 
curves have been used to estimate the duration of system 
integration testing, to contribute to the release-to-sales de 
cision, and to estimate field reliability. Leveraging from 
the basic model, project managers are beginning to plan 
staffing adjustments as the QA effort moves through the 
defect-fixing-limited phase and into the defect-finding-lim 
ited phase. 

Basic Model 
In the fall of 1986, a software reliability growth model's 

good fit to historical data on a previous firmware product 
led to the development of a set of release criteria, with 
defects per system test hour (QA hour) as the principal 
quality measure.1 The model and release criteria were then 
applied in real time to a new application product. The 
modeling effort aided in predicting when the product was 
ready for release to customer shipments and provided es 
timates for the number of defects that might be found in 
the field. 

" S o f t w a r e  r e l i a b i l i t y  g r o w t h  m o d e l i n g  i s  b a s e d  o n  t h e  p r e m i s e  t h a t  a s  s o f t w a r e  i s  t e s t e d  
a n d  d e f e c t s  r e m o v e d ,  t h e  r e l i a b i l i t y  g e t s  b e t t e r  ( g r o w s ) .  
" Q A  e f f o r t  o r  Q A  p h a s e  i n  t h i s  p a p e r  r e f e r s  t o  t h e  s y s t e m  i n t e g r a t i o n  t e s t  p h a s e  o f  t h e  
s o f t w a r e  l i f e  c y c l e .  

The basic exponential model is based upon the theory 
that the software defect detection and removal effort will 
follow a nonhomogeneous Poisson process.2 In this process 
the defect arrival rate is assumed to decrease with every 
hour of testing (or at least with every code correction). The 
model has two components. 

The cumulative number of defects found by time t is 
given by 

m(t) = a(l-e) -(k/a)t 

and the instantaneous new defect-finding rate at time t is 
given by 

l(t) = ke-(k/a)t. 

Fitting the model requires the estimation of parameters 
k, the initial defect discovery rate, and a, the total number 
of defects. The data required is obtained by recording on 
a daily or weekly basis the time spent executing the soft 
ware and the resulting number of defects discovered. The 
model parameters may be estimated by the least squares, 
nonlinear least squares, or maximum likelihood method. 
In most cases, the maximum likelihood method is pre 
ferred. 

Considering typical software development and system 
testing practices, the assumptions necessary for the 
applicability of Poisson theory would seem to negate the 
use of the model. Key assumptions of the model and the 

(a) 
2 0 0  4 0 0  

Cumu la t i ve  QA Hours  
6 0 0  

Fig. Defect-finding rate C results, (a) Cumulative defects found m(t). (b) Defect-finding rate l(t). 
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correspondingly realities are: 
â€¢ Assumption: All functionality is completed before the 

start of system testing. 
Reality: Many products enter system testing without all 
the features in place. 

â€¢ Assumption: Testing can be considered to be repeated 
random samples from the entire input domain. 
Reality: There is some random testing, but typically test 
ers are more structured and systematic in the selection 
of test cases. 

â€¢ Assumption: Defects found are removed with certainty 
and no new defects are introduced (a perfect repair). 
Reality: A defect repair may introduce new defects. 

â€¢ Assumption: The times between failures are indepen 
dent. 
Reality: When a defect is found in a particular area of 
the software, because of the suspicion that there may be 
more defects in the same area, the area is probed for 
more defects. This process usually finds more defects, 
which is good, but makes the arrival rate of defects de 
pendent on when the last one was found. 
As has been said, with such a set of assumptions, it 

would seem unlikely that this model would fit real-world 
data. However, some aspects of the testing process at Lake 
Stevens approximate these conditions. First, our life cycle 
calls for all functionality to be completed by the time we 
start formal system integration testing. Typical projects 
have 95% or more of their functionality complete by this 
time. Second, the entire set of functionality is subdivided 
and assigned to different individuals of the testing team. 
Therefore, while the testing process cannot be considered 
to be repeated random samples from the input domain, it 
is at least sampling from the entire functionality set as time 
progresses. This is in contrast to a testing process wherein 
some subset of the functionality is vigorously tested to the 
exclusion of all others before moving on to another subset 
and so on. Regarding the third assumption, strict revision 
control procedures at least maintain some control over the 
rate of defect introduction. Finally, nothing about the Lake 
Stevens development process justifies the assumption that 
the times between failures are independent. After finding 
a serious defect in a portion of the product, testing effort 
often intensifies in that area, thus shortening the next time 

to failure. 
The model's success in describing the projects at LSID 

demonstrates some degree of robustness to these assump 
tions. Our past and continued application of software relia 
bility theory is not based on a fundamental belief in the 
validity of the assumptions, but in the empirical validation 
of the model. Therefore, we have continued to use software 
reliability growth models with the following objectives in 
mind: 
â€¢ To standardize the application of the model to all soft 

ware products produced at LSID 
â€¢ To put in place a set of tools to capture and manage the 

data and obtain the best fit curves 
â€¢ To use the defect-finding rate and the estimated defect 

density to define the release goal 
â€¢ To predict the duration of the QA phase before its start 
â€¢ To understand the relationship between model estimates 

and field results. 

Standardized Application 
To date, software reliability growth modeling has been 

conducted on eleven projects that have since been released 
for customer shipment. Two demonstrated excellent fit to 
the model, two very good fit, four showed a fair confor- 
mance to the model, and three showed a poor fit. Fig. 1 
shows the curves for one of the projects on which the model 
gave an excellent fit. Contrast these results to the model's 
performance on the project shown in Fig. 2. Note that time 
in this case is measured in calendar days rather than test 
hours. Here the cumulative defects begin to taper off only 
to start up again. These results reflect inconsistent testing 
effort, which is not picked up by simply measuring calen 
dar days of testing effort. The curves in Fig. 2 were obtained 
by independently fitting the basic model before and after 
the change in testing effort. These two best-fit models were 
then tied together to form the piecewise curves shown. 

Tools  
The defect tracking system (DTS),3 an internal defect 

tracking tool, is used by all project teams to log defects 
found during system testing. In software reliability modeling 
it is important to record all time spent exercising the soft 
ware under test regardless of whether a defect is discovered. 

Cumulative Defects Found 

(a) 
4 0  6 0  

C u m u l a t i v e  Q A  D a y s  
100 

(b) 

Fig. defects (b) D results, (a) Piecewise curve fit for cumulative defects found m(t). (b) Piecewise 
curve f i t  for defect-f inding rate l ( t ) .  
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DTS has proven to be unsatisfactory for capturing QA hours 
that do not produce a software defect. Therefore, project 
teams separately log test hours at the end of each day. 

The DTS data is loaded into an Informix data base so 
that it can be sorted and retrieved as desired. On projects 
using DTS for tracking QA time as well as defect statistics. 
Informix reports generate files with weekly (or daily) QA 
hour and defect total data pairs. On projects tracking QA 
time separately, the weekly (or daily) defect totals are re 
trieved from the Informix data base and matched with the 
appropriate QA hours. In either case, the file of cumulative 
QA hours and cumulative defects found is submitted to a 
program that obtains the best-fit model parameters by the 
method of maximum likelihood. At the present time, plots 
for distribution are generated using Lotus*l-2-3Â®. Future 
plans call for using S, a statistical package that runs in the 
HP-UX environment, to generate the graphics, thereby con 
ducting the data manipulation, analysis, and plotting all 
on one system. 

Release Goal 
The software modeling process provides two related met 

rics that help support a release-to-customer-shipments de 
cision: the defect-finding rate and the estimated number 
of unfound defects. A specific goal for one of these two 
metrics must be established if the model is to be used for 
predicting the conclusion of system testing. 

The defect-finding rate is a statistic you can touch and 
feel. It can be validated empirically â€” for example, 100 
hours of test revealed four defects. On the other hand, one 
can never really measure the number of defects remaining. 
This metric can only be estimated. Although the two mea 
sures are related, it is not true that two projects releasing 
at the same defect-finding rate goal will have the same 
number of defects estimated to be remaining. Couple this 
fact with the recognition that the size of the product has 
no bearing on the model fit and the resulting estimated 
number of residual defects and it is clear that two projects 
releasing at the same find rate could have quite different 
estimated residual defect densities. Because of its observa 
bility, the defect-finding rate has been used as the principal 
release goal on all projects to date except one. However, 
Lotus and 1-2-3 are U.S.  registered t rademarks of  Lotus Development Corporat ion.  
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Fig.  3 .  QA hour  est imates on pro ject  E.  

both the failure rate and the estimated residual defect den 
sity are monitored and used in aiding the release decision. 

The Project  E Experience 
The one project to date using a goal of ending system 

test with a certain residual defect density will serve as a 
good illustration of the contributions and limitations of 
software reliability growth models. Project E is an applica 
tion software product of 156 KNCSS. This project repre 
sents a new release of a previously developed product and 
is roughly two-thirds reused or leveraged code. The stated 
goal at the start of system integration testing was to achieve 
an estimated residual defect density of 0.37 defects per 
KNCSS, a goal derived from the performance of the first 
release of this product. Such a goal means that the best-fit 
model should be estimating 58 residual defects. 

A team of engineers was assembled to conduct testing 
while the project team fixed defects. The data was plotted 
at roughly 30-hour testing intervals and the model refit 
each week. The most recent curve was used to estimate 
the QA hours required to achieve the objective and these 
estimates were plotted weekly with statistical confidence 
limits as shown in Fig. 3. In mid-April, the decision was 

C u m u l a t i v e  D e f e c t s  F o u n d  D e f e c t - F i n d i n g  R a t e  

4 0 0  B O O  1 2 0 0  /  
C u m u l a t i v e  Q A  H o u r s  

(a) 

1600 2000 

April Release (b) 

0  4 0 0  B O O  1 2 0 0  .  1 6 0 0  2 0 0 0  
C u m u l a t i v e  Q A  H o u r s  

I  A p r i l  R e l e a s e  

Fig. Defect-finding rate E results, (a) Cumulative defects found m(t). (b) Defect-finding rate l(t). 
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made to release the project for customer shipments and to 
continue futher testing and refinements for a final release 
in June. The team had all but reached the goal and the data 
had tracked the model very well. At this point, the en 
gineers on the testing team disbanded and returned to their 
original project assignments. The design team then took 
on the task of conducting both continued testing and defect 
resolution. With only the designers looking, the defect dis 
covery rate jumped up rather than continuing to follow the 
curve as can be seen in Fig. 4. The designers were testing 
specfic areas of the code (directed testing), so an hour of 
testing now was not equivalent in intensity to an hour of 
testing with the previous test team. The testing process 
was not meeting the assumption that testing can be consid 
ered to be repeated random samples from the entire user 
input domain. 

What is clear from this project is that the failure rate data 
and curves are modeling more than the software product 
alone. They are modeling the entire process of testing. The 
estimates of failure rates and residual defect densities are 
estimates only as good as the testing process itself. The 
degree to which these statistics match field results will 
depend upon the degree to which the testing matches the 
customer's use profile. The identification of the customer's 
use profile and the incorporation of that information into 
the testing strategy is a topic for further investigation. 

Before QA Begins 
Naturally we would like to estimate the duration of the 

QA phase before it begins. But fitting a model to do estima 
tion must wait for testing to begin and for enough data to 
be collected before an effective statistical analysis can be 
conducted. However, it is possible to use results from past 
projects to estimate the two model parameters a and k. 

In preparation for testing a recent software product, Proj 
ect F, we reviewed the total number of defects discovered 
during system integration testing on past projects. Defect 
densities appeared to fall between 12 and 20 defects per 
KNCSS. Project F had 28.5 KNCSS, so the likely range for 
the first model parameter, a, was calculated to be 342 to 
570 defects. Again looking at past projects, the initial defect 
discovery rate averaged around one defect per hour, so the 
other model parameter, k, could be set to one. Given a goal 

for the failure rate of 0.08 defects per hour, an expected 
range of 864 to 1440 QA hours was calculated. 

Management ultimately needs an estimated date of com 
pletion so the expected QA hours required for system test 
ing must be converted to calendar time. To accomplish this 
we again reviewed the data on past projects and discovered 
an amazing consistency of four QA hours per day per per 
son doing full-time testing, and an average of 2.3 defects 
fixed per day per person doing full-time fixing. Given the 
number of team members capable of fixing, the number 
capable of finding and those qualified to do both, the re 
quired QA hours for testing could now be converted to 
calendar time. Fig. 5 shows the final QA projections for 
Project F and the staffing levels used to convert the QA 
hours into calendar time. Note that the staffing levels given 
correspond to the midrange assumption of 16 defects per 
KNCSS. 

Recognize that as testing proceeds, testing and fixing 
resources will have to be shifted. Early in the process, the 
project is fixing-constrained because a few testers can find 
enough defects to keep all available fixers busy. Over time 
this changes, until late in testing, the project is finding-con 
strained since it takes many resources looking for defects 
to keep only a few fixers working. Also, the finders cannot 
be allowed to outstrip the fixers, creating a large backlog 
of unresolved defects. Such a situation only causes frustra 
tion for the finders because of testing roadblocks created 
by defects already found. 

Our experience to date with using the model to estimate 
the duration of the QA phase before its start demonstrates 
the difficulty in estimating the two required model param 
eters without actual system test data. Project F concluded 
system integration testing with a total QA effort that was 
225% of the original effort. Over twice the expected number 
of defects were found and resolved. Not all of this error in 
estimation can be blamed on the failure of the model. In 
hindsight, we completely disregarded the fact that this was 
not a stand-alone project. Many of the problems encoun 
tered were because Project F had to be integrated with 
another 130-KNCSS product. 

These results indicate that adjustments are necessary in 
the way values for the model parameters are derived. For 
instance, currently the values for the parameters are aver- 

(a) 
Date  

( b )  â € ¢  N u m b e r  o f  F i n d e r s  

Fig.  5 .  QA pro jec t ions and s ta f f ing pro f i le  on pro jec t  F .  
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aged from a heterogeneous population of previous software 
projects. Fixing this problem means that if we want to 
estimate the QA duration for project X then we must base 
the model parameters on projects similar to project X. Proj 
ect characteristics such as complexity, team experience, 
and the development language must be formally factored 
into any early estimates of QA duration. 

Field Failure Results 
Although the modeling process is helping to monitor 

progress through system testing and is aiding in the release 
decision, based upon limited defect data from our field 
defect tracking system it appears that the curves may be 
overestimating the number of defects customers will dis 
cover by as much as forty times.1 However, it is likely that 
only a portion of the actual field failures find their way 
into the tracking system. 

Our experience testing one firmware project that was an 
enhanced version of an old instrument puts an interesting 
perspective on estimated residual defect densities. This 
particular product had been shipped for ten years at an 
average volume of over 200 units per month. Since a market 
opportunity existed for an updated version of that product, 
both hardware and firmware enhancements were incorpo 
rated into a new version. During system test, an obscure 
defect in a math routine was discovered that had not only 
existed in the original product since introduction but in 
several other products shipped over the last ten years. To 
the best of our knowledge, no customer or HP personnel 
had previously found that failure. Its existence was further 
argument that the information coming back from the field 
is not giving a true perception of residual defect densities. 

Not only do customer observed failures go unreported, but 
it is highly likely that some failures will never be encoun 
tered during operation. It was reassuring to note that LSID's 
current testing process was uncovering defects so obscure 
as to be unobservable in ten years of field use. 

Conclusion 
With data collected during system integration testing, 

we have been able to use a software reliability model to 
estimate total testing effort and aid in assessing a project's 
readiness for release to customer shipments. Although the 
model appears to be somewhat robust to its underlying 
assumptions, future success will depend upon the integra 
tion of customer representative testing techniques into our 
existing testing process. In addition, there remains the chal 
lenge of using the model to estimate test duration before 
system integration begins. This will require a thorough 
analysis of data on past projects and key information on 
the current project to derive better early estimates of the 
model's parameters. Our ultimate objective remains to 
achieve validation of the modeling process through accu 
rate field failure data. All of these areas will continue to 
be investigated because they are important in determining 
project schedules and estimating product quality. 
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Comparing Structured and Unstructured 
Methodologies in Firmware Development 
Struc tured methodo log ies  have been promoted as  a  
solut ion to sof tware product iv i ty  and qual i ty  problems.  At  
HP's  Logic  Systems Div is ion one pro ject  used both 
s t ruc tured and unst ruc tured techn iques,  and co l lec ted 
metr ics and documented oberservat ions for comparing the 
two methodologies.  

by Wi l l iam A.  F ischer  Jr .  and James W.  Jost  

STRUCTURED METHODOLOGY in software de 
velopment tends to be very much a religious issue 
with many practitioners. They are either strongly 

for or against it, but they can point to very little data that 
supports their point of view. The purpose of this paper is 
to present some objective and subjective data on the relative 
merits of structured and unstructured (traditional) method 
ologies. 

The data for this comparison came from the development 

of a medium-to-large-scale firmware project at HP's Logic 
Systems Division. It was the first project at this division 
to use structured methods. The project consisted of an em 
bedded 68000 microprocessor design, coded in C and using 
a C compiler running on the HP-UX operating system. The 
firmware consisted of about 47 KNCSS (thousand lines of 
noncomment source statements) of new code and about 12 
KNCSS of reused code. 

At the start of the project, a goal was established to use 

(a) 

M O D U L E  M A I N  P R O G R A M , B , C , D , E , F , H ;  
S Y S T E M  G ;  
E X T E R N A L  I ;  
H A R D W A R E  J ;  
D A T A  K ;  
R E C U R S I V E  L ;  
M A I N  P R O G R A M  

B E G I N  
B ( T O _ P A R M ) ;  
C 

B E G I N  
D 

B E G I N  
I; 
J; 
E N D ;  

E; 
E N D ;  

F ( / F R O M _ P A R M ) ;  
â€¢LOOP 

B E G I N  
G; 
K; 
E N D ;  

" C O N D  L ( T O _ P A R M / F R O M _ P A R M ) ;  
E N D ;  

(b) 

Fig. different . modules. An example of a simple hierarchy chart showing the different types of modules. 
M A I N  s y s t e m  B , C , D , E , F ,  a n d  H  ( n o t  c a l l e d )  a r e  m o d u l e s .  G  i s  a  s y s t e m  m o d u l e .  I  i s  a n  
external  module.  J is  a hardware module.  K is  a data module.  L is  a recurs ive module.  Module 
names three be up to  32 characters  long.  HCL draws each module  name on up to  three l ines 
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structured methodologies1'2 to improve the software de 
velopment process and increase product quality, but the 
decision of whether to use structured methods on each 
subproject was left up to the individual engineers. As a 
consequence, three of the subprojects were developed 
using structured techniques and the other six used tradi 
tional methods. Software designers using structured tech 
niques did their analysis using data flow diagrams (DFDs) 
and structure charts for their design. They also did inspec 
tions on most of the analysis and design documents. HP 
Teamwork/SA, a graphical tool designed for structured 
analysis that also performs consistency checking, was used 
for structured analysis. HCL (Hierarchy Chart Language)3 
was used for structured design. HCL is an internal HP tool 
that plots a program structure from Pascal-like statements 
(see Fig. 1). 

For engineers who used the traditional methods, the 
analysis phase typically consisted of creating a written 
specification. Informal design methods were used and cod 
ing was started earlier in the product development cycle. 
Inspections were generally not part of this process. 

This was not a scientifically designed experiment to de 
termine the better of the two methods. Rather, we simply 
collected data on the two groups of engineers as the project 
developed. As such, our data suffers from many of the 
common problems that beset unplanned experiments. 
However, since the data was collected from a single work 
group, many of the variables that are factors in most com 
parisons of project experiences have been eliminated. For 
example, lines of code and time expended were measured 
and reported in the same way. Intangibles, such as work 
environment, computer resources, complexity of task, and 
management attitudes are also identical. 

Many experts say the most important variable influenc 
ing programmer quality and productivity is individual 
skill. The difference in the experience level between our 
two groups was not substantial. However, the unstructured 
group was more highly regarded by management than the 
structured group. It is possible that those in the unstruc 
tured group had already demonstrated winning techniques 
for which they had been rewarded, and so they were reluc 
tant to try newer methods, while the structured group was 
more willing to try new methods to improve their overall 
skill level. 

Data Collection 
The data in this report was collected from the following 

sources: 
â€¢ Engineering Time. The time spent by each engineer was 

reported to a central data base on a weekly basis. The 
time the engineer spent doing such things as system 
administration, meetings, and classes was not included 
in the reported time. Only time spent in analysis, design, 
test, or coding on the engineer's primary software project 
was included. Time data was reported by the individual 
engineers. 

â€¢ Defect Data. The defect data was collected by DTS (defect 
tracking system),4 an internal defect tracking tool. De 
fects were reported from the beginning of system inte 
gration testing. The defects discussed in this paper are 
only unique, reproducible defects. Duplicate, nonre- 
producible defects, operator errors, and enhancements 

were not included in the defect count. Defect data was 
reported by the individual development engineers and 
the formal and informal testers. 

â€¢ KNCSS and Complexity. All the KNCSS counts and 
McCabe's Cyclomatic Complexity metrics were com 
puted by an internal tool called Ccount. 

â€¢ Design Weight. Design weight,5 a measure of the effort 
of coding and testing, was calculated from the C code 
by an internal tool. This tool counts all the decisions 
and the unique data tokens that are passed into and out 
of a function. Any system calls (e.g., printf) are not in 
cluded in the token count. 

Comparison Results 
To facilitate the comparisons, the project was broken 

down into subprojects that closely corresponded to the 
efforts of individual software designers. Each subproject 
was then categorized as being representative of either the 
structured or the traditional methodology. The results of 
the two methodologies were compared on the basis of pro 
ductivity and quality. Development effort, manageability, 
communication, and reusability were the criteria used for 
productivity measurement. The FURPS (an acronym stand 
ing for functionality, usability, reliability, performance, 
and supportability) model was used as the basis for compar 
ing quality. 

We have used metrics to evaluate these factors wherever 
possible. Where metrics did not exist we have presented 
the subjective views of the authors who observed the proj 
ect team throughout the development of the product. 

All statistical tests referenced in this paper were made 
at the 95% confidence level. Since the sample size used 
for the comparisons between the structured and traditional 
methods is small, all conclusions are very tentative. 

Productivity 

Achieving productivity in software development re 
quires using tools and techniques that yield optimal return 
on development money. 
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F i g .  2 .  E n g i n e e r i n g  h o u r s  v e r s u s  d e s i g n  w e i g h t .  D e s i g n  
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Development Effort  
Project managers tend to be most concerned with the 

completion of a project on schedule. Consequently, one of 
the first questions asked by managers considering the use 
of structured methods is whether it will shorten the de 
velopment cycle. 

Since a learning curve was involved with the structured 
methods, we expected that since they were being used for 
the first time, the structured team would be less productive 
than the unstructured team. To verify this assumption, two 
measures of productivity were used, design weight per en 
gineering hour worked and NCSS per engineering hour. 
These graphs are shown for the various subprojects in Figs. 
2 and 3. It can be seen that the three structured subprojects 
have lower productivity than the unstructured subprojects. 
A statistical test using general linear hypothesis tech 
niques6 showed that indeed a statistical difference did exist 
in the productivity rates between the two methodologies. 
Using the structured methods, the average productivity rate 
was 2.40 lines/engineering-hour, while using traditional 
methods resulted in an average productivity rate of 6.87 
lines/engineering-hour. 

A central problem with analysis performed with DFDs 
is that it is an iterative process. The DFDs were leveled 
until the lowest-level bubbles could be completely de 
scribed in a minispecification of about one page as rec 
ommended by the methodology. This is a rather subjective 
requirement and we discovered that every designer using 
DFDs for the first time leveled them more deeply than 
required. A project review also confirmed that too many 
intermediate layers were created to keep the complexity 
per page of DFDs to a minimum. At the project postmortem, 
it was discussed that a major contributing factor to lower 
productivity with the structured methods was the lack of 
an on-site expert. Consultations were needed at various 
points in the analysis and design phases of the project to 
verify the proper application of the techniques. 

Manageabil i ty 
The structured work habits seemed to help the project 

manager and engineers understand the software develop 
ment life cycle better. Designers had a better idea when to 

end one phase of the project and begin another, helping to 
make their own process better understood and easier to 
manage. Figs. 4 and 5 show the times spent in various 
project life cycle phases for structured and traditional 
methodologies, respectively. The structured methods 
graph shows cleaner, better-defined phase changes. These 
clear phase changes aid the management planning process 
by creating a better understanding of the state of a project. 
Plots showing the same data as Figs. 4 and 5 were done 
for each engineer, and these individual plots showed the 
same characteristics. 

The regularity of the structured life cycle can be used to 
improve schedule estimates. Once the percentages of time 
spent in the phases are historically established, the time 
taken to reach the end of a phase can be used to project 
the finish date. For example, if it takes four months to 
complete the analysis phase and the historical figures indi 
cate that 33 percent of the time is spent in analysis, then 
it could be estimated that the project would be completed 
in eight more months. 

It is important to measure the progress of projects against 
the established schedule.7 Keeping track of the actual com 
pletion time of each phase can provide an independent 
verification of established scheduling methods. If problems 
in meeting schedule commitments are uncovered, correc 
tive action, such as adding additional resources, can be 
applied to the project. 

Taking a project through the system test phase is unpre 
dictable. The time it takes to complete the formal abuse 
testing is dependent on the quality built into the product. 
If the product is well-designed and coded, less time is spent 
repairing defects found during abuse testing and during 
the completion of formal regression tests. A reduced testing 
phase can shorten the overall project development time. 
More important, if fewer defects are embedded in the prod 
uct, less time will be spent in the maintenance phase, which 
can consist of 50% of the project's overall cost. Fig. 6 shows 
a comparison of the times spent in the various development 
phases for the project. The graph indicates that a greater 
percentage of time was spent in the analysis and design 
phases with the structured methods. However, a very small 
percentage of time in comparison to the traditional methods 
was spent in testing. 

2 5 0 0  - r  

2 0 0 0  +  

a  1 5 0 0 - -  

i1  
= 1000- 

5 0 0  - -  Structured 
Unstructured 

0  2 5 0 0  5 0 0 0  7 5 0 0  1 0 0 0 0  1 2 5 0 0  
NCSS 

Fig.  3.  Engineer ing hours versus NCSS (noncomment source 
statements). 

Implementation 

2 5 0  5 0 0  7 5 0  
Time Since Project Inception (days) 

1000 

Fig.  4.  Engineer ing hours per  week for  the st ructured team. 
This is  a 25-week moving average. 
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Reusab i l i t y  
Reusability of code is a major productivity issue at HP 

in general. Several of the products at our division have 
already reached reuse figures of 50% and we are working 
to increase that figure in the future. Experts suggest that, 
on average, reusing a piece of software requires only 20% 
of the effort of writing it from scratch. Thus, any activity 
that leads to greater reuse of code will have major benefits 
for productivity. Code developed using structured tech 
niques encourages more reuse in the future because it has 
better documentation on each function. In addition, the 
interface between that function and the outside world is 
more clearly stated by the structured design documenta 
tion. 

A major concern is the maintenance of the software 
documentation. Documentation that is not kept up to date 
is of less value than no documentation, since it can be 
misleading. There is a very weak connection between struc 
tured analysis and structured design. This makes it difficult 
and often impractical to keep the structured analysis up 
to date because of changes in the design and coding. The 
structured team chose not to keep the structured analysis 
documentation up to date when design and coding changes 
were made later in the project. This takes away some of 
the documentation benefits provided by the structured 
methods. As back annotation methods are incorporated 
into the tools, this deficiency will be corrected. 

Communicat ion 
One of the positive attributes cited in the literature about 

the structured methods is that they serve as a good com 
munication tool between team members. The project saw 
some of this benefit, but not as much as was originally 
expected. Structured methods are not a team communica 
tions panacea. 

Each software designer on this project was assigned a 
nearly autonomous subproject. Although there were in 
teractions between the subprojects, the subprojects were 
defined to minimize these interactions. The structured 
analysis documentation for each subproject was large 
enough to cause difficulty in obtaining the number of de 
sign reviews that were necessary. For another team member 
to understand the analysis, much additional verbal expla 

nation was required. However, the structured analysis was 
very useful to the developers of that analysis in fully under 
standing their own subprojects. 

Fig. 7 shows the staffing profile of hardware and software 
engineers during product development. The staffing of soft 
ware engineers lagged behind hardware engineers because 
of an initial underestimation of the software task and the 
shortage of software engineers. As a result, there were some 
problems discovered during the hardware/software integra 
tion that cost valuable schedule time. Since we were de 
veloping a system that consisted of both hardware and 
software, it would have been beneficial to have included 
the hardware interfaces into the structured analysis. This 
capability would have aided the hardware/software inte 
gration by providing additional communication links be 
tween the hardware and software groups. 

There is probably a strong benefit in communication with 
structured analysis if the whole project team uses the 
methodology to develop the same system model. This en 
ables each team member to have a better understanding of 
the product's requirements, and helps designers under 
stand the task in the same way. 

Quality 

High product quality improves customer satisfaction, 
decreases maintenance costs, and improves the overall pro 
ductivity of the development team. The FURPS model was 
used as the basis of comparison between the two method 
ologies. 

Functionality 
Functionality can best be measured by customer accep 

tance of the product. The product resulting from this project 
is still in the early stages of its product life and customer 
acceptance of its functionality is yet to be determined. It 
would also be difficult to separate the functionality of the 
code generated by the two methods. 

However, we believe that the rigor required by the struc 
tured methods is an important contribution to the develop 
ment life cycle. Structured analysis was a valuable exercise 
for the software designers in obtaining an understanding 
of the customer requirements. Although the structured 

5 0  - i -  

T e s t i n g  

2 5 0  5 0 0  7 5 0  
T i m e  S i n c e  P r o j e c t  I n c e p t i o n  ( d a y s )  

1 0 0 0  

Fig. 5. Engineering hours per week for the unstructured team. 
This is  a 25-week moving average.  

5 0  T  
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U n s t r u c t u r e d  

J  S t r u c t u r e d  

A n a l y s i s  D e s i g n  I m p l e m e n t a t i o n  T e s t  

Fig.  6.  Percentage of  t ime each method spent  in the var ious 
phases of  the sof tware l i fe cycle.  
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analysis was not used directly as a communication tool, it 
helped the software designers identify the correct questions 
to ask when issues related to functionality were addressed. 
These benefits assist the product definition, and enhance 
the chances that the product will meet all user expectations. 

We also believe that the entire team benefited from the 
efforts of the structured group. Since much of the initial 
product definition was performed using structured 
methods, software designers joining the project later bene 
fited greatly from the initial structured work. 

Usability 
The look and feel of the user interface was of prime 

importance to the project. Structured analysis was useful 
in breaking up the interface functionality into its elemental 
commands. However, manual pages combined with verbal 
discussion proved to be more effective in defining the de 
tails of the interface. 

Neither methodology appeared to enhance usability 
more than the other. However, the structured methods can 
help the software designer define user interface functional 
ity. Another method that appears to be a better method for 
communicating and testing of user interface ideas is rapid 
prototyping. This method was not used on the user inter 
face. 

Reliability 
Reliability is measured by the number, types, and fre 

quency of defects found in the software. The defects found 
in code created using the structured methods were com 
pared with those using the traditional methods. Table I 
outlines the defect rate normalized to defects per NCSS for 
both prerelease and postrelease defects. Prerelease defects 
were found during formal abuse testing, casual use by other 
individuals, and the code's designer. Postrelease defects 
include prerelease defects and the defects found in the first 
four months after product release. All the postrelease de 
fects were found internally either by abuse testing or by 
casual use. No customer defects had been reported at the 
time of this study. 

Table I  
All  Defects 

Although the structured code shows a slightly lower de 
fect density than the unstructured code, the differences are 
not statistically significant (using a statistical test that com 
pares two Poisson failure rates6). 

Low-severity defects are considered to be caused by typ 
ical coding errors that occur at the same frequency, inde 
pendent of the analysis and design methods used. Thus, 
using all the DTS defects is not truly indicative of the 
underlying defect density. Another way of characterizing 
the defect density is to look only at severe defects, those 
classified as serious or critical. Table II examines these 
defects. 

Table I I  
Serious and Crit ical  Defects 

Again, the structured code shows a slightly lower density 
but the difference is not significant. We knew that the code 
designers' rigor in logging defects that they found them 
selves varied a great deal. Since this might affect the quality 
results, we examined only the defects logged during formal 
abuse testing. It was again found that there was no statistical 
difference between the methodologies. 

Our theory, developed from these results, is that the final 
reliability of a product is mainly a function of environmen 
tal factors, including management expectations and peer 
pressures. For example, reliability can either be designed 
in at the beginning using structured methodologies or 
tested in at the end of the project with thorough regression 
tests. 

Performance 
In the design of structured modules, one is encouraged 

to reduce complexity of the modules by breaking up func 
tionality. This results in more function calls, and increases 
the processing time of critical functions. 

The software for this project had critical performance 
requirements for communication rates. The processing of 
the bytes of data by the firmware was the critical path. The 
critical functions had to be receded using in-line assembly 
code. Although structured methods were not used on this 
communication firmware, it is our opinion that the struc 
tured methods as used on this project would not have 
helped to identify performance-critical functions or to im 
prove the performance of these functions. 

A newer form of structured analysis8 has been developed 
and is based on modeling of the problem data as the first 
step. The data is represented in an information model with 
the state control diagrams showing the data control. This 
may in fact prove to be a better model for real-time appli 
cations that have critical performance requirements. 

5 - -  

Software 
Hardware 

- f  â€”  I    H  
1 8 0  3 6 0  5 4 0  7 2 0  

T i m e  S i n c e  P r o j e c t  I n c e p t i o n  ( d a y s )  

H    1  
900 

Fig.  7.  Staf f ing levels.  
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A t t r i b u t e  S t r u c t u r e d  U n s t r u c t u r e d  

P r o d u c t i v i t y  

" T h e s e  i t e m s  h a d  n o  o b j e c t i v e  m e t r i c s  k e p t  o n  t h e m .  

Fig .  8 .  Summary  o f  compar ison  be tween s t ruc tu red  and un  
structured methodologies.  

Supportabil i ty 
A large part of the costs of software development and 

maintenance can be attributed to maintenance activities. 
Software that is supportable will have lower maintenance 
costs. Maintenance not only refers to the repair of defects, 
but also to software enhancement and modification. 

One factor that relates strongly to software Supportability 
is the complexity level of each function. Functions with 
lower complexity tend to make it easier to modify and 
repair defects. For this project, the average complexity of 
each module of the structured code was less than the aver 
age for the unstructured code. Table III shows a summary 
of the complexity statistics for the two code types. 

Table I I I  
McCabe's  Cyclomat ic  Complexi ty  

Mean 
Number of Functions 

Structured 

5.7 
268 

Unstructured 

7.2 
656 

Modules with a cyclomatic complexity greater than 10 
may be too complex and should be reviewed for possible 
restructuring.5 Only 13% of the structured code had a com 
plexity greater than ten, while the unstructured code had 
20%. A statistical test (comparison of two binomial frac 
tions9) showed this to be a significant difference. 

The discipline of the structured methods helps the de 
signer to write consistent documentation that can be used 
by those who must support the product. 

Conclusions 
Our analysis of structured and unstructured techniques 

produced mixed results. It was apparent that the structured 
methodologies on this project did not provide improve 
ment in the project development time. In fact, a longer 
development time was measured. This was partially be 
cause of the time required for learning the structured 
methodologies. However, the manageability of designers 
using structured techniques is higher because of well-de 
fined development cycles. Also, the structured code ap 
pears to be more reusable, so it should improve the produc 
tivity of future projects reusing this code. 

In this project, structured methods didn't appear to im 
prove the reliability of the final code significantly. It is our 
opinion that reliability is more a function of the team's 
environmental factors. The structured code appears to be 
more supportable since module complexity was lower. 
Structured methods do not appear to be a major benefit in 
developing code where performance factors are a main re 
quirement. No significant benefit was seen for the areas of 
functionality and usability except in those projects where 
the techniques were used to enhance communication of 
the product design and specification. 

Some aspects of the structured methodology were disap 
pointing. However, what was most important for our de 
velopment team was the discipline that the structured 
methods added to the early phases of the product defini 
tion. We feel the results of the structured methods are posi 
tive enough to continue using these methods on future 
projects. Fig. 8 summarizes the results of the comparison 
of the two methodologies. 
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An Object-Oriented Methodology for 
Systems Analysis and Specification 
A methodology is proposed that enables analysts to model 
and specif y a system's data, interactions, processing, and 
external  behavior  before design.  

by Barry  D.  Kurtz ,  Donna Ho,  and Teresa A.  Wal l  

AS SOFTWARE SYSTEMS BECOME LARGER and 
more complex, the task of systems analysis con 
tinues to increase in effort and difficulty. Tradi 

tional methodologies for systems analysis sometimes fail 
to meet the analyst's expectations because of their limita 
tions in properly capturing and organizing all of the infor 
mation that must be considered. Object-oriented systems 
analysis (OSA) is an approach to systems analysis and 
specification that builds upon the strengths of existing 
methodologies and, at the same time, addresses their weak 
nesses. This paper describes the basic concepts of the OSA 
methodology. 

Systems Analysis 
A system is an organized collection of people, machines, 

procedures, documents, data, or any other entities interact 
ing with each other to reach a predefined goal.1 Analysis 
is the study of a problem, prior to taking some action.2 
Systems analysis is the study of a collection of related and 
interacting objects (existing or proposed) for the purpose 
of understanding and specifying its data, processing, and 
external behavior. 

Object-oriented systems analysis (OSA) is a systematic 
approach to the study of a system problem. The foundation 
of OSA's conceptual model is the set of components or 

objects in the system. The study of these objects is or 
ganized and conducted in a manner that does not un 
necessarily constrain implementation. In fact, we believe 
that designs based on OSA specifications can be procedure- 
oriented or object-oriented with equal success. 

Objects  in  the OSA Methodology 
An object is an abstraction of entities or concepts that 

exist in or are proposed for a system. For example, the 
rectangle in Fig. 1 depicts an OSA object called Jet Plane. 
This object represents a class of things where each member 
has the attributes and behavior of a jet plane. Two possible 
members of this class are a jet fighter and a jet passenger 
plane. In object-oriented terms, each member is called an 
instance of the object class. Fig. 2 further demonstrates the 
community of attributes and behavior required of each 
member of the object class. The circle on the top in the 
figure represents all of the attributes and behavior of a jet 
fighter. The circle on the bottom in the figure represents 
all of the attributes and behavior of a jet passenger plane. 
The shaded area represents the common attributes and be 
havior that allow each plane to be a member of the jet plane 
object class. 

The key elements of a system are the objects that exist 
in the system, the data that must be processed, and the 
desired behavior of the system. Traditional methodologies 
offer two basic approaches to modularize these elements: 
a function-oriented approach which organizes the analysis 

Set of Common Attributes 
and Common Behavior 

Fig. 1 .  An OSA object.  Each member of this object c lass has 
the behavior  and at t r ibutes of  a jet  p lane.  

F ig .  2 .  Commonal i ty  o f  a t t r ibutes and behavior  o f  ob jects  o f  
Class Jet Plane. 
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r o b o t j d  
c u r r e n t  l o c a t i o n  

R e a l  O b j e c t  i n  S y s t e m  O b j e c t ' s  R e p r e s e n t a t i o n  i n  O S A  M o d e l  

F i g .  3 .  R e p r e s e n t a t i o n  o f  a n  o b  
j e c t ' s  d a t a  a n d  b e h a v i o r  c h a r a c  
teristics in the OSA system model. 

model through a hierarchy of functions, and a data-oriented 
approach which emphasizes a hierarchy of data structures. 
OSA imposes a natural modularization on the system 
model through the emphasis on objects (see Fig. 3). Each 
object has associated attributes (data) and behavior (legal 
states and functions). An object in the OSA system model 
has a one-to-one correspondence with an actual object in 
the system. This provides an easy mapping between the 
analysis model and the components of the system under 
study. 

Collecting Preliminary Specif ications 
Before attempting to construct an OSA system model, it 

is important to collect or generate a preliminary list of 
specifications. These specifications are gathered from dis 
cussions and interviews with users and managers of the 
system under study. The preliminary specifications are 
rather informal and are usually documented with natural 
language text and hand-drawn graphics. These specifica 
tions should answer most of the following questions that 
may be posed by the analysis team: 
â€¢ What is the subject of the analysis? Is it an existing sys 

tem, a proposed system, or a combination of both? 
â€¢ What are the specific problems that need to be solved 

and what are the objectives for the solution? 
â€¢ What are the logical boundaries of the system study? 

Does the entire system need to be studied in detail or 
can a smaller subset be studied? 

â€¢ What are the known constraints of the system? Are there 
special performance constraints, interface constraints, 
hardware constraints, and so on? 

â€¢ What are the major components of the system? What 
needs to be done with each component? What should 
each component do in the system? 
The specific format of the preliminary specifications may 

vary from project to project. The important factor here is 
that the preliminary specifications are collected before con 
struction of the formal OSA specifications. The following 
is a small example of a preliminary specification that an 
analyst might use to gain a basic understanding of a system 
problem. 

A vending machine must be produced for dis 
tributing products to customers. The customer 
begins the vending process by depositing a token 
in the machine's coin receptacle. The token must 
be checked /or size, weight, thickness, and type of 
edge. Valid tokens (coinsj are quarters, dimes, or 
nickels, and anything else is considered a slug. 
Slugs are rejected and sent to the coin return slot. 
When a valid coin is accepted by the machine and 
sent to the coin box, the amount of current customer 
payment is incremented by the value of the coin. 

Each product dispenser contains zero or more 
products. A1J of the products in one dispenser have 
the same price. The customer's product selection is 
made by identifying the dispenser to be activated. If 
the dispenser is not empty and the current customer 
payment equals or exceeds the cost of the product, 
the product should be dispensed to the product deliv 
ery slot and any change due returned to the coin 
return slot. If the dispenser is empty, coins equaling 
the current customer payment should be dispensed 
to the customer in the coin return slot. 

If the customer payment is less than the price of 
the products in the selected dispenser, the machine 
should wait for the customer to deposit the proper 
payment. If the customer decides not to make a 
selection the current amount deposited should be 
returned. 

Building Object-Relat ionship Diagrams 
After preliminary specifications are gathered for the 

major components of the system, the analyst can begin 
building object-relationship diagrams (ORDs). The ORD 
portion of the analysis provides a formal repository for 

F ig .  4 .  An  examp le  o f  an  ob jec t - re la t i onsh ip  d iag ram.  The  
coin box holds many (M) co ins.  

re!2 

Ml 

O b j e c t i  i s  r e l a t e d  b y  r e l t  t o  O b j e c t 2  .  
O b | e c t 2  i s  r e l a t e d  b y  r e ! 2  t o  O b j e c t i  â € ¢ .  
M 2  d e s i g n a t e s  h o w  m a n y  i n s t a n c e s  o f  O b j e c t 2  a r e  

a s s o c i a t e d  w i t h  e a c h  i n s t a n c e  o f  O b j e c t i  
M 1  d e s i g n a t e s  h o w  m a n y  i n s t a n c e s  o f  O b j e c t i  a r e  

a s s o c i a t e d  w i t h  e a c h  i n s t a n c e  o f  O b j e c t 2  .  

Fig.  5.  Formal  def in i t ions in  object - re lat ionship d iagrams.  
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answers to the following questions: 
â€¢ What are the components of the system (both abstract 

and concrete)? 
â€¢ What are the important formal relationships between 

the system components? 
The first step for producing ORDs is to make a list of the 

nouns contained in the preliminary specification. These 
nouns are classified by the analyst as objects (system com 
ponents), attributes of objects, or synonyms for other ob 
jects or attributes. Synonyms must be eliminated and attri 
butes must be associated with existing objects. From our 
vending machine example, some of the nouns that repre 
sent objects are token, coin receptacle, slug, coin, coin box, 
nickel, dime, and quarter. Also from the same example, 
the nouns that would be considered attributes include 
weight, thickness, and price. 

Objects are depicted in object-relationship diagrams by 
the object name enclosed in a rectangle. An ORD showing 
a relationship between coins and a coin box is shown in 
Fig. 4. The ORD in the figure states that a coin box holds 
one or more coins. The capital M in the figure is shorthand 
for one or more. A relationship line without an M signifies 
that the relationship is one-to-one. ORDs are similar in use 
and meaning to entity-relationship diagrams.3 The formal 
meaning of ORD relationships is shown in Fig. 5, and Fig. 
6 shows a partial ORD for the vending machine example. 

Object-relationship diagrams have a subcomponent called 
concept diagrams. Concept diagrams provide a quick method 
for capturing the information relationships and interac 
tions between objects. For example, Fig. 7 shows a concept 
diagram stating that a coin receptacle needs to know the 
thickness of a token. A dotted arrow depicts an informa 
tional relationship between objects. The information may 
be an attribute of an object or an event that another object 

Thickness 

Source  

Coin 
Receptacle 

Dest inat ion 

Fig.  7.  An example oÃ a concept  d iagram. The coin recepta 
cle needs to know thickness of the coin. The concept diagram 
shows the informational relat ionship and interactions between 
objects.  The dashed l ine indicates in format ion f low.  

F ig.  6.  Par t ia l  object- re lat ionship 
d iagram for  the vending machine 
example. I t  shows that a token en 
ters the vending machine through 
t h e  c o i n  r e c e p t a c l e ,  a n d  t h a t  a  
token may be a coin or a slug. The 
on l y  ob jec t s  cons ide red  t o  be  a  
leg i t imate  co in  in  the sys tem are 
nickels,  dimes, or quarters.  

needs to know about. 
Fig. 8 shows a concept diagram that states that a customer 

deposits a token into the vending machine. A solid arrow 
is used to show an action that an object performs upon 
another object. Since informational relationships and ob 
ject interactions are relatively easy to extract from the pre 
liminary specifications, concept diagrams may be used fre 
quently at the beginning of the analysis. 

Natural  Language Object  Descript ions 
The object-relationship diagrams identify classes of com 

ponents in the system and formal relationships between 
the components. The next step is to provide more informa 
tion about each object and its attributes. The object descrip 
tion is documented with natural language text and contains 
the following information: 
â€¢ Name. The name of the class of system components rep 

resented by the object. 
â€¢ Description. A brief description of the general charac 

teristics for instances of the object. 
â€¢ Assertions. Things that must always be true regarding 

attributes or behavior of instances of this class. For exam 
ple, an object may need to be kept at a certain temperature 
to ensure the desired behavior. 

â€¢ Attributes. Required attributes for each instance (such 
as identifiers, status variables, etc.). The domain or legal 
range of values for each attribute must be specified here. 
The specific format of the object description may vary 

from project to project but it should include at least the 
above information. Fig. 9 shows a natural language descrip 
tion for the vending machine example. 

Building Behavior Specif icat ions 
Using the foundation of object-relationship diagrams 

and individual object descriptions, the analyst builds a 
behavior specification for each object. Since internal be 
havior is usually a function of implementation, the analyst 
concentrates on the external behavior of each object. Exter- 

Deposits 

Fig.  8.  A concept diagram that shows an act ion of  one object  
on another.  The sol id l ine indicates act ion.  
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O b j e c t  N a m e :  T o k e n  

D e s c r i p t i o n :  

A  t o k e n  i s  s o m e t h i n g  t h e  c u s t o m e r  d e p o s i t s  i n t o  a  v e n d i n g  m a c h i n e  
t o  p u r c h a s e  a  p r o d u c t .  

A s s e r t i o n s :  

T h e  d i a m e t e r  a n d  t h i c k n e s s  a r e  s m a l l  e n o u g h  t o  a l l o w  i t  t o  f i t  i n  t h e  
coin s lot .  

A t t r i b u t e s :  

D i a m e t e r  D o m a i n :  0  d i a m e t e r -  h e i g h t  o f  c o i n  s l o t  
T h i c k n e s s  D o m a i n :  0  t h i c k n e s s  w i d t h  o f  c o i n  s l o t  
W e i g h t  D o m a i n :  n o t  y e t  d e f i n e d  
E d g e  T y p e  D o m a i n :  ( s m o o t h ,  s e r r a t e d )  

Fig .  9 .  A  natura l  language descr ip t ion  fo r  a  token ob jec t  in  
the vending machine example.  

nal behavior has three components: 
â€¢ The externally perceived states or conditions of each 

object 
â€¢ The actions that must be performed on each object 
â€¢ The actions that each object must perform. 

Each of these components may be specified by natural 
language text. However, experience has shown that such 
an approach leads to ambiguity and confusion. To help 
ensure consistent interpretation of behavior specifications, 
a more formal method is required. 

There are several existing formal methods for describing 
external system behavior. These methods include finite 
state machines, decision tables, Petri nets, R-nets, precon 
dition/action/postcondition tuples and others.4'5 The fol 
lowing criteria were used to choose a behavior specification 
method for OSA: 
â€¢ The method should encourage the analyst to identify 

and classify system components before specifying be 
havior. 

Object  
Name 

Token_Deposited 

R e q u i r e d -  
A c t i o n  

â€¢ Move Token To 
Coin Box 

Token 

Move Token To 
Return Slot 

Fig. 10. SÃaÃe net showing the behavior of  a token object.  
When a token is  deposi ted,  i t  t ransfers  f rom the customer 's  
possession to the coin receptacle. I f  the token is a val id coin, 
it is transferred to the coin box as a coin. Otherwise, a rejected 
token is returned to the return slot  as a s lug. 

â€¢ The method should allow the analyst to specify an object 
that exhibits multiple action conditions (concurrent ac 
tivities). 

â€¢ The method should provide for high traceability between 
the actual system components, object-relationship dia 
grams, and behavior specifications. 
The behavior specification technique developed for OSA 

is called state nets. State nets are based on a restricted form 

B u i l d  O b j e c t - R e l a t i o n s h i p  
D i a g r a m s  f o r  S y s t e m  

( I n c l u d e  C o n c e p t  D i a g r a m s )  

C o m p l e t e  a  
N a t u r a l  L a n g u a g e  
S p e c i f i c a t i o n  f o r  

E a c h  O b j e c t  

S t a r t  

\  
C o l l e c t  N a t u r a l  L a n g u a g e  

S p e c i f i c a t i o n s  O b t a i n e d  f r o m  
U s e r / M a n a g e r  I n t e r v i e w s  

Simu la te  Sys tem Behav io r  and  
Cor rec t  Spec i f i ca t ion  Er ro rs  

Bu i l d  Behav io r  Spec i f i ca t i ons  
fo r  the  Sys tem S ta r t i ng  a t  the  

O b j e c t  L e v e l  

Fig. 1 1 . Process flow for the OSA 
methodology and the in teract ions 
b e t w e e n  t h e  o b j e c t  a n d  m e t h o d  
ology steps. 
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of Petri nets. There are several possible configurations of 
state nets that use the full power of Petri nets for expressing 
concurrent activities. For this overview, however, we will 
limit the discussion to a model similar to a finite state 
machine. 

A sample state net representing some of the states and 
actions required for a token is shown in Fig. 10. The states 
or conditions of the token object are represented by ovals 
in the figure. The states are typed with the name of the 
object being specified (token in this example). Labeling the 
state with the object name means that instances of that 
object may exhibit the specified state. The transitions be 
tween states are represented by short horizontal bars. The 
labels next to the transitions specify the events that cause 
instances of the object to transition from one state to 
another. In Fig. 10, the Token_Deposited command causes the 
machine to transition from the In Customer Possession state 
to the In Coin Receptacle state. The actions required to estab 
lish a new state are shown as labels on the input arrow 
connected to the new state. For example, the state net di 
agram states that the action Move Token To Return Slot must 
be performed before the machine is in the In Return Slot state. 

System Behavior  Simulat ion 
Once the state nets for the system have been completed, 

the analysis team is prepared to simulate executions of the 
system. The simulation is performed using state nets to 
follow conditions and states exhibited by the system. The 
object-oriented nature of state nets aids in hiding complex 
ity during simulations. This allows the analysis team to 
achieve good behavior coverage even when automated 
simulation tools are not available. 

During system simulation, several classes of errors may 
occur that require modifications to the current OSA model 
or specifications. Simulation will aid the analyst in discov 
ering the following problems: 
â€¢ Missing or ambiguous information in the preliminary 

specification 
â€¢ Missing or incorrect object-relationship diagrams 
â€¢ Missing objects or incorrect object descriptions 
â€¢ Missing or incorrect behavior specifications. 

Any of these errors will require another pass through 
one of the analysis phases previously discussed. The object- 
oriented nature of the OSA model enhances traceability to 
the components of the system related to a particular error. 
Fig. 11 shows the process flow for the OSA methodology 
and shows possible interactions between the various 
methodology steps. 

Conclusion 
The contributions of the object-oriented analysis 

methodology include: 
â€¢ It provides tools for capturing the key elements of a 

system â€” components, data, and behavior. 
â€¢ It emphasizes analysis before design. 
â€¢ It supports a natural modularization scheme by organiz 

ing the entire analysis around objects. 
â€¢ Its system model provides high traceability between the 

model components and the actual components of the 
system under study. 
The methodology is currently under research and verifi 

cation. It has been applied to several problems involving 
hardware and software components with encouraging re 
sults. A prototype tool is being developed to aid analysts 
in processing textual specifications and capturing the 
meaning of systems problems using the OSA methodology. 
The goals now are to finish the tool, develop training ma 
terials, and continue to verify applicability of the methodol 
ogy to real-world projects. 
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VXIbus:  A New Interconnect ion Standard 
for  Modular  Instruments 
This standard will allow users to mix modules from different 
manufacturers in a system contained in a single mainframe. 

by Kenneth Jessen 

THE GOAL OF THE VXIBUS is to provide a techni 
cally sound standard for modular instruments that 
is based on the VMEbus (defined later) and is open 

to all manufacturers. It is a specification for interconnecting 
and operating various modules from a variety of manufac 
turers within a single mainframe to satisfy the need for 
high-performance, high-density instrumentation. 

Users are able to select from four module sizes and are 
free to choose modules and a mainframe from different 
suppliers based on price and performance. The VXIbus 
standard ensures compatibility of all the elements within 
a VXIbus system. For example, a user may find that a par 
ticular digital multimeter module offers the best combina 
tion of price and measurement capability for a particular 
job, but that the best function generator for the application 
comes from another manufacturer. The user may then select 
a third manufacturer for the mainframe. This amounts to 
unprecedented flexibility in the creation of an instrumen 
tation system. 

VXIbus Evolution 
Many years ago there were only bench instruments. They 

had front panels for control and displays for data output. 
As computers entered the picture, digital interfaces (such 
as binary-coded decimal) came into use. These were typi 
cally offered as options to the basic bench instrument and 
varied from instrument to instrument and from manufac 
turer to manufacturer. In the early 1970s, a better interface 
standard, the HP Interface Bus, or HP-IB, was developed 
by Hewlett-Packard. This became an industry standard 
(IEEE 488, IEC 625) and is currently used by a wide range 
of manufacturers. 

Instruments continued to retain their front-panel con 
trols, but as applications moved toward automatic test and 
measurement systems, the need for front panels di 
minished. Instruments began to appear on the market either 
without front panels or with detachable front panels used 
only during initial setup. 

To reduce the size of a test system, modular instruments 
have grown in popularity, but until recently there were no 
industry standards for such systems, so there was no pos 
sibility of mixing modules from different manufacturers 
within a mainframe. Often modules from a manufacturer 
were not compatible with different mainframes from that 
same manufacturer. 

In 1979, Motorola Semiconductor Products Corporation 
published a description of what it called the VERSAbus. 
It defined a computer-type backplane and cards. Eurocard 

board sizes were proposed and the VERSAbus-E version 
was renamed the VMEbus. In 1982 the IEC (International 
Electrotechnical Commission) proposed that the VMEbus 
be accepted as an international standard. 

There was a great deal of pressure from both military 
and commercial users to have an open architecture for 
modular instruments. The U.S Air Force asked the MATE 
User's Group, formed in 1984, to develop recommendations 
for the standardization of instruments on cards and ex 
pressed a desire to use as much commercial equipment as 
possible. Out of this activity came the need for a standard 
for all instrument manufacturers. 

Consort ium Formed 
In July 1987, a group of five instrument manufacturers 

committed to the development of a modular instrument 
standard based on the VMEbus standard. The original five 
are Colorado Data Systems Corporation, Hewlett-Packard 
Company, Racal Dana Instruments Corporation, Tektronix 
Corporation, and Wavetek Corporation. Other companies 
have since joined this consortium including BrÃ¼el & Kjsr 
Corporation, National Instruments Corporation, Keithley 
Instruments Corporation, John Fluke Manufacturing Com 
pany, and GenRad Corporation. 

The major limitations of the original VMEbus standard 
for instrument manufacturers were insufficient board space 

F i g .  1 .  T h e  V X I b u s  s t a n d a r d  ( V M E b u s  E x t e n s i o n s  f o r  I n  
s t r u m e n t a t i o n )  i n c l u d e s  t h e  t w o  o r i g i n a l  V M E b u s  m o d u l e  
sizes, A and B, plus two new larger modules, C and D. Smaller 
modu les  can  be  inser ted  in to  ma in f rames  des igned  fo r  the  
larger sizes. The C size mainframe is expected to be the most 
popular for  test  systems. 
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and the lack of an adequate connector definition for in 
strumentation. Space between modules was restricted to 
0.8 inch. The VXIbus standard (VMEbus Extensions for 
Instrumentation) adds two new larger module sizes to the 
two module sizes set up under the VMEbus standard. With 
the new modules, the space between modules is increased 
to 1.2 inches to permit adequate shielding and cooling. 
The VMEbus was developed for computers and did not 
define a backplane specifically for instrumentation needs. 
The VMEbus standard also did not address the problems 
of electromagnetic interference (EMI), power dissipation, 
or chassis cooling, and left some connector pins undefined. 
The new VXIbus standard covers these items as well as 
other issues such as protocols between modules, configura 
tions, memory allocations, and commands. 

As mentioned before, the general concept of the VXIbus 
standard is an open architecture for modular electronic 
instrumentation that allows a variety of manufacturers to 
supply modules to operate together in the same mainframe 
chassis. The intention is for the standard to be open to 
anyone who wishes to use it whether they are among the 
original founders or not. In keeping with its objective, the 
VXIbus standard is in the public domain. There are no 
copyrights on the documentation, and there are no patents 
or licensing requirements. Manufacturer ID numbers are 
provided free from the VXIbus consortium, and over 70 
manufacturers have requested and been granted numbers. 

The idea of VXIbus instrumentation is not to replace 
traditional instruments but rather to offer distinct advan 
tages for certain applications, including: 
â€¢ High-speed communications between modules 
â€¢ Multichannel data acquisition 
â€¢ Precision timing between modules 
â€¢ Smaller size for a typical instrument system 
â€¢ Ease of integrating a test system. 

The VXIbus Standard 
There are four basic module sizes including the original 

two sizes that were part of the VMEbus standard. These 
original sizes are renamed A and B in the VXIbus standard. 
The larger two sizes, C (123 in2) and D (193 in2), can include 
additional connectors, as shown in Fig. 1. All the connec 
tors are 96-pin DIN-type and are referred to as PI, P2, and 
P3. The A size board has the Pi connector. Sizes B and C 
may have the P2 connector as well as the required Pi con 
nector. The largest module size, D, may have the P3 connec 
tor in addition to the PI and P2 connectors. The idea is to 
provide improved capability as a function of increased size. 

A VXIbus mainframe may accept up to a dozen C or D 
size modules in addition to a required Slot 0 module. For 
very complex products, a module may span more than one 
VXIbus slot. 

To ensure compatibility, all pins on all three connectors 
are defined by the VXIbus standard. The PI and P2 pin 
definitions are shown in Fig. 2. Their functional use and 
protocol are called out.. Also defined are the interfacing of 
a module to the backplane and the electrical characteristics 
of the backplane. The capabilities of each connector can 
be viewed as a pyramid, with PI covering the VMEbus 
specification. P2 adds capability required for instrumenta 
tion, such as more ground pins and more power supply 
pins. A 10-MHz clock and ECL and TTL trigger lines are 

Fig.  2.  Pin def in i t ions for  the PI  and P2 connectors.  The P1 
connector  fo l lows the VME bus ass ignments.  The P2 ass ign 
ments shown are for  s lots 1 through 12.  
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also defined on P2. The P3 connector adds even more capa 
bility for specialized applications, including a 100-MHz 
clock similar to the 10-MHz clock on P2. a 100-MHz syn 
chronizing signal, and ECL trigger lines in a star configura 
tion for module-to-module triggering. 

Slot 0 Module 
To ensure that every mainframe can perform its 

minimum functions, a Slot 0 module is defined. For VXIbus 
systems with the P2 connector, the only Slot 0 module 
requirement is to provide VMEbus system controller func 
tions, a 10-MHz, 100-ppm system clock, and module ID 
drivers. For systems with the P3 connector, the Slot 0 mod 
ule must provide a 100-MHz clock. It is expected that man 
ufacturers will add considerable more capability to the Slot 
0 module than the standard requires. 

Many Slot 0 modules will be message-based devices with 
commander capability in addition to the minimum func 
tions. These will be able to identify the devices in the 
system, configure resources, manage self-test and diagnos 
tics, configure address maps, configure the commander-ser 
vant hierarchies, and perform initial system operation. The 
capability of the Slot 0 module will usually be combined 
with the VXIbus to HP-IB (IEEE 488, IEC 625) interface 
function. 

The 10-MHz clock originates in the Slot 0 module and 
is buffered on the backplane. It is distributed to each mod 
ule as a single-source, differential ECL signal. The objective 
is to provide a high level of isolation and a common preci 
sion time base. Typical performance delivers less than 25 
ps of jitter. 

The ECL and TTL trigger lines defined on the P2 connec 
tor are bused to all modules including the Slot 0 module, 
as shown in Fig. 3. Any module may send or receive triggers 
over these lines, and the lines selected are user-programma 
ble. Several protocols are used to ensure proper triggering 
between various manufacturers' modules. For example, a 
synchronous trigger protocol is defined to allow for trigger 
ing from one module to another. Other protocols include 
handshake responses from the receiving module. The ECL 
trigger lines can deliver trigger rates in excess of 50 MHz 
for high-performance applications exceeding the TTL trig 
ger lines' 12-MHz capability. 

System Requirements 
It is a requirement that airflow and power supply capa 

bility be fully specified for the mainframe. A typical main 
frame is shown in Fig. 4. Likewise, the necessary degree 
of cooling and power requirements must be defined for the 
modules. This allows the user to match the capabilities of 
the mainframe with the requirements of the modules. This 
type of information must be included in the product specifi 
cations, and the user will be able to determine in advance 
whether or not certain modules will work in a given main 
frame. 

The close proximity of modules within a mainframe 
makes EMI compatibility a necessary part of the specifica 
tion. For this reason, tight electromagnetic compatibility 
and noise requirements are imposed on module manufac 
turers. In some cases, modules will have to be completely 
enclosed within a shield and grounded through the back 
plane. The requirements cover both near-field radiation 

- 2 V  5 0 Ã I  

'^p= 

^ 8 TTL Trigger Lines 
2 ECL Trigger Lines 

F i g .  3 .  T h e  1  0 - M H z  c l o c k  o r i g i  
na tes  i n  t he  S lo t  0  modu le .  ECL  
and TTL tr igger l ines are bused to 
a l l  modu les  i nc l ud i ng  t he  S lo t  0  
module. 
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and susceptibility and conducted radiation and suscepti 
bility of the power supply pins. 

The VXIbus standard does allow for flexibility in the 
area of local bus communication. A local bus is one that 
runs from one module to its neighbor, but no farther. The 
local bus is intended for communication between modules 
either within a multiple-slot module or within a family of 
modules. The definition is left to the manufacturer. This 
flexibility creates a new problem, that of protection of elec 
trically incompatible modules accidentally configured into 
adjacent slots by the user. A protection scheme using 
mechanical keying provides six logical classes of keys: TTL, 
ECL, analog low ( - 5.5V to + 5.5V], analog medium ( - 16V 
to +16V), analog high (-42V to +42V), and a reserved 
class. 

Along with hardware, the VXIbus standard also covers 
configuration and communication protocols. To avoid con 
flicts between modules, manufacturers must maintain com 
mon protocols. However, the VXIbus standard does not 
define things such as the operating system, system hierar 
chy, type of microprocessor, or type of network. 

The VXIbus standard specifies device protocols so that 
nonconflicting portions of the VMEbus address space are 
used. A device will usually be a single module. However, 
several devices may exist on a single module and a single 
device may take up multiple slots. As many as 13 modules 
may exist in any one VXIbus subsystem, including the Slot 
0 module. Up to 256 devices may exist in one VXIbus 
system, which may include several mainframes and several 
Slot 0 modules. 

Types of  Devices 
The lowest level of capability is a set of configuration 

registers accessible on Pi. These registers allow the system 
to identify the device type, model, manufacturer, address 
space, and memory requirements. Modules with this 

minimum capability are called register-based devices. All 
VXIbus devices must have these registers in the upper 16K 
of the 64K A16 address space. Each device is granted 64 
bytes in this space, sufficient for many devices. There are 
a number of registers including ID, device type, status/con 
trol, and memory offset. The remaining register space is 
device dependent and may be used for communication 
purposes. 

Memory requirements for devices needing additional ad 
dress space must be readable in a defined register in the 
A16 address space. A resource manager reads this value 
shortly after power-on, then assigns the requested memory 
space by writing the module's new address into the device's 
offset register. This method positions a device's additional 
memory space in the A24 or A32 address space. 

Instead of register-based, a VXIbus may be message- 
based. Message-based devices have a higher level of com 
munication capability than register-based devices; they 
communicate using a word-serial protocol. Generally, mes 
sage-based devices include a microprocessor and execute 
ASCII commands. They have communication registers ac 
cessible to other modules in the system. Other types of 
modules include memory devices and extended devices. 
A RAM or ROM card is an example of a memory device. 

Control hierarchy is also defined in a VXIbus system. A 
commander is a module able to initiate communication 
with its servants based on the servants' capabilities. A ser 
vant may be either register-based or message-based. Com 
mands to a message-based device can be sent using word- 
serial protocol. For register-based devices, communication 
is by register reads and writes and is device dependent. 

The VXIbus concept of a command-servant relationship 
allows the creation of a virtual instrument whose collective 
capabilities yield a given measurement function. For exam 
ple, a waveform generator might be teamed with a digitizer 
to form a network analyzer. A particular measurement 

Removable front 
card guides al low 
easy insert ion of 
B-size cards. 

Mounting brackets 
provide space for 
B-size cards to 
pass, al lowing 
them to be 
inserted easily. 

F i g .  4 .  A  t y p i c a l  C  s i z e  m a i n  
f r a m e ,  s h o w i n g  C  s i z e  c a r d s ,  
g u i d e s  f o r  B  s i z e  c a r d s ,  a n d  a i r  
flow. 
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capability is created through a combination of software and 
hardware. The elements to make up a particular functional 
capability are not necessarily in the same physical location 
within the system. A virtual instrument can be created 
within a mainframe filled with modules having a variety 
of basic measurement functions and rearranged to work 
together through software to create complex measurement 
functions. 

The VXI bus standard offers a wide range of capabilities 
and communication protocols for manufacturers. However, 
these are invisible to the test system user. The user simply 
sets the logical address of each module and plugs it into 
the mainframe. 

Summary 
The VXIbus standard heralds a new type of instrumenta 

tion that gives users the flexibility to optimize a test and 
measurement system by selecting modules from a variety 
of manufacturers, knowing that they will all work together. 
Distinct advantages over traditional rack-and-stack in 
strumentation will also be offered, such as high-speed com 
munication between modules, precise triggering, ease of 
system integration, and size reduction. 
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VXIbus Product Development Tools 
A VXIbus mainf rame,  a pai r  o f  modules,  sof tware,  and 
accessor ies wi l l  he lp manufacturers develop VXIbus 
modules and systems more eas i ly .  

by Kenneth Jessen 

TO PROVIDE MANUFACTURERS with tools to de 
velop VXIbus products, Hewlett-Packard has de 
veloped a VXIbus C-size mainframe, a Slot 0 module, 

and VXIbus development software. Other accessories in 
clude a breadboard module and a chassis shield. These 
tools are designed to give the VXIbus user the ability to 
develop products faster and with reduced resources. The 
list of HP VXIbus development tools includes: 
â€¢ C size mainframe 
â€¢ C size Slot 0 and translator module 
â€¢ C size register-based breadboard module 
â€¢ C size carrier for adapting A size or B size modules to 

the C size mainframe 
â€¢ C size chassis shield for EMI reduction between modules 
â€¢ VXIbus development software for use with HP 9000 

Series 200 and 300 controllers 
â€¢ VMEbus interface for HP 9000 Series 300 controllers 
â€¢ VMEbus preprocessor for HP 1650A and 16500A Logic 

Analyzers. 

Select ion of  the C Size Module 
HP and many other manufacturers have selected the C 

size module (9.187 by 13.386 inches with Pi and P2 con 
nectors) as their primary module size for instrumentation. 
For HP, this choice was influenced by analysis of many 
existing HP modular systems, including the following 
types: data acquisition, electronic switching, logic analysis, 
waveform generation, microprocessor development, and 
spectrum analysis. All of these products were designed 
independently over a period of time, and their board sizes 
and power capacities were selected to optimize economics 
and performance. It was found that the module size chosen 
for all of these modular systems was equivalent to C size 
or smaller. Independent analysis confirmed that the vast 
majority of instrument functions could be provided within 
a B size or C size system, and a C size mainframe can 
support both sizes. 

VXIbus Mainframe 
The HP C size mainframe (Fig. 1) uses a carefully de 

signed 12-layer printed circuit board for its backplane to 
provide the best possible noise immunity and signal integ 
rity. This mainframe is designed to support the smaller 
VMEbus boards (A size and B size) using a hardware adapt 
er kit. An optional chassis shield fits between the card slots 
to provide additional electromagnetic isolation between 
modules. 

For cooling, two dc fans are used. Their speed is controlled 
by cooling needs based on a measurement of ambient intake 
air temperature. Air is delivered through a pressurized 

plenum to ensure even airflow through each module inde 
pendent of the number or location of modules in the main 
frame. In other words, unused slots need not be blocked 
off, so easy access is retained during module development. 
The variable-speed fans dramatically reduce acoustical 
noise in bench environments while delivering adequate 
cooling in warmer environments up to 55Â°C. 

VXIbus Slot  0  Module 
The HP Slot 0 module is aimed at operation directly from 

a VMEbus interface or VMEbus computer. This module 
includes word-serial communication registers, allowing 
communication between other VXIbus devices and com 
puters such as HP 9000 Series 300 Computers with a VME 
bus interface. Many other VMEbus computers will be able 
to communicate with VXIbus message-based devices using 
this module as a translator. 

The translator consists of a VXIbus register-based device 
and a VXIbus message-based device. The register-based 
device is used to monitor and control the message-based 
device's word-serial communication register. It also pro 
vides the required Slot 0 backplane services. Each of these 
devices is a collection of registers in the VXIbus memory 
space that can communicate over the VXIbus. The benefit 
to the user of this structure is that it allows operation of 
the module as a message-based device from almost any 
VMEbus device. 

Fig.  1 .  HP VXIbus development  hardware inc ludes a C s ize 
ma in f rame ,  a  S lo t  0  modu le ,  a  reg i s te r -based  b readboa rd  
modu le ,  and a  car r ie r  modu le  fo r  smal le r  A  s ize  and B s ize  
cards. 
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F ig .  2 .  HP VXIbus  deve lopment  so f tware  runs  on  HP 9000  
Ser ies  200 and 300 Computers .  I t  i s  des igned to  ver i fy  the  
operat ion of  VXIbus modules and to serve as a learning tool  
for the VXIbus standard. 

The HP Slot 0 module also supports the synchronous 
and asynchronous (two-line handshake) trigger protocols. 
External BNC connectors allow the user to use external 
triggers from traditional HP-IB (IEEE 488/IEC 625) in 
strumentation with any of the VXIbus TTL trigger lines. 

VXIbus Breadboard Module 
HP also offers a C size register-based breadboard module 

which includes a 16-bit hardware interface to the VXIbus 
backplane. This module is designed to allow users to con 
struct custom assemblies with minimum effort. This mod 
ule includes backplane buffering to the VXIbus data lines 
and address lines. It also supports VXIbus autoconfigura- 
tion, bidirectional data transfers, interrupts, system fail, 
system status, and manufacturer's ID code. Module shield 
ing and ejector hardware are also included. 

Software 
The HP VXIbus development software runs on HP 9000 

Series 200 and 300 Computers (Fig. 2). It is used primarily 
to verify the operation of a VXIbus module. It is also a 
learning tool for the VXIbus standard. The program set is 

Fig. 3.  The HP 98646A VMEbus Interface for HP 9000 Series 
200 and 300 Computers .  

a combination of callable subroutines written in BASIC. 
The code is not protected so that users can modify lines 
to suit their specific needs. 

The development software implements the VXIbus re 
source manager functions when used in conjunction with 
the Slot 0 module and the HP 98646A VMEbus Interface 
(Fig. 3). The resource manager configures the mainframe, 
assigns memory spaces to each module, reports what mod 
ules are in the system, and allows access to their VXIbus 
capabilities. Access routines allow the user to read and 
write to any register and implement the word-serial pro 
tocol for message-based devices. 

The 22 routines in the VXIbus development software 
package include six for memory devices, six for message- 
based devices, and six for system configuration. 

A VXIbus development system exerciser program allows 
interactive access to other programs included in this pack 
age. It prompts for parameter values and generates a call 
to a particular subprogram. 
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1  5    A C  V o l t a g e  M e a s u r e m e n t s  I  

Ronald L.  Swerlein 
Author 's  b iography appears  e lsewhere in  th is  

section. 

Scott  D.  Stever 
Scott  Stever was project  
manager for the HP 3458A 
Mult imeter.  He has wri t ten 
for the HP Journal  before;  
in the February 1 985 issue 
he reported on his work on 
the dc and ohms measure 
ment sect ions for  the HP 
3457A Mul t imeter .  He a lso 
is the coinventor of  a 

patented automat ic  a t tenuator  compensator  for  
this instrument. He joined HP in 1 979, after graduat 
ing f rom the Georgia Inst i tu te of  Technology wi th 
a BSEE degree. Analog circuit design has become 
his main professional  interest .  Scot t  was born in 
Corpus Chr is t i ,  Texas,  is  marr ied,  and has a s ix-  
year-old son. He lives in Loveland, Colorado. When 
he is networking on or flying his airplane, he likes 
to ski  and play tennis.  

Wayne C.  Goeke  
Design of  the analog-to-  
digital converter for the HP 
3458A Mul t imeter  was 
Wayne  Goeke ' s  ma in  re  
sponsibil i ty. As a specialist 
in analog circuit design, he 
has  con t r ibu ted  to  the  de  
ve lopment  o f  a  number  o f  
instruments,  including the 
HP  3497A  Da ta  Acqu i s i  

t ion/Control Unit, the HP 3468A Digital Multimeter, 
and  the  HP 3478A Mu l t ime te r .  Two  pend ing  pa t  
ents  on the HP 3458A are based on h is  ideas.  
Wayne studied at  the Univers i ty  of  Wisconsin at  
Madison, where he received both his BSEE (1977) 
and h is  MSEE (1979)  degrees.  He was born in  
Freeport ,  I l l inois,  is  marr ied,  and l ives in Fort  Col  
lins, Colorado. In his spare time, he is active in his 
church  and en joys  vo l leyba l l ,  sk i ing ,  and  back  
packing. 

Stephen B.  Venzke 
Since Steve Venzke jo ined 

" *  â „ ¢ *  H P  i n  1 9 6 5 ,  h e  h a s  b e e n  a s  
sociated with a wide range 
of  products ,  inc lud ing the 
HP 3455A D ig i ta l  Vo l t  
meter,  the HP 3585A Spec 
t rum Analyzer ,  and the HP 
3577A Network Analyzer .  
He des igned the input  
ampl i f ier ,  ohms converter ,  

current shunts, and autocalibration circuits for the 
HP 3458A Mult imeter and has now become a pro 
duct ion engineer  for  the product .  He is  the 
or ig inator  of  two patents,  one for  a low-f requency 
current divider for function generators, the other for 
an analog-to-digi tal  converter technique. Steve re 

ceived his BSEE degree from the University of Min 
nesota  (1965) ,  and h is  MSEE degree f rom Col  
orado State University (1 968). Born in Minneapolis, 
Minnesota,  he is  marr ied and has two daughters.  
He lives in Loveland, Colorado, where he teaches 
e ighth-grade Sunday school  as an avocat ion.  He 
is  a lso in terested in  audio equipment  and enjoys 
backpack ing and f ish ing.  

Ronald L.  Swerlein 
The design of  the ac f ront  
end ,  the  d ig i ta l  ac  a l  
gor i thms, the transformer,  
and the power  supp l ies  
were Ron Swer le in 's major  
con t r ibu t ions  to  the  de  
velopment of the HP 3458A 
Mul t imeter .  H is  ana log c i r  
cuitry was also used in ear 
lier instruments, like the HP 

3468A Digital Multimeter and the HP 3478A and HP 
3457A Multimeters. He is named inventor in a pat 
ent  descr ib ing ac autocal ibrat ion c i rcu i ts ,  and he 
has  pub l i shed  two  papers  abou t  d ig i ta l  ac  mea 
surement .  His  bachelor 's  degree in  engineer ing 
phys ics (1978)  and h is  MSEE degree (1979)  are 
from Ohio State University. Ron was born in Toledo, 
Ohio, is married, and lives in Longmont, Colorado. 
He spends his leisure time reading science fiction. 

3 1    H i g h - T h r o u g h p u t  D e s i g n  :  

Gary A.  Ceely 
^ ^ ^  S h o r t l y  a f t e r  g r a d u a t i n g  

4 E ^ ^ K f e  f r o m  V i r g i n i a  P o l y t e c h n i c  
f f  " ^ ^ l  U n i v e r s i t y  w i t h  a  B S E E  d e -  
P"jp* F 9ree in 1979' Gary Cee|y 

jo ined HP's Loveland In-  
W i  ^ * 4 >  s t r u m e n t  D i v i s i o n .  H i s  d e  

ve lopment  pro jects  have 
inc luded f i rmware des ign 

l . - v  f o r  t h e  H P  3 4 5 6 A  S y s t e m s  
' â€¢ j f \  DVM,  t he  HP  3488A  Sw i t ch /  

Contro l  Uni t ,  the HP 3852A Acquis i t ion/Contro l  
Unit, and the HP 3054A Data Acquisition System. 
Dur ing development  o f  the HP 3458A Mul t imeter ,  
Gary's responsibil i t ies included the ERS, f irmware 
archi tecture,  operat ing system inter face,  and 
language parsing. Born in Alexandria, Virginia, he 
l ives in Loveland, Colorado. His favor i te le isure 
activit ies are ski ing, waterskiing, kayaking, volley 
bal l ,  tennis,  and aerobics.  

David J. Rustici 
The measurement  and 
cal ibrat ion f i rmware of the 
HP 3458A Multimeter were 
Dav id  Rust ic i ' s  foca l  re  
sponsibil it ies at HP's Love- 
land Instrument Division. 
He is now a firmware man 
ager .  Or ig inal ly ,  he had 
joined the Civil Engineering 
Division in 1976, after 
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graduat ing f rom the Univers i ty  of  Wisconsin at  
Madison wi th  a  BSEE degree His  responsib i l i t ies  
the re  inc luded  the  HP 3808A and  HP 3850A D is  
tance Meters.  His work on the lat ter  resul ted in a 
patent, and another patent for the HP 3458 is pend 
ing.  David is  the coauthor  o f  a  paper  descr ib ing 
firmware for an intelligent digital voltmeter. He was 
bom in  Racine,  Wisconsin,  is  marr ied,  and has a 
son  and  a  daugh te r  He  l i ves  in  Love land ,  Co l  
orado. In his off-hours, he enjoys skiing, bicycling, 
golf,  and travel. 

39  â€”  H igh-Reso lu t ion  D ig i t i z ing  :  

Oav id  A .  Czenkusch  
As R&D engineer in the volt 
meter laboratory of  the 
Love land Ins t rument  D iv i  
sion, Dave Czenkusch has 
been involved in a number 
of voltmeter and multimeter 
developments,  inc luding 
the HP 3458A, and a digital 
vol tmeter for  the HP 3235 
SwitchATest Unit. One of his 

ideas for the HP 3458A resulted in a patent appli 
cation. Dave's BSEE degree is from Purdue Univer 
sity (1 983). He joined HP the year of his graduation 
and developed a professional  interest  in d ig i ta l  
des ign and f i rmware.  He was born in  Speedway,  
Indiana, is single, and lives in Loveland, Colorado. 
He enjoys skiing in the winter and looking forward 
to the sk i ing season and bowl ing in  the summer.  

50  â€ ”  S t ruc tu red  De fec t  Ana lys i s  :  

T a k e s h i  N a k a j o  
Software defect analysis 
and the ef fects of  human 
error on system quality are 
Takeshi  Nakajo 's main pro 
fessional interests. He has 
written a number of papers 
on the subject of obviating 
program faults and flaws in 
deve lopmen t  and  manu  
factur ing. Takeshi 

graduated f rom Tokyo Univers i ty  wi th  a master 's  
degree in engineering (1981 ) and received a PhD 
degree in 1986 f rom the same inst i tu t ion.  He has 
been a research assistant  at  the Univers i ty  s ince 
1987. 

K a t s u h i k o  S a s a b u c h i  
As a qual i ty manager, Kat 
suhiko Sasabuchi  works in 
the product  assurance de 
par tment  o f  Yokogawa 
Hewlett-Packard in 
Hachioji, near Tokyo. He is 
c losely associated wi th a 
special program to improve 
sof tware product iv i ty and 
quality. In the study of soft 

ware defect analysis described in this issue of the 
HP Journal ,  he funct ioned as one of  the pr inc ipal  

con tac ts  w i th  the  Kume Labora tory  o f  Tokyo Un i  
versity Katsuhiko was bom on Hokkaido, and his 
bachelor 's  degree in  app l ied phys ics  is  f rom the 
University of Hokkaido. He joined VHP in 1973. He 
is married, has two sons, and lives in Hachioji. His 
favorite pastimes are playing baseball and reading 
historical novels 

T a d a s h i  A k i y a m a  
Tadash i  Ak iyama i s  a  so f t  
ware engineer at Yokogawa 
Hewlet t -Packard.  He is 
responsible for qual i ty 
assurance for new software 
projects, and his current in 
terests focus on techniques 
to improve qual i ty  and 
product iv i ty in software 
development.  He at tended 

the Science University of Tokyo, graduating with a 
degree in  mathemat ics.  Tadashi  is  a  nat ive of  
Yokohama and is married. His 2-year-old son and 
infant daughter monopolize most of his spare time. 

5 7  ~  D i s s e c t i n g  S o f t w a r e  F a i l u r e s  :  

R o b e r t  B .  G r a d y  
Software development and 
project management using 
software metrics have been 
the focal professional in- 

^ _  t e r e s t s  f o r  m u c h  o f  B o b  
| ^ 5  G r a d y ' s  1 9 - y e a r  c a r e e r  a t  

â€¢ HP. He has been manager 
of a var iety of  major proj-  

< Ã € 4  t  e c t s ,  i n c l u d i n g  t h e  H P  A t l a s  
f t  *  ' *  C o m p i l a t i o n  S y s t e m ,  t h e  

HP 2240A Measurement  and Cont ro l  Processor  
hardware, the HP 1 2050A Fiber Optic HP-IB Link, 
manufacturing and information systems, and HP's 
sof tware engineer ing laboratory.  Present ly,  he is  
sec t ion  manager  in  the  so f tware  methods labora  
tory of HP's Data and Languages Division. Bob is 
a member of  the IEEE Computer  Society ,  is  
coauthor  o f  a  book on sof tware metr ics ,  and has 
wri t ten and coauthored numerous papers and ar 
t ic les on sof tware subjects,  inc luding several  for  
the HP Journal. A native of Chicago, Il l inois, he re 
ce ived h is  BSEE degree f rom the Massachuset ts  
Ins t i tu te  o f  Technology (1965)  and h is  MSEE de 
gree f rom Stanford Univers i ty  (1969).  He and h is  
wife, who is a section manager at HP's Data Prod 
ucts Operation, have a daughter and a son and live 
in Los Altos, California. In addition to managing his 
son 's  basketba l l  team,  Bob p lays  basketba l l  h im 
sel f  and enjoys h ik ing,  camping,  and sk i ing.  

64  â€ ”Comp lex i t y  Me t r i c  :  

W i l l i a m  T .  W a r d  
â€¢â€¢ With software engineering 

f  m e t h o d o l o g i e s  a n d  t o o l s  
h is  main  pro fess iona l  in  
terest, Jack Ward has writ  
ten a number of articles on 
the subject  of  sof tware 
quali ty. He is software qual 
i ty engineering manager at 
HP's Waltham Divis ion 
(Massachuset ts) ,  and 

heads a group responsible for testing all software/ 
f irmware As a software quality engineer in earl ier 
ass ignments  he  was invo lved in  tes t ing  ECG 
arrhythmia moni tor ing systems Before jo in ing HP 
in  1982,  he was a sof tware suppor t  engineer  for  
Data General Corporation. Jack's BS degree in l in 
guistics is from the University of Illinois (1972), and 
his MS degree in computer science is from Boston 
University (1 984). A native of Winona, Mississippi, 
he is  marr ied and has two chi ldren.  He l ives in  
Brookline, Massachusetts. In his spare time, Jack 
teaches computer science courses at Boston Uni 
vers i ty.  He also l ikes jogging.  

69  â€ ”  Ob jec t -Or ien ted  Un i t  Tes t ing  :  

S teven  P .  F ied le r  
I  The object-or iented unit  
test ing d iscussed in  Steve 
Fiedler 's art ic le forms part  
of  h is responsibi l i t ies as a 
software qual i ty engineer.  
In th is part icular  study,  he 
implemented processes for 

I assuring software quality in 
c l in ica l  in format ion sys 
tems. Before transferring to 

the Waltham Division of HP, he was a systems sup 
port engineer for computer products and networks 
in the Valley Forge, Pennsylvania, sales office. He 
came to HP in a par t - t ime posi t ion in  1979,  then 
joined full-time in 1 981 , after receiving his BS de 
gree in computer science from West Chester Uni 
versity. Steve is a member of the ACM. He was born 
in  Mi lwaukee,  Wisconsin,  is  marr ied,  and has two 
children. He resides in Leominster, Massachusetts. 
He pursues musica l  in terests  in  h is  church and,  
wi th  h is  wi fe ,  o f ten s ings at  weddings and smal l  
gather ings.  He also enjoys sk i ing,  h ik ing,  and 
travel. 

7 5  ~  R e l i a b i l i t y  G r o w t h  M o d e l s  :  

G r e g o r y  A .  K r u g e r  
| |  In  the product iv i ty  sec t ion  

o f  HP 's  Lake Stevens In  
s t rument  Div is ion,  s tat is  
t ic ian Greg Kruger 's  main 
responsibi l i t ies include 
R&D metr ics,  sof tware 
rel iabi l i ty model ing, and 
process analysis. When he 
first joined HP at the Love- 
land Instrument Divis ion 

a lmost  e igh t  years  ago,  Greg 's  ass ignment  in  
c luded implement ing stat is t ica l  qual i ty  contro l  
practices in manufacturing and training people to 
use  and  unders tand  them.  La te r  he  was  commis  
s ioned to  spread Tota l  Qual i ty  Contro l  pract ices 
throughout the Lake Stevens Instrument Div is ion.  
Greg was born in  Water loo,  Iowa.  His  BS in  
mathemat ics/stat is t ics (1979) and MS in stat is t ics 
(1981) are both f rom Iowa State Univers i ty .  He is  
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marr ied,  has two ch i ldren,  and of fers  much of  h is  
leisure time to his duties as deacon of his church. 
Greg is  an av id  archer ,  serves on the board o f  
directors of the Washington State Bowhunters, and 
edi ts  a newslet ter  on the subject .  Vocal  music  is  
another of his interests. 

8 0    C o m p a r i n g  M e t h o d o l o g i e s  ' .  

Wil l iam A. Fischer,  Jr .  
Bil l  Fischer is the coauthor 
of the comparative study of 
s t ructured methodolog ies 
in this issue of the HP Jour 
nal .  He is  an R&D sect ion 
manager in  charge of  In te l  
and Motorola emulat ion 
products.  Previously,  he 
has been an R&D pro jec t  
manager ,  a  t echn i ca l  sup  

port engineer, and a product marketing engineer. 
In the ten years before he jo ined HP in 1984, Bi l l  
was an engineer at the Hamilton Standard Division 
of United Technologies, designing automated test 
equipment for the space shuttle. He holds a BSEE 
degree (1973) ,  an MSEE degree (1978) ,  and a  
master 's  degree in  management  (1980) ,  a l l  f rom 
Rensselaer Polytechnic Institute. He has authored 
and coauthored a number of papers and art icles, 
main ly  about  sof tware pro ject  management .  B i l l  
was born in  At t leboro,  Massachuset ts ,  and l ives 
wi th h is  wi fe and four  ch i ldren in  Colorado 
Springs, Colorado. He enjoys running and playing 
basketball .  

James W.  Jost  
As a stat ist ic ian at  HP's 
Logic Systems Div is ion,  
J im Jost  is  responsib le for  
so f tware  met r i cs  and  p ro  
cess improvements .  He 
co l l abo ra ted  on  t he  com 
parative study of structured 
methodo log ies  d iscussed 
in this issue of the HP Jour 
nal. Before he joined HP in 

1 984, he spent eight years doing breeder nuclear 
reactor research, part icular ly in the f ie ld of  fuels.  
Jim holds a BA degree in chemistry from Tabor Col 

lege (1970)  and an MS degree in  s ta t is t ics  f rom 
Oregon State Univers i ty  (1976).  He was born in 
Hi l lsboro,  Kansas,  and l ives in Colorado Spr ings,  
Colorado. He is married and has three children. His 
favori te off-hours act iv i t ies are basketbal l ,  ski ing, 
and read ing b iograph ies .  

86 â€” Object-Oriented Systems Analysis 

Barry D. Kurtz 
Barry Kurtz authored the 
OSA methodo logy  and  
ac ted  as  a  t echn i ca l  con  
su l tan t .  Among o ther  so f t  
wa re  p ro jec ts  he  has  han  
d led s ince he jo ined HP in  
1976 were des ign of  CAE 
tools for electr ical  schema 
t ic capture and pr inted cir  
cuit design and, as an R&D 

engineer and project manager,  design of the Ma 
ter ia ls  Management /3000 sof tware for  HP 3000 
Business Computers. Barry's BS and MS degrees 
in computer science are from Brigham Young Uni 
vers i ty  (1987,  1988) ,  and he is  a  member of  both 
the ACM and the IEEE. He was born in Richmond, 
Indiana, and lives in Boise, Idaho. He's married and 
has a son.  He is  act ive in  h is  church and en joys 
fami ly out ings,  f ishing,  and amateur radio.  

Teresa A.  Wal l  
Born  in  Norman,  Ok la  
homa, Teresa Wal l  
g radua ted  w i t h  a  BS  de  
gree in  computer  sc ience 
from the Universi ty of  
Oklahoma in 1983.  She 
joined the Fort Coll ins Sys 
tems Div is ion of  HP the 
same year.  Among the proj  
ects she has been working 

on  a re  command  g roups  and  HP-UX sys tems  in  
tegration for the HP 9000 Series 300 and 500 Com 
puters. Her contributions to the OSA development 
focused on the analysis methodology and toolset. 
Teresa's main professional  interests are analysis 
and des ign methodo log ies  and ob jec t -or ien ted 
languages. She l ives in Santa Clara, Cal i fornia.  

Donna Ho 
Donna Ho is  a sof tware 
development  engineer  a t  
HP's Software Engineering 
Systems Divis ion. On the 
OSA p ro jec t ,  she  was  re  
sponsible for  the analysis 
me thodo logy ,  too l  p ro  
t o t ype ,  and  documen ta  
tion. When she came to HP 
in 1 985, she joined Corpo 

rate Engineering to work on software development. 
Previous professional experience includes work on 
DG-UX command groups at Data General.  Donna 
attended Duke University, graduating in 1 985 with 
a BS degree in computer science/psychology. Sr-? 
was born in Honolu lu,  Hawai i ,  and l ives in Santa 
Clara, California. 

91    VXIbus  In terconnect ion  Standard  ' .  

Kenneth Jessen 
Author 's  b iography appears e lsewhere in  th is  

section. 

96  ZZ  VXIbus  Tools  

Kenneth Jessen 
Ken Jessen  i s  a  manu fac  
tu r i ng  deve lopmen t  en  
gineer associated with new 
products  and the develop 
ment of new processes for 
HP's  Manufactur ing Test  
Div is ion. He jo ined HP in 
1965 and,  among var ious 
assignments,  has held 
pos i t ions  as  serv ice  man 

ager  and d is t r ibut ion manager .  Dur ing the past  
nineteen years, he has written many technical art i  
cles describing HP products for a variety of trade 
journals, some of them translated into foreign lan 
guages for publ icat ion abroad. He has publ ished 
four books on Colorado history and contributed to 
two technica l  books.  Ken 's  BSEE degree (1962)  
and MBA degree (1 964) are both from the Univer 
s i ty of  Utah. He was born in Evanston, I l l inois,  is 
married, and has three children. He lives in Love- 
land, Colorado. His hobbies are writ ing, hiking, ski 
ing, and rai l road history.  
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