
ELETTRONICA

Anno 9° - n. 49

RIVISTA MENSILE Sped. Abb. Post. Gr. 4°/70



Direzione Editoriale NUOVA ELETTRONICA Via Cracovia 19 - BOLOGNA Telefono (051) 46 11 09 Stabilimento Stampa Cooperativa lavoratori Officine Grafiche Firenze Viale dei Mille, 90 - Firenze Pistribuzione Italia
PARRINI e C. s.r.l.
Roma - Piazza Indipendenza
11/B - Tel. 4992
Milano - Via delle Termopili,
6-8 - Tel. 28.96.471 Direttore Generale Montuschi Giuseppe Direttore Responsabile Morelli Sergio Autorizzazione Trib. Civile di Bologna n. 4007 del 19.5.69

ABBONAMENTI

Italia 12 numeri L. 10000 Estero 12 numeri L. 13000 Numero Singolo L. 1000 Arretrati

L. 1000

RIVISTA MENSILE

ANNO IX - GENNAIO

COLLABORAZIONE

Alla rivista Nuova Elettronica possono collaborare tutti i lettori. Gli articoli tecnici riguardanti progetti realizzati dovranno essere accompagnati possibilmente con foto in bianco e nero (formato cartolina) e di un disegno (anche a matita) dello schema elettrico. L'articolo verrà pubblicato sotto la responsabilità dell'autore, e pertanto egli si dovrà impegnare a rispondere ai quesiti di quei lettori che realizzato il progetto, non sono riusciti ad ottenere i risultati descritti.

Gli articoli verranno ricompensati a pubblicazione avvenuta. Fotografie, disegni ed articoli, anche se non pubblicati non verranno resti-

È VIETATO

I circuiti descritti su questa Rivista, sono in parte soggetti a brevetto, quindi pur essendo permessa la realizzazione di quanto pubblicato per uso dilettantistico, ne è proibita la realizzazione a carattere commerciale ed industriale.

Tutti i diritti di riproduzione o traduzioni totali o parziali degli articoli pubblicati, dei disegni, foto ecc. sono riservati a termini di Legge per tutti i Paesi . La pubblicazione su altre riviste puó essere accordata soltanto dietro autorizzazione scritta dalla Direzione di Nuova Elettronica.

SOMMARIO

LX199 - TERMOMETRO LUMINOSO a DIODI LI	ED		2
PER CAPIRE I FLIP-FLOP SET/RESET			
THE THE PLOP SEI/RESEI.			12
LX213 - UN REGOLATORE a COMMUTAZIONE			26
LX220 - PIÙ SENSIBILITÀ sulla FM con un MOS	-		
THE SELECTION SUITA FINI CON UN MOS	FET		34
SEGNALATORE DI FUGHE DI GAS			
LVOID DIDOTING			44
LX218 - BIOSTIMOLATORE a IONI NEGATIVI .			52
LY214 - CONTACIDL - DIOTAL-	•	•	JZ
LX214 - CONTAGIRI a DIODI LED con UAA180		_	60
LX187 - Un GENERATORE di DARRE	-	-	00
LX187 - Un GENERATORE di BARRE per TV.			70
USO del TRACCIACURVE - PROVE sui DIODI .			_
THE PROVE SUI DIODI .			86
ERRATA CORRIGE dei nn. 45-46-47-48			94
10 10 11 10		_	44

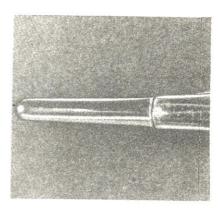
Il prossimo numero sarà « doppio » sia di pagine che di progetti.

- un TRASMETTITORE FM 88.108 MHz
- un CAPACIMETRO DIGITALE
- * una SINTONIA a diodi LED per SINTONIZZATORE FM
- un DOPPIA TRACCIA per OSCILLOSCOPI
- un OSCILLATORE a 455 KHz modulato in AM
- e oltre a questi ne troverete tanti altri

Associato all'USPI (Unione stampa periodica italiana)

La Siemens, oltre all'integrato UAA170, che i lettori già dovrebbero conoscere, avendolo noi impiegato nella realizzazione di un indicatore di livello (vedi rivista n. 42-43, a pag. 57), ha prodotto da poco tempo un altro integrato della stessa serie, siglato UAA180.

Qual'è la differenza esistente tra l'UAA170 e l'UAA180?


Il primo, come certamente già saprete, serve essenzialmente per pilotare una serie di 16 led, in progressione singola; cioè se ne accende uno solo per volta ,proporzionalmente alla tensione continua che si ha sul terminale d'ingresso.

di realizzare un termometro a led luminescenti, vale a dire un progetto che, nonostante la sua limitata applicazione in campo pratico, potrà servire come trampolino di lancio per prendere confidenza con questo nuovo integrato e permetterci di utilizzarlo al più presto in realizzazioni più valide ed interessanti.

L'INTEGRATO UAA180

L'integrato UAA180 è un « dual-line » a 9+9 piedini, di cui dodici vengono utilizzati per pilotare

UN TERMOMETRO LUMINOSO A DIODI LED

L'UAA180, a differenza di quest'ultimo, è in grado di pilotare solo 12 led, anziché 16, ma in progressione continua.

Cioè, utilizzando l'UAA170, se applicassimo al suo ingresso una tensione continua sufficiente per ottenere l'accensione del terzo led, il primo ed il secondo automaticamente si spegnerebbero; analogamente, se aumentassimo la tensione per accendere il quarto led, è ovvio che si spegnerebbero i primi tre.

Con l'UAA180 invece, applicando una tensione al suo ingresso, se questa risultasse sufficiente a fare accendere il terzo led, i primi due rimarrebbero accesi; aumentando tale tensione fino a fare accendere il quinto led, i primi quattro non si spegnerebbero, come invece avveniva con l'UAA170.

Cioè, se disponessimo questi dodici led verticalmente, otterremmo una specie di luminoso indicatore a « colonna », visivamente del tutto analogo a quanto si manifesta in un termometro a mercurio dove, all'aumentare della temperatura, si vede salire progressivamente il liquido argenteo senza alcuna interruzione. Prendendo lo spunto da questa considerazione, abbiamo immediatamente pensato di sfruttare l'integrato UAA180 in un'applicazione di questo genere, cioè in pratica

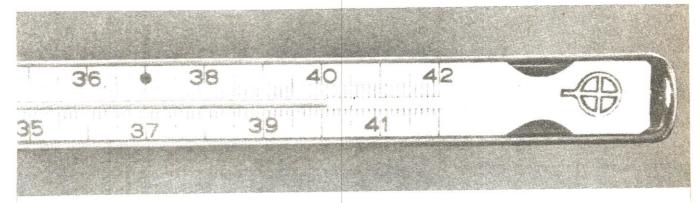
altrettanti diodi led, due per l'alimentazione (il n. 18 per i 12 Volt positivi ed il n. 1 per la massa) ed infine i quattro restanti servono per svolgere le seguenti funzioni:

Terminale 16 - Serve per determinare la tensione minima di riferimento, necessaria ad accendere il primo diodo led. Se applicheremo tale terminale a massa, il primo diodo led si accenderà con una tensione di circa 0,4 Volt, mentre se a tale terminale applicassimo ad esempio una tensione di 1 Volt positivo, il primo diodo led si accenderebbe solo quando all'ingresso dell'integrato (piedino 17), sarà presente una tensione di 1,4 Volt.

Terminale 17 - È il terminale d'ingresso, quello cioè sul quale dovremo applicare la tensione variabile necessaria per accendere i diodi led.

Terminale 3 - Serve per determinare la tensione di riferimento massima necessaria ad accendere l'ultimo led. Quindi, se tale terminale viene polarizzato con una tensione positiva di 4 Volt, l'ultimo diodo led si accenderà quando in ingresso (cioè sul piedino 17) la tensione positiva avrà raggiunto un valore di circa 4 Volt.

Terminale 2 - Piedino di controllo della luminosità


dei diodi led. Tenendo questo piedino aperto si ha la massima luminosità, mentre se questo viene collegato a massa tramite una resistenza di alto valore (da 10.000 a 100.000 Ohm) la luminosità del diodo led diminuisce.

Poiché lo schema interno di questo integrato non viene totalmente rivelato dalla Casa costruttrice, anche noi siamo costretti a presentarvi solo quanto di esso conosciamo, cioè quello disegnato in fig. 1. Noterete come il piedino d'ingresso (il n. 17), risulta collegato alla base di un transistor che pilota una «matrice»; questo, a sua volta, comanda un gruppo di quattro transistor.

fig. 2 lo schema elettrico base necessario a questo scopo. In questo circuito il trimmer R2 serve a regolare la « sensibilità » di fondo-scala, cioè a determinare la tensione massima necessaria ad accendere l'ultimo diodo led.

SCHEMA ELETTRICO

Dobbiamo subito precisare che il termometro che intendiamo presentarvi è in grado di misurare una temperatura compresa tra un minimo di 0° C ed un massimo di 42° C, suddivisa in quat-

Utilizzando il nuovissimo integrato UAA180 della Siemens è possibile realizzare degli interessanti strumenti di misura a diodi led, quali ad esempio il termometro che oggi vi presentiamo.

sulle cui uscite (piedini 12-13-14-15) collegheremo il primo gruppo di quattro diodi led.

Lo stesso transistor d'ingresso pilota contemporaneamente altre due « matrici », le quali a loro volta pilotano altri due gruppi di quattro transistor, necessari per i rimanenti 8 led. Il secondo gruppo di quattro diodi led andrà a collegarsi ai piedini 8-9-10-11 ed il terzo e ultimo gruppo ai piedini 4-5-6-7.

Abbiamo infine i due transistor collegati ai piedini 16-3, necessari per stabilire la massima e la minima tensione di riferimento, quindi l'ultimo transistor (la cui base è collegata al piedino 2), impiegato per determinare la corrente massima che deve scorrere nei led stessi, e quindi a stabilire la massima luminosità.

A questo punto coloro che volessero sperimentare questo integrato per realizzare ad esempio un piccolo milliVoltmetro, oppure un semplice S-meter da collegare in un ricevitore, troveranno in

tro portate, con la precisione di 1 led per grado centigrado.

Più esattamente le quattro portate disponibili ci permettono di esplorare le seguenti gamme di temperatura:

1º portata: da 0º C a 12º C;

2º portata: da 10º C a 22º C;

3º portata: da 20º C a 32º C;

4º portata: da 30º C a 42º C.

Lo schema è stato progettato per utilizzare solo ed unicamente una sonda in vetro avente una resistenza di circa 2.000 Ohm a 25° C; è ovvio che utilizzando un altro tipo di sonda, avente una diversa resistenza ohmica, o una NTC metallica avente anch'essa diversa resistenza ohmica, tutti i valori relativi alle resistenze impiegate nel ponte di Wheatstone debbono necessariamente venire modificati.

Nel realizzare questo termometro, il primo e

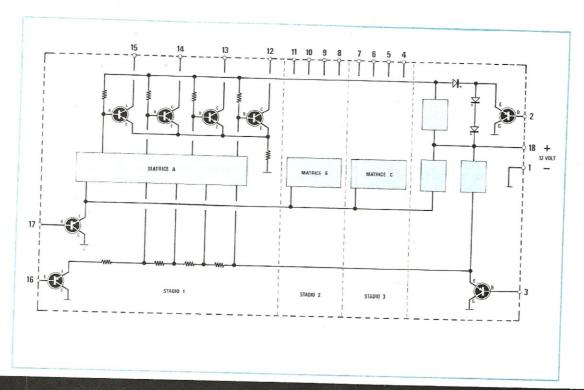


Fig. 1 L'integrato UAA.180, a differenza del suo confratello UAA.170, presenta la caratteristica di mantenere accesi tutti i diodi interessati, quindi visivamente può risultare più interessante rispetto al secondo. Internamente l'integrato UAA.180 è composto da tre stadi similari, ognuno dei quali pilota 4 diodi led. Il terminale pilota è, come spiegato nell'articolo, il piedino 17, mentre i piedini 16 e 3 servono per determinare la tensione di riferimento minima e massima, entro alla quale debbono accendersi tutti i dodici diodi led.

più critico problema che abbiamo dovuto risolvere è stato quello di linearizzare il comportamento della NTC in funzione della temperatura.

Infatti si sa che queste sonde non sono perfettamente lineari, cioè il loro valore ohmico non varia proporzionalmente al variare della temperatura. L'integrato UAA180 invece è perfettamente lineare, infatti ad ogni aumento di tensione in ingresso di circa 29 milliVolt, si accende un diodo led. Era quindi necessario cercare di linearizzare il comportamento della sonda, in modo che, ad ogni aumento di un grado, corrispondesse, sull'ingresso dell'integrato, un aumento di tensione di 29 milliVolt.

Per ottenere questo abbiamo dovuto far precedere all'UAA180 un circuito composto dall'integrato UA723, indicato nello schema elettrico con la sigla IC1 e dal transistor PNP tipo BC177, (indicato nello schema con la sigla TR1).

Abbiamo accennato precedentemente che il cir-

cuito a cui è collegata la sonda è in pratica un ponte di Wheatstone, ma forse il lettore controllando lo schema elettrico di fig. 3 non lo individuerà molto facilmente, per cui abbiamo ritenuto opportuno ridisegnarlo (vedi fig. 4), in modo da renderlo visivamente più similare al classico ponte di Wheatstone.

Le resistenze R10 e R11 costituiscono uno dei due bracci del ponte, mentre l'altro è composto dalla resistenza NTC (collegata in serie-parallelo con R2 e R1 al fine di linealizzarne la curva di risposta) e dal commutatore S2.

Le uscite del ponte andranno a collegarsi rispettivamente al piedino 3 di IC1, tramite la resistenza R14, ed al piedino 2 di IC1, tramite la resistenza R12.

L'integrato UA723 (IC1), per chi ancora non ne fosse a conoscenza, internamente dispone di un alimentatore stabilizzato di alta precisione e di un amplificatore differenziale; si userà l'alimentatore

stabilizzato per ottenere la tensione utile ad alimentare il ponte di Wheatstone (piedino 4) e l'amplificatore differenziale per amplificare la tensione di errore del ponte.

Come in ogni amplificatore differenziale anche su questo sono presenti due ingressi, uno noninvertente (piedino 3) e uno invertente (piedino 2).

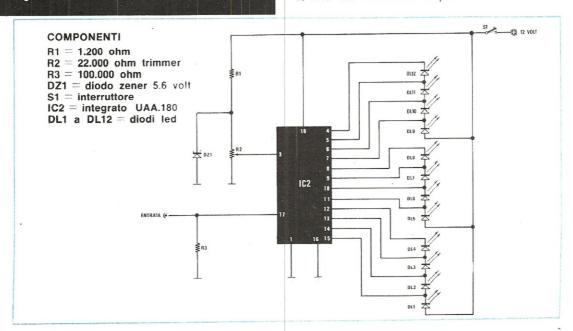
Cosa significa « non-invertente » ed « invertente »?

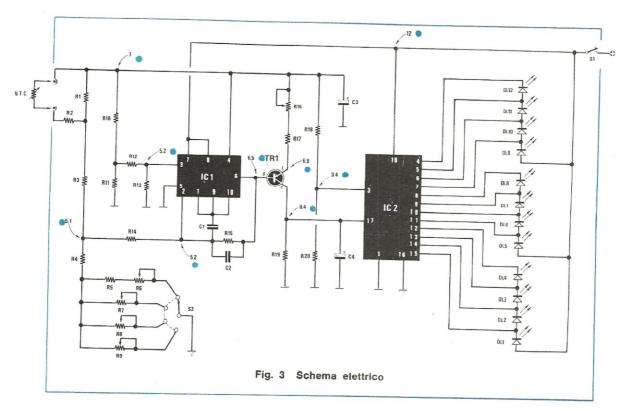
Significa semplicemente che se noi applichiamo una tensione positiva sul piedino 3 (non-invertente), in uscita (piedino 6 di IC1) avremo una variazione positiva, mentre se applichiamo al piedino 2 (invertente) una tensione positiva, in uscita dall'integrato otterremo una variazione negativa. Poiché il piedino 3 è collegato ai due lati del ponte a tensione fissa, che utilizziamo come tensione di riferimento, (cioè in pratica al braccio del ponte composto dalle due resistenze R10 e R11) ed essendo l'altro braccio (composto dalla resistenza NTC e dal commutatore S2) al piedino invertente, ne consegue che, quando la tensione su tale piedino aumenta rispetto alla tensione fissa di riferimento presente sul piedino 3.

Fig. 2 Con questo integrato è possibile realizzare dei semplici voltmetri o S-meter luminosi utilizzando lo schema qui riportato. Per misure superiori a 1 volt si consiglia di sostituire la resistenza R3 con un trimmer, collegandone il cursore al terminale 17 dell'integrato.

in uscita dall'integrato (piedino 6) la tensione si riduce.

Poiché il guadagno dell'amplificatore differenziale UA723 è elevatissimo, è sufficiente una variazione di pochi microVolt in ingresso per ottenerne analogamente una elevata sul piedino d'uscita di tale integrato.


Il terminale d'uscita di IC1 è collegato a sua volta alla base di un transistor di tipo PNP, ne consegue quindi, variandone la polarizzazione di base, che la corrente di collettore subirà a sua volta delle variazioni.


Ai capi della resistenza R19 si creerà quindi una differenza di potenziale che utilizzeremo per pilotare l'integrato UAA180.

Infatti, come è possibile notare dallo schema elettrico di fig. 4, il terminale d'ingresso (piedino 17) dell'integrato IC2 è appunto collegato sul collettore del transistor TR1.

Il trimmer R16 che troviamo collegato sull'emittitore dello stesso transistor, serve essenzialmente per poter correggere, in fase di taratura, le eventuali differenze di « beta » che si riscontrano di solito tra transistor dello stesso tipo e modello, in modo che alla temperatura « minima » si accenda solo il primo led.

A titolo informativo riportiamo le tensioni che debbono risultare presenti sul piedino d'ingresso di IC2 (piedino 17) per ottenere l'accensione dei diversi led e corrispondentemente le analoghe tensioni via via rilevate in uscita dall'integrato IC1 (piedino 6). necessarie per ottenere ai capi di R19 tale differenza di potenziale.

Precisiamo che tali letture sono rilevabili solo mediante un Voltmetro elettronico, in quanto un normale tester introdurrebbe delle cadute di tensioni rilevanti, modificando notevolmente le letture medesime.

Tensioni in entrata su IC2 (piedino 17)		diodi lec accessi fino al	
0,40	6,50	1	
0,69	6,45	2	
0,98	6,40	3	
1,27	6,35	4	
1,56	6,30	5	
1,85	6,25	6	
2,14	6,20	7	
2,43	6,15	8	
2,72	6,10	9	
3,01	6,05	10	
3,30	6,00	11	
3,59	5,90	12	

Conoscendo le tensioni via via presenti all'ingresso dell'integrato UAA180, quelle presenti all'uscita dell'integrato UA723 ed infine quelle presenti ai capi della resistenza R19 (che in pratica corrispondono a quelle d'ingresso dell'UAA180)

LISTA COMPONENTI R1 = 1.200 Ohm 1/4 Watt R2 = 82 Ohm 1/4 Watt R3 = 1.200 Ohm 1/4 Watt R4 = 4.700 Ohm 1/4 Watt R5 = 470 Ohm 1/4 Watt R6 = 1.000 Ohm trimmer R7 = 1.000 Ohm trimmer R8 = 1.000 Ohm trimmer R9 = 1.000 Ohm trimmer R10 = 2.200 Ohm 1/4 Watt R11 = 10.000 Ohm 1/4 Watt R12 = 10.000 Ohm 1/4 Watt R13 = 120.000 Ohm 1/4 Watt R14 = 10.000 Ohm 1/4 Watt R15 = 120.000 Ohm 1/4 Watt R16=2.200 Ohm trimmer R17=5.600 Ohm 1/4 Watt R18 = 4.700 Ohm 1/4 Watt R19 = 27.000 Ohm 1/4 Watt R20 = 4.700 Ohm 1/4 Watt C1 = 470 pF ceramico a disco C2 = 100.000 pF poliestere C3 = 10 mF elettrolitico 35 Volt C4 = 1 mF elettrolitico 35 Volt LED1 a LED12 = diodi led TR1 = transistor PNP tipo BC177 IC1 = integrato tipo uA723 IC2 = integrato tipo UAA180 S2 = commutatore 2 vie 4 posizioni NTC = sonda NTC vetro da 2200 ohm

In basso - Come si presenta a costruzione ultimata il nostro termometro a diodi led. Una volta tarato lo strumento, il lettore potrà scrivere con dei trasferibili la relativa indicazione in gradi centigradi vicino ad ogni diodo led.

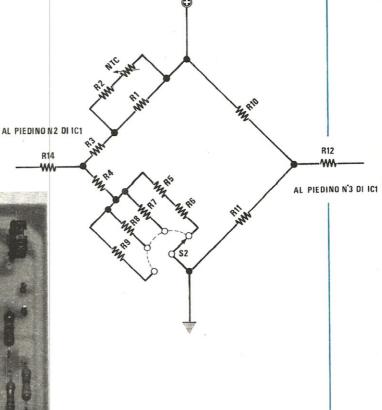


Fig. 4 Il circuito d'ingresso del nostro termometro è costituito in pratica da un ponte di Wheatstone che qui abbiamo ridisegnato in quanto nello schema elettrico di fig. 3 non è facilmente identificabile. Per semplificare il disegno i trimmer R6-R7-R8-R9 sono stati qui disegnati come normali resistenze fisse.

potremo controllare il corretto funzionamento del circuito; non solo, ma qualora volessimo modificare il circuito per adibirlo ad un'altra qualsiasi applicazione, od infine nell'eventualità che volessimo impiegare una sonda NTC di diverse caratteristiche e per adattarla a temperature diverse, al conoscenza di queste tensioni ci faciliterà notevolmente questo compito.

A questo punto è ovvio e facilmente comprensibile che è possibile sostituire la sonda NTC pure con una fotoresistenza ed ottenere, anziché un termometro, un indicatore di luminosità.

(Nota: le tensioni riportate in fig. 3 si riferiscono al caso in cui sia acceso solo il primo led, cioè quando la tensione presente sul piedino 17 di IC2 è di 0,4 Volt).

REALIZZAZIONE PRATICA

Sul circuito stampato LX199, visibile in fig. 5, a grandezza naturale, troveranno posto tutti i componenti, ad esclusione della sonda NTC, come illustrato nello schema pratico di fig. 6.

Inizieremo il nostro montaggio saldando sullo stampato le resistenze i trimmer ed i condensatori, facendo attenzione a rispettare la polarità di quelli elettrolitici C3 e C4; lo stesso dicasi per i dodici led. Allo stesso modo procederemo inserendo negli appositi fori il transistor TR1, l'integrato IC1 e lo zoccolo destinato a ricevere l'integrato IC2.

Per ultimo monteremo sullo stampato il commutatore S2 (a 2 vie - 4 posizioni), e provvederemo a collegarlo ai quattro trimmer di taratura R6, R7, R8, R9 da 1.000 Ohm ciascuno.

Per poter fare questo basterà guardare la fig. 7, facendo attenzione a non scambiare tra loro i vari fili di collegamento che dallo stampato vanno a collegarsi al commutatore.

TARATURA E MESSA A PUNTO

Terminata la realizzazione del progetto ed ancor prima di utilizzarlo è necessario procedere alla taratura dei vari trimmer presenti sul circuito, affinché ogni portata sia idonea ad indicarci la gamma di temperature richiesta. Per effettuare questa taratura, dovremo come prima cosa procurarci un termometro, ed è ovvio che più preciso sarà il termometro impiegato, più precisa risulterà l'indicazione che otterremo dal nostro termometro a led.

Si consiglia, per vari motivi, di procedere alla taratura partendo dalla terza portata, cioè da quella che ci dovrà indicare un minimo di 20° C ed un massimo di 32° C.

Procuratevi quindi una bacinella contenente acqua calda, immergetevi il vostro termometro a mercurio ed aggiungete acqua calda o fredda, fino a quando non leggeremo su questo una temperatura di 21-23 gradi.

Prima di immergere la sonda NTC attendete che la temperatura dell'acqua si sia stabilizzata, ed ancora ricordatevi di tenere alla stessa altezza il bulbo del termometro a mercurio e quello della sonda, in quanto diversamente potremmo ottenere delle differenze anche di qualche grado dovute a strati di acqua più o meno caldi che immancabilmente risultano presenti anche in un mode-

sto recipiente, come potrebbe essere la bacinella da noi utilizzata.

Per questo motivo potremo ottenere degli errori anche elevati se appoggiassimo sul fondo del recipiente, sia esso di vetro o di metallo, il termometro a mercurio e la sonda NTC, in quanto quest'ultima, risultando la sua parte sensibile concentrata in un minuscolo punto posto all'estremità del

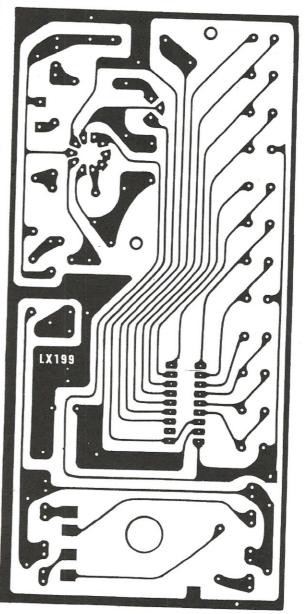
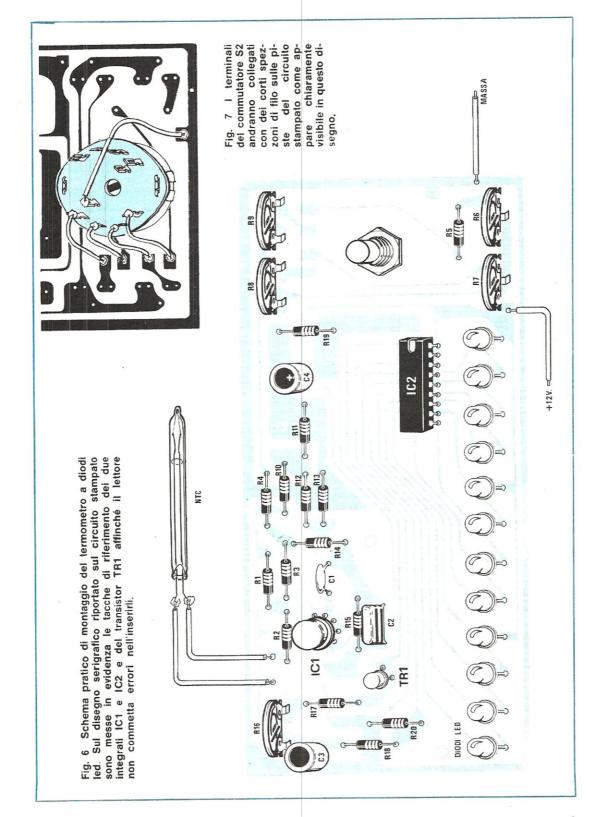



Fig. 5 Circuito stampato a grandezza naturale.

vetro, rileverebbe la temperatura presente sul punto di contatto del recipiente e non quella dell'acqua, mentre il bulbo del mercurio, avendo un volume maggiore, ci indicherebbe un valore più prossimo alla temperatura dell'acqua presente sul fondo. Una volta a conoscenza di questi semplici particolari, di cui non sempre ci si ricorda di valutare le probabili ed eventuali conseguenze, potrete procedere alla taratura del nostro termometro a diodi led.

Ammesso che il termometro a mercurio ci indichi una temperatura di 22 gradi, immergeremo nel liquido la sonda NTC e ruoteremo il trimmer R8 fino ad ottenere l'accensione del secondo led.

Infatti se ogni led ci deve indicare 1 grado di temperatura, e in questa portata il primo led deve accendersi a 21 gradi, è ovvio che il secondo si dovrà accendere a 22 gradi ed il terzo a 23 gradi.

Ottenuto ciò, aggiungete acqua calda nella bacinella in modo da far aumentare la temperatura e portarla all'incirca a 30-31 gradi.

A quest'ultima temperatura dovrebbe accendersi l'11º diodo led; se così non fosse e probabilmente non lo sarà, dovremo agire sul trimmer R16 in modo da ottenere l'accensione dell'undicesimo diodo led.

Rifaremo ora un controllo per vedere se alla temperatura di 21-22 gradi corrisponde ancora l'accensione del 1º o 2º diodo led; se così non fosse ritoccheremo leggermente il trimmer R8.

Chi dispone di un voltmetro elettronico, potrebbe controllare la tensione presente sul terminale 6 dell'integrato IC1, sapendo, come indicato nella tabella precedente, che alla diversa temperatura di 20-21-22 gradi deve in linea di massima risultare presente una tensione di 6,6-6,4 Volt.

Tarata la seconda portata, il trimmer R16 non andrà più «toccato», ma ora dovremo solo ed esclusivamente agire sui rimanenti trimmer R6-R7-R9.

Per la seconda portata, quella che ci indicherà una temperatura compresa tra 10 gradi e 22 gradi, risulterà a questo punto sufficiente raffreddare leggermente l'acqua della bacinella e, constatando che il termometro a mercurio ci indica 10-12 gradi, sarà sufficiente regolare il trimmer R7 fino a quando non si accenderà il secondo diodo led.

Lo stesso dicasi per la portata maggiore, quella compresa tra 30 gradi e 42 gradi; per questa portata il trimmer da regolare sarà quello indicato con la sigla R9.

Per la portata inferiore, quella cioè che va da O gradi ad un massimo di 10 gradi, procederemo come sopra, regolando in questo caso il trimmer R6 ed immergendo nella bacinella dei cubetti di ghiaccio per far abbassare la temperatura dell'acqua.

Se a qualche lettore la sensibilità da noi indicata non risultasse di suo gradimento, possiamo accennare c'he, modificando la tensione di riferimento presente sul terminale 3 dell'integrato IC1 (uA.723), si ha la possibilitá di renderlo più o meno sensibile, cioè ottenere una sensibilità di mezzo grado per ogni diodo led, o di 2 gradi per ogni diodo led.

Nel primo caso sarà sufficiente diminuire il valore di R11, in modo che la tensione di riferimento risulti inferiore a quanto da noi ora prefissato.

Allo stesso modo, per aumentare la tensione su questo piedino ed abbassare la sensibilità del termometro, basterà aumentare R11 (oppure ridurre R10).

Possiamo aggiungere ancora, per coloro a cui interessasse una sola portata, ad esempio da 12 a 23 gradi, come in campo fotografico, che potranno benissimo escludere dal circuito stampato il commutatore S2, collegando direttamente il terminale di massa al trimmer interessato (in questo caso R7).

Anche le portate da noi scelte possono benissimo venire modificate, conformemente alle proprie esigenze; del resto, come avrete senz'altro intuito, la minima e la massima temperatura la si ottiene agendo sui trimmer del commutatore e su quello presente sull'emettitore di TR1, cioè

Poiché la corrente massima assorbita da questo circuito si aggira all'incirca sui 150 milliampiere, potremo utilizzare, per alimentarlo un piccolo alimentatore in grado di erogare 12 Volt; chi volesse potrebbe anche alimentarlo a pile, anche se a nostro avviso potrebbe non risultare sufficientemente economico, in particolar modo se lo si volesse tenere acceso 24 ore su 24.

COSTO DEI COMPONENTI

Tutto il materiale occorrente per la realizzazione e cioè: resistenze, trimmer, condensatori, diodi Led, transistor, integrati, commutatore NTC in vetro, manopola e circuito stampato . . . L. 26.500

Il solo circuito stampato tipo LX199 . L. 5.400

ORGANIZZAZIONE

VERONA - QUARTIERE FIERISTICO - 2-3 APRILE 1977

ore 8.30 - 12.30 - 14.30 - 19.30

Manifestazione patrocinata da:

- E.A. FIERE DI VERONA
- ASSOCIAZIONE RADIOTECNICA ITALIANA

Conoscere il funzionamento dei flip-flop e comprendere in particolare la differenza che esiste tra tipo «S-R» o «J-K», od ancora tipo «D», non solo è interessante, ma vorremmo aggiungere anche necessario, in particolar modo se si desidera approfondire la propria conoscenza nel campo degli «integrati digitali».

La completa padronanza di questi circuiti ci consentirà di comprendere il funzionamento di un frequenzimetro, di un voltmetro, o di qualsiasi altra strumentazione che faccia uso di integrati digitali.

Spiegare come funziona un flip-flop, può sotto certi punti di vista risultare facile ed allo stesso tempo estremamente difficile.

Sarebbe facile se noi ricopiassimo passo per passo, come fanno tutti, i « fogli tecnici » delle « Case costruttrici », riportando integralmente le formule forniteci dall'algebra di Boole.

Dire pertanto che il funzionamento di un flipflop è semplice solo perché 1 x 1 ci dà come riNon certo il lettore inesperto il quale si dovrebbe limitare ad accettare quanto scritto, senza alcuna obiezione.

L'esperto, il solo cioè che potrebbe notare « l'errore », non si soffermerebbe certamente a leggere un tale articolo, trattandosi di un argomento di cui ha già una totale competenza.

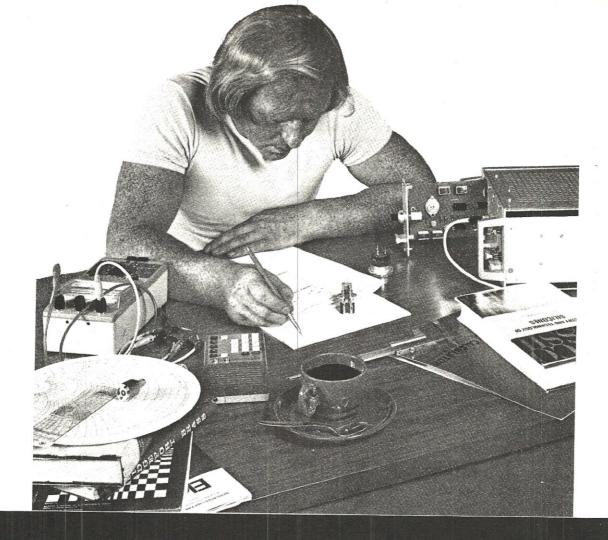
Difficile può essere invece allorché si desidera spiegare le differenze di funzionamento esistenti tra i vari tipi di flip-flop a chiunque, anche a coloro che non hanno una spiccata simpatia per la matematica e pretendere che tutti possano comprendere perché in molti progetti è necessario impiegare un flip-flop S-R realizzato con porte NAND, od in altre applicazioni con porte NOR, oppure perché si è utilizzato un flip-flop tipo J-K e non tipo D.

Oltre a ciò, poiché molti lettori non si accontenteranno di conoscerne solo il funzionamento, ma prima o poi tenteranno di utilizzarli per qualche montaggio di loro ideazione, dobbiamo an-

In molti progetti digitali capita spesso di leggere: « flip-flop tipo S-R », « flip-flop tipo J-K », « flip-flop tipo D », ma cosa significano queste sigle? Che differenza di funzionamento esiste tra un tipo e l'altro?

Con questo articolo cercheremo di spiegarvi queste differenze, in modo che i flip-flop non rappresentino più per voi un segreto.

PER CAPIRE i FLIP-FLOP


sultato 1, mentre —1 x —1 dà 0, quindi, come è facile intuire, se —Q è 1 è logico che Q sia 0, noi avremmo in tal caso risolto il problema senza nel contempo preoccuparci se in pratica questa spiegazione sarebbe stata compresa da chiunque. (Nota: per motivi tipografici, il segno

negativo riportato sopra ai simboli 1 e Q, che vanno letti in questo caso come 1 negato e Q negato, viene invece riportato davanti ai simboli stessi, cioe troveremo scritto —1 e —Q). Non solo, ma seguendo questo metodo, se i fogli tecnici sono redatti in lingua inglese o tedesca ed il traduttore sbagliasse a tradurlo o il tipografo invertisse per incompetenza un'equazione, chi potrebbe accorgersene?

che prevedere quali inconvenienti si presenteranno loro all'atto pratico.

Quest'ultima considerazione è forse la più importante, in quanto pochissime persone conoscono quei « piccoli ma necessari accorgimenti », mai menzionati nei « data-applications » e senza i quali difficilmente il vostro montaggio potrebbe funzionare (d'altronde solo chi li impiega giornalmente sa quanto essi siano importanti e come la loro mancata conoscenza può a volte pregiudicare il funzionamento di un circuito).

Ad esempio, in nessun manuale è riportato che, in caso di instabilità di funzionamento, è tassativo applicare tra il « piedino positivo » d'alimentazione dell'integrato e la massa, un condensatore, il cui valore può essere compreso tra

i flip-flop tipo Set-Reset

47.000 pF e 100.000 pF, oppure che bisogna controllare che la tensione sotto carico, non scenda sotto ai 4,6 Volt minimi necessari per far funzionare correttamente gli integrati TTL.

Quanti di voi ad esempio, provando un integrato singolo e constatandone il perfetto funzionamento, avranno notato che, collegandolo ad un secondo integrato (anche quest'ultimo, preso e provato singolarmente, assolveva perfettamente le sue funzioni), il circuito non funzionava più?

Sulla base di quanto detto, è quindi nostro compito svelare questi insignificanti ma indispensabili accorgimenti sempre trascurati dai manuali e che è invece necessario conoscere, se si desidera che tutti i circuiti funzionino nel migliore dei modi.

Prima di passare alla descrizione del funzionamento dei vari tipi di flip-flop, riteniamo sia utile ricordare quanto segue.

QUELLO CHE OCCORRE RICORDARE

Occorre innanzitutto tener presente, parlando degli integrati digitali della serie TTL, che le frasi « condizione logica 0 » e « condizione logica 1 » equivalgono in pratica ad indicare:

0 = tensione nulla, o terminale in pratica cortocircuito a massa (normalmente, in condizione logica 0, la tensione rispetto a massa può aggirarsi intorno al valore di 0,2-0,4 Volt). A volte, al posto del numero 0, si preferisce uti-

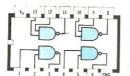


Fig. 1 Nello interno dello integrato SN7400 sono presenti quattro nand a due ingressi. La numerazione dei terminali dell'integrato, a differenza di quelli dei transistor, si intende sempre vista da sopra.

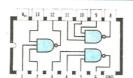


Fig. 2 Se c'interessano, per le nostre esperienze, tre nand a tre ingressi, l'integrato che dobbiamo utilizzare è un SN7410. Nella figura, come risultano disposti i vari terminali di questo integrato.

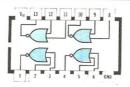


Fig. 3 Poiché nelle nostre esperienze abbiamo presentato dei circuiti che impiegano dei nor, anziché dei nand, vi diremo che nell'interno dello integrato SN7402 sono presenti quattro nor a due ingressi.

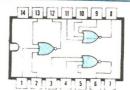


Fig. 4 Se. infine, desideriamo che i nor dispongano di tre ingressi anziché due, allora dovremo utilizzare l'integrato SN7427. In questo integrato infatti troveremo tre nor a tre ingressi.

lizzare la lettera L, che sta ad indicare « Low ». cioè livello basso.

1 = tensione positiva; in pratica, quando si precisa che un integrato ha un terminale a livello logico 1, significa che su tale terminale è presente, rispetto alla massa, una tensione positiva il cui valore può aggirarsi intorno ai 3,2-4 Volt. A volte, anziché impiegare il numero 1, si preferisce utilizzare la lettera H, che equivale a « high », cioè livello alto.

Nei manuali troveremo inoltre abbastanza spesso delle indicazioni del tipo:

1. —1, 0, —0. Q, —Q (il trattino posta sopra i numeri 1 e 0, oppure sopra alla lettera Q. sta ad indicare una negazione, cioè leggeremo —1 = 1 negato, ecc.).

Tali indicazioni equivalgono alle condizioni logiche seguenti:

1 = condizione logica 1, cioè presenza di tensione positiva;

0 = condizione logica 0, cioè terminale a massa;

-1 = condizione logica inversa a 1, cioè terminale a massa;

-0 = condizione logica inversa a 0, cioè tensione positiva.

I termini Q e —Q (Q negato), che riscontriamo spesso sulle uscite dei flip-flop, stanno invece ad indicare che su tali uscite esistono, ed esisteranno sempre, due condizioni opposte. Ad esempio, se sull'uscita Q abbiamo un 1, su quella —Q avremo in tal caso uno 0, mentre sulla Q avremo uno 0 se sulla uscita —Q abbiamo un 1. Questo è un particolare che dovremo spesso tener presente, in quanto i flip-flop dispongono di due uscite contrassegnate sempre con Q e —Q.

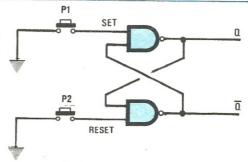


Fig. 5 Collegando i terminali di due nand a due ingressi, come vedesi in questo disegno, avremo già realizzato un flip-flop tipo SR. Per eccitare questo flip-flop è necessario porre a massa (condizione logica 0) i'uno o l'altro dei due terminali

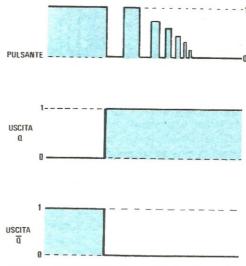


Fig. 6 Il vantaggio di un flip-flop è quello di risultare insensibile agli impulsi di rimbalzo sempre presenti nei contatti meccanici.

Esaurita questa breve premessa, ricordiamo ai lettori che sui numeri precedenti della rivista abbiamo trattato argomenti relativi agli integrati digitali, ad esempio:

le **porte logiche** NAND-NOR-OR-NAND IN-VERTER-NOR ESCLUSIVO sono state trattate sui numeri 17 e 29 della rivista;

le decodifiche sono state trattate sul numero 30;

le **decadi di conteggio** asincrone sono state trattate sul numero 31

FLIP-FLOP SET E RESET

Il flip-flop set-reset, o più semplicemente S-R è in pratica un dispositivo che si presta a risolvere non pochi problemi nel campo dell'elettronica, in quanto si tratta d iun circuito a scatto che può assumere sulle sue due uscite solo i due valori 1 e 0, oppure 0 e 1.

Un flip-flop set-reset lo si può facilmente realizzare utilizzando due porte NAND, collegandole come vedesi in fig. 5. Si lascerà cioè libero un terminale d'entrata di ciascuno dei due NAND (terminale di comando), mentre collegheremo il secondo terminale all'uscita del NAND opposto. Le due uscite le indicheremo con le lettere Q e—Q, il che significa che se un'uscita (non importa quale delle due) è in condizione logica 1, la seconda uscita sarà necessariamente in condizione 0, o viceversa.

I due terminali liberi di comando sono indicati rispettivamente con il termine « set » (che potremmo tradurre come iniziare, partire, cioè portare il flip-flop in condizione di commutare le uscite) e « reset » (è cioè l'inverso, che potremo tradurre nel senso di riportare le uscite del flip-flop nella condizione opposta alla precedente).

Dobbiamo a questo punto far notare che se le entrate di un NAND, o di un NOR, sono lasciate libere (cioè non collegate), esse risultano sempre in condizione logica 1, cioè si comportano in pratica come se fossero collegate ad una tensione positiva. Per portare quindi una delle due entrate in condizione 0, sarà necessario collegare questo terminale a massa.

Se ora prendiamo la tavola della verità (cioè quella tavola in cui sono rappresentate le varie possibili combinazioni d'ingresso e le rispettive combinazioni d'uscita) di un flip-flop set-reset realizzato con due NAND a 2 ingressi, potremo constatare come sulle sue uscite si abbiano le seguenti condizioni:

Set (P1)	Reset (P2)	Uscita Q	Uscita – Q
0	1	1	0
1	1	1	0
1	0	0	1
1	1	0	1
0	1	1	0
0	0	non ammessa	

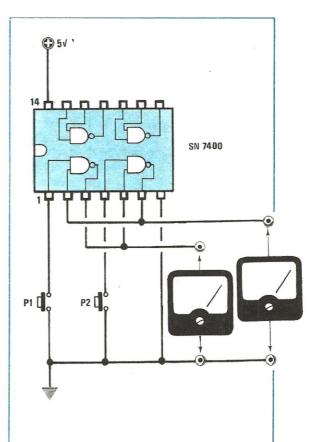


Fig. 7 Se volete controllare in pratica il funzionamento di un flip-flop, potrete realizzare con una SN7400 questo semplice circuito. Collegando sulle due uscite due voltmetri, potrete comprendere molto facilmente come agiscono sul flip-flop set/reset i due pulsanti P1 e P2. L'integrato dovrà essere alimentato con una tensione compresa tra i 4,8 e i 5,1 volt.

Da questa tavola possiamo quindi facilmente constatare che **non è ammesso** che le due entrate set e reset si trovino contemporaneamente in **condizione logica 0** (altrimenti le due uscite fornirebbero entrambe un 1) mentre è ammesso che le due entrate S-D si possano entrambe trovare in condizione logica 1.

Quando le due entrate si trovano in condizione 1, il flip-flop non cambia stato, cioè le sue uscite restano nelle stesse condizioni logiche in cui si trovavano in precedenza.

Quest'ultimo particolare, a prima vista insignificante, riveste invece una enorme importanza, in quanto ci permette di comandare dei circuiti digitali mediante dei pulsanti o degli interruttori meccanici senza preoccuparci eccessivamente degli impulsi di rimbalzo.

Pigiando infatti un pulsante, oppure chiudendo un interruttore meccanico, sono sempre presenti degli impulsi di rimbalzo (vedi fig. 6) che possono essere « letti », cioè rivelati e contati da qualsiasi contatore digitale (allo stesso modo di una palla che, cadendo a terra, non si ferma immediatamente, ma compie alcuni rimbalzi prima di stabilizzarsi nella posizione definitiva).

Quindi, se abbiamo ad esempio la necessità, pigiando un pulsante, di contare esattamente quante volte esso sia stato premuto, siamo costretti ad utilizzare a tal fine un flip-flop poiché, a causa dei rimbalzi sopraddetti, un contatore « leggerebbe » un numero ben maggiore di quello reale (leggerebbe cioè quanti rimbalzi effettuano i contatti prima di stabilizzarsi).

Se ora realizziamo il circuito di fig. 5 ed ammettiamo che pigiando il pulsante P1 (quello del set) questo provochi quattro impulsi di rimbalzo, al terminale d'entrata del set sarebbero presenti dopo il primo contatto successivamente le condizioni 0, 1, 0, 1, 0, 1, 0, 1 (dovute cioè ai quattro rimbalzi) come indica questa tavola della verità:

Condizione	Set (P1)	Reset (P2)	Uscita Q	Uscita — Q
Partenza	1	1	0	1
Pigiato	0	1	1	0
Lasciato P1	1	1	1	0
1º Rimbalzo	0	1	1	0
1º Rimbalzo	1	1	1	0
2º Rimbalzo	0	1	1	0
2º Rimbalzo	1	1	1	0
3º Rimbalzo	0	1	1	0
3° Rimbalzo	1	1	1	0
4º Rimbalzo	0	1	1	0
4º Rimbalzo	1	1	1	0

Da quest'ultima tavola è facile constatare come, non appena il terminale di set viene collegato a massa (condizione 0), le uscite del flipflop si commutino immediatamente Q da 0 in 1 e —Q da 1 in 0 ed in seguito rimangano stabili in tali condizioni. In pratica quindi, una volta che è stato pigiato il pulsante di SET P1, le uscite del flip-flop non subiscono più alcuna variazione, anche se si hanno impulsi di mibalzo.

Per ottenere, in uscita dal flip-flop, una inversione di stato logico, è necessario pigiare il secondo pulsante P2 del reset e anche per questo gli impulsi di rimbalzo non influenzano in alcun modo il nostro flip-flop.

Nel caso volessimo controllare quanto detto, potremmo acquistare un integrato SN7400 (dei quattro NAND a 2 ingressi di cui questo è composto, ne utilizzeremo solo due) e realizzare il circuito riportato in fig. 7.

Applicando un voltmetro (minimo 5 Volt fondo scala), o un tester, sulle prese Q e —Q, constateremo come su tali uscite sia presente in partenza, all'atto dell'accensione, una condizione logica casuale (potremo cioè rilevare un 1 sull'uscita Q ed uno 0 sull'uscita —Q, o viceversa).

Se ora confrontiamo la tavola della verità, ammesso che vi sia uno 0 sull'uscita Q, per poter invertire questa condizione logica, dovremo pigiare solo ed esclusivamente il pulsante P1 del set (constateremo in tal caso come, una volta pigiato il pulsante del set, otterremo un 1 sull'uscita Q e ripigiando il pulsante stesso infinite volte, l'uscita non varierà; per poterla variare dovremo pigiare ora il pulsante P2 del reset, in seguito nuovamente quello del set, e così via).

Rifacciamo a questo punto presente che, in questa specifica realizzazione del flip-flop ottenuta con quattro NAND, l'unica avvertenza da non dimenticare è che non è mai ammesso che le due entrate set e reset si trovino contemporaneamente nella condizione logica 0-0 (cioè non è mai ammesso di pigiare contemporaneamente i due pulsanti P1 e P2).

FLIP-FLOP CON NAND A TRE INGRESSI

Realizzando il circuito a flip-flop con NAND a due ingressi, ogniqualvolta si fornisce tensione al flip-flop, l'uscita Q (logicamente la seconda uscita —Q si troverà sempre in condizione logica opposta alla Q) può portarsi indifferentemente e casualmente in condizione logica 1, oppure 0. Tanto per fare un esempio, alimentando il flip-flop una prima volta, potremo constatare

che l'uscita Q è in condizione logica 1; la seconda volta potrebbe essere 0, oppure nuovamente 1, cioè senza una precisa regola. Può invece accadere per molte applicazioni che, ogniqualvolta si alimenta il flip-flop, si abbia tassativamente necessità che sia presente uno 0 sull'uscita Q e non una condizione casuale. Per ottenere tale condizione, dovremo realizzare un flip-flop che si avvalga di due NAND a tre in-

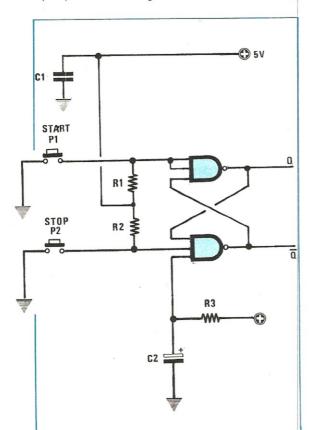


Fig. 8 Se alimentiamo un flip-flop realizzato con nand a due ingressi, sulle uscite Q e — Q potremo trovare una condizione logica iniziale del tutto casuale, cioè un 1 o uno 0 indifferentemente. Se cl necessita eliminare questo inconveniente dovremo utilizzare dei nand a tre ingressi collegandoli come indicato in disegno (la resistenza R3 va collegata ai 5 volt positivi).

VALORE DEI COMPONENTI

R1 = 1.000 ohm

R2 = 1.000 ohm

R3 = 2.200 ohm

C1 = 47.000 pF a disco

C2 = 220 mF elettr. 15 volt

integrato SN 7410

gressi, (l'integrato SN7410, come vedesi in fig. 2 ne contiene tre) anziché di due NAND a due ingressi.

Nel circuito di fig. 8 la terza entrata di uno dei due NAND è collegata ad un condensatore da 220 mF, alimentato a 5 Volt tramite una resistenza da 2.200 Ohm, mentre due terminali del secondo NAND sono collegati insieme.

In queste condizioni, all'atto dell'accensione del flip-flop, il piedino del NAND collegato al condensatore C2, viene a trovarsi momentaneamente collegato a massa, cioè in condizione 0 e questo è sufficiente perché sull'uscita Q si abbia una condizione logica O, come richiesto.

Il condensatore da 220 mF in seguito, lentamente, comincerà a caricarsi, fino a che il terzo piedino si troverà in condizione 1 ed a questo punto non influenzerà più il funzionamento del flip-flop; infatti, quando pigeremo P1 si otterrà la commutazione sulle uscite Q e —Q come in un normale flip-flop realizzato con NAND a due ingressi.

Possiamo a questo punto confrontare quanto abbiamo detto con la seguente tavola della verità:

Conden- satore C2	Set (P1)	Reset (P2)	Uscita Q	Uscita Q
Scarico	1	1	0	1
Carico	1.	1	0	1
Carico	0	1	1	0
Carico	1	1	1	0
Carico	1	0	0	1
Carico	1	1	0	1

FLIP-FLOT SET-RESET CON PORTE NOR

Un flip-flop è realizzabile, oltre che per mezzo di porte NAND, anche avvalendosi di porte NOR, come è visibile in fig. 9 (utilizzando in questi casi un integrato SN7402 che contiene al suo interno 4 NOR a 2 ingressi) vedi fig. 3.

Confrontando i due schemi, si potrà notare che in quello realizzato con le porte NAND i due pulsanti P1 e P2 cortocircuitavano a massa i due terminali di comando (cioè portavano tali terminali dalla condizione logica 1 alla condizione logica 0), mentre ora, utilizzando delle porte NOR, i terminali di entrata vengono forzati a mantenersi in condizione logica 0 tramite le due resi-

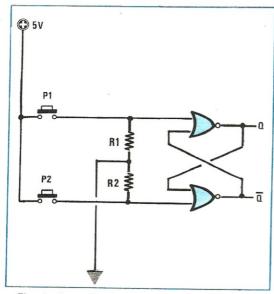


Fig. 9 Se volessimo realizzare dei flipflop utilizzando dei NOR anziché dei Nand dovremo necessariamente collegare le due resistenze R1-R2 sui terminali d'entrata per mantenerli in condizione 0 e fornire tramite i due pulsanti la condizione logica 1.

R1 = 220 ohm R2 = 220 ohm integrato SN7402

stenze R1 e R2 ed i pulsanti P1 e P2 sono disposti in modo che, pigiandoli, forniscano una tensione positiva agli ingressi cioè una condizione logica 1; in pratica i NOR funzionano in senso inverso ai NAND.

Se per i NAND non era assolutamente concesso che entrambe le entrate si trovassero nella condizione logica 0, per i NOR non è invece ammesso che entrambi gli ingressi si trovino nella condizione logica 1.

La tavola della verità, relativa ad un flip-flop con porte NOR, ci conferma questa condizione:

Set (P1)	Reset (P2)	Uscita Q	Uscita Q
1	0	0	1
0	4	0	1
0	1	1	0
0	0	1	1
1	0	0	1
1	1	non a	mmessa

Per assicurarci che le due entrate non abbiano mai la possibilità di trovarsi nella condizione 1,1; queste vengono forzatamente mantenute a livello 0,0; come già detto precedentemente, applicando tra tali terminali e la massa due resistenze di basso valore.

In pratica quindi l'unica differenza che esiste tra i due tipi di flip-flop, realizzati con delle porte NAND, o con delle porte NOR, consiste nel fatto che mentre nei primi è necessario portare a 0 uno dei due ingressi per ottenere la commutazione, con i NOR è altresì necessario portare uno di questi ingressi in condizione logica 1 (cioè fornire loro tensione).

È ovvio che a seconda del tipo di impiego a cui destineremo l'uso di questi dispositivi, può risultare necessario molte volte disporre di un flipflop che possa venir comandato con impulsi positivi ed altri con impulsi negativi.

Analogamente a quanto visto con flip-flop realizzati con porte NAND a 2 ingressi, anche i flip-flop realizzati con porte NOR a 2 ingressi presentano, all'atto dell'accensione, delle condizioni di uscita che sono casuali.

FLIP-FLOP CON NOR A TRE INGRESSI

In tutte quelle applicazioni in cui, alimentando il flip-flop, si abbia la necessità che sia presente un 1 sull'uscita Q, e non una condizione casuale, dovremo anche in questo caso, come già visto sopra con i NAND, realizzare un flip-flop che si avvalga di due NOR a tre ingressi, anziché di due NOR a due ingressi.

In questo circuito, inversamente a quello visto precedentemente e realizzato con porte NAND, la terza entrata di uno dei due NOR è collegata a massa tramite una resistenza da 220 Ohm, e il condensatore da 220 mF collegato con il terminale + alla tensione di 5 Volt positivi e con il terminale negativo alla resistenza, come vedesi in fig. 10.

La differenza più evidente tra questo flip-flop e quello realizzato con porte NAND a tre ingressi, consiste nel fatto che questo resetta a 1, mentre il circuito precedente resettava a 0, cioè mentre nel caso precedente, all'atto dell'accensione del flip-flop, sull'uscita Q era sempre presente uno 0, in quest'ultimo caso l'uscita Q, all'atto dell'accensione dell'apparecchio, sarà sempre a 1.

Osservando la fig. 10 in cui è appunto riportato un flip-flop realizzato con porte NOR a tre ingressi, potremo agevolmente verificare la seguente tavola della verità.

Condensat. C1		Reset (P2)	Uscita Q	Uscita — Q
Scarico	0	0	1	0
Carico	1	0	0	1
Carico	1	0	0	1
Carico	0	1	1	0
Carico	0	0	1	0
Carico	1	0	0	1

QUALCHE ESEMPIO DI UTILIZZAZIONE

È nostra intenzione, oltre a spiegare il funzionamento dei flip-flop, presentare qualche semplice circuito applicativo, anche per dimostrare come vengono utilizzati in pratica. Per queste esperienze è sufficiente un alimentatore stabilizzato che ci possa fornire una tensione compresa i 4,8 ed i 5,1 Volt ed una piastra da circuito

stampato sperimentale, sulla quale dovranno trovar posto gli zoccoli per gli integrati.

COMANDO PER RELÈ


Ammettiamo, come prima esperienza, di dover realizzare un « comando di relé », cioè un dispositivo il cui compito sia appunto quello di eccitare un relé pigiando un pulsante P1 e di diseccitarlo pigiando un pulsante P2 o viceversa.

A tal fine potremo utilizzare un flip-flop che si avvalga di due NAND a tre ingressi, che, come abbiamo visto in precedenza è appunto in grado di soddisfare queste richieste, collegandogli in uscita un transistor di media potenza, come vedesi in fig. 11.

La base del transistor necessario per eccitare il relé, potrà essere collegata sull'uscita Q nel caso desiderassimo che il relé stesso si ecciti allorché pigiamo il pulsante P1 e si disecciti allorché pigiamo il pulsante P2; oppure collegarla all'uscita —Q se desideriamo invece che il relé si ecciti allorché pigiamo il pulsante P2 e si disecciti allorché pigiamo il pulsante P1.

Per rendere più stabili i terminali di set e di reset sulla condizione logica 1, è sempre consigliabile applicare su questi terminali, come si può facilmetne vedere in fig. 8 due resistenze da 1.000 Ohm ciascuna.

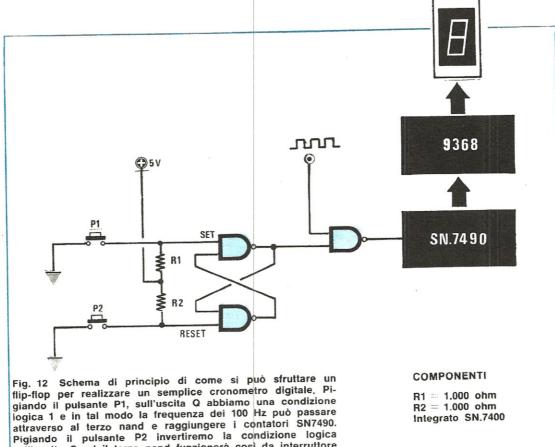
♠ 5 V STOP Fig. 10 Anche il flip-flop con Nor a due ingressi presenta lo stesso inconveniente dei Nand a due ingressi, perciò se si desidera che ogniqualvolta si fornisce tensione al cir-R2 cuito sulla uscita Q sia START 4 sempre presente la condizione 1 è necessario struttare due Nor a 3 ingressi collegandoli come indicato nel disegno. C1 R1 = 220 ohm R3 R2 = 220 ohm R3 = 220 ohm C1 = 220 mF elettr. 15 volt Integrato SN7427

INTERRUTTORE AUTOMATICO DIGITALE

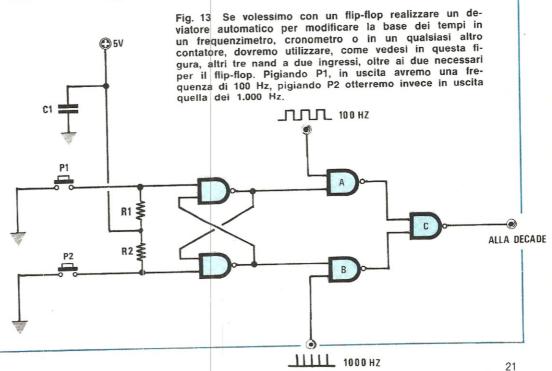
Ammettiamo di dover realizzare un semplice cronometro digitale e quindi di avere la necessità di disporre di due pulsanti uno dei quali deve esplicare la funzione di Start e l'altro quella di Stop. Per ottenere questo è necessario realizzare uno schema del tipo rappresentato in fig. 12; da questo potremo constatare come la frequenza di 100 Hz, necessaria a far avanzare il conteggio sulle nixie (o display), venga applicata ad un terminale di un NAND, anziché entrare direttamente nel contatore divisore; l'altro terminale di questo NAND farà invece capo all'uscita Q del flip-flop.

Ne consegue che, quando sul terminale Q abbiamo una condizione logica 1, il segnale avente la frequenza di 100 Hz può attraversare il NAND e quindi raggiungere la decade di conteggio, mentre, in condizione opposta, cioè quando sul terminale Q abbiamo una condizione logica 0, il NAND stesso si comporta come un interruttore aperto,)poiché la sua uscita rimane bloccata in condizione 1) cioè non permette il passaggio del segnale a 100 Hz.

A questo punto è facile comprendere, conoscendo il funzionamento del flip-flop, che, ogniqualvolta pigieremo il pulsante P1, il cronometro inizierà il conteggio; inversamente il conteggio si fermerà allorché pigieremo il pulsante P2.


DEVIATORE AUTOMATICO PER DUE FREQUENZE

Possono verificarsi dei casi in cui si abbia la necessità di utilizzare un contatore, e dover modificare la base dei tempi cioè applicare ad una decade di conteggio due frequenze diverse (ad esempio una di 100 Hz e l'altra di 1.000 Hz).


Realizzando il circuito visibile in fig. 13, che impiega un flip-flop seguito da tre' NAND; otterremo questa condizione con estrema facilità.

Su un terminale di un primo NAND (contrassegnato dalla lettera A) applicheremo il segnale avente la frequenza di 100 Hz e su un terminale di un secondo NAND (contrassegnato dalla lettera B) la frequenza di 1.000 Hz. I due terminali rimasti liberi di questi due NAND andranno a loro volta a collegarsi alle uscite Q e —Q del flip-flop.

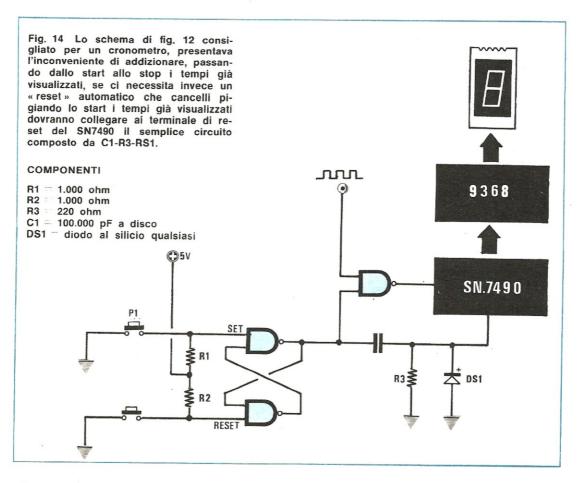
È semplice quindi intuire che, pigiando ad esempio il pulsante P1, potremo ottenere in usci-

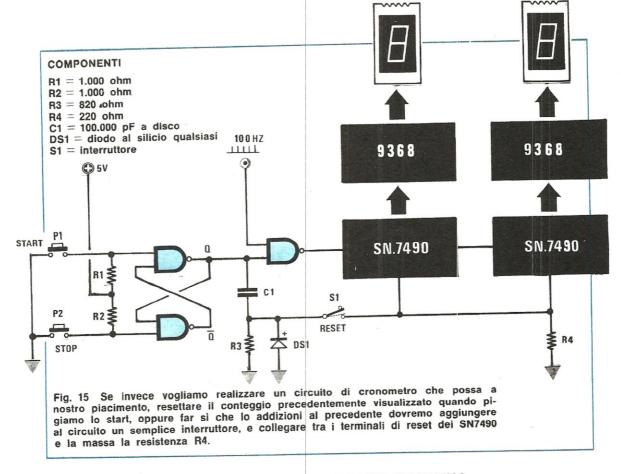
sull'uscita Q ed il terzo nand funzionerà così da interruttore aperto bloccando il conteggio.

ta dal primo NAND la frequenza di 100 Hz, la quale, raggiungendo il terminale del terzo NAND (indicato in figura con la lettera C), ci permetterà di prelevare sull'uscita la stessa frequenza di 100 Hz presente sull'ingresso.

Pigiando invece il pulsante P2, bloccheremo sullo stato logico 1 l'uscita del NAND (A), mentre risulterà in funzione il NAND (B), cioè quello che ha su un suo terminale d'ingresso la frequenza di 1.000 Hz; quest'ultima frequenza, raggiungendo il NAND (C), ci permetterà di prelevare sull'uscita la frequenza di 1.000 Hz applicata in ingresso.

RESET AUTOMATICO DI UN CONTATORE


Lo schema che appare in fig. 14 è un perfezionamento di quello rappresentato in fig. 12; quest'ultimo circuito, come abbiamo visto sopra, era stato predisposto per comandare lo Start e


lo Stop di un contatore, ma lasciava insoluto il seguente problema: ammettendo per ipotesi che il contatore, pigiando il pulsante relativo allo stop, avesse indicato il numero 4, ripigiando in un secondo tempo il pulsante relativo allo start del contatore medesimo, questo ripartirebbe dal numero 4, cioè dal numero contato in precedenza, ottenendo in tali condizioni una somma di tempi.

Se a noi invece necessitasse che il conteggio riparta sempre da 0 ogniqualvolta ripigiamo il pulsante dello start, è necessario un « reset » che cancelli sul contatore SN7490 il tempo precedentemente visualizzato.

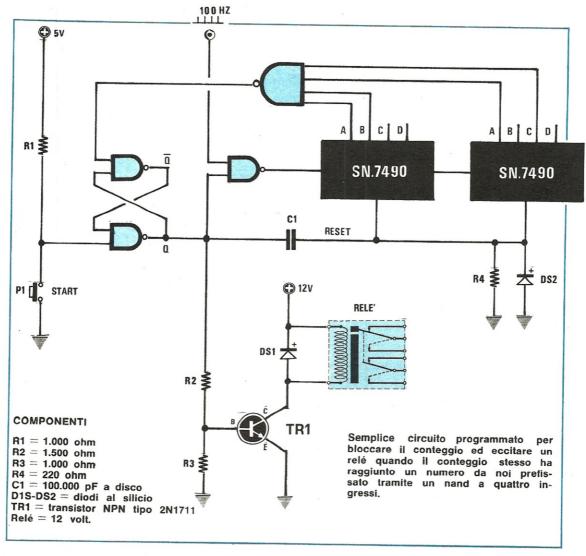
Tramite il flip-flop, durante la commutazione è possibile prelevare da questo un impulso positivo necessario per resettare (rimettere a zero) il contatore stesso (in un integrato divisore tipo SN7490, l'azzeramento lo si ottiene inviando un impulso positivo ai terminali 2 e 3 dell'integrato).

Infatti, pigiando il pulsante P1, quando l'uscita Q del flip-flop passerà dalla condizione logica 0 alla condizione logica 1, i 100 Hz potranno rag-

giungere il contatore e contemporaneamente, tramite il condensatore C1, si otterrà un impulso positivo che verrà applicato ai terminali 2 e 3 dell'SN7490, azzerrandolo. Perciò, ogniqualvolta pigieremo P1, il conteggio, come si comprendera, ripartirà sempre e solo da zero.

Pigiando il pulsante P2, il conteggio invece si bloccherà, ma non agirà sul reset e l'uscita Q passerà dalla condizione logica 1 a quella 0; il condensatore C1 invierà in questo secondo caso un impulso negativo al terminale dell'integrato, ma un impulso negativo sui terminali 2 e 3 non potrà resettare l'integrato stesso in quanto, come già precedentemente accennato, per ottenere tale condizione a questi piedini deve giungere solo un impulso positivo (NOTA: la presenza del deviatore S1 [reset] in fig. 15 ci permette, ogniqualvolta il conteggio viene bloccato pigiando il pulsante P2, di ripartire da zero se, inserendolo, resetteremo l'SN7490 ,mentre potremo far ripartire il conteggio dal numero a cui avevamo fermato il conteggio stesso se lo disinseriamo ed impediamo in tal modo che qualsiasi impulso positivo, necessario per resettare l'SN7490, giunga all'SN7490 stesso).

UNO STOP AUTOMATICO


Possono talvolta verificarsi delle condizioni in cui si abbia la necessità di dover bloccare il conteggio, non appena questo abbia raggiunto un numero prefissato.

Ammettendo ad esempio di dover programmare una macchina in modo che pigiando un pulsante P1 si ecciti un relé (per mettere in moto un motore) e, non appena questa abbia contato 35 impulsi (ad esempio siano passati su un nastro trasportatore 35 oggetti che potremo contare mediante una fotoresistenza), la macchina stessa si fermi e non riparta fino a che non ripigieremo il pulsante di start.

Per ottenere tale funzione dovremo semplicemente realizzare lo schema visibile in fig. 16.

Troviamo anche qui il solito flip-flop, che comanda il NAND d'entrata e contemporaneamente effettua il reset tramite il condensatore C1.

L'uscita Q del flip-flop è collegata ad un circuito transistorizzato ,in modo che quando su tale uscita è presente la condizione logica 1, il relé si eccita, mentre si diseccita allorché il contatore arriva a contare 10 impulsi.

Pigiando P1 inizia il conteggio e contemporaneamente si eccita il relé (l'uscita Q si porta in condizione 1). Collegando sull'uscita del primo e secondo divisore un NAND a 4 ingressi, in modo che questo rilevi il numero che ci interessa (a tale scopo rimandiamo il lettore alle pag. 463 e 472 del n. 47 della rivista, in cui si spiega come prelevare sulle quattro uscite A-B-C-D di un divisore SN7490, un numero, tramite un NAND), quando sui due divisori compare il numero da noi predisposto (nell'esempio riportato in fig. 16, il circuito è stato predisposto per il numero 35) sull'uscita del NAND a 4 ingressi si presenterà la condizione logica 0.

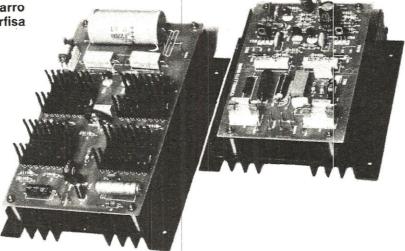
Applicando questa tensione all'ingresso di reset del flip-flop, otterremo sull'uscita —Q una condizione logica 1 e sull'uscita Q una condizione

logica 0, la quale provvederà a diseccitare il relé tramite il circuito a transistor.

CONCLUSIONE

Riteniamo che questa nostra descrizione dei flip-flop tipo S-R sia risultata comprensibile, come era nostra premessa, e quindi a questo punto avremo tutti compreso come agiscono e quali funzioni esplicano; se inavvertitamente avessimo tralasciato qualcosa, vi preghiamo di farcelo sapere, in modo che nei prossimi articoli dove spiegheremo le funzioni esplicate dai flip-flop tipo D e J-K, si possa, seguendo i vostri consigli, presentare l'articolo in maniera ancora più semplice e tecnicamente più approfondita, secondo i vostri desideri.

Costruzioni Elettroniche Lorenzon ORIAGO (VE) ITALY tel. 041-42.94.29



Concessionaria e distributrice di: Nuova Elettronica

S.T.E. - Gianni Vecchietti

Miro - Fracarro Bestar - Farfisa

Meazzi

Abbiamo allestito uno speciale reparto dove vengono montate e collaudate la maggior parte delle scatole di montaggio di Nuova Elettronica; ecco alcuni esempi e prezzi:

L. 14,000
Amplificatore 40WLX110 montato su radiatore anodizzato 12x13 cm (vedi foto)
L. 18,500
Amplificatore 60WLX134 montato su radiatore anodizzato 14x13 cm (vedi foto)
L. 26,500
Amplificatore 60WLX137 montato su radiatore anodizzato 19y13 cm (vedi foto)
L. 36,500 Amplificatore 80WLX174 montato su radiatore anodizzato Kit radiatore 12x13 cm anodizzato e forato con colonnine viti miche passanti per amplificatore LX114 Kit radiatore 14x13 cm stessa descrizione Kit radiatore 19x13 cm stessa descrizione 5.500 6.500 7.500 27.900 Sint radiatore 19x13 cm stessa descrizione
Sintonizzatore LX193 montato collaudato tarato
Level Meter LX153 montato collaudato tarato
Frequenzimetro LX1000 con telaio FF1022 su contenitore de luxe tarato
Frequenzimetro LX1000 con telaio FF1022 su contenitore de luxe tarato
Contenitori speciali in legno con frontale in alluminio satinato BS1 mm 34x90x220 11.900 240.000 8.800 9 900 BS2 mm 410x105x220 11.000 BS3 mm 456x20x220 Pasta dissipante: sostituisce vantaggiosamente il silicone sui transistors di potenza in speciale comoda 1.500 contezione a siringa
Stagno speciale Ø 1 mm o 1.5 mm in confezioni da
Antenne per radioamatori Fracarro
Mod. 5 RA 5 elementi 144 MHz

Mod. 11 RA 11 elementi 144 MHz

L. 17 500 3.250 Mod. 10 RA 10 elementi 432 MHz 6.750 Mod. 20 RA 20 elementi 432 MHz 6.750 17.250

Telecamere, segnaliamo in particolare il tipo Y1; Vidikon 2.3" obbiettivo 16 mm F1 alimentazione 220 V. C.A. o 12V. C.C. segnale video, 1.5 V. p.p. segnale RF 30 mV. su 75 Ohm frequenza riga 15.625 frequenza quadro 50 Hz controllo automatico di luminosità L. 222.000

500,000

Chiedere prezzi per altri modelli obiettivi, monitors.

Costruiamo trasmettitori completi per radio private FM nostro sistema modulare, rapida consegna. Ecco mod 10 w RF OUT mod 50 w RF OUT 850,000

Chiedete preventivi ed illustrazioni per altre potenze ed accessori.

ATTENZIONE: TUTTI I PREZZI SONO COMPRENSIVI DI IVA

Per gli ordini con pagamento anticipato la merce viene spedita con maggior sollecitudine.

Non si accettano ordini per cifre inferiori a L. 5.000.

Le richieste di illustrazioni e preventivi devono essere accompagnate da L. 1.000 (anche in francobolli).

Si prega di scrivere l'indirizzo in stampatello, compreso il C.A.P.

Le rimesse possono essere effettuate anche a mezzo nostro c.c.p. 9/16907.

Le rimesse possono essere effettuate anche a mezzo nostro c.c.p. 9/16907.

Le richieste di illustrazioni e preventivi devono essere inviata al seguente e preciso indirizzo:

In ogni caso tutta la corrispondenza deve essere inviata al seguente e preciso indirizzo:

Costruzioni elettroniche LORENZON - Via Venezia 115 - 30030 Oriago (VE) - Tel. (041) 429429.

La nuova testina TENOREL punta di diamante elettrica, separazione max di 25 dB e 1.000 Hz. T2001 ED L. 19.900!!!

4 tempi 12 V.CC. opp. 220 V.CA 300W. 4 tempi 6-12-24 V.CC. 250W Gruppi Generatori Honda

Chiedere prezzi e illustrazioni.

Un triac lo possiamo sfruttare per variare una tensione alternata, ma per variarne una continua, come e quale circuito scegliere per non usare il solito reostato con i suoi conosciuti inconvenienti?

REGOLATORE a COMMUTAZIONE

Molto spesso vi sarete senz'altro trovati nella necessità di dover variare entro certi limiti una tensione continua, per alimentare un motorino, un trenino elettrico, per variare la velocità di un ventilatore in c.c., o per una pompa, od infine per variare la luminosità di una lampadina,

Disponendo di un alimentatore stabilizzato il problema può essere agevolmente risolto, semplicemente ruotando la manopola di regolazione, ma nel caso si disponga di una tensione fissa, sulla quale non si abbia la possibilità di agire o se tale tensione viene prelevata da una batteria, come potremo fare?

A questo punto probabilmente molti ci consiglierebbero di impiegare un reostato, cioè una resistenza variabile in grado di assorbire la potenza in eccesso, causando di conseguenza una caduta di tensione.

Se tale soluzione potrebbe apparire ad una prima sommaria analisi la più semplice, in pratica non lo è affatto, innanzitutto perché non è assolutamente facile reperire un reostato in grado di dissipare una ben determinata potenza ed in secondo luogo perché lo stesso reostato deve dissipare in calore la potenza dovuta alla caduta di tensione su di esso.

La conseguenza più grave di ciò consiste nel fatto che molto spesso la potenza dissipata in calore è molto superiore a quella assorbita dal carico.

Ad esempio se noi avessimo una batteria da 12 Volt e ci necessitasse una tensione di 3 Volt ed una corrente di 3 Ampère, ben 18 Watt andrebbero dispersi in calore ([12-3] x 2=18), mentre solo 6 Watt (3 x 2=6) verrebbero in tal caso sfruttati dal carico.

Una dispersione così elevata, dell'ordine del 75% della potenza totale, può essere tollerata solo quando si disponga di una sorgente di alimentazione abbondante e sovradimensionata, quale potrebbe risultare ad esempio un accumulatore, ma anche in questo caso sarà senz'altro poco

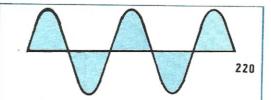


Fig. 1 Per poter ridurre il valore efficace di una tensione alternata da 220 volt, si può utilizzare un Triac il quale agisce come vedesi qui sotto.

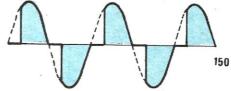


Fig. 2 Se il triac quando la sinusoide passa sullo 0 viene mantenuto interdetto per circa 1/4 del periodo, la tensione che otterremo in uscita non sarà più di 220 volt, bensì di 150 volt.

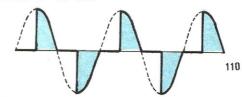


Fig. 3 Se tale tempo viene maggiorato a metà periodo, in uscita rileveremo metà tensione, cioè 110 volt anziché 220 volt, in quando sfrutteremo metà della semionda.

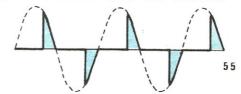
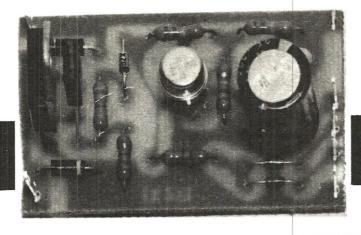



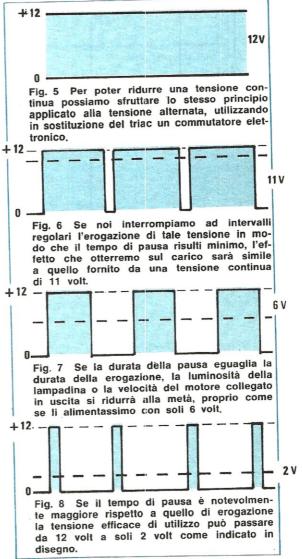
Fig. 4 È quindi logico che se il triac rimane interdetto per circa 3/4 del periodo, in uscita otterremo una tensione più bassa della metà, cioè circa 55 volt.

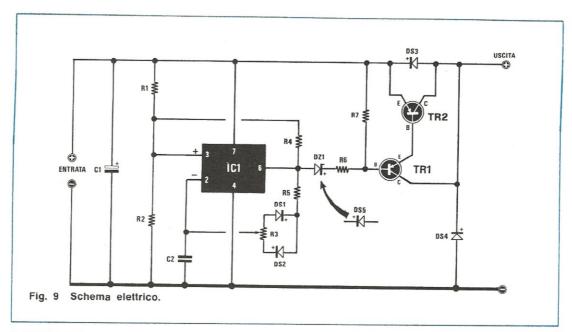
per **CC.**

conveniente scaricare una batteria solo per dissipare calore.

Esiste comunque una soluzione che ci permette di prelevare da una sorgente di alimentazione in continua, la potenza che ci è strettamente necessaria, senza dissipare in calore quella eccedente alle nostre richieste ed ottenendo nel contempo un rendimento molto prossimo al 100°/o.

Il circuito che è in grado di svolgere questa funzione è il « regolatore a commutazione »: questo. come si può già comprendere, è in grado di sostituire in tutto e per tutto il reostato, quindi lo si può utilizzare sia per alimentare dei motori elettrici, sia delle lampade ad incandescenza, con un notevole risparmio di potenza.


Tanto per fare un esempio potremmo dire che un circuito regolatore a commutazione per corrente continua si comporta in pratica come un variatore di tensione alternata a Triac.


Come già saprete infatti per poter ridurre una tensione di rete da 220 a 110 oppure 50 volt, è sufficiente, interrompere la conduzione del Triac, ogni volta che la tensione passa per lo zero (cioè ogni volta che la tensione da negativa diventa positiva o viceversa) per un periodo ben determinato.

Ad esempio, per ottenere 110 volt (vedi fig. 3). cioè la metà dei 220 volt iniziali, è necessario che il triac rimanga interdetto esattamente per metà della durata di ogni semionda.

Per ottenere invece 55 volt, cioè una tensione più bassa di 110 volt, il triac (vedi fig. 4) deve rimanere interdetto per un periodo superiore al precedente, mentre per ottenere ad esempio 150 volt, (vedi fig. 2) il triac deve rimanere interdetto per un periodo inferiore.

Quanto sopra indicato lo si può sfruttare anche


```
LISTA COMPONENTI
                                                  C2 = 10.000 pF poliestere
                                                  DS1 = diodo al silicio 1N4148
R1
     22.000 Ohm 1.4 Watt
                                                  DS2 = diodo al silicio 1N4148
     22.000 Ohm 1/4 Watt
                                                  DS3 = diodo al silicio 1N4007 o EM513
R3
     100.000 Ohm potenziometro lineare
                                                  DS4 = diodo al silicio 1N4007 o EM513
     22.000 Ohm 1/4 Watt
                                                  DS5 = diodo al silicio 1N4148
R5
     2.200 Ohm 1/4 Watt
                                                  DZ1
                                                        diodo zener 4,3 Volt 1/4 Watt
R<sub>6</sub>
   = 3.300 Ohm 1/4 Watt
                                                 TR1 ---
                                                        transistor PNP BD136
  = 2.200 Ohm 1/4 Watt
R7
                                                 TR2
                                                        transistor PNP TIP34A
     220 mF elettr, 50 Volt
                                                 IC1 = integrato tipo (A741
```

per variare il valore di una tensione continua, soltanto che in questo caso, anziché utilizzare un triac (anche perché non sarebbe possibile dato che si lavora in continua e non in alternata), noi dovremo sfruttare un transistor in commutazione. In altre parole, supponendo di avere a disposizione una tensione ad esempio di 12 volt e di dover alimentare con questa una lampada o un motorino ad esempio a 6 volt, anziché ridurre tale tensione tramite un reostato (metodo questo di cui abbiamo già enunciato le pecche), possiamo ottenere lo stesso risultato applicando in serie fra il generatore ed il carico un'interruttore elettronico pilotato da un oscillatore, il quale lascia passare la corrente ad esempio per 10 millisecondi, poi la blocca per altri 10 millisecondi, poi la lascia passare di nuovo per altri 10 millisecondi, poi la torna a bloccare e così via, come vedesi in

Naturalmente il segreto per la riuscita di que-

sto metodo è che la frequenza dell'oscillatore che pilota l'interruttore sia sufficientemente elevata da « mascherare » l'artificio a cui si ricorre.

Nel caso della lampadina infatti, se il nostro occhio fosse sufficientemente rapido nel seguire l'immagine, noi la vedremmo accendersi e spegnersi tante volte in un secondo quanti sono gli impulsi di corrente che l'attraversano.

Grazie al fenomeno detto « persistenza ottica » noi possiamo invece vedere la lampadina sempre accesa anche se la sua intensità luminosa risulta in pratica dimezzata. Se poi regolassimo il circuito in modo che la corrente possa passare per 10 millesecondi e che rimanga bloccata per 5 millisecondi in ogni ciclo, constateremmo che l'intensità luminosa della lampadina risulta pari a circa 3/4 di quella ottenibile con i 12 volt applicati in continuazione.

Un discorso analogo vale per i motorini, solo che questa volta non si può più parlare di persistenza ottica bensì bisogna tirare in ballo l'inerzia propria di un qualsiasi corpo in movimento.

In teoria infatti un motorino sottoposto ad una tensione del tipo di quella che si ottiene in uscita dal nostro regolatore dovrebbe girare per tutto il tempo in cui passa corrente, fermarsi quando questa si interrompe, riprendere a girare quando torna a passare corrente, poi fermarsi di nuovo.

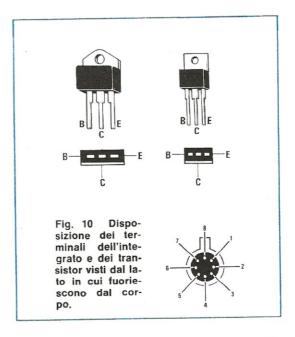
In pratica invece quando viene a mancare la corrente perché l'interruttore si apre, il motorino non si ferma di colpo, bensì continua la sua corsa rallentando progressivamente (proprio come quando in bicicletta smettete di pedalare e la bicicletta avanza ancora per un certo tratto prima di fermarsi) e quando starebbe per fermarsi arriva di nuovo l'impulso di corrente che lo fa accelerare.

L'osservatore tuttavia (sempre a causa della persistenza ottica) non riesce a percepire questi rallentamenti e accelerazioni successive (dato che in un secondo se ne avranno come minimo un centinaio) e globalmente ne trae l'impressione che il motorino giri regolarmente anche se a velocità più ridotta.

A questo punto però bisogna fare una piccola precisazione e cioè che mentre nel caso di una lampadina si può variare il rapporto acceso-spento pressocché a piacimento, nel caso di un motorino il campo di regolazione è limitato a quel « minimo » di tensione a cui il motorino stesso riesce ancora a girare (infatti sarebbe assurdo pretendere che un motorino da 12 volt potesse funzionare ad esempio con un solo volt).

Per quanto riguarda la dissipazione del regolatore a commutazione, questa risulta minima: basta infatti considerare che ogniqualvolta il transistor di commutazione viene portato in conduzione (cioè ogni volta che si chiude l'interruttore elettronico), l'unica potenza dissipata inutilmente è quella relativa al transistor stesso e poiché la tensione collettore-emettitore di quest'ultimo quando conduce risulta di circa 1 volt, è ovvio che si avrà in ogni caso una dissipazione modesta, anche considerando che nei periodi in cui il transistor è interdetto la dissipazione è nulla. Basti pensare che se il carico alimentato a 12 volt globali assorbe 3 ampère, sul transistor si dissipano solo 3 watt (1 volt x 3 ampère = 3 watt) contro i 36 complessivi che vengono erogati.

Questo progetto ci permetterà quindi non solo di sostituire egregiamente un reostato per comandare dei motori elettrici od alimentare delle lampade, ma soprattutto ci consentirà di eliminare i fortissimi sprechi di energia propri di un reostato e di regolare con estrema semplicità anche forti carichi.


SCHEMA ELETTRICO

In fig. 9 è visibile lo schema elettrico del nostro regolatore a commutazione, schema che come noterete risulta estremamente semplice e di immediata comprensione.

La tensione da regolare, prelevata da un qualsiasi accumulatore o alimentatore in continua deve essere applicata alle boccole « Entrata » con la sola avvertenza di rispettare la polarità di queste ultime e ricordando che il circuito può funzionare solo con tensioni comprese fra un minimo di circa 10 volt ed un massimo di 35-36 volt. Tale tensione viene sfruttata per alimentare l'intero circuito, cioè l'integrato IC1 che costituisce l'oscillatore a frequenza variabile e i due transistor TR1 e TR2 che nel loro complesso costituiscono l'interruttore elettronico.

La lampada di cui vogliamo variare l'intensità luminosa o il motorino di cui vogliamo regolare la velocità, vanno ovviamente collegati alle boccole « uscita » tenendo presente che mentre per la lampada non ha nessuna importanza il verso in cui la colleghiamo, per quanto riguarda il motorino esso girerà in un senso oppure nell'altro a seconda di come effettueremo questo collegamento.

Il cuore di tutto il dispositivo è costituito dall'integrato IC1 (un ¡uA741) collegato in modo da erogare in uscita sul piedino 6 un segnale ad onda quadra alla frequenza di circa 1.000 Hz in cui è possibile variare, tramite il potenziometro R3, il

rapporto fra il periodo di tempo in cui detto segnale si mantiene al « livello alto » ed il periodo in cui invece trovasi ad un « livello basso ».

Per capire come agisce R3 dobbiamo logicamente analizzare a grandi linee il funzionamento dell'oscillatore.

Noteremo quindi che quando C2 è scarico, il piedino 2 (ingresso invertente) può considerarsi collegato a massa, perciò sul piedino 6 d'uscita sarà presente una tensione molto prossima a quella di alimentazione. Tenendo presente questo, R4 può considerarsi in parallelo ad R1, e poiché R1-R2 ed R4 hanno tutte e tre lo stesso valore di 22.000 ohm, ne consegue che sul piedino 3 sarà presente una tensione pari a circa 2/3 di quella di alimentazione.

Con questo stato di cose C2 comincia a caricarsi attraverso R5, DS2 ed R3 e la sua carica sarà tanto più veloce quanto più il cursore di R3 è spostato verso il basso.

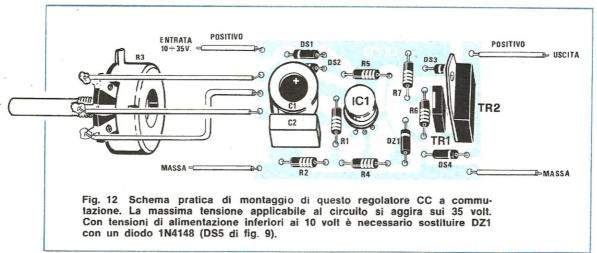
Viceversa se il cursore è spostato verso l'alto cioè verso DS1, (ci riferiamo sempre allo schema elettrico) la carica avverrà lentamente.

Quando la tensione ai capi di C2 (quindi sul piedino 2 dell'integrato) raggiunge il valore di soglia (rappresentato all'incirca dalla tensione presente sul piedino 3), l'uscita dell'integrato si porta ad un « livello basso ».

In questa situazione la resistenza R4 viene a trovarsi pressocché in parallelo alla R2, e di conseguenza la tensione sul piedino 3 scende fino a circa 1/3 della tensione di alimentazione.

Essendovi tensione nulla sul piedino 6, il condensatore C2 comincia a scaricarsi attraverso R3-DS1-R5 e la sua scarica (al contrario della carica) risulterà tanto più veloce quanto più il cursore del potenziometro è spostato verso l'alto.




Fig. 11 Disegno del circuito stampato a grandezza naturale.

Non appena la tensione sul piedino 2 scende al disotto della soglia rappresentata dalla tensione presente sul piedino 3, cioè al di sotto di 1/3 della tensione di alimentazione, l'uscita dell'integrato si riporta ad un livello alto, il condensatore ricomincia a caricarsi ed il ciclo si ripete tale e quale, In altre parole, se il cursore del potenziometro si trova esattamente a metà corsa, noi otterremo in uscita sul piedino 6 un segnale ad onda quadra perfettamente simmetrico.

Se spostiamo il cursore del potenziometro verso l'alto, l'intervallo di tempo in cui l'uscita si mantiene ad un livello alto diventa predominante sull'intervallo di tempo in cui la stessa uscita si mantiene ad un livello basso. Se infine spostiamo il cursore verso il basso, diventa predominante l'intervallo in cui in uscita c'è tensione nulla.

Ma vediamo ora come questo segnale riesce a pilotare i due transistor TR1 e TR2 in modo da permettere o interrompere l'erogazione della corrente ad intervalli regolari.

Osservando attentamente la parte di circuito costituita dal diodo zener DZ1 e dalle resistenze R6 ed R7. noteremo allora che quando sul piedino

6 è presente una tensione a livello alto, attraverso questo ramo non passa corrente, quindi trovandosi la base di TR1 e l'emettitore di TR2 allo stesso potenziale, entrambi i transistor risultano interdetti e la corrente non può raggiungere il carico

Quando invece sul piedino 6 è presente una tensione nulla (o quasi), su R7-R6 e DZ1 scorrerà una certa corrente e di conseguenza la tensione sulla base di TR1 si polarizzerà negativamente di quel tanto che basta a consentire al transistor TR2 di portarsi in conduzioni, quindi di erogare tensione al carico.

In altre parole, ogni volta che sul piedino 6 dell'integrato è presente un livello basso di tensione, avremo presenza di corrente in uscita, mentre ogni volta che sul piedino 6 c'è tensione positiva, avremo assenza di corrente in uscita.

Se ci interessa che sia più lungo il periodo in cui c'è corrente rispetto a quello in cui la corrente non c'è, cioè se ci interessa ottenere in uscita una tensione superiore alla metà di quella disponibile in ingresso, dovremo ruotare il cursore di R3 tutto verso DS2.

Se invece ci interessa il contrario, dovremo ruotare tale cursore tutto verso DS1.

Da notare che a causa della presenza del diodo zener DZ1 il circuito può funzionare solo con tensioni d'ingresso superiori ai 10 volt (ma inferiori a 35 volt); qualora si desiderasse invece lavorare con tensioni comprese fra i 6 e i 15 volt si dovrà sostituire tale zener con un diodo al silicio (vedi DS5), orientato come vedesi nello schema.

I diodi DS3 e DS4 servono infine a permettere il corretto funzionamento del circuito anche su carichi prettamente induttivi e precisamente DS4 consente il ricircolo sul carico degli impulsi transitori negativi mentre DS3 ricarica sulla batteria di alimentazione gli impulsi transitori positivi. Prima di concludere la descrizione riteniamo utile fornirvi alcuni consigli che potrebbero rivelarsi preziosi durante l'utilizzazione di questo regolatore. Innanzitutto vogliamo ricordare (anche se non ce ne dovrebbe essere bisogno) ai più inesperti, che il circuito normalmente non può essere utilizzato per alimentare circuiti elettronici proprio a causa della tensione impulsiva che fornisce in uscita: esso è adatto solo ed esclusivamente per alimentare lampade o motorini.

Secondariamente il dispositivo, se alimentato con tensioni di 12 o più volt, può erogare correnti superiori ai 3 ampère tenendo però presente che se si richiedono dallo stesso e con continuità correnti superiori ad 1 ampère, sarà bene dotare il transistor TR1 di un'aletta di raffreddamento.

REALIZZAZIONE PRATICA

Esaurita la spiegazione dello schema elettrico, potremo ora procedere alla sua realizzazione pratica.

Per far questo, sul circuito stampato LX213, illustrato in fig. 11 a grandezza naturale, andranno montati tutti i componenti, ad esclusione del potenziometro R3, come d'altronde è facilmente intuibile osservando lo schema pratico riportato in fig. 12.

A tal fine salderemo innanzitutto sullo stampato tutte le resistenze ed il condensatore C2, poi i diodi ed il condensatore C1, facendo attenzione a non invertirne la polarità.

A questo punto provvederemo a saldare i due transistor TR1 e TR2 ed infine l'integrato IC1, aiutandoci per i piedini di quest'ultimo, con la fig. 10 in cui gli stessi sono visti dal di sotto.

Poiché sullo schema pratico di fig. 12 non risulta evidente la tacca di riferimento di codesto integrato, assicuriamo il lettore che sulla serigrafia dello stampato questa tacca è invece ben visibile.

Per completare il circuito non resta infine che collegare, mediante tre fili di lunghezza opportuna, i terminali del potenziometro R3 allo stampato; nel caso voleste impiegare il circuito per regolare

tensione comprese esclusivamente fra i 6 e i 15 volt, vi ricordiamo ancora una volta che al posto del diodo zener DZ1 dovrete montare sullo stampato il diodo DS5, tenendo però presente che questo diodo va collegato con polarità opposta rispetto allo zener, come appare chiaramente sullo schema elettrico di fig. 9.

A titolo precauzionale, onde evitare eventuali inneschi, ricordatevi di collegare alla massa dello stampato, mediante un apposito filo, la carcassa metallica del potenziometro.

Infine, se userete questo regolatore per alimentare circuiti con forti correnti (dell'ordine dei 2-3 ampère), è consigliabile fissare il transistor TR2 su un'aletta di raffreddamento collegandone i terminali E-B-C al circuito stampato mediante degli spezzoni di filo di diametro sufficiente a sopportare la corrente richiesta.

COSTO DEI COMPONENTI

Rassegna internazionale elettronica, nucleare ed aerospaziale cinematografia specializzata

ROMA, 23 MARZO-3 APRILE 77 - PALAZZO dei CONGRESSI (EUR)

In occasione della prossima Rassegna internazionale elettronica, nucleare ed aereospaziale cinematografica specializzata che si terrà a Roma dal 23 marzo al 3 aprile 1977, il CENTRO ELETTRONICO BISCOSSI invita i lettori a tale Rassegna con possibilità di riduzione del biglietto del 500%, ritirandolo presso i nostri negozi, e cartoline per ordinazioni con sconto « speciale ».

Il CEB sarà presente a tale Rassegna stand 42 ed è lieto di annunciarVi una serie di prototipi e rielaborazioni che verranno presentate direttamente dai nostri giovanissimi tecnici.

- 1) OSCILLATORE PROGRAMMABILE A TASTIERA IN DUE MODELLI A.F. e B.F.
- 2) SINTETIZZATORE ELETTRONICO (Moog)
- 3) ELABORATORE DI SINTONIA
- 4) PRESELEŽIONE DIGITALE DI 99 STAZIONI
- 5) PREAMPLIFICATORE QUADRIFONICO
- 6) FINALI DI POTENZA 4x100 W
- 7) VISUALIZZATORE DI FREQUENZA A 4 DIGIT

centro elettronico bi/co//i

via della giuliana 107

roma

Se siete un lettore di NUOVA ELETTRONICA veniteci a farci visita, per noi, voi sarete un cliente preferenziale

Serie di KIT e prodotti vari per la preparazione di circuiti stampati sia con il sistema tradizionale o della fotoincisione oppure in serigrafia, il tutto corredato di istruzioni per il corretto uso - Per maggiori chiarimenti basta inviare lire 200 in bolli e ricevere ampie illustrazioni per il KIT interessato e listino prezzi di componenti da noi trattati.

KIT EB 20 L. 5.500 4 basette per c.s. 48 trasferibili c.i. 1 penna per c.s.	KIT EB 66 L. 16.500 1 flacone fotoresist P. 1 flacone developer di f/t	FOTORESIST POSITIVI EB 710 flacone 150 cc. L. 13.500 EB 711 flacone 500 cc. L. 37.500 EB 712 flacone 1000 cc. L. 68.500			
190 piazzole terminali 1 busta di sali per 1 lt.	KIT EB 77 L. 3.000 4 basette per c.s.	EB 713 spray 450 gr. L. 19.800 FOTORESIST NEGATIVI			
KIT EEB 55 L. 29.500 1 quadro stampa 1 spremitore da 16 cm.	1 inchiostro 1/2 It. acido 1 penna completa	EB 701 flacone 150 cc. L. 8.300 EB 702 flacone 500 c. L. 25.150 EB 703 flacone 1000 cc. L. 46.900 EB 704 flac, spr. 450 cc. L. 22.200			
100 cc. sgrassante 50 cc. polvere abrasiva	KIT EB 99 L. 21.500 1 foglio poliestere con emulsio-	SVILUPPI POSITIVI			
100 cc. sigillante 250 gr. inchiostro	ne U.V. (color Key negativo) 200 cc. developer neg.	EB 714 flacone 200 cc. L. 2.800 EB 715 flacone 1 lt. L. 12.250			
1000 cc. diluente-solvente	1 foglio carta nera	SVILUPPI NEGATIVI			
1 pellicola sensibilizzata 1 nastro adesivo doppio	150 cc. fotoresist neg. 1000 cc. developer	EB 705 flacone 1000 cc. L. 4.050 EB 706 flacone 5 lt. L. 18.200			
INCHIOSTRI	VERNICE AUTOSALDANTE	DILUENTI POSITIVI			
EB 30 flacone 10 cc. L. 550 EB 31 flacone 10 cc. L. 950	EB 34 flacone 100 cc. L. 800 EB 35 flacone 1 lt. L. 5.500	EB716 flacone 1 lt. L. 10.500 EB 717 flacone 5 lt. L. 45.500			
ACIDO CONCENTRATO	EB 97 flacone spray L. 5.000	DILUENTI NEGATIVI			
EB 40 flacone 1/2 lt. L. 700 EB 41 flacone 1 lt. L. 1.050	PENNA PER C.S. EB 999 L. 3.000	EB 707 flacone 1 lt. L. 11.500 EB 708 flacone 5 lt. L. 49.500			
EB 42 flacone 5 lt. L. 4.900	TRECCIA DISSALDANTE	SGRASSANTE E DISOSSIDANTE			
VERNICE PELABILE EB 29 flacone 500 cc. L. 3.800 EB 39 flacone 1000 cc. L. 7.000	EB 951 L. 1.900 Trapano 12 V 18 W L. 24.000 Trapano Cyanolit V L. 1.800	EB 49 flacone 1 lt. L. 5.500 EB 67 flacone 5 lt. L. 23.500 Grasso silicone 100 gr. L. 4.800			
Inoltre sono disponibili: Trasferibili della Mecanorma (catalogo gratis) - Piastre ramate per montaggi					

Inoltre sono disponibili: Trasferibili della Mecanorma (catalogo gratis) - Piastre ramate per montaggi sperimentali e piastre presensibilizzate - Fibre artigiani industrie e scuole professionali.

NUOVA SERIE AMPLIFICATORI DA PALO MODELLO «AF»

Trattasi di una nuova serie di amplificatori a banda larga, da palo, progettata e realizzata per migliorare la ricezione dei segnali dell'intera banda quinta, che consentono di amplificare contemporaneamente più canali. Ogni discesa, eventuali canali VHF e UHF, già miscelati, ai canali della banda V, con eventuale passaggio della cc. per alimentare amplificatori prima della miscelazione. Sono altresi muniti di un filtro sul miscelatore atto a bloccare il passaggio di frequenza sui canali della I, III e IV banda.

DATI TECNICI

 Art. EB/01 assorbimento
 10 mA. mix UHF-VHF canali
 38/69
 L. 12.800
 12 dB

 Art. EB/02 assorbimento
 20 mA, mix UHF-VHF canali
 38/72
 L. 14.000
 24 dB

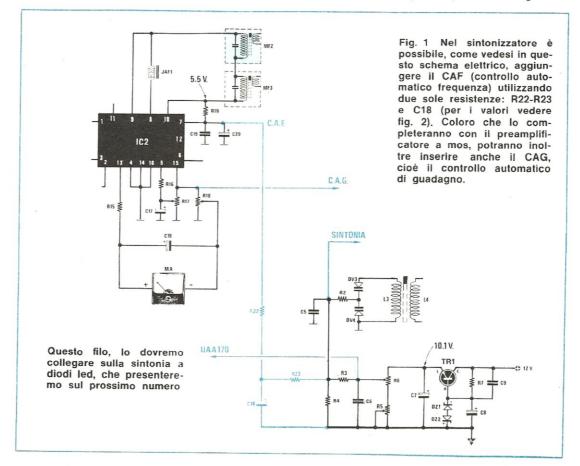
 Art. EB/03 assorbimento
 28 mA, mix UHF-VHF canali
 38/72
 L. 16.500
 30 dB

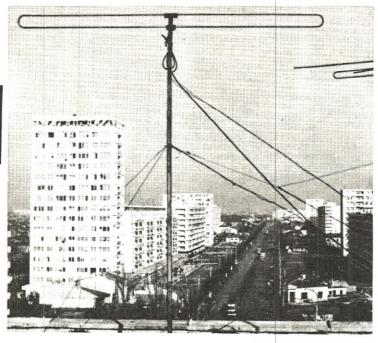
 Art. EB/04 assorbimento
 36 mA, mix UHF-VHF canali
 38/72
 L. 18.500
 42 dB

 Art. EB/05 amplificatore
 interno compl. alim. da 40-800 MHz
 L. 10.000

PREVENTIVI A RICHIESTA PER AMPLIFICATORI O CONVERTITORI CON CARATTERISTICHE DI-VERSE.

ATTENZIONE: LE OFFERTE DI MATERIALI SONO I.V.A. ESCLUSA, I VS/ ORDINI SARANNO EVASI NEL GIRO DELLE 24 ORE, CON PAGAMENTO IN CONTRASSEGNO. Se i 25 microvolt di sensibilità del nostro sintonizzatore in FM vi sembrano pochi, eccovi un preamplificatore AF a mosfet in grado di raggiungere i 2,5 - 3 microvolt, cioè una sensibilità tale da fare di questo ricevitore il più « sensibile » attualmente in commercio.


PIÙ SENSIBILITÀ SULLA "FM"


Possiamo affermare che gli elogi ricevuti da coloro che hanno realizzato il nostro sintonizzatore FM con decoder stereo apparso sul n. 48 hanno raggiunto un livello davvero ragguardevole tuttavia, al contrario della famosa frase « dulcis in fundo » (che, a nostro avviso, fu esclamata da un tale che dopo essersi sorbito un caffè, a fine tazzina, si sorbiva lo zucchero depositato) in ogni vostra lettera, all'inizio sorbivamo il dolce ed in fondo l'amaro.

Un amaro comunque non sgradevole, in quan-

to si trattava sempre non di rimproveri ma d. consigli, consigli che possiamo qui condensare in quanto tutti ci hanno richiesto più o meno le stesse identiche cose.

- 1) Perché non offrite un mobile adatto a contenere questo sintonizzatore?
- 2) Perché non fate una scala parlante (e qui centinaia di consigli circa la scala e la demoltiplica da utilizzare).
- 3) (Chi ancora non l'ha costruito quindi non ha avuto modo di provarlo) vi siete sbagliati nel

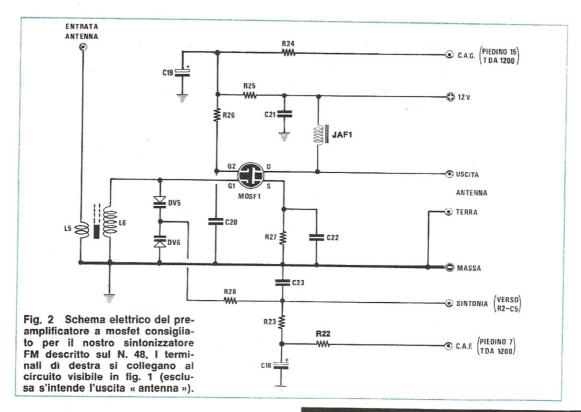
con un MOSFET

riportare la sensibilità oppure questa risulta proprio di 25 microvolt come sta scritto nella rivista?

- 4) Perché non avete sfruttato il controllo automatico di frequenza?
- 5) Vorrei aggiungere un preamplificatore in ingresso; quale schema mi consigliate?
- 6) È possibile utilizzare il level-meter del n. 42/43 come indicatore di sintonia?
- 7) Perché non progettate un circuito con tre display in grado di indicare la frequenza di sintonia?

È ovvio che se volessimo rispondere privatamente a ciascuna delle migliaia di lettere finora pervenuteci e a quelle che ancora perverranno, impiegheremmo perlomeno qualche mese, naturalmente tralasciando di occuparci di qualsiasi altra attività, ragion per cui preferiamo dare una risposta unica a tutti con questo articolo, certi che avremo in ogni caso la vostra comprensione anche se questo modo di procedere esula un po' dal filo conduttore cui finora ci siamo attenuti.

- 1) Un mobile per questo sintonizzatore è già in preparazione, solo che per approntare gli stampi per le presse, fare i pannelli incisi ecc. occorre un lasso di tempo considerevole, quindi appena saremo pronti per consegnarlo lo comunicheremo sulla rivista.
- 2) e 6) La scala parlante è anch'essa allo studio e sul prossimo numero ne presenteremo lo schema: essa si compone in pratica di 30 led che si accendono ognuno in corrispondenza ad


una diversa frequenza di ricezione. Realizzare come tanti ci chiedono un circuito a lettura diretta su dei display a sette segmenti è invece piuttosto laborioso e soprattutto costoso in quanto si tratta in pratica di realizzare, anche se in forma economica, un vero e proprio frequenzimetro.

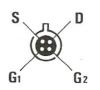
- 4) Per quanto riguarda il controllo automatico di frequenza, risultando il nostro circuito sufficientemente stabile anche al variare della tensione di alimentazione (per merito dell'integrato SO42P) abbiamo ritenuto superfluo aggiungerlo. Troverete comunque qui di seguito la semplice modifica per inserirlo e lo stesso dicasi anche per il CAG.
- Infine affrontiamo l'argomento più discusso nelle vostre lettere, cioè la sensibilità.

Precisiamo ancora una volta che questo argomento è stato toccato solo ed esclusivamente da coloro che ancora non hanno realizzato il sintonizzatore e che prima di accingersi all'opera, hanno voluto una conferma di questi famosi 25 microvolt,

Le frasi usate di volta in volta erano più o meno le stesse e suonavano all'incirca così:

— dispongo di un sintonizzatore FM della marca pincopallino (non possiamo per correttezza commerciale indicare i modelli o il nome della casa costruttrice) con 7 microvolt di sensibilità, ma questi è «sordo» al punto che per ricevere qualche stazione debbo utilizzare un'antenna esterna installata sul tetto del palazzo; se quindi voi

affermate che il vostro sintonizzatore è in grado di ricevere quasi tutte le stazioni usando come antenna un filo lungo al massimo 1 metro, è ovvio che la sensibilità dell'apparecchio sarà di 2,5 microvolt e non 25 come indicato sulla rivista.


Se è così lo realizzo subito; se invece è 25 microvolt l'apparecchio non fa al caso mio dato che sono sicuro di non riuscire a ricevere nulla. E qui il ragionamento del lettore non fa assolutamente una grinza, infatti se con una sensibilità di 7 microvolt si riescono a mala pena a captare le stazioni RAI più robuste, è ovvio che con 25 microvolt la situazione peggiorerà ancora.

Dove il lettore sbaglia è invece quando egli asserisce che l'apparecchio in sua dotazione ha una sensibilità di 7 microvolt, fidandosi esclusivamente di quanto sta scritto sulle caratteristiche del suo sintonizzatore.

Noi possiamo infatti affermare con cognizione di causa, per averli controllati in laboratorio e confrontati con il nostro, che proprio i modelli che i lettori ci indicano non dispongono della sensibilità dichiarata. Scrivere 7 microvolt invece di 40 o 50 è molto facile ed anche noi avremmo potuto scrivere 1,5 microvolt invece di 25 con la certezza che ben pochi lettori se ne sarebbero accorti poiché confrontando il nostro sintonizza-

COMPONENTI R22 = 10.000 ohm 1/4 wattR23 = 680.000 ohm 1/4 watt R24 = 33.000 ohm 1/4 watt R25 = 33.000 ohm 1/4 watt R26 = 1.000 ohm 1/4 watt R27 = 220 ohm 1/4 watt R28 = 82.000 ohm 1/4 watt C18 = 4,7 mF elettr. 16 volt C19 = 10 mF elettr. 16 volt C20 = 47.000 pF ceramico a disco C22 = 22.000 pF ceramico a disco JAF1 = impedenza AF 100 microhenry C23 = 47.000 pF ceramico a disco DV5/DV6 = diodo varicap BB104 JAF2 = impedenza AF 25 microhenry L5/L6 = bobina (vedi articolo) MOSFET1 = mosfet tipo MEM680

Fig. 3 Disposizione dei termini S D G1 G2 relativi al mosfet impiegato nel progetto, visti dal lato in cui fuoriescono dal corpo.

tore con gran parte di quelli che dicono di avere una sensibilità di 7 microvolt la differenza è così evidente da non lasciare alcun dubbio.

A questo punto occorre far presente un piccolo particolare e cioè che la massima sensibilità che in genere i costruttori dichiarano per un sintonizzatore, in pratica ha un valore molto relativo.

Prendiamo ad esempio il sintonizzatore che il lettore dichiara essergli stato venduto con una sensibilità di 7 microvolt: questo significa solo che il ricevitore può captare un segnale in antenna dai 7 microvolt in su, però non specifica che con 7 microvolt in ingresso il rapporto segnale rumore è tanto basso che l'altoparlante emette più fruscio che suono.

In pratica infatti per poter ricevere in altoparlante un suono esente da fruscio con questo ricevitore, è necessario applicare in ingresso segnali di ampiezza più elevata, cioè superare, come abbiamo noi stessi constatato, i 40-50 microvolt,

Nel nostro caso quindi sarebbe stato scorretto promettere una sensibilità di 1,5 microvolt solo perché questo segnale può essere ricevuto in qualche modo dal circuito mentre sappiamo benissimo che solo quando in antenna sarà presente un segnale di 20-25 microvolt otterremo un rapporto segnale-rumore di entità sufficiente (circa 60 dB) a riprodurre in uscita un suono perfetto del tutto esente da fruscio.

Un segnale in FM, proprio perché risulta ad alta fedeltà, deve essere ricevuto in altoparlante, e in cuffia senza rumore.

Occorre inoltre tener presente che un « sintonizzatore in FM » non è un ricevitore radiantistico realizzato per poter captare emittenti estere o intercontinentali di potenza limitata, come utilizzano i radioamatori, bensì emittenti che sfornano dei kilowatt, sempre dislocate in un raggio massimo di 50-60 km, quindi una eccessiva sensibilità può essere in certi casi controproducente.

A questo punto avremo subito chi contesterà tale nostra affermazione facendoci notare che attualmente esistono molte emittenti private che irradiano programmi con potenze limitate di 5-10 watt massimi ed è proprio qui che dobbiamo soffermarci per assicurarvi che il nostro sintonizzatore è perfettamente idoneo per ricevere anche queste stazioni.

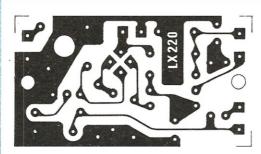
Solo chi abita in zone collinari o in campagna, notevolmente distanti dalla città, potrebbe aver bisogno di aumentarne la sensibilità, ma ripetiamo solo in questi casi, poiché chi abita in città potrebbe ricavarne più svantaggi che vantaggi.

Anche noi, nei nostri primi prototipi, avevamo incluso un preamplificatore AF ad elevato guadagno, poi in seguito ai risultati non proprio convincenti, abbiamo ritenuto più vantaggioso escluderlo.

Il motivo principale di questa nostra decisione è molto semplice, ed è da ricercarsi nella eccessiva sregolatezza con cui avvengono attualmente le trasmissioni delle cosiddette « radio libere ».

Se sulla gamma FM operassero solo ed esclusivamente le stazioni della RAI, il problema non esisterebbe, infatti non solo il segnale è in questi casi abbastanza forte da poter essere ricevuto da chiunque, ma le frequenze di trasmissione vengono scelte in modo che le diverse stazioni non abbiano alcuna possibilità di interferire l'una con l'altra (ad esempio di due stazioni che trasmettono sulla stessa frequenza, una può trovarsi a Milano ed una ad Ancona).

Le innumerevoli emittenti private che sono sorte in questi ultimi tempi invece non seguono questa prassi e trasmettono ognuna sulla frequenza preferita, cosicché a seconda del « quarzo » che risulta più reperibile in una zona, non è difficile trovare due o tre emittenti che trasmettono sulla stessa identica frequenza.


Se la sensibilità del ricevitore non è troppo spinta, le emittenti più distanti vengono automaticamente soppresse, quindi la «locale» viene ricevuta in modo perfetto.

Se invece si aumenta troppo la sensibilità, ecco che la nostra « alta fedeltà » (che è la caratteristica saliente del nostro ricevitore) viene a mancare e l'emittente locale viene ricevuta mista a dei sottofondi non graditi, dovuti alle interferenze di stazioni che trasmettono sulla stessa frequenza.

Proprio per questo un aumento della sensibilità può essere consigliato solo quando si abbia la certezza che tali inconvenienti non possono verificarsi ed in tal caso vi consigliamo di inserire sul vostro sintonizzatore il preamplificatore a mosfet da noi già collaudato sui primi prototipi il quale vi consentirà di poter ottenere un rapporto segnale/rumore di 60 dB con soli 2,5 microvolt, cioè una sensibilità superiore a qualsiasi altro apparecchio commerciale.

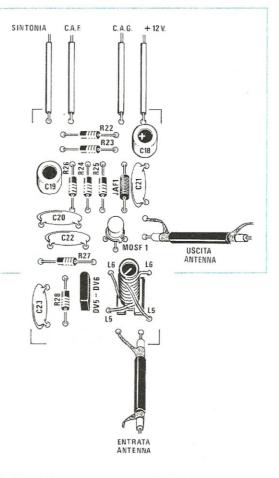
Per chi volesse infine aggiungere il « controllo automatico di frequenza », diremo che il circuito adatto allo scopo è molto semplice (vedi fig. 1).

In pratica si dovrà prelevare dal piedino 7 dell'integrato IC2 (cioè il TDA1200) la tensione presente, quindi applicarla tramite due resistenze (R22 ed R23) al partitore che alimenta i diodi varicap, costituito dalle resistenze R3 ed R4.

Circuito stampato a grandezza naturale,

Fig. 5 Disegno della realizzazione pratica. Nota. Se non si utilizza un cavetto coassiale per collegare « l'uscita antenna » all'entrata del sintonizzatore, è necessario un filo supplementare che colleghi la massa di questo circuito a quello del sintonizzatore.

Precisiamo che i valori di R22 ed R23 sono alquanto critici, quindi consigliamo di non modificarli notevolmente.


A nostro avviso con R22 da 10.000 ohm e R23 da 680.000 ohm si ottengono i migliori risultati comunque vi possiamo anticipare che aumentando la R22 e diminuendo la R23 il campo di deviazione aumenta, cioè il ricevitore è in grado di tenere agganciata la frequenza anche se si ha un ampio spostamento di frequenza dell'oscillatore locale (condizione questa che in pratica poi non si verifica), però avremo l'inconveniente di rendere più difficoltosa la sintonia, poiché il C.A.F. tenderà sempre a tenere agganciata l'ultima stazione sintonizzata.

Al contrario diminuendo la R22 e aumentando la R23 si ottiene l'effetto opposto. Precisiamo infine, per evitare ulteriori consulenze, che non è consigliabile inserire un deviatore per includere o escludere a piacimento il C.A.F. poiché si avrà in ogni caso una variazione di frequenza nell'effettuare queste due operazioni, quindi è preferibile, una volta inserito il C.A.F., lasciarlo sempre collegato.

SCHEMA ELETTRICO DEL PREAMPLIFICATORE

In fig. 2 vi presentiamo lo schema del preamplificatore AF, completo del controllo automatico di frequenza: è quindi logico che collegando al sintonizzatore FM il preamplificatore AF, automaticamente collegheremo a tutto il circuito di sintonia il C.A.F. che abbiamo presentato in fig. 1.

Il segnale captato dall'antenna giungerà alla

bobina L5 e da questa, per induzione, verrà trasferito ai capi di L6, da cui potrà raggiungere il gate 1 del mosfet per essere amplificato.

In parallelo alla bobina L6 troviamo il solito doppio diodo varicap BB104 (nel disegno questi due diodi sono rappresentati singolarmente con le sigle DV5 e DV6) necessario per la sintonizzazione.

Il gate 2 del mosfer risulta polarizzato positivamente tramite la resistenza R25, mentre la resistenza R24, collegata con un estremo alla R26, dovrà risultare collegata con l'estremo opposto al piedino 15 dell'integrato TDA1200, per poter ottenere un controllo automatico di guadagno.

Quando sul gate 2 avremo la massima tensione positiva, il mosfet fornirà la massima amplificazione.

Quando invece il segnale in ingresso avrà una ampiezza sufficiente da far saturare il preamplificatore, l'integrato TDA1200, tramite il piedino 15, abbasserà la tensione positiva sul gate 2, riducendo di conseguenza l'amplificazione del mosfet.

Il segnale amplificato presente sul drain del mosfet, verrà direttamente applicato sulla presa « antenna-terra » del sintonizzatore.

A questo proposito ricordiamo che se qualche lettore volesse utilizzare questo preamplificatore per un qualsiasi altro sintonizzatore, dovrà necessariamente inserire tra il drain del mosfet e la presa « antenna » del suo sintonizzatore, un condensatore da 47 pF (condensatore C1 già incluso nel nostro apparecchio) onde evitare di cortocircuitare a massa la tensione positiva del drain.

L'impedenza JAF2 presente sul drain non è eccessivamente critica: in pratica è sufficiente che risulti compresa fra 50 e i 100 microhenry, e che sia avvolta su un piccolissimo nucleo in ferroxcube.

È ovvio che inserendo impedenze di valore diverso e non avvolte su nucleo in ferroxcube, parte dell'AF presente sul drain riuscirà ad attraversarle, ottenendo in pratica una minor amplificazione.

Sul circuito noteremo infine la presenza delle due resistenze R22 ed R23 inerenti al controllo automatico di frequenza (C.A.F.) che potremo anche non utilizzare.

L'uscita del C.A.F. verrà prelevata, come vedesi nel disegno, dal piedino 7 dell'integrato TDA1200.

Tutto il circuito verrà alimentato a 12 volt, cioè con la stessa identica tensione con cui già alimentiamo il sintonizzatore, quindi è ovvio che la potremo prelevare dallo stesso alimentatore.

Come mosfet consigliamo di utilizzare i tipi MEM564 o MEM680 poiché risultano autoprotetti internamente, quindi non richiedono precauzioni particolari durante il montaggio.

REALIZZAZIONE PRATICA

Il montaggio di questo preamplificatore non è assolutamente né difficile né critico. Come prima operazione dovremo realizzare la bobina L5/L6 attenendoci alle seguenti istruzioni: su un supporto del diametro di mm 5 provvisto di nucleo avvolgeremo per L6 n. 4 spire di filo argentato da 1 mm tenendo le spire stesse distanziate fra di loro di circa 1 mm. Per la bobina L5 dovremo invece intercalare a queste n. 3 spire di filo smaltato da 0,50 mm, in modo da ottenere un accoppiamento induttivo molto stretto.

Realizzata la bobina, la inseriremo sul circuito stampato LX220 (visibile a grandezza naturale in fig. 4) saldandone i quattro terminali come richiesto dallo schema.

Potremo quindi inserire le resistenze e i con-

densatori, lasciando come ultimo componente il mosfet

Per collegare quest'ultimo dovremo per prima cosa individuarne i quattro terminali G1-G2-D-S ricordando che il disegno di fig. 3 mostra tale componente dalla parte in cui i terminali stessi fuoriescono dal corpo, cioè dal di sotto, quindi visti da sopra questi risultano rovesciati.

Terminato il montaggio dovremo collegare:

- = l'uscita + 12 al positivo di alimentazione,
- = l'uscita C.A.G. al piedino 15 dell'integrato TDA-1200.
- = l'uscita C.A.F. al piedino 7 dello stesso integrato,
- = l'uscita « sintonia » al punto comune a R1-R2-R3-R4-R5 e le uscite « Antenna-Terra » ai corrispondenti terminali « Antenna » e « Terra » del sintonizzatore.

Il terminale « Terra » ci permetterà pure di prelevare dal sintonizzatore il negativo dei 12 volt di alimentazione.

Effettuati tutti questi collegamenti dovremo procedere ad una semplice ma necessaria taratura.

Dopo aver collegato alla presa « Antenna » di ingresso del preamplificatore un corto spezzone di filo di lunghezza sufficiente affinché la stazione che captiamo ci permetta di mandare la lancetta dello strumento S-meter fino a circa metà scala, ruoteremo prima il nucleo della bobina L5-L6, poi quello della bobina L1-L2 presente sul sintonizzatore fino a far deviare verso il massimo la lancetta dello S-meter.

Raggiunto questo risultato, il nostro preamplificatore sarà già pronto per funzionare.

Dobbiamo però precisare che se la taratura verrà effettuata su una frequenza che si trova ad uno dei due limiti estremi della gamma FM. cioè ad esempio sugli 88 o sui 108 MHz, potrà accadere che al limite opposto della gamma si ottenga una sensibilità più bassa.

Chi vuole ottenere una maggior linearità di amplificazione in tutta la gamma dovrà pertanto cercare di tarare le due bobine al centro gamma cioè sui 96-98 MHz, oppure tarare per la massima sensibilità la bobina L5/L6 sulla frequenza di circa 90 MHz e la bobina L1/L2 sulla frequenza di 100 MHz.

COSTO DEI COMPONENTI

Tutto il materiale occorrente per la realizzazione del progetto e cioè; resistenze, condensatori, impedenza, bobina, mos fet e circuito stampato . . . L. 6.800
Il solo circuito stampato tipo LX220 . L. 950

via Manin 26/B - 31015 CONEGLIANO Tel. (0438) 34692

ALTOPARLANTI PER STRUMENTI MUSICALI				AMPLIFICATORI DI POTENZA PER BF - HIFI			
200 250 320 250 320 250 320 ALTOPAI DOPPIO		90 80/7000 65 60/8000 65 60/7000 100 80/4000 65 60/6000 PER STRUMENTI MI	Prezzo L. 6.300 L. 10.800 L. 22.500 L. 23.400 L. 37.800 USICALI	A12 - Protetto contro i cortocircuiti, a simmetria quasi complementare con alimentazione propria non stabilizzata 35V. Potenza d'uscita al clipping 30W su 4 Ohm - 22W su 8 Ohm. Sensibilità per la max potenza 0,6V eff pe rcarico 4 Ohm - 0,7V eff. per carico 8 Ohm. Impedenza di ingresso 80 KOhm - Banda passante 15÷19 KHz — 1dB - Distorsione a 1 KHz a 15W ≤0,15 ³ / ₀ . Trasformatore escluso			
Dimens.	Pot. W	Rison. Hz Freq. Hz	Prezzo	A16 - A simmetria complementare protetto contro i cortocircuiti - 11 transistor - Potenza uscita			
200 . 250 320	6 15	70 60/15000 65 60/14000	L. 4.900 L. 11.700	80W RMS su 8 OHm - Alimentazione 45+45V Banda passante da 10±20000 Hz±3db L. 23.500			
320	25 40	50 40/16000 60 50/18000	L. 31.500 L. 39.500	A21 - Protetto contro i cortocircuiti - potenza uscita 120W RMS su 4 OHm - Distorsione			
		PER ALTA FEDELTA PNEUMATICA	A	$<0.2^{\circ}/_{\circ}$ - alimentazione 45+45V - Banda passante da 10 \pm 20000 Hz \pm 1dB			
Tweeters				FILTRI CROSSOVER			
Dimens.	Pot. W	Rison, Hz Freq. Hz	Prezzo	2 VIE - Freq. incrocio 3500 Hz 25W L. 7,500			
88x88 88x88	10 15	2000/18000	L. 4.500	2 VIE - Freq. incrocio 3500 Hz 36W L. 8.400 (solo 4 Ohm)			
88x88	40	2000/18000 2000/20000	L. 5.400 L. 9.500	2 VIE - Freq. incrocio 700 Hz 25W L. 10.000			
Ø 110	50	2000/20000	L. 10.800	2 VIE - Freq. incrocio 700 Hz 36W L. 10.500			
Middle ra	ange			2 VIE - Freq. incrocio 700 Hz 50W L. 13.900 2 VIE - Freq. incrocio 700 Hz 80W L. 14.900			
Dimens.	Pot. W	Rison, Hz Freq. Hz	Prezzo	2 VIE - Freq. incrocio 700 Hz 110W L. 16.900			
130	25	400 800/10000	L. 9.000	3 VIE - Freq. incrocio 700/4000 Hz 36W L. 12.500			
130	40	300 600/9000	L. 11.700	3 VIE - Freq. incrocio 700/4000 Hz 50W			
Woofer				3 VIE - Freq. incrocio 700/400 Hz 80W			
Dimens.	Pot. W	Rison, Hz Freq. Hz	Prezzo	L. 15.900			
200	20	28 40/3000	L. 15.300	3 VIE - Freq. incrocio 700/4000 Hz 110W			
200	30	26 40/2000	L. 18.900	3 VIE - Freq. incrocio 700/4000 Hz 150W			
250 250	35 40	24 40/2000 22 35/1500	L. 22.500 L. 32.500	L. 24.900			
320	50	20 35/1000	L. 44.200	4 VIE - Freq. incrocio 450/1500/8000 Hz 50W			
				4 VIE - Freq. incrocio 450/1500/8000 Hz 80W			
VALVOLE				L. 25.900			
OB2 OA2	L.	2.500 812/A 2.130 813	L. 16.000 L. 22.500	4 VIE - Freq. incrocio 450/1500/8000 Hz 110W L. 30.900			
QQE03/12	L.	6.750 2050	L. 3.350	4 VIE - Freq. incrocio 450/1500/8000 Hz 150W			
QQE03/20		41.200 6011	L. 22,700	L. 34.000			
2D21 807	L.	2.350 6146A 2.710 6146B	L. 6.900 L. 7.900	Fornibili su richiesta anche con controllo dei toni			
811/A	L.		E. 7.500	con aumento del 10 ⁹ / ₀ . N.B. Negli ordini si rac- comanda di specificare l'impedenza.			

ATTENZIONE: al fine di evitare disguidi nell'evasione degli ordini si prega di indirizzare a CONE-GLIANO e di scrivere in stampatello nome e indirizzo del committente: Città e CAP in calce all'ordine.

CONDIZIONI DI PAGAMENTO: Contrassegno con le spese incluse nell'ordine. Non si accettano ordini inferiori all'importo di L. 5.000.

N.B. I prezzi possono subire delle variazioni dovute all'andamento del mercato.

LETTERATURA TECNICA NATIONAL

13 volumi — circa 5000 pagine — descrizione di oltre 6000 dispositivi a stato solido: dispositivi che spaziano sull'intera gamma dei semiconduttori, dai più semplici transistori ai microprocessori — informazioni di progettazione e di applicazione... progettisti, tutto ciò che vi occorre lo troverete in questa meravigliosa serie di volumi della National.

CARTOLINA DI ORDINAZIONE

☐ Audio handbook ☐ Transistors ☐ Linear data book ☐ Interface integrated circuits ☐ Linear applications vol. 2 ☐ TTL data book ☐ Linear applications vol. 2 ☐ C MOS integrated circuits ☐ Voltage regulator handbook ☐ Memory data book ☐ Special function data book ☐ Pace technical description	
☐ Transducers ☐ SC/MP technical description	N
L'importo di lire Verrà pagato contrassegno □ E' allegato □	
Data — Firma	

LETTERATURA TECNICA NATIONAL

Audio handbook	Lire	4.500
Linear data book		3.000
Linear applications vol. 1		5.800
Linear applications vol. 2		5.800
Voltage regulator handbook		2.000
Special function data book		2.200
Transducers		2.500
Transistors		2.000
Interface integrated circuits		3.000
TTL data book		3.500
C MOS integrated circuits		2.000
Memory data book		3.500
Pace technical description		3.000
Pace TTL designers guide		5.000
Pace user's manual		15.000
SC/MP programming assembler manual		10.000
SC/MP technical description		3.000

Potete ordinare questi volumi presso

LA RETE DI VENDITA DELLA NATIONAL sono disponibili anche presso i negozi della GBC

RETE DI VENDITA NATIONAL SEMICONDUCTOR 20149 milano via alberto mario 26 tel. (02) 46 92 431-46 92 864 telex 36540 agente Inter-rep 00141 roma via val pellice-friulana A/8 tel. (06) 81 24 894 distributore 20149 milano via domenichino 12 tel. (02) 49 85 051/52 /53/54/55 telex ADELSY 39423 Adelsy 16121 genova piazza della vittoria 15 tel. (010) 58 96 74 33100 udine via marangoni 45/48 tel. (0432) 26 996 10121 torino corso matteotti 32 tel. (011) 539141-543175 40012 bologna (I.C.C.) calderara di reno loc. lippo via crocetta 38 tel. (051) 726186

Mittente:
Nome
Cognome
Indirizzo
cap

Spett.le	
	,1 1

SEDE: Via Fossolo, 38/ne - 40138 BOLOGNA conto corr. postale n. 8/2289 - Tel. 341494 FILIALE: Via R. Fauro, 63 - 00197 ROMA - Tel. 806017

TRIAC

~~						
TRANSIST		B0467	1 000	D.Cooo		400
2N1711 2N2905 2N3055Ate: 2N3055RCA 5603-8W AC141		BC108 BC109 BC207 BC208	L. 200 L. 200 L. 200 L. 130 L. 120 L. 150	BC309 BF194 BF195 BSX26 BSX81 BFY64		180 230 230 240 200 350
AC142 AF106	L. 230 L. 200	BC307 BC308	L. 150 L. 160	TIP33 TIP34	L.	950 950
	138-BD139- cap BB10 cap BA16	BD140 ca 5 per VHI 3			L. L. L. L.	550 550 500 450 1.100 1.300
FET 2N3819-2N	5248-BF245	5-2N4391			L.	650
UNIGIUNZ 2N2646-2N		13			L.	700
PONTI RA	DDRIZZA	TORI E D	IODI			
B30C300 B100C600 B80C3000 B40C5000 B80C500	L. 200 L. 350 L. 800 L. 1.500 L. 1.800	OA95 1N4001 1N4003 1N4005 1N4007	L. 70 L. 60 L. 80 L. 90 L. 110	1N4148 IN5404 EM513 IN1199 I,2KV-2,5A	L. L. L. L.	50 280 200 500 250
		IR da 6A	/ 100-400-6			
6F10 6F40	L. 500 L. 550		-	-6F60 6F100	L. L.	600 700
MV54 rossi LED ARR	AY in str		verdi, ara GHIERE 8 led re	encio gialli ⊘ 5 mm. ossi	L.	350 100 1.000 480 400
Nixie tipo						2,500
DISPLAY TIL312 (11 MAN 7 ve FND503 (d	x 20) erdi lim, mm.	L. 1.400 L. 2.000 7x12)	LIT-33 (3	cifre)		5.000 2.300
INTEGRAT	I LINEA	RI				,
TAA320 TBA120SA		L. 1.200 L. 1.400	TBA570 76003			2.200 1.500
			AL 27,120			800
SN7400 SN74H00 SN7402 SN7404 SN7410 SN7413	L. 300 L. 750 L. 330 L. 400 L. 300 L. 750	SN7490 SN7492 SN74121 SN74141 SN76131 NE555	L. 850 L. 950 L. 800 L. 1000 L. 1250 L. 700	uA741 uA748 TAA611B TAA611C TBA810 SG78XX	L.	1.100
SN7447 SN7448 SN7475	L. 1200 L. 1600 L. 850	MC852 uA700 uA723	L. 250 L. 700 L. 930	piast ICL8038 9368	L.	2.000 4800 2.400
PHASE L	OCKED I	.OOP NES	65 e NE5	66	L.	3,100
INTEGRAT						
CD4000 CD4001 CD4006 CD4011 CD4016	L. 380 L. 380 L. 2.050 L. 500 L. 750	CD4023 CD4026 CD4027 CD4033 CD4042	L. 380 L. 2.500 L. 750 L. 1.750 L. 1.300	CD4046 CD4047 CD4050 CD4055 CD4056	L. L.	2.500 2.500 800 1.470 1.470
MC1468 re	egolatore	+ 15V	e - ft=2 1 Texas, 14	MHz -16 piedini	L.	1.300 1.800 230
		TI AL SIL		201/02	,	470
400V-6A 200V 8A	L. 1.200 L. 850	300V 8A 200V 3A	L. 950 L. 650	60V-0,8A 400V-3A	L. L.	470 760

THIAC					
	1.100 1.300	400V-10A DIAC GT4	9	L	1.500 250
ZENER 400mV - 3,3V 7,5V - 9V - 12V -	15V - 20V	- 23V - 28V	v - 30V	L.	150
ZENER 1w 5% 5,1V - CRISTALLI LIQUIDI e zocc.	9V - 12V per orolo	- 15V - 18 ogi con gh	V - 20V niera	L.	5,200
CIP per calcolatrici CONTAORE CURTIS					3,500
2000 ore TRASFORMATORE A				L.	4.000
26V/4A-20V/1A-16+16/0 TRASFORMATORE A),5A LIM. 220-2	24+24V/4W		L. L.	5.500 1.000
TRASFORMATORE A	.IM. 50W	220 V 25 V 220V→15+	//6 A 15V60W	L.	6.500 5.600
TRASFORMATORI AL VARIAC TRG102: In	220V - U 0	.÷ 260V/0,			2.400 13.000
	220V -	U.O:- 270 U.O:- 270	V/7A	L.	34.000 43.000
ALTOP. PHILIPS bic	PHILIPS	70×155	8 11	L.	1.800
SALDATORE ELEKT	ROLUME	220V/40W		Ľ.	7.500 2.400
ANTENNA VERTICAL ANTENNA DIREZION BALUM SA1 - simme	. ROTATI	VA ADR3	m.		20.500 88.500 9,500
CAVO COASSIALE R			metro	L.	550
CAVO COASSIALE R			metro metro	L.	520 230
CAVETTO SCHERMA	TO MICR	OFONICO			
- CPU1 a 1 capo			metro	L.	130 150
— M2035 a 2 capi — CPU3 a 3 capi — CPU a 4 capi		al	metro metro metro	L. L.	180 210
STAGNO al 60 ³ / ₀ tre — Confezione L. 25		ina Ø 1,5		L.	6.000
MICRODEVIATORI 1 MICRODEVIATORI 2	via			L.	800 1,200
PACCO da 100 resist	enze ass			L.	1.000
PACCO da 100 conde PACCO da 100 ceram PACCO da 40 elettro	nici assor	titi		L. L.	1.000 1.000 1.200
RELAYS FINDER 12\	//3A - 3 s	c. calotta	plasica	L.	2.100
RELAYS FINDER 12\ RELAYS 220V ca :	2 sc. 115A	1		L. L.	2.100 900
polvere con vento MOTORE LESA PER	la centrifi LUCIDAT	zzoie, per uga in pla: RICE 220 V	aspira- stica //550 VA	L.	1.000
con ventola centri MOTORINO LESA 16	fuga			L.	5.000 1.000
SIRENE ATECO — AD12: 12V/11A - 132 — ESA12 - 12VVcc/3		giri/min	114 dB	L.	18.000
- S12D - 12Vcc/10W			_	L.	11.500
BIT SWITCH per pro			r	L.	300
 1004 a 4 interrutto 1007 a 7 interrutto 	ri			L.	2.400 3.300
- 1010 a 10 interrutto	ori			L.	3.900
PULSANTI L.M. per	tastiere o	i C.E.		L.	750
CONTATTI REED IN		A DI VETI	RO		450
 lunghezza mm 20 - lunghezza mm 32 - 	· Ø 4			L.	450 300
— lunghezza mm 48 -	- 10 6			L.	250
MAGNETINI per REE CONTENITORE 16-15-		160 x 150	x 80 h	L.	250 2.800
STRUMENTI INDICAT	TORI DA	PANNELLO)		
SHINOHARA a b.m., 50uA-100uA-200uA	mascheri	na in plexi	glass:	1	8.000
— 1mA-10mA-100mA-1 — 15V-30V-300V	A-5A-10A			L. L.	7.800 7.800
e postali) e le spe	se di im	ballo, son	o a to	tale	e ca-

Le spese di spedizione (sulla base delle vigenti tariffe postali) e le spese di imballo, sono a totale ca rico dell'acquirente. Le spedizioni vengono fatte solo dalla sede di Bologna. Non disponiamo di catalogo.

Un apparato in grado di segnalarvi una fuga di gas non serve ad impedirvi di pagare una quantità di gas in più di quanto ne abbiate utilizzato, ma vi consentirà di ottenere qualcosa di meglio cioè salvare la vostra vita.

SEGNALATORE di FUGHE

Abbiamo volutamente acquistato per una settimana tutti i quotidiani pubblicati giornalmente in Italia, per verificare quante persone perdono la vita a causa di una fuga di gas.

A questo punto possiamo senz'altro affermare, e questo potreste verificarlo voi stessi, che non passa giorno senza che il gas non mieta almeno una vittima.

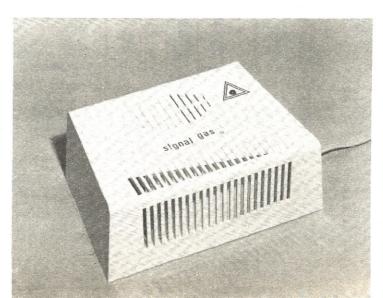
Oggi può essere successo in provincia di Bari, ieri si è verificato a Genova, od in una piccola località nei dintorni di Bologna, e così via.

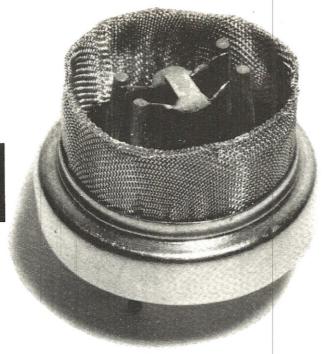
Si tratta purtroppo di notizie che non vengono mai riportate contemporaneamente su tutti i giornali, perché quando il numero delle vittime è limitato ad una sola persona, od al massimo due, non «fanno cronaca» e compaiono tutt'al più in un piccolo trafiletto, sulla cronaca locale del giornale dove si è verificata la disgrazia.

Solo quando si verifica una catastrofe, cioè allorché esplode un appartamento od un intero palazzo, la stampa di tutta la penisola ed anche la TV la portano all'attenzione di tutti.

Sta di fatto che oggigiorno il gas è presente in ogni casa, con tutti i vantaggi e gli inconvenienti che la sua presenza comportano: forse sarà capitato anche a voi, o a vostra moglie che, una volta messo sul fornello il pentolino del latte,

questo, bollendo, sia fuoriuscito spegnendo immediatamente la fiamma del fornello.


Questo inconveniente capita spessissimo in tutte le case; se capita quando ci troviamo in cucina ce ne accorgiamo subito, ma se fossimo in un'altra stanza, o a pulire le scale, cosa accadrebbe?


Il guaio è che non sempre si verifica una fuga di gas a causa del latte; nessuno può infatti confermarci che un rubinetto duri in eterno, anche quelli dell'acqua necessitano ogni tanto di una riparazione, non vediamo pertanto la ragione per cui il rubinetto del gas non possa anch'esso a lungo andare deteriorarsi. Lo stesso dicasi per il tubo di raccordo che collega la presa a muro con il fornello: il tubo di gomma può screpolarsi, o rompersi, od infine addirittura sfilarsi se inavvertitamente, facendo le pulizie, lo urtassimo con una scopa.

Le eventuali cause che portano ad una fuga di gas possono d'altronde essere imputabili, oltre che alla nostra disattenzione od a fattori tecnici, anche ad altri motivi; i bambini infatti, attratti irresistibilmente dalle manopole lucide e colorate del fornello, potrebbero a loro volta provocare prima o poi l'irreparabile.

Per limitare al minimo questi pericoli, le azien-

À montaggio ultimato, il nostro segnalatore di fughe di gas troverà posto in questo elegante mobile in plastica antiurto, studiato appositamente per non deturpare l'estetica dell'ambiente in cui verrà collocato.

di GAS

de erogatrici provvedono a miscelare il gas con una sostanza avente un odore caratteristico, onde darci la possibilità di avvertire, con l'uso dell'olfatto, qualunque perdita che si verificasse nel nostro appartamento; ma se questa stessa perdita si verificasse invece durante le ore notturne, mentre stiamo dormendo, cosa potrebbe accadere?

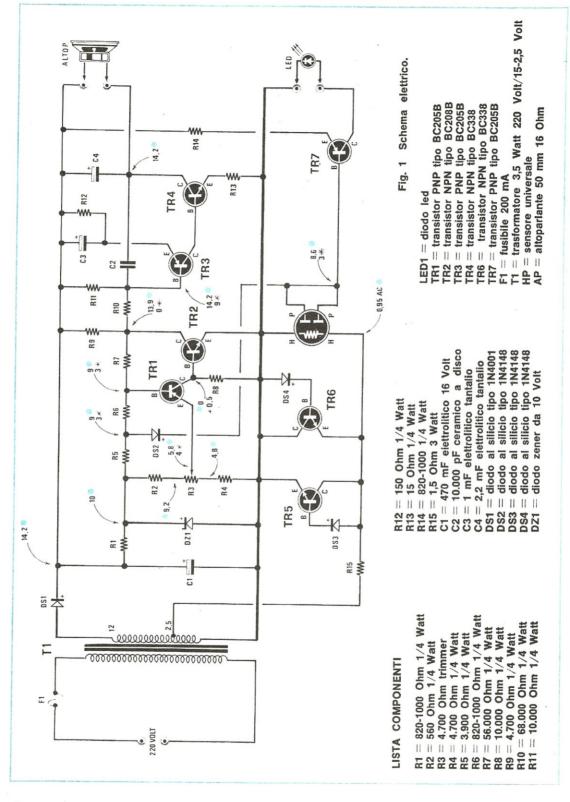
Non siamo qui per fare delle tragiche previsioni, ma piuttosto per cercare di prevenire tutti gli inconvenienti sopraccitati presentandovi un apparato che, in presenza di una fuga di gas, avverta con un segnale acustico del pericolo che incombe su di noi.

Il progetto che vi presentiamo è in grado di segnalare la presenza di qualsiasi tipo di gas vapori, cioè:

- Idrogeno (gas)
- Alcool (vapori)
- Fumo (qualsiasi genere)
- Etanolo
- Ossido di carbonio (gas)
- Olii volatili (vapori)
- Acetone (vapori)
- Metano (gas)
- Acetilene (gas)
- Benzina (vapori)
- Propano (gas)
- Freon (gas)
- Ammoniaca (vapori)
- Esano (gas)
- Butano (gas)
- Gas di città (gas)
- Trielina (vapori)

Ecco come si presenta internamente la sonda rivelatrice di gas: si noti lo strato di materiale semiconduttore che riveste il filamento.

A titolo informativo possiamo aggiungere che il nostro «segnalatore di gas» è in grado di rivelare una concentrazione di gas, o vapori di gas, dello 0,4%, che è al disotto dei valori di sicurezza (sia per quanto riguarda la tossicità, sia per quanto riguarda il limite di esplosività).


Prima di presentarvi lo schema elettrico sarà utile accennarvi su quale principio funziona la « sonda rivelatrice di gas », in quanto è su questo componente che si basa il funzionamento di tutto il circuito.

Questa, come è possibile vedere dalle foto di testa, appare esternamente come un grosso ditale, ricoperto totalmente da una fitta griglia metallica.

Nell'interno della sonda è presente un filamento, rivestito da uno strato di materiale semiconduttore (Sn02, cioè biossido di stagno) che costituisce le due placche.

· Quando il materiale semiconduttore di cui è rivestito il filamento non è posto in prossimità di alcun gas, tra filamento e placche esiste una resistenza ohmica che generalmente si aggira sui 100.000 Ohm; se un qualunque gas, tra quelli sopraccitati, o del fumo, colpisce il biossido di stagno, questo modifica le sue caratteristiche semiconduttrici e la resistenza ohmica che prima si aggirava intorno a 100.000 Ohm, scende al valore di circa 18.000-20.000 Ohm. Questa caratteristica viene sfruttata dal nostro circuito per segnalare la fuga di gas.

Dal corpo inferiore della sonda ovviamente fuoriescono i quattro terminali di utilizzazione, due dei quali sono contrassegnati dalla lettera H

e corrispondono ai collegamenti del filamento, mentre gli altri due, non contrassegnati, si riferiscono invece ai collegamenti delle placche, che debbono risultare collegate in parallelo tra di loro.

SCHEMA ELETTRICO

In fig. 1 è visibile lo schema elettrico completo del « segnalatore di gas ».

Come potrete facilmente constatare da questa figura, il trasformatore T1 è provvisto di un secondario in grado di fornire due tensioni alternate; la prima di queste, avente un valore di 2,5 Volt, verrà stabilizzata tramite il circuito composto dai due transistor TR5 e TR6, ad un valore di circa 0,95 Volt, per alimentare il filamento della sonda.

La seconda, avente un valore di circa 12 Volt, verrà raddrizzata dal diodo DS1 e successivamente filtrata dal condensatore C1, ottenendo così una tensione continua di circa 14,2 Volt. che sfrutteremo per alimentare tutto il circuito.

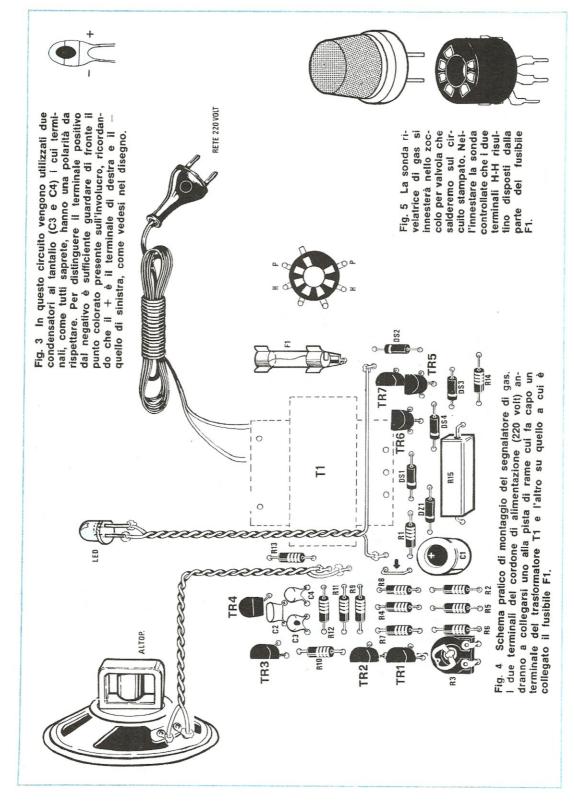
Più precisamente, utilizzeremo questi 14,2 Volt per alimentare direttamente il « generatore di nota » costituito dai due transistor TR3 e TR4, mentre lo stadio composto dai due transistor TR1 e TR2 verrà alimentato con una tensione inferiore (circa 10 Volt), che otterremo stabilizzandola tramite il diodo zener indicato nello schema dalla sigla DZ1.

I due transistor TR1 e TR2 (un PNP BC205 II primo ed un BC208 II secondo) sono montati in questo circuito in modo da ottenere un sen-

sibilissimo « trigger di Schmitt », cioè un dispositivo in grado di modificare entro ampi valori la tensione in uscita (da 13,9 a 0 Volt) con piccole variazioni di tensione sull'ingresso.

Se noi confrontiamo le tensioni presenti sul circuito a sonda disseccitata, con quelle che si presentano a sonda eccitata, potremo già in linea di massima intuirne il funzionamento. Quando cioè la sonda non rileva la presenza di gas, noteremo come ai capi delle resistenze R5 e R6 (dove esse si congiungono al diodo DS2) è presente una tensione di circa 9 Volt. (Nota: Sullo schema le tensioni riportate con asterisco sono quelle relative a sonda eccitata).

La stessa tensione sarà altresì presente sulla base di TR1 ed in tali condizioni, sul collettore di TR2, sarà presente una tensione positiva di circa 13.9 Volt.


Se la sonda rileva una fuga di gas, la sua resistenza interna diminuisce ed essa assorbe dal nodo comune di R5 e R6 (tramite il diodo DS2) una corrente tale da provocare sulla base del transistor TR1 una caduta di tensione tale che dal valore iniziale di 9 Volt, questa scende a valori compresi tra 2,5 e 3,5 Volt.

In tali condizioni il « trigger di Schmitt » scatta e sul collettore di TR2, dove prima era presente la tensione di 13,9 Volt, ora avremo una tensione di valore nullo, cioè 0 Volt.

Poiché sul collettore di TR2 è collegata la resistenza R10, in pratica otterremo la stessa condizione che si avrebbe se tale resistenza fosse commutata, tramite un deviatore, tra la resistenza R9 (collettore di TR2) e la massa.

Quando la R10 è collegata a R9, la base del

transistor TR3, essendo questo un PNP, non risulterà polarizzata, mentre quando questa si trova collegata a massa, il transistor TR3 sarà messo in condizioni di funzionare, quindi l'altoparlante emetterà la caratteristica nota di pericolo.

Il transistor TR7, che noi utilizziamo per accendere il diodo led LED1, la cui base come si potrà notare è collegata alle placchette della sonda rivelatrice, assolve ad una duplice funzione

- il diodo ci conferma con la sua luminescenza che l'apparecchio è in funzione, cioè ci indica se abbiamo collegato correttamente la spina alla rete a 220 Volt.
- 2) Il transistor TR7, così collegato, ci permette pure di stabilire se la sonda rivelatrice è perfettamente inserita sul suo zoccolo; non solo, ma poiché questa potrebbe dopo lungo tempo esaurirsi od il filamento per una sovratensione bruciarsi, se questo dovesse accadere, anche se l'apparecchio è alimentato, il diodo led si spegnerebbe, confermandoci cioè che la sonda non è più in grado di assolvere le sue funzioni e quindi andrà sostituita.

REALIZZAZIONE PRATICA

Il circuito stampato necessario a ricevere i componenti del segnalatore di gas è visibile a grandezza naturale in fig. 2. Su questo, come vedesi in fig. 4, troveranno posto tutti i componenti, ad esclusione dell'altoparlante e del diodo LED1 che, come vedremo in seguito, andranno invece montati su un supporto in plastica appositamente sagomato.

Inizieremo il montaggio saldando tutte le resistenze ed il trimmer R3, il condensatore elettrolitico C1 e quello ceramico C2, infine i due condensatori al tantalio C3 e C4. Per quanto concerne questi due ultimi condensatori dovremo fare molta attenzione alla loro polarità; per chi ancora non lo sapesse, sul corpo di questi componenti è presente un punto colorato, che serve appunto per individuare il terminale positivo, che si trova sulla sinistra, da quello negativo che, chiaramente, sarà posto a destra. C3 andrà montato sullo stampato con il « punto » colorato rivolto verso R12, mentre C4 con il punto colorato rivolto verso il transistor TR4, come del resto appare ben visibile sullo schema pratico di fig. 4,

Procederemo poi saldando sullo stampato i diodi, facendo attenzione a non invertire la loro polarità, ed i transistor. A questo punto eseguiremo l'unico ponticello richiesto, indicato nello schema pratico di fig. 4 da una piccola freccia.

Inseriremo i capicorda ed il portafusibile negli appositi fori presenti sullo stampato; la « sonda rivelatrice » non andrà invece direttamente saldata allo stampato, ma ad uno zoccolo per valvole (a 7 fori), di cui lascieremo fuori dallo stampato un terminale, come raffigurato nello schema pratico.

Non resta ora che montare sullo stampato il trasformatore T1 e, sopra a questo, con una leggera pressione, la sagoma in plastica visibile in fig. 6, destinata a ricevere il diodo LED1 e l'altoparlante; collegheremo poi i terminali del diodo Led, facendo attenzione a non scambiarne la polarità, e dell'altoparlante ai rispettivi capicorda presenti sullo stampato.

A questo punto provvederemo infine a collegare il cordone di alimentazione, saldandone gli estremi **sotto** allo stampato, in modo che uno dei suoi capi vada al primario del trasformatore e l'altro capo al morsetto d'ingresso del portafusibile

Non resta ora che inserire nel loro alloggiamento, sia il fusibile, sia la «sonda rivelatrice». Per quanto riguarda quest'ultimo componente, guarderemo da sotto per individuarne i due terminali del filamento, contrassegnati dalla lettera «H» e faremo in modo che questi vadano ad infilarsi nello zoccolo, in modo che quelli contrassegnati dalla lettera «H» siano rivolti verso il trasformatore, occupando i fori 2 e 5 dello zoccolo stesso.

A questo punto non resta che montare il tutto sulla base della scatola in plastica, destinata
a racchiudere il nostro « segnalatore di gas » ed
infilare nelle apposite sedi, cioè nelle scanalature presenti su questa base, i due schermi
anch'essi in plastica, che servono a separare
la sonda rivelatrice dalla restante parte del circuito,

In ultimo, per completare il montaggio, racchiuderemo il tutto nel cofanetto in plastica ed a questo punto il nostro segnalatore di gas sarà pronto a funzionare immediatamente

TARATURA E CONSIGLI UTILI

Una volta terminato il montaggio, occorre innanzitutto procedere alla taratura del nostro dispositivo; il procedimento da seguire, per effettuare questa semplice operazione, è il seguente:

- Per prima cosa inseriremo la spina nella rete; contemporaneamente vedremo accendersi il diodo Led e sentiremo che l'altoparlante emetterà un suono.
- 2) A questo punto lascieremo che l'apparecchio funzioni nel modo descritto per circa 3-5 minuti, in quanto tale durata di tempo è necessaria per poter dar modo a tutto il circuito di stabilizzarsi (infatti quando il circuito si sarà stabilizzato, il suono cesserà).

(Nota: anche quando l'apparecchio risulterà tarato, ogni volta che inseriremo la spina nella presa di rete, questo emetterà per circa 1-2 minuti il solito segnale acustico, cioè fino a quando la «sonda rivelatrice» non si sarà stabilizzata. Lo stesso dicasi se per una ragione qualsiasi venisse a mancare la corrente elettrica; in tal caso, l'emissione della nota acustica starà appunto a dimostrare che il dispositivo è in perfette condizioni di funzionamento e attende solo che il filamento della sonda si stabilizzi).

Una volta che l'apparecchio si sia stabilizzato, cioè quando smetterà di suonare, collegheremo tra il cursore del trimmer R3 e la massa un tester sulla portata 5 Volt fondo-scala. (Il trimmer serve, in fase di taratura, per portare la tensione dell'emettitore del transistor TR1 ad un valore di circa 4 Volt) quindi ruoteremo il trimmer R3 fino a leggere sul tester una tensione di circa 4 Volt.

A questo punto voi stessi potrete controllare direttamente l'efficienza del rivelatore, avvicinando alla sonda una sigaretta accesa, in modo che il fumo emesso da quest'ultima possa raggiungere la retina metallica che la protegge.

Non appena il fumo verrà a contatto con la capsula, l'altoparlante emetterà un suono d'allarme (cioè il caratteristico allarme che abbiamo ascoltato all'inserimento della spina nella presa di rete), che perdurerà fino a quando il fumo stesso non si sarà diradato.

Per effettuare la prova descritta, non vi consigliamo di convergere sulla sonda una boccata di fumo, in quanto in tal modo la concentrazione risulterebbe inferiore allo $0.4^{\circ}/_{\circ}$ (a meno che non siate vicinissimi alla sonda stessa); potrete ugualmente controllare il circuito avvicinando la sonda stessa sopra ad un fornello a gas, aperto **quel tanto che basta** per far uscire una minima quantità di gas.

A questo punto vorremmo anche fornirvi qualche consiglio utile, troppo spesso trascurato ed invece molto importante da conoscere, allorché

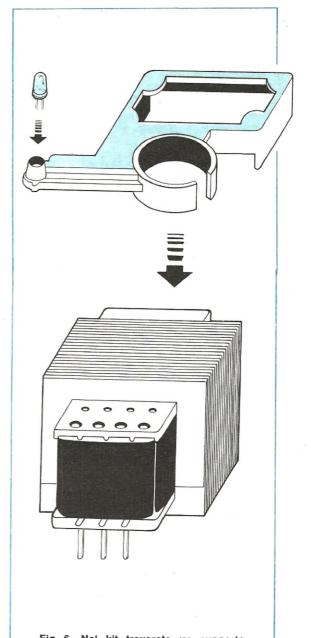


Fig. 6 Nel kit troverete un supporto in plastica simile a quello disegnato in alto, che infilato sul trasformatore T1, servirà da sostegno per il diodo led e per l'altoparlante, il cui magnete si innesterà nel vano circolare. Nell'inserire il trasformatore sul circuito stampato non potrete incorrere in nessun errore, in quanto il lato provvisto di tre terminali è, come intuibile, il secondario a bassa tensione.

si installano in una abitazione dei « segnalatori di gas ».

Se volete ottenere la massima sicurezza, per segnalare eventuali fughe di gas, dovete tenere innanzitutto presente che alcuni gas, sono più leggeri dell'aria, mentre altri gas sono più pesanti dell'aria.

Tra i più leggeri dell'aria possiamo elencare i seguenti gas o vapori:

- Metano
- Fumo
- Benzina
- Freon
- Ammoniaca
- Trielina
- Acetilene

Nei più pesanti dell'aria possiamo elencare seguenti gas o vapori:

- Propano
- Butano
- Ossido di carbonio

Nel primo caso provvederemo pertanto ad installare il nostro segnalatore di gas ad un'altezza minima di due metri e nelle immediate vicinanze del fornello, mentre nel secondo caso lo installeremo molto vicino a terra, cioè a circa 30 cm dal suolo.

A questo punto, una volta installato l'apparecchio, se sentiste improvvisamente suonare l'allarme del « segnalatore di gas » (Nota: a meno che, come già detto in precedenza, non sia ve-

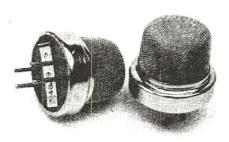


Fig. 7 Le sonde rivelatrici da noi fornite sono universali, cioè sensibili a tutti i gas velenosi o esplosivi, quindi consigliamo di non sostituirle con altre similari anche se meno costose, perché queste ultime hanno una gamma di sensibilità più ristretta.

nuta improvvisamente a mancare la corrente elettrica; in tal caso l'apparecchio suonerà per circa 1-2 minuti per permettere alla sonda di stabilizzarsi), la prima operazione da compiere è la seguente:

Aprite immediatamente porte e finestre, in modo che l'aria possa liberamente circolare ed abbassare la concentrazione di gas presente nei vari ambienti della vostra casa, a partire dalla stanza in cui si trova il fornello.

Non accendete per nessun motivo, né fiamme di alcun genere, né interruttori elettrici, in quanto in tal caso sarebbe sufficiente la minima scintilla per far esplodere tutto l'appartamento; solo quando il « segnalatore » avrà cessato di emettere il suo segnale acustico d'allarme, potrete accendere tranquillamente la luce e controllare da dove si sia sprigionata la fuga, cioè se abbiamo inavvertitamente lasciato aperto il rubinetto del fornello, o rotto un tubo di gomma, od ancora se non sia addiritura la bombola ad essere difettosa (per chi avesse naturalmente la bombola).

Pertanto, anche dopo una prolungata assenza, ritornando dalle ferie o da un Week-end, prima di entrare ed accendere immediatamente la luce, accertatevi innanzitutto di non sentire alcun segnale d'allarme emesso dal « segnalatore di gas ».

Poiché il nostro rivelatore di gas è in grado di segnalare anche la presenza di vapori non certo esplosivo, ma allo stesso modo non meno pericolosi, come l'ossido di carbonio, potrà trovare una utile applicazione nei «garage», per segnalare i venefici «gas di scarico» provenienti dai tubi di scappamento, o nelle cantine, dove vi sia del mosto d'uva in fermentazione, oppure ancora per prevenire malori a volte mortali, come spesso accade a chi scende in un silos od in in una cisterna senza prima controllare che in esse non vi siano dei vapori venefici.

Come si può facilmente constatare, con una certa dose di previdenza ed una modica spesa, si possono a volte evitare delle catastrofi.

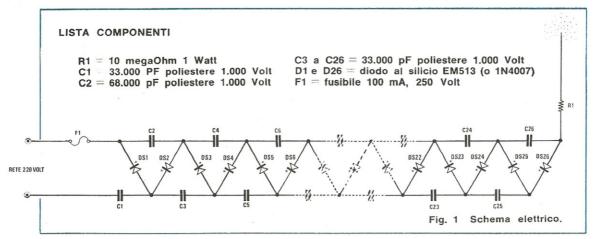
COSTO DEI COMPONENTI

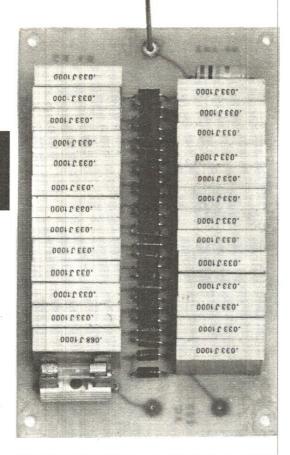
Tutto il materiale indispensable per il montaggio, compreso il sensor, il cir- cuito stampato, il contenitore, il cordo-	
ne di alimentazione	L. 20.000
Il Kit già montato e tarato	L. 28.000

È risaputo che al variare delle condizioni meteorologiche ogni individuo reagisce secondo la sua sensibilità: c'è il tipo che diventa nevrotico, chi subisce degli stress, chi denota scarsa concentrazione. Il circuito che vi presentiamo servirà a ristabilire quell'equilibrio bioelettrico di cui il nostro organismo ha bisogno.

BIOSTIMOLATORE a IONI

Da tempo si sa che le varie situazioni climatiche sono in grado di influenzare l'uomo, e da anni gli scienziati si sono dedicati a studiare quale fattore, o fattori, risultino i principali responsabili di quei meccanismi in base ai quali il nostro corpo risulta fortemente sensibile alle variazioni del clima.


Per variazioni del clima non si intendono quelle per cui, quando piove o fa freddo, si prende inevitabilmente un raffreddore, oppure che in estate si suda mentre d'inverno si sente freddo, ma piuttosto quelle variazioni apparentemente invisibili ed inspiegabili per cui un essere umano, senza alcuna ragione evidente, è ora più eccitabile o depresso del solito, od accusa infine altri disturbi che il giorno dopo scompaiono senza alcun motivo, così come erano apparsi.


Questi fenomeni, chiamati « metereopatia », li subiamo un po' tutti, anche se non sappiamo quasi mai a cosa attribuirne la causa.

Chi di noi non si sente più eccitato del solito in una giornata di vento? Chi non sfrutta il suo « callo » per pronosticare, meglio di Bernacca, una probabile variazione del tempo? Ebbene, la conclusione di tutti gli studi svolti su questo problema, ha portato ad interessanti scoperte; tutte quelle forme negative di cui il nostro organismo risente e che sfociano in manifestazioni diverse a seconda dell'individuo, con irritabilità, stress, depressione fisica, scarsa concentrazione, mancanza di memoria, svogliatezza, inappetenza, ecc. sono causate unicamente dall'aumento di un ormone chiamato « serotonina », che gli scienziati hanno addebitato ad un accumulo eccessivo di ioni positivi nel nostro corpo.

Non vogliamo ora certamente riscrivere al completo le relazioni medico-scientifiche in materia e provenienti dai centri di ricerca più disparati, ma possiamo condensare questo argomento con un linguaggio più comprensibile a tutti, onde porre chiunque nella condizione di poterne evitare gli effetti negativi.

Diciamo subito che il fenomeno di cui ora trattiamo è causato dal campo elettrico terrestre e più precisamente dalla variazione di concentrazione di ioni negativi nell'atmosfera. Quando gli ioni negativi sono abbondanti, il nostro organismo subisce dei complessi stimoli bioelettrici che ne

Come si presenta a costruzione ultimata il biostimolatore a ioni negativi descritto in questo articolo. I condensatori utilizzati debbono necessariamente risultare da 1.000 volt lavoro.

NEGATIVI

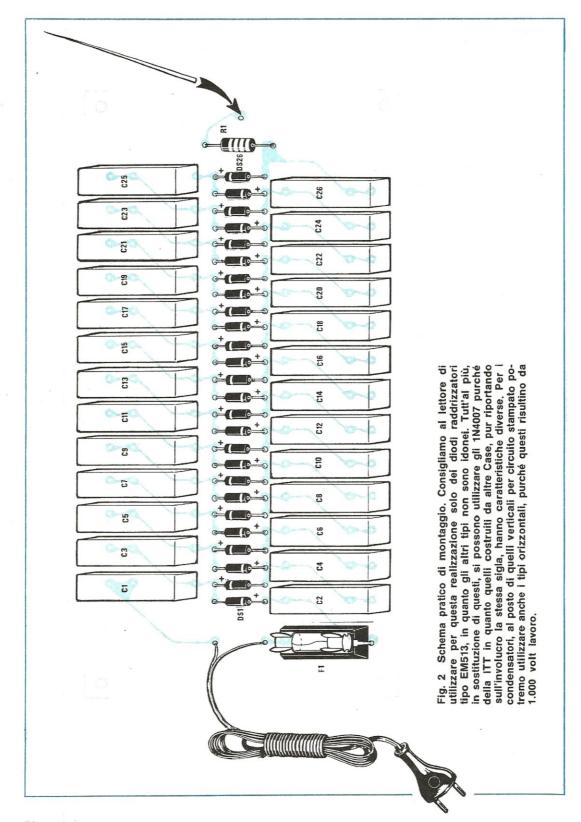
stema nervoso funziona tramite impulsi elettrici, anzi che « tutto il corpo » funziona perfettamente solo se il campo elettrico che lo circonda è quello che più si confà al nostro sistema neuro-vegetativo; diversamente, anche una piccola variazione dello stesso campo elettrico esterno si ripercuote immediatamente sul nostro organismo, provocando disturbi che troppo spesso addebitiamo a cause apparentemente sconosciute.

È quindi stato dimostrato scientificamente che la carenza di ioni **negativi** è patologicamente nociva per il nostro organismo, mentre un eccesso di tali cariche non porta ad alcun inconveniente.

Dopo aver quindi letto e studiato a fondo le relazioni dei « luminari della scienza », siamo rimasti sufficientemente influenzati dai probabili effetti derivanti dagli ioni negativi che, contrariamente a quanto il loro nome potrebbe far supporre, apportano in realtà al nostro organismo dei notevoli e tangibili effetti positivi (nel senso più ampio del termine e non solo in senso elettrico): ancor maggiormente ci siamo convinti della serietà della cosa, dopo aver letto che la « NASA » installa nelle capsule spaziali dei generatori di ioni negativi, al fine di non creare degli scompensi biologici agli astronauti.

A questo punto, non potevamo che pensare di realizzare a nostra volta questo dispositivo, al fine di presentarlo sulle pagine della rivista e permettere a moltissime persone di fruirne i benefici effetti.

Una volta realizzato il generatore di ioni negativi, chi notasse un benessere fisico non potrà che affermare che quanto da noi riferito corrisponde alla pura e semplice verità; certo che con questo apparecchio non potremo pretendere l'impossibile e nemmeno sperare che, giungendoci un avviso di cambiale che non possiamo pagare, mettendosi vicino al generatore ed aspirando un po' di ioni negativi, si salti dalla gioia esclamando che oggi è una giornata stupenda.


sollecitano l'intelligenza, ne eliminano la depressione fisica, lo rendono meno irritabile, lo eccitano con una carica di buonumore che si ripercuote su tutto l'organismo.

Se vi è invece una carenza di ioni negativi, o peggio, una eccedenza di ioni positivi, il nostro organismo reagisce negativamente.

La natura stessa cerca di ristabilire nel limite delle sue possibilità questo equilibrio, inserendo nell'atmosfera delle molecole ricche di ioni negativi e povere di ioni positivi, tramite i raggi ultravioletti del sole. Tutto ciò non è tuttavia sufficiente; la pressione atmosferica, l'altezza del suolo, le condizioni meteorologiche, possono infatti impedire che al nostro corpo giunga la necessaria « carica » di ioni negativi: non solo, ma poiché la terra stessa è a potenziale negativo rispetto all'atmosfera, questa agisce come un'enorme calamita, attirando verso il suolo le cariche positive e lasciando ad alta quota le cariche negative.

Avviene quindi che il nostro corpo, al contrario di quanto dovrebbe altresi risultare, si carichi a volte troppo positivamente ed accusi dei disturbi organici di svariata natura.

Del resto è da tempo risaputo che il nostro si-

SCHEMA ELETTRICO

Il sistema più semplice per ottenere degli ioni negativi consisterebbe nell'utilizzare un trasformatore-elevatore di tensione, in grado di erogare sul proprio secondario circa 6.000 Volt, quindi nel raddrizzare tale tensione in modo da ottenere una tensione negativa (rispetto alla terra) di circa 8.000 Volt.

Questo sistema tuttavia, anche se è il più semplice, può risultare in pratica il più difficile da realizzare, per l'impossibilità di reperire in commercio un trasformatore avente le caratteristiche descritte e che sarebbe oltremodo assurdo ed anche notevolmente costoso farsi avvolgere appositamente.

Tenendo quindi in considerazione questi problemi, abbiamo deciso di realizzare un circuito che non richieda alcun trasformatore, sfruttando solo ed unicamente la tensione di rete a 220 Volt.

Come è illustrato in fig. 1, per ottenere questo si è sfruttato il principio dei duplicatori di tensione e così facendo sono risultati sufficienti 26 diodi tipo EM513 (o 1N4007), onde ricavare, al termine di tale catena di diodi, gli 8.000 Volt necessari per far funzionare il nostro progetto.

Guardando lo schema elettrico riportato in fig. 1, è intuitivo che non ci siamo preoccupati di disegnare tutti i 26 diodi, e quindi altrettanti condensatori da 33.000 pF/ 1.000 Volt, in quanto non solo ogni stadio è perfettamene analogo al precedente, ma anche perché lo schema pratico di fig. 2 già ci permetterebbe da solo di ricavare il circuito completo.

Sull'ultimo diodo, come del resto appare visibile in fig. 1, risulta collegata una resistenza da 10 megaOhm, la cui estremità farà capo all'ago emettitore di ioni negativi.

A questo punto possiamo tranquillizzare i lettori, che potranno impunemente toccare l'ago, anche con le mani bagnate, senza avvertire la minima « scossa elettrica », pur essendo questo

Fig. 3 Questo biostimolatore, oltre che per gli usi descritti, può essere impiegato anche per impedire che entro ai solchi di un disco si depositi della polvere, infatti, passando vicino alla superficie del disco la punta emettitrice, questa si caricherà negativamente, ottenendo così l'effetto desiderato.

dispositivo alimentato direttamente con la tensione di rete a 220 Volt.

REALIZZAZIONE PRATICA

Il generatore di ioni negativi troverà posto sul circuito stampato LX218.

Lo schema di fig. 2 ci mostra chiaramente la disposizione dei vari componenti sullo stampato e per questo non riteniamo necessario alcun ulteriore commento.

Riteniamo tuttavia utile a questo punto fare notare ai lettori due importanti particolari; innanzitutto quello dei condensatori in poliestere utilizzati in questo montaggio, che debbono necessariamente risultare da 1.000 Volt di lavoro, in quanto tra i capi di tali condensatori è presente una differenza di potenziale di circa 650 Volt e quindi condensatori aventi una tensione di lavoro di 640 Volt risulterebbero insufficienti allo scopo.

In secondo luogo dovremo fare attenzione ad inserire correttamente i diodi raddrizzatori, rispettando la loro polarità e soprattutto non tentando di impiegare diodi diversi dagli 1N4007 o EM513, a meno che non risultino da 1.000-1.200 Volt di lavoro.

La punta emettitrice di ioni negativi, che andrà saldata direttamente sul circuito stampato, potrà essere costituita da un filo di acciaio, da un ago da lana, o, più semplicemente, da un filo di rame da 1 mm.; la lunghezza di tale ago non è critica, comunque consigliamo di non scendere sotto ad una lunghezza di 5 cm.

A costruzione ultimata, tutto il montaggio andrà racchiuso in una scatola di legno o di plastica, lasciando la punta emettitrice all'esterno.

A QUESTO PUNTO

Giunti a questo punto siamo certi che tutti voi. collegando il vostro circuito, appena montato, alla rete a 220 Volt, vi attenderete di vedere qualco-

sa; purtroppo gli «ioni» non si vedono e a voi rimarrà il seguente dubbio:

Tale apparecchio genera questi ioni oppure no? State certi che l'apparecchio funzionerà perfettamente e per accertarci di questo basterà che avviciniate alla punta emettitrice la vostra mano.

Tenendo infatti il palmo della mano a pochi centimetri dalla punta, sentirete chiaramente un « soffio d'aria », come se esistesse un minuscolo ventilatore sotto alla punta; questo vento è causato dagli ioni negativi che vengono sparati, se così si può dire, dalla punta emettitrice nell'ambiente e che si allontanano dall'ago ad una certa velocità.

A titolo puramente indicativo, possiamo affermare che questo generatore di ioni è in grado di erogare circa duecentomila ioni per centimetro cubo e questo significa che una molecola su cinque/sei miliardi viene ionizzata; valore quest'ultimo più che sufficiente per ripristinare il giusto equilibrio di ioni negativi nell'ambiente che ci circonda.

Come già accennato, un eccesso di ioni negativi non è affatto nocivo per l'organismo, se non altro in considerazione del fatto che, in qualsiasi ambiente, parte di questi ioni negativi verranno automaticamente neutralizzati quando incontrano degli ioni positivi; oltre a ciò, una parte di questi viene attirata dal suolo, dai batteri, o da altre particelle sospese nell'aria, normalmente a carica neutra, e trascinati in seguito al suolo.

Leggiamo e riportiamo che il campo d'azione di questo dispositivo avente un'intensità terapeuticamente valida, si estende circolarmente entro un raggio massimo di circa 2 metri dalla punta emettitrice: è quindi ovvio che tale punta dovrà necessariamente essere posta in posizione alquanto rialzata e non troppo vicina ad oggetti o pareti, in quanto queste potrebbero attirare totalmente gli ioni negativi e la ionizzazione risulterebbe in tal caso decisamente inferiore al richiesto.

Ora che vi abbiamo spiegato l'importanza che gli ioni negativi rivestono sugli esseri umani e vi abbiamo insegnato come ottenerli, sta a voi decidere se questo progetto è degno o meno della vostra attenzione; purtroppo, quando si entra in certi argomenti ancora quasi sconosciuti della biomedicina non si ha contemporaneamente la possibilità di vederne subito gli effetti, al contrario di quanto si verifica se realizziamo un amplificatore od u nricevitore. A questo punto nonostante i tecnici della NASA abbiamo ritenuto necessario installare questo dispositivo sulle capsule spaziali, con uno scopo ben preciso e sicuramente provato, possiamo solo convalidare il giudizio degli scienziati oppure la nostra diffidente perplessità.

COSTO DEI COMPONENTI

CHIAMATE 051-46.11.09 PER CONSULENZA TELEFONICA

Questo servizio che la rivista mette a disposizione di ogni lettore può essere utilizzato solo ed esclusivamente nei seguenti giorni: ogni Lunedi dalle ore 9 alle 12,30; dalle 14,30 alle 19. Ogni Sabato dalle ore 9 alle ore 12,30.

Solo in questi due giorni della settimana (escluso i festivi o in casi particolari) i tecnici sono a disposizione per poter risolvere nel limite del possibile le vostre richieste. Non telefonate in giorni diversi perché essi sono in laboratorio e non possono rispondervi.

IMPORTANTISSIMO - Siate sempre brevi e concisi, non tenete i tecnici troppo al telefono, ricordatevi che altri lettori attendono che la linea risulti libera per poter esporre i loro quesiti.

AMPLIFICATORI COMPONENTI ELETTRONICI INTEGRATI S.p.A.

MILANO - v.le Bacchiglione 6 - tel, 02/5696241 - 5696242

MILANO - via Avezzana 1 - tel. 02/560797 - 5390335

NAPOLI - Ditta CEL - via Strettola S. Anna delle Paludi 126 - tel. 266325

CONDENSATORI TA	NTALIO	Compact cassette C/60 L. 600	FET	
A GOCCIA		Compact cassette C/90 L. 900	TIPO	LIRE
TIPO	LIRE	Alimentatori stabilizzati da 2,5 A 12 V o 15 V o 18 V L. 4.500		
0,1 mF 25 V	150	da 2.5 A 24 V o 27 V o 38 V o 47 V L. 5.200	SE5246	700
0,22 mF 25 V	150	Alimentatori con protezione elettronica anticircuito regolabili	SE5247	700
),47 mF 25 V	150	da 6 a 30 V e da 500 mA a 2 A L. 9.000	BC264	700
1 mF 16 V	150	da 6 a 30 V e da 500 mA a 4.5 A L. 11.000	BF244	700
1 mF 35 V	170	Alimentatori a 4 tensioni 6-7.5-9-12 V per mangianastri, man-	BF245	700
1,5 mF 16 V	150	giadischi, registratori, ecc. L. 2.900	BFW10	1.700
1.5 mF 25 V	170	Testine di cancellazione e registrazione Lesa, Geloso, Ca-	BFW11	1.700
2,2 mF 25 V	170	stelli, Europhon la coppia L. 2.800	MPF102	700
3.3 mF 16 V	150	Testine K7 la coppia L. 3.600	2N3819	650
3.3 mF 25 V	170	Microfoni K7 e vari	2N3820	1.000
4.7 mF 10 V	150	Potenziometri perno lungo 4 o 6 cm. e vari L. 250 Potenziometri con interruttore L. 280	2N3822	1.800
4,7 mF 25 V	170	Total Control Con . Information	2N3823	1.800
6,8 mF 16 V	150	Potenziometri micron senza interruttore L. 300 Potenziometri micron con interruttore radio L. 350	2N5248 2N5457	700
10 mF 10 V	150	Potenziometri micromignon con interruttore	2N5458	700
10 mF 20 V	170	Trasformatori d'alimentazione	MEM564C	1.800
22 mF 6.3 V	150	600 mA primario 220 secondario 6 V o 7,5 o 9 V o 12 V L. 1.600	MEM571C	1.500
22 mF 12 V	170	1 A primario 220 V secondario 9 e 13 V L. 2.300	40673	1.800
33 mF 12 V	170	1 A primario 220 V secondario 12 V o 16 V o 23 V L. 2.300	3N128	1.500
33 mF 16 V	190	800 mA primario 220 V secondario 7,5 + 7.5 V L. 1.500	3N140	1.800
47 mF 6,3 V	180 200	2 A primario 220 V secondario 30 V o 36 V L. 3.500	3N187	2.000
47 mF 12 V		3 A primario 220 V secondario 12 V o 18 V o 24 V L. 3.500	3N202	1.500
CONDENSATORI ELETT	ROLITICI	3 A primario 220 V secondario 12 + 12 V o 15 - 15 V L. 3.200	DARLING	
TIPO	LIRE	4 A primario 220 V secondario 15+ 15 V o 24+ 24 V o 24L. 6.800	Dritterito	
1 mF 12 V			TIPO	LIRE
1 mF 12 V	70	OFFERTE RESISTENZE, TRIMMER, STAGNO, CONDENSATORI Busta 100 resistenze miste L. 500	BD701	2.200
1 mF 25 V	80	Busta 100 resistenze miste L. 500 L. 600	BD702	2.200
2 mF 100 V	100	Busta 50 condensator elettrolitici L. 1.400	BD699	2.200
2.2 mF 16 V	100 80	Busta 100 condensatori elettrolitici L. 2.500	BD700	2.200
2.2 mF 25 V	80	Busta 100 condensator pF L. 1.500	BDX33	2.200
4.7 mF 12 V	80	Busta 5 condensatori elettrolitici a vitone, baionetta 2 o 3	BDX34	2.200
4,7 mF 25 V	80	capacità L. 1.200	TIP120	1.600
4.7 mF 50 V	100	Busta 30 potenziometri doppi e semplici e con interruttore	TIP121	1.700
5 mF 350 V	160	L. 2.200	T1P122	1.600
8 mF 350 V	200	Busta 30 gr stagno L. 260	TIP125	1.600
10 mF 12 V	200	Rocchetto stagno 1 kg a 63 % L. 8.200	TIP126	1.600
10 mF 25 V	80	Cuffie stereo 8 Ω 500 mW	TIP127	2.200
10 mF 63 V	100	Micro relais Siemens e Iskra a 2 scambi L. 2.100	TIP140	2.200
22 mF 16 V	70	Micro relais Siemens e Iska a 4 scambi L. 2.300	TIP141	2.200
22 mF 25 V	100	Zoccoli per micro relais a 2 scambi e a 4 scambi L. 280	TIP142	2.000
32 mF 16 V	80	Molla per micro relais per i due tipi L. 40	TIP145	2.200
32 mF 50 V	110	Zoccoli per integrati a 14 e 16 piedini Dual-in-line L. 280	T1P6007	2.000
32 mF 350 V	400	PIASTRA ALIMENTATORI STABILIZZATI	MJ2500	3.000
32 + 32 mF 350 V	600	Da 2.5 A 12 V o 15 V o 18 V L. 4.200	MJ2502	3.000
50 mF 12 V	80	Da 2.5 A 24 V o 27 V o 38 V o 47 V L. 5.000	MJ3000	3.000
50 mF 25 V	120	AMPLIFICATORI	MJ3001	3.100
50 mF 50 V	190	Da 1.2 W 9 V con tegrato SN7601 L. 1.600		
50 mF 350 V	440	Da 2 W 9 V con integrato TAA611B testina magnetica L. 2.000	REGOLATO	
50 + 50 mF 350 V	800	Da 4 W 12 V con integrato TAA611C testina magnetica L. 2.600	STABILIZZA	TORI
100 mF 16 V	100	Da 5+5 W 24+24 V completo di alimentatore escluso trasfor-	1,5 A	
100 mF 25 V	140	matore L. 15.000	TIPO	LIRE
100 mF 50 V	200 700	Da 6 W con preamplificatore L. 5.500	0	
100 mF 350 V 00 + 100 mF 350 V	1000	Da 6 W senza preamplificatore L. 4.500	LM340K4	2.600
200 mF 12 V	120	Da 10 + 10 W 24 + 24 V completo di alimentatore escluso tra-	LM340K5	2.600
200 mF 25 V	200	sformatore L. 19.000	LM340K12	2.6C-0
200 mF 50 V	250	Da 30 W 30/35 V L. 15.000	LM340K15	2.600
220 mF 12 V	120	Da 25 + 25 36/40 V SENZA preamplificatore L. 21.000	LM340K18	2.600
220 mF 25 V	200	Da 25 + 25 36/40 V CON preamplificatore L. 34.000		
250 mF 12 V	250	Alimentatore per amplificatore 30+30 W stabiliz, a 12 e 36 V	DISPLAY e	LED
250 mF 25 V	200	L. 13.000		
250 mF 50 V	300	5 V con preamplificatore con TBA641 L. 2.800	TIPO	LIRE
300 mF 16 V	140	1 000		
320 mF 16 V	150	CONTRAVES SPALLETTE L. 300	LED bianco	700
400 mF 25 V	250	decimali L. 2.000 ASTE filettate con dadi	LED rosso	300
470 mF 16 V	180	binari L. 2.000 L. 150	LED verdi	600
	180	RADDRIZZATORI B40 C2200/3200 850 B120 C7000 1.200	LED gialli	600
500 mF 12 V	250	B80 C7500 1.600 B200 C2200 1.500	FND70	2.000
500 mF 25 V	350	TIPO PREZZO B80 C2200/3200 900 B400 C1500 900	FND500	3:500
500 mF 25 V 500 mF 50 V		B30 C250 250 B100 A30 3.500 B400 C2200 1.500	DL707	2.400
500 mF 25 V 500 mF 50 V 640 mF 25 V	220			21 I
500 mF 25 V 500 mF 50 V 640 mF 25 V 1000 mF 16 V	220 300	B30 C300 350 B200 A30 B600 C2200 1.800	(con schem	
500 mF 25 V 500 mF 50 V 640 mF 25 V 1000 mF 16 V 1000 mF 25 V	220 300 400	B30 C300 350 B200 A30 B600 C2200 1.800 B30 C400 400 Valanga controllata B100 C5000 1.500	μ7805	2.000
500 mF 25 V 500 mF 50 V 640 mF 25 V 1000 mF 16 V	220 300 400 650	B30 C300 350 B200 A30 B600 C2200 1.800 B30 C400 400 Valanga controllata B100 C5000 1.500 B30 C750 450 6.000 B200 C5000 1.500	μ 7805 μ 7809	2.000
500 mF 25 V 500 mF 50 V 640 mF 25 V 1000 mF 16 V 1000 mF 25 V 1000 mF 50 V 1000 mF 100 V	220 300 400 650 1000	B30 C300 350 B200 A30 B600 C2200 1.800 B30 C400 400 Valanga controllata B100 C5000 1.500 B30 C750 450 6.000 B200 C5000 1.500 B30 C1200 500 B120 C2200 1.100 B100 C10000 2.800	μ 7805 μ 7809 μ 7812	2.000 2.000 2.000
500 mF 25 V 500 mF 50 V 640 mF 25 V 1000 mF 16 V 1000 mF 25 V 1000 mF 50 V	220 300 400 650	B30 C300 350 B200 A30 B600 C2200 1.800 B30 C400 400 Valanga controllata B100 C5000 1.500 B30 C750 450 6.000 B200 C5000 1.500	μ 7805 μ 7809	2.000

MILANO - v.le Bacchiglione 6 - tel. 02/5696241 - 5696242

MILANO - via Avezzana 1 - tel, 02/560797 - 5390335

NAPOLI - Ditta CEL - via Strettola S. Anna delle Paludi 126 - tel. 266325

			SEMICON	IDUTTORI		ruse 12 7	
TIPO	LIRETTIPO	LIRETTIPO	LIRE TIPO	LIREITIPO	LIBELTINO	LIDELTING	
EL80F	2.500 AF135	250 BC140	400 BC341	400 BD249	LIRE TIPO 3.600 BF233	LIRE TIPO	LIRE
EC8010	2.500 AF136	250 BC141	350 BC347	250 BD250	3.600 BF234	300 BU208 300 BU209	3.500 4.000
EC8100	2.500 AF137	300 BC142	350 BC348	250 BD273	800 BF235	250 BU210	3.000
AC116K	3.000 AF138 300 AF139	250 BC143 500 BC144	350 BC349	250 BD274	800 BF236	250 BU211	3.000
AC117K	300 AF147	300 BC145	450 BC360 450 BC361	400 BD281 400 BD282	700 BF237 700 BF238	250 BU212	3.000
AC121	230 AF148	350 BC147	200 BC384	300 BD301	900 BF241	250 BU310 300 BU311	2.200 2.200
AC122 AC125	220 AF149 250 AF150	350 BC148 300 BC149	220 BC395	300 BD302	900 BF242	250 BU312	2.000
AC126	250 AF164	300 BC149 250 BC153	220 BC396 220 BC413	300 BD303 250 BD304	900 BF251 900 BF254	450 BUY13	4.000
AC127	250 AF166	250 BC154	220 BC414	250 BD375	700 BF257	300 BUY14 450 BUY43	1.200 900
AC127K AC128	330 AF169	350 BC157	220 BC429	600 BD378	700 BF258	500 OC44	400
AC128K	250 AF170 330 AF171	350 BC158 250 BC159	220 BC430 220 BC440	600 BD432 450 BD433	700 BF259	500 OC45	400
AC132	250 AF172	250 BC160	400 BC441	450 BD433 450 BD434	800 BF261 800 BF271	500 OC70 400 OC71	220 220
AC135	250 AF178	600 BC161	450 BC460	500 BD436	700 BF272	500 OC72	220
AC136 AC138	250 AF181 250 AF185	650 BC167 700 BC168	220 BC461	500 BD437	600 BF273	350 OC74	240
AC138K	330 AF186	700 BC168 700 BC169	220 BC512 220 BC516	250 BD438 250 BD439	700 BF274	350 OC75	220
AC139	250 AF200	250 BC171	220 BC527	250 BD453	700 BF302 700 BF303	400 OC76 400 OC169	220 350
AC141	250 AF201	300 BC172	220 BC528	250 BD462	700 BF304	400 OC170	350
AC141K AC142	330 AF202 250 AF239	300 BC173 600 BC177	220 BC537 300 BC538	250 BD507	600 BF305	500 OC171	350
AC142K	330 AF240	600 BC178	300 BC538	250 BD508 250 BD515	600 BF311 600 BF332	300 SFT206 320 SFT214	1.000
AC151.	250 AF267	1.200 BC179	300 BC548	250 BD516	600 BF333	300 SFT307	220
AC152 AC153	250 AF279 250 AF280	1.200 BC180	240 BC549	250 BD585	900 BF344	350 SFT308	220
AC153K	350 AF367	1.200 BC181 1.200 BC182	220 BC595 220 BCY56	300 BD586 320 BD587	1000 BF345	400 SFT316	220
AC160	220 AL102	1.200 BC183	220 BCY58	320 BD588	1000 BF394 1.000 BF395	350 SFT320 350 SFT322	220
AC162 AC175K	220 AL103 300 AL112	1.200 BC184	220 BCY59	320 BD589	1.000 BF456	500 SFT323	220
AC178K	300 AL112 300 AL113	1.000 BC187 1.000 BC201	450 BCY71 700 BCY72	320 BD590	1.000 BF457	500 SFT325	220
AC179K	300 ASY26	400 BC202	700 BCY77	320 BD663 320 BD664	1000 BF458 1000 BF459	600 SFT337 700 SFT351	240 220
AC180	250 ASY27	450 BC203	700 BCY78	320 BDY19	1.000 BFY46	500 SFT352	220
AC180K AC181	300 ASY28 250 ASY29	450 BC204 450 BC205	220 BCY79	320 BDY20	1.000 BFY50	500 SFT353	220
AC181K	300 ASY37	450 BC205 400 BC206	220 BD106 220 BD107	1,300 BDY38 1,300 BF110	1.300 BFY51 400 BFY52	500 SFT367	300
AC183	220 ASY46	400 BC207	220 BD109	1.400 BF115	400 BFY56	500 SFT373 500 SFT377	250 250
AC184 AC184K	220 ASY48 300 ASY75	500 BC208	220 BD111	1.050 BF117	400 BFY51	500 2N174	2.200
AC185	300 ASY75 220 ASY77	400 BC209 500 BC210	220 BD112 400 BD113	1.050 BF118	400 BFY64	500 2N270	330
AC185K	300 ASY80	500 BC211	400 BD115	1.050 BF119 700 BF120	400 BFY74 400 BFY90	500 2N301 1.200 2N371	800 350
AC187	240 ASY81	500 BC212	250 BD116	1.050 BF123	300 BFW16	2.000 2N395	300
AC187K AC188	300 ASZ15 240 ASZ16	1.100 BC213 1.100 BC214	250 BD117 250 BD118	1.050 BF139	450 BFW30	1.600 2N396	300
AC188K	300 ASZ17	1.100 BC225	250 BD118 220 BD124	1.150 BF152 1.500 BF154	300 BFX17 300 BFX34	1.200 2N398 800 2N407	330 330
AC190	220 ASZ18	1.100 BC231	350 BD131	1.200 BF155	500 BFX38	600 2N409	400
AC191 AC192	220 AU106 220 AU107	2.200 BC232 1.500 BC237	350 BD132 220 BD135	1.200 BF156	500 BFX39	600 2N411	900
AC193	240 AU108	1.700 BC237	220 BD135 220 BD136	500 BF157 500 BF158	500 BFX40 320 BFX41	600 2N456 600 2N482	900
AC193K	300 AU110	2.000 BC239	220 BD137	600 BF159	320 BFX84	800 2N483	250
AC194 AC194K	240 AU111 300 AU112	2.000 BC250	220 BD138	600 BF160	300 BFX89	1.100 2N526	300
AD130	300 AU112 800 AU113	2.100 BC251 2.000 BC258	220 BD139 220 BD140	600 BF161	400 BSX24	300 2N554	800
AD139	800 AU206	2.200 BC259	250 BD140	600 BF162 900 BF163	300 BSX26 300 BSX45	300 2N696 600 2N697	400 400
AD142	800 AU210	2.200 BC267	250 BD157	800 BF164	300 BSX46	600 2N699	500
AD143 AD145	800 AU213 850 AUY21	2.200 BC268	250 BD158	800 BF166	500 BSX50	600 2N706	300
AD143	700 AUY21	1.600 BC269 1.600 BC270	250 BD159 250 BD160	650 BF167 2.000 BF169	400 BSX51 400 BU100	300 2N707	450
AD149	800 AUY27	1.000 BC286	400 BD162	650 BF173	400 BU102	1.500 2N708 2.000 2N709	350 700
AD150 AD156	800 AUY34 700 AUY37	1.200 BC287 1.200 BC288	400 BD163	700 BF174	500 BU104	2.000 2N711	600
AD157	700 BC107	1.200 BC288 220 BC297	600 BD175 270 BD176	600 BF176 600 BF177	300 BU105 400 BU106	4.000 2N914 2.000 2N918	300
AD161	650 BC108	220 BC300	400 BD177	700 BF178	400 BU106 400 BU107	2.000 2N918 2.000 2N929	400 350
AD162 AD262	800 BC109	220 BC301	440 BD178	600 BF179	500 BU108	4.000 2N930	350
AD262 AD263	850 BC113 700 BC114	220 BC302	440 BD179	600 BF180	600 BU109	2.000 2N1038	800
AF102	500 BC115	200 BC303 240 BC304	440 BD180 400 BD215	600 BF181 1.000 BF182	600 BU111 700 BU112	1.800 2N1100 2.000 2N1226	5.000
AF105	500 BC116	240 BC307	220 BD216	1.100 BF184	400 BU113	2.000 2N1226 2.000 2N1304	350 400
AF106 AF109	400 BC117 400 BC118	350 BC308	220 BD221	600 BF185	400 BU114	1.800 2N1305	400
AF114	300 BC119	220 BC309 360 BC315	220 BD224 290 BD232	700 BF186	400 BU120	2.000 2N1307	450
AF115	300 BC120	360 BC317	290 BD232 220 BD233	600 BF194 600 BF195	250 BU122 250 BU125	1.800 21:1308	450
AF116	350 BC121	600 BC318	220 BD234	600 BF196	220 BU126	1.500 2N1338 2.200 2N1565	1.200 400
AF117 AF118	300 BC125 550 BC126	300 BC319 300 BC320	220 BD235	600 BF197	230 BU127	2.200 2N1566	450
AF121	350 BC134	300 BC320 220 BC321	220 BD236 220 BD237	700 BF198 600 BF199	250 BU128	2.200 2N1613	300
AF124	300 BC135	220 BC322	220 BD237	600 BF200	250 BU133 500 BU134	2.200 2N1711 2.000 2N1890	400 500
AF125 AF126	350 BC136	400 BC327	250 BD239	800 BF207	400 BU204	3.500 2N1893	500
AF127	300 BC137 300 BC138	350 BC328 350 BC337	250 BD240 230 BD241	800 BF208 800 BF222	400 BU205	3.500 2N1924	500
AF134	250 BC139	350 BC340	400 BD242	800 BF232	400 BU206 500 BU207	3.500 2N1925 3.500 2N1983	450 450
l prezzi	indicati sono esc	lusi dell'IVA (12%)					

	MII M	ANO - V	le Barchi	glione 6 - 1	al 02/	5696241-56	96242			SN74195	1.200	TB625B	1,600
AGE				na 1 - tel. (30242			SN74196		TB625C	1.600
S.P.A.	NAP	OLL - D	itta CEL .	via Stretto	la S A	nna delle	Paludi .	tel 266325		SN74197	2.400	TBA120	1.200
- U.T.A.	11711	04, 0	IIID OLL -	· via oticito	10 O. F	Title delle	. raidar	101. 200000				TBA221	1,200
SEMI	CON	DUT	TORI	TRIAC		INITE	CDATI	CNIZARO		SN74198	2.400	TBA231	
				IKIAC	,	INTE	GRATI	SN7440	500	SN74544	2.100		1.800
2N1986		2N4429	8.000	TIPO	LIRE	TIPO	LIRE	SN7441	900	SN76001	1.800	TBA240	2.200
2N1987	450	2N4441	1.200	1 A 400 V	900			SN7442 SN7443	1.000	SN76003	2.000	TBA261	600
2N2048	500	2N4443	1.800	4,5 A 400 V	1.600	CA3018 CA3028	1.800		1.400	SN76005	2.200	TBA271	2.500
2N2160	2.000	2N4444	2.200	6,5 A 400 V	1.600		2.000	SN7444 SN7445	1.500	SN76013	2.000	TBA311 TBA400	
2N2188	500	2N4904	1.300	6 A 600 V	2.000	CA3043 CA3045	2.000	SN7446	2.000 1.800	SN76533 SN76544	2.000	TBA440	2.500
2N2218	500	2N4912		10 A 400 V	1.600		2.000						2.500
2N2219	500	2N4924	1.300	10 A 500 V	2.000	CA3046	2.000	SN7447	1.500	SN76660	1.200	TBA460	2.000
2N2222	400	2N5016	16.000	10 A 600 V	1.800	CA3048	4.000	SN7448	1.500 500	SN16848	2.000	TBA490	2.500
2N2284	380	2N5131	330	15 A 400 V	3.300	CA3052	4.000	SN7450		SN16861	2.000	TBA500	2.300
2N2904	320	2N5132	330	15 A 600 V	3.900	CA3065	1.820	SN7451	500	SN16862	2.000	TBA520	2.200
2N2905	360	2N5177	14.000	25 A 400 V		CA3080	2.100	SN7453	500	SN74H00	600	TBA530	2.200
2N2906	250	2N5320	650	25 A 600 V		CA3085	3.200	SN7454	500	SN74H01	650	TBA540	2.200
2N2907	300	2N5321	650	40 A 400 V		CA3089	2.000	SN7460	500	SN74H02	650	TBA550	2.200
2N2955	1.500	2N5322	650	100 A 600 V		CA3090	3.000	SN7473	800	SN74H03	650	TBA560	2.000
2N3019	500	2N5323	700	100 A 800 V		L036	2.600	SN7474	600	SN74H04	650	TBA570	2.300
2N3020	650	2N5589	13.000	100 A 800 V		L120	3.000	SN7475	900	SN74H05	650	TBA641	2.000
2N3053	600	2N5590	13.000	100A 1000 V	00.000	L121	3.000	SN7476	800	SN74H10	650	TBA716	2.300
2N3054	900	2N5649	9.000	000		L129	1.600	SN7481	1.800	SN74H20	650	TBA720	2.300
2N3055	900	2N5703	16.000	SCR		L130	1.600	SN7483	1.800	SN74H21	650	TBA730	2.000
2N3061	500	2N5764	15.000	TIPO	LIRE	L131 .	1,600	SN7484	1.800	SN74H30	650	TBA750	2.300
2N3232	1.000	2N5858	350	1 A 100 V	700	µA702	1.500	SN7485	1.400	SN74H40	650	TBA760	2.300
2N3300	600	2N6122	700	1,5 A 100 V	800	LA703	1.000	SN7486	1.800	SN74H50	650	TBA780	1.600
2N3375	5.800	MJ349	700	1,5 A 200 V	950	µA709	950	SN7489	5.000	SN74H51	650	TBA790	1.800
2N3391	220	MJE3030	2.000	2,2 A 200 V			1.600	SN7490	1.000	SN74H60	650	TBA800	1.800
2N3442	2.000	MJE3055		3,3 A 400 V	1.000		1.400	SN7492	1.100		3.800	TBA810	2.000
2N3502	600	TIP3055	1.000	8 A 100 V		LA723	950	SN7493	1.000		750	TBA810S	2.000
2N3702	300	TIP31	800	8 A 200 V	1.050	11A741	900	SN7494	1.100		750	TBA820	1.700
2N3703	300	TIP32	800	8 A 300 V	1.200	1A747	2.000	SN7495	900		700	TBA900	2.200
2N3705	300	TIP33	1.000	6,5 A 400 V	1.600	LA748	900	SN7496	1.600	SN74LS3	700	TBA920	2.400
	2.200	TIP34	1.000	8 A 400 V	1.700	11A733	2.600	SN74121	1.000		700	TBA950	2.200
2N3713			900	6.5 A 600 V	1.800		2.200	SN74141		TAA121	2.000	TBA970	2.400
2N3731	2.000	TIP44	900	8 A 600 V	2.200	SG555	2.200	SN74142		TAA300		TCA240	2,500
2N3741	600	TIP45			1.900	SG556 SN7400	400	SN74142		TAA310	3.200	TCA440	2.400
2N3771	2.800	TIP47	1.200	10 A 400 V 10 A 600 V			400	SN74144		TAA320	2.400	TCA511	2.200
2N3772	2.800	TIP48	1.600		2.000	SN7401	400	SN74144		TAA350	1.400	TCA610	900
2N3773	4.000	40260	1.000	10 A 800 V	2.800	SN7402				TAA435	3.000	TCA830	1.600
2N3790	4.000	40261	1.000	25 A 400 V	5.200	SN7403	500	SN74153		TAA450	4.000	TCA910	950
2N3792	4.000	40262	1.000	25 A 600 V	6.400	SN7404	500	SN74154		TAA550	4.000		
2N3855	300	40290	3.000	35 A 600 V		SN7405	500	SN74160			700	TCA920	2.200
2N3866	1.300	PT1017	1.000	50 A 500 V		SN7406	700	SN74161		TAA570	8.200	TCA940	2.200
2N3925	5.100	PT2014	1.100	90 A 600 V		SN7407	650	SN74162		TAA611 -	1.000	TDA440	2.400 3.000
2N4001	500	PT4544	11.000	120 A 600 V		SN7408	450	SN74163				9368	2.400
2N4031		PT5649	16.000			SN7410	350	SN74164		TAA611c	1.600	SASS60	2.400
2N4033	600	PT8710	16.000			SN7413	800	SN74170		TAA621	1.600	SAS570	1.800
2N4134	450	PT8720	13.000	340 A 600 V	65.000	SN7415	450	SN74176		TAA630	2.000	SAJ110	
2N4231	800	B12/12	9.000			SN7416	650	SN74180		TAA640	2.000	SAJ220	2.000
2N4241	700	B25/12	16.000			SN7417	650	SN74181			2.000	SAJ310	1.800
2N4347	3.000	B40/12	23.000		LIRE	SN7420	350	SN74182		TAA661b	1.600	UCL8038	4.500
2N4348	3.200	B50/12	28.000	10 A 18 V	16.000	SN7425	450	SN74191		TAA710	2.200		15.000
2N4404	600	C3/12	7.000		15.000	SN7430	300	SN74192	2.200	TAA761	1.800	SN29848	2.600
2N4427	1.300	C12/12	14.000		15.000	SN7432	800	SN74193	2.400	TAA861	2.000	SN29861	2.600
2N4428	3.800	C25/12	21.000	10A 25+25V	19.000	SN7437	800	SN74194	1.500	TB625A	1.600	SN29862	2.600
												TAA775	2.200
					VAL	VOLE						TBA900	2.200
									200		277272	TBA920	2.200
TIPO	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIRE		2.000
DY87	900	ECH84	1.000		1.200	PCF802	950	PY82	800	6AQ5	900	BD585	800
DY802	900	ECL80	1.000	EM84	1.200	PCF805	950	PY83	800	6AL5	900	BD587	800
EABC80	900	ECL82	900		1.200		950	PY88	850	6EM5	1.200	BD589	700
EC86	1.000	ECL84	960		750	PCL82	950	PY500	3.000	6CB6	800		ONI
EC88	1.000	ECL85	1.050	EY83	750	PCL84	900	UBC81	900	6SN7	1.100	UNIGIUNZI	ONI
EC900	950	ECL86	1.050	EY86	750	PCL86	950	UCH81	900	6CG7	1.000	TIPO	LIRE
ECC81	900	EF80	800		800	PCL805	1.000	UBF89	900	6CG8	1.000	2N1671	3.000
ECC82	900	EF83		EY88	800		500	UCC85	900	6CG9	1.000	2N2160	1.600
ECC83	900	EF85		PC86		PL36	1.900	UCL82		12CG7	950	2N2646	700
ECC84	1.000		800	PC88		PL81		UL41		6DQ6	2.000	2N2647	900
ECC85		EF183		PC92		PL82		UL84		9EA8	1.000	2N4870	700
ECCRR		EF184		PC900	1.000			UY85		25BQ6	2.000		700
ECC189	1.000			PCC88	1.000			1B3	1.100			2N4871	800
ECC808	1.000			PCC189		PL95		1X2B	1.000	ZENER		MPU131	000
ECF80		EL.84		PCF80		PL504	1.900		1 200	TIPO	LIRE	DIAC	
ECF82		EL.90		PCF82		PL802	1.100	5 X 4	1.200	da 400 mW	220		
ECF82 ECF801		EL.90	1.000	PCF200		PL502	2.500	5Y3		da 1 W	300	TIPO	LIRE
		EL.503		PCF200		PL508		6AX4		da 4 W		da 400 V	400
ECH81		EL503		PCF801	1.000			6AF4		da 10 W		da 500 V	500
ECH83	1.000	£1.304	2.000	101001	1.000	1.101	800	UMF4	1.400	ua io vv	1.700	100 000 1	

ATTENZIONE

Al fine di evitare disguidi nell'evasione degli ordini si prega di scrivere in stampatello nome ed indirizzo del committente città e C.A.P., in calce all'ordine.

Non si accettano ordinazioni inferiori a L. 4.000; escluse le spese di spedizione.

Richiedere qualsiasi materiale elettronico, anche se non pubblicato nella presente pubblicazione.

PREZZI SPECIALI PER INDUSTRIE - Forniamo qualsiasi preventivo, dietro versamento anticipato di L. 1.000.

CONDIZIONI DI PAGAMENTO:

a) invio, anticipato a mezzo assegno circolare o vaglia di un minimo di L. 450 per C.S.V. e L. 600/700, per pacchi postali.
b) contrassegno con le spese incluse nell'importo dell'ordine.

I prezzi indicati sono esclusi dell'IVA (12%)

Molte auto posseggono un contagiri di forma circolare con indicatore a lancetta, ma nessuna, nemmeno le più costose, sono dotate di un contagiri luminoso rettilineo. La vostra auto sarà quindi la prima e non pochi tra i vostri amici rimarranno sbalorditi nel vedere accendersi sul vostro cruscotto una lunga fila di led, pigiando sull'acceleratore.

CONTAGIRI a DIODI LED con

Possedere un cruscotto con una miriade di strumenti è un po' il sogno di ogni automobilista se non altro perché, anche se non lo confessiamo, in noi resta sempre vivo, in forma più o meno latente, il senso del fantastico e dell'immaginazione.

Chi può infatti negare di non aver mai sognato ad occhi aperti davanti ad un cruscotto, seppure per un attimo, di trovarsi ad un tratto ad Indianapolis, o chi, più modesto, all'autodromo di Monza, o ad Imola: chi non ha mai paragonato la propria auto, anche solo una volta, ad un jet supersonico, anche se in pratica, a tutto gas, probabilmente non riuscirà mai a superare i 100 km ora: chi infine, accanito appassionato di fantascienza, non ha mai immaginato per qualche istante di trovarsi a bordo di un'astronave, attento a schivare le meteore che si presentano sul suo cammino e che, più realisticamente, non sono altro che pedoni intenti ad attraversare la strada.

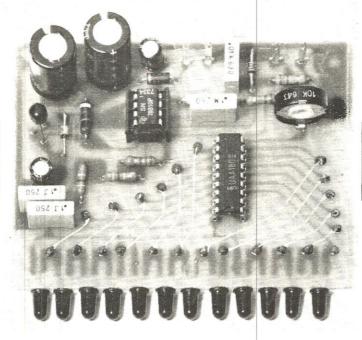
Tutto questo, detto così freddamente, potrebbe a prima vista forse farci sorridere, ma è estremamente normale che ogni tanto si coltivino certi sogni e certe immaginazioni, come è normale che questi sogni assumano dei contorni sempre più realistici se gli strumenti presenti a bordo della nostra auto eccitano la nostra fantasia ed il piacere di possedere qualcosa di veramente nuovo e funzionale.

Applicando quindi tra gli strumenti già presenti sul cruscotto una lunga fila di diodi led, adatteremo la nostra auto alle più moderne tecnologie, in cui l'elettronica non solo sconfina con la fantascienza, ma ci permette di viverla quotidianamente.

Di qui la ragione per cui, venuti in possesso dell'integrato UAA180, abbiamo pensato che realizzare un contagiri decisamente diverso da quelli normalmente installati a bordo di tutte le auto, sarebbe potuto risultare gradito a molti lettori, anche perché oggi e forse mai si penserà di dotare nessuna auto, anche le più costose, di un così semplice e rivoluzionario circuito.

SCHEMA ELETTRICO

In fig. 1 è visibile lo schema elettrico del « contagiri a diodi led »,


Il « cuore » di tutto il dispositivo, se così si può dire, è costituito dall'integrato IC1 (è un SN76810P), cioè un integrato che può essere adattato ad un vasto campo di applicazioni e che si è rivelato il più idoneo ed economico per ottenere delle successioni di impulsi « squadrati », il cui valor medio di tensione fosse proporzionale alla frequenza degli impulsi prelevati dalle « puntine » di un'auto.

Questo è infatti uno dei pochi integrati che può essere utilizzato a questo scopo ma è l'unico, fra i tanti provati, che ci ha permesso di utilizzare pochi elementi aggiuntivi e quindi di rendere il circuito estremamente compatto; non solo, ma tutto questo con ottimi risultati.

Trattandosi di un componente nuovo e non molto conosciuto alla maggioranza dei lettori, riteniamo opportuno descrivere brevemente quali funzioni esso sia in grado diespletare ed a questo scopo abbiamo riportato il suo schema a blocchi, cioè lo schema dei vari « stadi » di cui è composto.

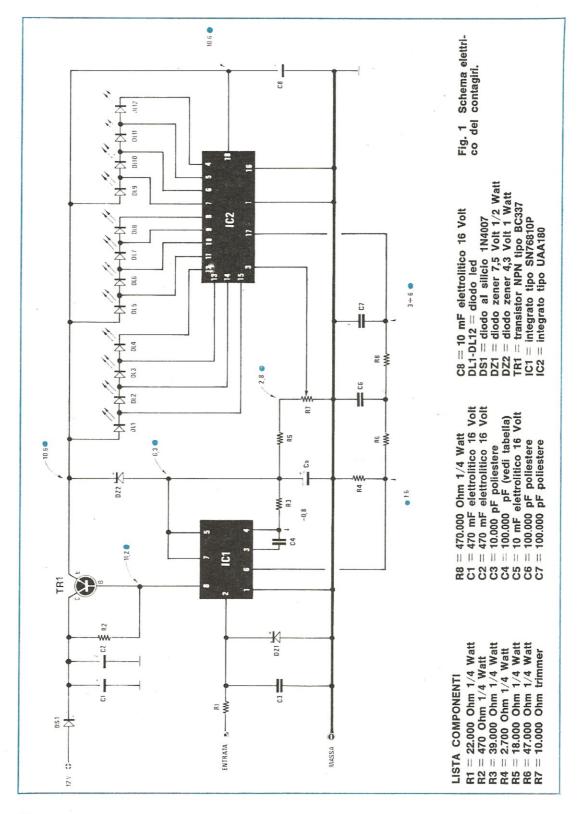
In pratica, all'interno di questo integrato sono presenti:

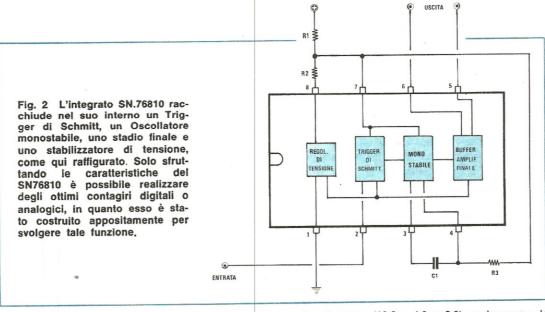
- 1) Regolatore di alimentazione: è in pratica uno stabilizzatore di tensione (piedini 7 e 8).
- 2) **Trigger di Schmitt**: è in pratica lo stadio d'ingresso dell'integrato; la sua funzione è quella di trasformare treni di impulsi, anche con molte spurie, in impulsi « squadrati » e ripuliti, necessari per pilotare un oscillatore monostabile.

12 UAA 180

Foto del montaggio del contagiri a diodi led.

- 3) Oscillatore monostabile: è un oscillatore la cui frequenza può essere modificata variando i valori di un condensatore e di una resistenza posti ovviamente al di fuori dell'integrato (piedini 3 e 4).
- 4) Amplificatore di uscita: è uno stadio in grado di pilotare qualsiasi tipo di carico fino ad un assorbimento massimo di circa 60 milliAmpère. Questo è inoltre in grado di funzionare sia come generatore di corrente, sia come generatore di tensione, a seconda dell'utilizzazione a cui è stato destinato.


Pertanto, come è facile intuire, collegando il terminale « ENTRATA » dell'integrato SN76810P alle « puntine » della nostra auto, questi impulsi di tensione, la cui frequenza è proporzionale al numero di giri dell'albero motore, piloteranno il primo stadio di IC1, cioè il trigger di Schmitt, che li converte in un treno di onde quadre necessarie a pilotare il monostabile.


Quest'ultimo, ogni volta che si presenta un impulso al suo ingresso, « emette » a sua volta un impulso la cui durata è vincolata al valore di C4.

La frequenza con cui tali impulsi si ripetono, cioè in pratica la frequenza di questo treno di onde quadre, è proporzionale alla frequenza con cui le « puntine » si aprono e si chiudono e quindi proporzionale al numero di giri dell'albero motore.

All'uscita del circuito «integratore» composto da R6, C6 e R8, C7 (Nota: i due condensatori C6 e C7 devono essere tassativamente da 100.000 pF ciascuno, diversamente il circuito non funzionerà correttamente), cioè in pratica al piedino 17 d'ingresso di IC2, sarà disponibile una tensione continua il cui valore è uguale al valor medio di tensione della successione di impulsi uscente da IC1 (il valor medio della tensione di un segnale composto da una successione di impulsi è proporzionale alla frequenza con cui questi impulsi si presentano e quindi aumenterà all'aumentare della loro frequenza); è facile a questo punto comprendere come, aumentando il numero di giri del motore, aumenterà anche la tensione presente all'ingresso dell'UAA180 e di conseguenza, come già sappiamo per averlo descritto nell'articolo « un termometro a diodi luminosi », aumenterà il numero di diodi led accesi.

In fig. 3 riportiamo la foto di questo treno di onde quadre che escono da IC1, così come appaiono sullo schermo dell'oscilloscopio, riferito ad una velocità dell'albero motore di 500 giri al minuto e ad un motore a 4 cilindri; la fig. 4 si riferisce invece ad una velocità di 1.000 giri al minuto e la fig. 5 a 1.500 giri al minuto. Come si noterà, maggiore è il numero di giri dell'albero motore, maggiori sono gli impulsi presenti sull'uscita di IC1 e di conseguenza la tensione continua ap-

plicata all'integrato IC2 avrà, per i tre esempi riportati, i seguenti valori:

500 giri al minuto = 0,12 Volt 1.000 giri al minuto = 0,25 Volt 1.500 giri al minuto = 0,32 Volt

(Nota: per ottenere queste forme d'onda, l'oscilloscopio è stato posto su 1 Volt/cm e 0,3 millisecondi/divisione, prelevando il segnale tra il piedino 6 e la massa).

Come è intuibile da queste figure e per meglio chiarire quanto detto, l'ampiezza di ogni singolo impulso che esce da IC1 è chiaramente costante; ciò che varia, al variare della velocità con cui le puntine si aprono e si chiudono ritmicamente, è solo la frequenza con cui questi impulsi si presentano all'uscita di IC1.

Il gruppo composto da R1, C3 e DZ1, applicato tra il terminale di entrata e il piedino 2 dell'integrato SN76810P, serve a limitare l'ampiezza degli impulsi inviati dalle puntine, cioè in pratica a poteggere l'integrato da sovratensioni d'ingresso.

Per rendere stabile il funzionamento di questo integrato, ben sapendo che la tensione della batteria non è costante al variare della velocità del motore, questo viene alimentato da un circuito stabilizzatore.

Si noterà infatti che il piedino 8 dell'integrato è collegato al circuito di alimentazione tramite la resistenza R2; su tale piedino troviamo inoltre collegata la base del transistor TR1 (un NPN BC337). Dall'emettitore dello stesso transistor si preleva la tensione necessaria per pilotare l'integrato IC2; allo stesso modo, dallo zener DZ2, collegato in modo da sottrarre alla tensione di alimentazione

quella di zener (10.6-4.3=6.3) preleveremo la tensione di 6.3 Volt con cui alimenteremo l'integrato tramite i piedini 5 e 7 (**Nota:** le tensioni riportate sullo schema elettrico di fig. 1 sono state rilevate senza inviare alcun segnale all'entrata del contagiri).

Ne consegue che se nella batteria si avesse un repentino aumento di tensione, l'integrato IC1 assorbirebbe, tramite il piedino 8, una corrente maggiore.

Questo maggiore assorbimento di corrente farebbe tuttavia diminuire la tensione presente sulla base di TR1 e quindi anche la tensione presente sul suo emettitore (naturalmente, se anziché un aumento di tensione, si avesse un'improvvisa diminuzione di tensione, si otterrebbe l'effetto opposto).

Il trimmer R7 presente nello schema, il cui cursore è collegato al piedino 3 di IC2, cioè all'integrato UAA180, è quello che ci permette, regolandolo, di stabilire a quale numero di **giri massimi** si deve accendere l'ultimo diodo led. È ovvio a questo punto cheagendo sul trimmer R7, noi possiamo adattare questo contagiri a qualsiasi vettura, sia a quelle aventi un numero massimo di giri di 5.000, sia di 8.000, sia di 10.000.

Tutto il circuito, come è intuitivo, viene alimentato dalla batteria dell'auto; sullo schema elettrico è riportato un valore di tensione di alimentazione di 12 Volt, in quanto la maggior parte delle autovetture usa appunto batterie eroganti 12 Volt.

Sullo schema, noteremo come sul positivo di alimentazione sia posto un diodo (DS1), la cui funzione potrebbe ad una prima sommaria analisi apparire superflua ma che è invece importantissimo, tanto che chi tentasse di toglierlo dal circuito ot-

terrebbe come risultato la messa fuori uso dei due integrati e dei diodi led.

Il motivo per cui è necessario applicare questo diodo consiste nel fatto che, contrariamente a quanto si potrebbe supporre, sulla tensione continua erogata dalla batteria si sovrappongono delle elevate sovratensioni aventi polarità opposta, generate dalla bobina ad alta tensione e da altri accessori elettrici, che sono estremamente pericolose per i due integrati e per i diod iled.

Se controllassimo con un oscilloscopio la tensione di una batteria, mentre la vettura è in moto, potremo vedere degli impulsi, come poc'anzi accennato, di brevissima durata, sia positivi che negativi.

Gli impulsi positivi vengono smorzati dagli elettrolitici C1 e C2, mentre quelli negativi, se non fosse presente il diodo DS1, alimenterebbero con polarità opposta gli integrati, bruciandoli immediatamente.

Vi abbiamo accennato all'inizio che il condensatore C4 ci permette di modificare la frequenza degli impulsi uscenti da IC1 e di conseguenza di ottenere la tensione per pilotare l'integrato UAA180. Poiché il circuito da noi presentato è stato calcolato per motori a 4 cilindri, chi proverà a installarlo su motori a 2 o 6 cilindri constaterà, pur ruotando il trimmer R7, di non riuscire a tarare per il fondo-scala il contagiri.

Infatti, poiché al variare del numero dei cilindri viene contemporaneamente a variare la frequenza degli impulsi sulle puntine, è necessario modificare il valore del condensatore C4 per poter riportare il circuito in condizioni di funzionare correttamente.

Poiché sappiamo che il numero delle scintille di un motore, o la relativa frequenza, è proporzionale al numero di giri del motore stesso, secondo la formula:

 $F = (Gm:60) \times (Nc:2);$

dove:

F = frequenza segnale ingresso;

Gm = numero giri al minuto:

Nc = numero cilindri.

È ovvio che più cilindri sono presenti, maggiore sarà il numero di scintille, cioè di impulsi inviati dalle puntine all'ENTRATA del contagiri.

Per poter quindi adattare il circuito ad essere utilizzato o con motori a 2 cilindri, o solo con motori a 4 cilindri, od infine con motori a 6 o 8 cilindri, sarà sufficiente modificare, come già accennato più volte, il valore del condensatore C4.

Nella tabella qui sotto riportiamo i valori più

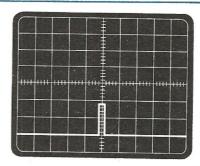


Fig. 3 Sul piedino 6 dell'integrato SN.76810 è presente un certo numero di impulsi proporzionale al numero di giri del motore. A 500 giri, apparirà sull'oscilloscopio, come vedesi in figura, un solo ignpulso.

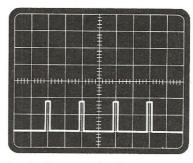


Fig. 4 Aumentando il numero di giri del motore a circa 1.000 girl sullo schermo dell'oscilloscopio appariranno ben 4 impulsi. Si noti come la distanza fra i vari impulsi risulti costante, così come risulta costante la loro ampiezza.

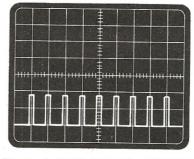


Fig. 5 A 1.500 girl sullo schermo dell'oscilloscopio appariranno ben 9 impulsi tutti perfettamente simmetrici, Le misure sono state effettuate ponendo i comandi dell'oscilloscopio nelle seguenti posizioni:
Amplif. verticale = 1 volt X cm
Base dei tempi = 0,3 milli/sec. X cm.

idonei per i diversi casi; non solo, ma abbiamo anche ritenuto opportuno riportare le frequenze massime che l'integrato è in grado di raggiungere, a seconda della capacità C5 utilizzata.

Condensatore C4	Frequenza massima	Numero cilindri motore
220.000 pF	160 Hz	2
100.000 pF	340 Hz	4
68.000 pF	500 Hz	6
56.000 pF	650 Hz	8

Prima di passare alla realizzazione pratica, sarà bene precisare che questo contagiri può essere installato su qualsiasi autovettura; potremo cioè utilizzarlo sia nel caso che la nostra auto disponga di un'accensione tradizionale, sia nel caso che su essa sia applicata un'accensione elettronica, ottenendo in entrambi i casi lo stesso ottimo funzionamento del contagiri.

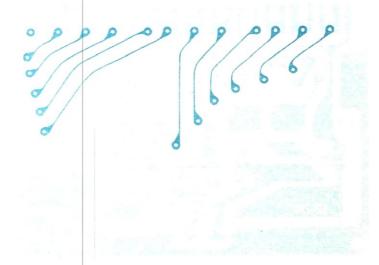
REALIZZAZIONE PRATICA

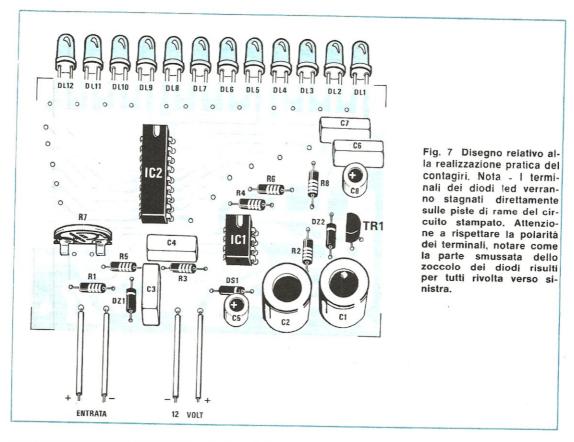
Esaurita la spiegazione dello schema elettrico del « contagiri a diodi led », potremo a questo punto passare alla sua realizzazione pratica.

Sul circuito stampato LX214, riportato in fig. 6 a grandezza naturale, andranno montati tutti i componenti, come del resto è intuibile osservando lo schema pratico di fig. 7.

Salderemo innanzitutto sullo stampato le resistenze ed i condensatori, facendo attenzione a non invertire la polarità degli elettrolitici, del diodo al silicio DS1 e dei due zener.

Salderemo infine i due zoccoli destinati a ricevere gli integrati; per questi ultimi, quando li innesteremo sullo zoccolo, dovremo controllare su quale loro lato del corpo è presente la tacca ed il punto di riferimento, che dovremo collocare come indicato nello schema pratico.


Come è facilmente intuibile, i dodici diodi led verranno direttamente saldati sul circuito stampato. Tale soluzione è stata adottata per ottenere un montaggio unico e compatto e per darvi la possibilità di poter poi applicare il tutto entro un piccolo contenitore, che in seguito fisseremo nella posizione più idonea all'interno della nostra vettura.


I terminali dei diodi led, prima di saldarli sul circuito stampato, andranno accorciati; nel saldarli dovremo fare attenzione a rispettare la loro polarità, ricordandoci che il loro terminale negativo è quello posto verso il lato dove il fondello circolare di plastica è smussato.

Anziché utilizzare dodici diodi led rossi, come da noi consigliato, è possibile, nel caso si voglia visualizzare il « fuorigiri » del motore, impiegare dieci led di colore verde per le portate relative al normale funzionamento del motore stesso e due diodi led rossi per visualizzare il fuorigiri.

Per alimentare il contagiri, ricordatevi sempre di prelevare i 12 Volt dall'auto in un filo (oppure dalla scatola dei fusibili) in cui, togliendo la chiave d'avviamento, venga a mancare tensione (eviteremo di collegarlo direttamente alla batteria), e

Fig. 6 Disegno del circuito stampato riportato a grandezza naturale. Tale circuito è a doppia faccia e, come sempre, su di esso risulta riportata la serigrafia dei componenti per facilitarne il montaggio.

questo per evitare che il contagiri resti alimentato anche quando il motore non è acceso.

TARATURA A MESSA A PUNTO

Una volta terminata la realizzazione pratica de contagiri a diodi led, non ci resta che tarare trimmer R7, dopodiché potremo affermare che il nostro contagiri è già pronto per essere installato sull'auto. Per effettuare quest'operazione esistono tre sistemi: il primo, empirico, consiste nel mettere il motore al massimo e ruotare R7 fino ad accendere l'ultimo led; per il secondo, più preciso, è necessario procurarsi un trasformatore che, alimentato con la tensione di rete a 220 Volt, eroghi sul suo secondario una tensione compresa tra 6 e 25 Volt. Tale tensione verrà applicata direttamente sui morsetti « d'ingresso » del contagiri, che come sappiamo dovrà invece essere alimentato con una tensione continua di 12 Volt, che potremo prelevare dalla batteria dell'auto, oppure da un alimentatore stabilizzato.

Inviando all'ingresso del contagiri una frequenza di 50 Hz (la frequenza di rete, come sapete, è appunto di 50 Hz), potremo conoscere, dalla tabella qui riportata, a quale NUMERO DI GIRI corrisponderà questa frequenza per motori a 2, 4, 6, e 8 cilindri.

Motori a 2 cilindri	Motori a 4 cilindri	Motori a 6 cilindri	
Frequenza d'ingresso 50 Hz	50 Hz	50 Hz	50 Hz
Numero giri al			
minuto 3.000	1.500	1.000	750

La terza soluzione la possono adottare tutti coloro che dispongono di un generatore di onde quadre; con questo è possibile tarare il contagiri esattamente a fondo-scala (cioè sull'ultimo diodo led), per un ben determinato numero di giri del motore della nostra auto, adottando la seguente formula:

Giri al minuto = (F x 60) : (Nc : 2);

dove:

F = frequenza in Hertz applicata all'ingresso del contagiri; Nc = numero di cilindri presenti nel motore

Se ad esempio la nostra auto dispone di un motore a 4 cilindri ed il suo regime medesimo di funzionamento è a 7.500 giri al minuto, dalle formule riportate ricaveremo immediatamente la frequenza da inviare, tramite il generatore ad onde quadre, all'ingresso dei contagiri:

 $F = (7.500:60) \times (4:2) = 250 Hz;$

a questo punto sarà sufficiente ruotare il trimmer R7 fino ad accendere tutti i dodici diodi led ed il nostro dispositivo sarà perfettamente tarato (se il nostro motore disponesse di un numero di cilindri diverso da 4, basterà semplicemente tenerne

conto nella formula e riportarlo a seconda del caso che ci interessa).

A questo punto l'operazione di taratura può dirsi conclusa e potremo immediatamente installare il contagiri sulla nostra auto, constatandone il perfetto funzionamento, l'utilità ed estrema facilità di lettura

COSTO DEI COMPONENTI

Tutto il materiale necessario per la realizzazione cioè, condensatori, resistenze, diodi Led. transistor, integrati, zener e circuito stampato L. 17.700 il solo circuito stampato tipo LX.214 . . . L. 4.200

Il nostro Concessionario ABBATE ANTONIO (Via S. Anna alle Paludi n. 30, Napoli - tel. 333552 prefisso 081) rende noto che è in grado di fornire, a quanti ne faranno richiesta, apparecchiature già montate e collaudate di quasi tutti i progetti presentati sulla rivista Nuova Elettronica. Sono già disponibili i seguenti Kit montati:

EL 4 Microtrasmittente FM a 4 transistor (riv. L. 10.000 EL 65 Amplificatore HI/FI da 30 Watt (riv. 20) L. 15,000 L. 16.000 EL 93 Antifurto per auto riv. 22 LX 5 Lampade ruotanti riv. 25 30.000 LX 24 Oscillatore a quarzo 1 M.hz L. 33.000 Frequenzimetro digitale in contenitore Gan-L. 240.000 Frequenzimetro come sopra ma L. 270.000 con sei FND500 invece delle nixie 9.000 LX 7 bis Microtrasmettitore FM L. 25.000 LX 17 Lotto digitale LX 71 Variligth con diodo triac 5.500 L. 18.000 LX 64 Antifurto per auto LX 79 Caricabatteria superautomatica (riv 32) 28.000 L. da due ampere 32,000 Idem da 4 ampere LX 44 Timer fotografico con NE 555 riv 34 17.500 5.500 LX 83 Amplificatore con TBA 810 LX 96 Alimentatore con Darlington L. 17.000

LX 58 Indicatore di livello logico L. 10.000 Voltohmetro digitale L. 140.000 LX 111 Alimentatore da 0 a 25 volt L. 23.000 LX 137 Controllo automatico per caricabatterie L. 12.500 LX 139 Amplificatore HI/FI da 60 W completo 25,000 di raffreddamento finali L LX 130 Un perfetto tracciacurve 70.000 8.500 LX 143 Un VFO con un fet + 2 tr. L. LX 144 Sirena elettronica con SN 7404 5.000 LX 146 Un generatore di forme d'onda 85 000 LX 153 Un level meter a diodi led L. 12.000 LX 161 Una sirena all'italiana L. 7.000 38.000 LX 163 Una roulette digitale L., LX 148 Interruttore crepuscolare riv 44 12.000 43.000 LX 162 Luci psichedeliche riv. 44 LX 169 Antifurto per auto con C. MOS 9.000 LX 183 Protezione per casse acustiche 8,500

Le suddette apparecchiature s'intendono montate e perfettamente collaudate senza contenitore, come da scatola di montaggio.l Frequenzimetri, Voltohmetri, Generatore di forma d'onda e Tracciacurve sono invece completi di mobili.

TIPO	LIRE	TIPO	LIRE	TIPO	LIRE	TIPO	LIRE
BC144 BC145	400 400	BC430 BC440	600	BD516	600	BF311	320
BC147	220	BC441	450 450	BD575 BD576	900 900	BF332 BF333	320 320
BC148 BC149	220 220	BC441 BC460	450 500	BD578 BD579	1000 1000	BF344 BF345	400 400
BC153	220	BC461	500	BD580	1000	BF394	350
BC154 BC157	220 220	BC512 BC516	250 250	BD586 BD587	900 900	BF395 BF456	350 500
BC158 BC159	220 220	BC527	250	BD588	1000	BF457	500
BC160	400	BC528 BC537	250 250	BD589 BD590	1000 1000	BF458 BF459	500 600
BC161 BC167	400 220	BC538 BC547 BC548	250 250	BD595 BD596	1000 1000	BFY46 BFY50	500 500
BC168 BC169	220 220	BC548 BC542	250 250	BD597 BD598	1000 1000	BFY51 BFY52	500
BC171	220	BC595	300	BD600	1200	BFY56	500 500
BC172 BC173	220 220	BCY58 BCY59	320 320	BD605 BD606	1200 1200	BFY57 BFY64	500 500
BC177 BC178	300 300	BCY77	320	BD607 BD608	1200 1200	BFY74 BFY90	500
BC179	300	BCY78 BCY79	320 320	BD610	1600	BFW16	1200 1500
BC180 BC181	240 220	BD106 BD107	1300 1300	BD663 BD664	850 850	BFW30 BFX17	1600 1200
BC182 BC183	220 220	BD109	1400	BD677	1200	BFX34	800
BC184	220	BD111 BD112	1150 1150	BF110 BF115	400 400	BFX38 BFX39 BFX40	600 600
BC187 BC201	250 700	BD113 BD115	1150 700	BF117 BF116	400 400	BFX40 BFX41	600 600
BC202 BC203	700 700	BD116 BD117	1150	BF119	400	BFX84	800
BC204	220	BD118	1150 1150	BF120 BF123	400 300	BFX89 BSX24	1100 300
BC205 BC206	220 220	BD124 BD131	1500 1000	BF139 BF152	450 300	BSX26 BSX45	300 600
BC207 BC208	220 220	BD132 BD135	1000 500	BF154 BF155	300 500	BSX46 BSX50	600 600
BC209 BC210	200	BD136	500	BF156	500	BSX51	300
BC210	400 400	BD137 BD138	600 600	BF157 BF158	500 320	BU100 BU102	1500 2000
BC211 BC212	400 250	BD139 BD140	600 600	BF159 BF160	320 300	BU104 BU105	2000 4000
BC213	250	BD142	900	BF161	400	BU106	2000
BC214 BC225	250 220	BD157 BD158	700 700	BF162 BF163	300 300	BU107 BU108	2000 4000
BC231 BC232	350 350	BD159 BD160	700 1800	BF164 BF166	300 500	BU109 BU111	2000 1800
BC232 BC237	220	BD162	650	BF167	400	BU112	2000
BC238 BC239	220 220	BD163 BD175	700 700	BF169 BF173	400 400	BU113 BU120	2000 2000
BC250 BC251	220 220	BD176 BD177	700 700	BF174 BF176	500 300	BU122 BU125	1800 1200
BC258 BC259	220 250	BD178 BD179	700 700	BF177 BF178	450	BU126 BU127	2200 2200
BC267	250	BD180	700	BF179	450 500	BU128	2200
BC267 BC268 BC269 BC270	250 250	BD215 BD216	1000 1100	BF180 BF181	600 600	BU133 BU134	2200 2000
BC270 BC286	250 400	BD221 BD224	700 700	BF182 BF184	700 400	BU204 BU205	3500 3500
BC287	400	BD232	700	BF186	400	BU206	3500
BC288 BC297	270	BD233 BD234	700 700	BF185 BF194	400 250	BU207 BU208	3500 4000
BC297 BC300 BC301	440 440	BD235 BD236	700 700	BF195 BF196	250 250	BU209 BU210	4000 3000
BC302	440	BD237	700	BF197	250	BU211	3000
BC303 BC304	440 440	BD238 BD239	700 800	BF198 BF199	250 250	BU212 BU310	3000 2200
BC307 BC308	220 220	BD240 BD241	800 800	BF200 BF207	500 400	BU311 BU311	2200 2200
BC309 BC315	220 280	BD242 BD249	800 3600	BF208 BF222	400 400	BU312 2N696	2000
BC317	220	BD250	3600	BF232	500	2N697	400
BC318 BC319 BC320 BC321	220 220	BD273 BD274	800 800	BF233 BF234	300	2N699 2N706	500 280
BC320 BC321	220 220	BD281 BD282	700 700	BF235 BF236	300 300	2N707 2N708	400 300
BC322	220	BD301	900	BF237	300	2N709	500
BC327 BC328	350 250	BD302 BD303	900	BF238 BF241	300 300	2N914 2N918	280 350
BC337 BC338	250 250	BD304 BD375	900 700	BF242 BF251	300 450	2N1613 2N1711	300 320
BC340	400	BD378	700	BF254	300	2N1890	500
BC341 BC347	400 250	BD432 BD433	700 800	BF257 BF258	450 500	2N1983 2N2218	450 400
BC348 BC349	250 250	BD434 BD436	800 700	BF259 BF261	500 500	2N2219 2N2222	400 300
BC349 BC360 BC361 BC384	400 400	BD437 BD438	600 700	BF271 BF272	400 500	2N2904 2N2905	320 360
BC384	300	BD439	700	BF273	350	2N2906	250
BC395 BC396	300	BD461 BD462	700 700	BF274 BF302	350 400	2N2907 2N2955	300 1500
BC413 BC414	250 250	BD507 BD508	600	BF303 BF304	400 400	2N3053 2N3054	900
BC429	600	BD515	600	BF305	500	2N3055	900

TIPO LIRE 2N3300 600 2N3442 2700 2N3702 250 2N3703 250 2N3705 250 2N3713 2200 2N4441 2N4443 1200 1600 2N4444 MJE3055 900 1300 MJE2955 TIP3055 1000 TIP31 TIP32 800 800 TIP33 TIP34 TIP44 1000 1000 900 TIP45 900 TIP47 TIP48 1200 1600 40260 1000 40261 40262 1000 40290

TE M

Via Digione, 3 **20144 MILANO** tel. (02) 4984866

NON SI ACCETTANO ORDINI INFERIORI A LIRE 5.000 - PAGA-MENTO CONTRASSE-GNO + SPESE PO-STALI

ECCEZIONALE OFFERTA n. 1

100 condensatori pin-up 200 resistenze 1/4 - 1/2 - 1 - 2 - 3 - 5 - 7W

3 potenziometri normali

3 potenziometri con interruttore 3 potenziometri doppi

3 potenziometri a filo

5 potenziometri a mo
10 condensatori elettrolitici
5 autodiodi 12A 100V
5 diodi 6A 100V
5 ponti B49/C2500

TUTTO QUESTO MATERIALE **NUOVO E GARANTITO** ALL'ECCEZIONALE PREZZO DI

LIT 5.000 + s/s

ECCEZIONALE OFFERTA n. 2

1 variabile mica 20 × 20

1 BD111 1 2N3055

1 BD142 2 2N1711 1 BU100

2 autodiodi 12A 100V polarità revers 2 autodiodi 12A 100V polarità revers 2 diodi 40A 100V polarità normale 2 diodi 40A 100V polarità revers 5 zener 1,5W tensioni varie

100 condensatori pin-up 100 resistenze

TUTTO QUESTO MATERIALE **NUOVO E GARANTITO** ALL'ECCEZIONALE PREZZO DI

LIT 6.500 + s/s

ECCEZIONALE OFFERTA n. 3

1 pacco materiale surplus vario

2 kg. L. 3.000 + s/s

LELTRIOLITIC LIRE THO LIRE TH		T							
The 12	ELETTROLITICI	RADDRIZZATORI	INTEGR	RATI		TIPO L			
1 m f s V									
1 me 29 V 70 BBA-C1800 450				A CONTRACTOR OF THE PARTY OF TH					
2.2 mil 78 V 70 00 B40-02200300 800 4001 330 A721 850 IAA88 2300 A7181 320 40 A721 850 V 70 B80-02200300 900 4002 8300 A747 70 B50 V 70 10 B80-02200300 900 4000 1400 1400	1 1111 20	000 0.000		1			650 A	C142K	330
22 mf 18 V 70 B80-C2800 300 d807 d808 d808 d808 d808 d808 d808 d8									
4.7 mf 15 V y 60 B80-C2000 2000 4008 1300 1-100 1-100 C7 AASH1 2000 AC184 220 100 mf 12 V 00 B200-C2000 1500 4008 1300 1-100 M 1-100 AC184 220 100 mf 12 V 00 B200-C2000 1500 4008 1300 1-100 L128 1600 AC184 220 100 mf 12 V 00 B200-C2000 1500 4008 1300 1-100 L128 1600 AC184 220 100 mf 12 V 00 B200-C2000 1500 4011 2-200 S600 4011 2-200 5600 4011 2-200	2,2 mF 25 V 70	B80-C7500 1600		330	A741 800				
## 59 V 100 100							2000 A	C183	220
## 85 V 160 880-C9500 1500 4010 1200 1.123 1500 7A.6811 1500 AC1811K 330 100 7A.6811 1500 AC181K 330 100 7A.6811 1500 AC181K 330 100 7A.6811 1500 AC181K 330 AC181K AC181									
4,7 m² ES V 00 100 m² 12 V 00 100 m² 100	5 mF 350 V 160		4009	1200					
10 mF 12 V 100 GRO-C5000 1500 4013 200 S6555 1500 7AA681A 1600 AC187 250 250 220 mF 28 V 100 GRO-C5000 1500 4013 2000 S6556 1500 7AA681A 1600 AC187 250 250 250 250 250 250 250 250 250 250	4,, 1111 20 1						1600 A	C185K	
22 mF is V	10						2000		
22 mf 85 V 100 and 100 mf 100 mf 25 V 100	22 mF 16 V 70			800					
See Fig. 90 V 100							1600 A	C187K	330
32 H 350 W 500 DB00-C2200 1500 4017 2600 SN7400 300 TAABB1 2200 AC191 250 SP 760 SP 76					SN16862 2000				
36 + 37 Fift 50 v	32 mF 350 V 330		4017						
## 25 V 100 B100-C5000 200 200 200 50 700 50 700 50 700 50 700 50 700 50 700 50 700 50 700					0111	TB625A	1600 , /	AC191	
50 FB 350 V 340 B100-C10000 2000 A221 2000 SNT4404 400 TBA540 1200 AC194K 330		B100-C5000 1500		2700	SN7403 400	TB625B			
Section Sect	50 Fm 350 V 340	B100 B1001	4021						
100 mF 16 V 100 mF 25 V 700 mF 25 V 700 mF 25 V 700 mF 30 V 500 mF 30 V 500 mF 25 V 100 mF 30 V						TBA221	1200	AC194K	
100 mF 25 V 720	100 mF 16 V 100	1.5 A		1250	SN7407 600				
100 + 100 mF 50 V 190		TIPO LIRE					1700	AD149	700
100 100 mF 350 V 950 LM340K15 2600 4028 2000 SN7415 400 TBA400 AD282 700 AD282		LIVIDADIO		1000	SN7413 800				
200 mF 12 V 120	100 + 100 mF 350 V 950	0 LM340K15 2600	4028	2000					
200 m		LM340K18 2600			0	TBA440	2400	AD263	700
220 mF 12 V		LINIO-10111			SN7425 400	TD 4 400			
220 mF 25 V 180 7812 2200 4040 2300 SN7432 000 TB 4510 2200 AF114 350 7815 2200 4042 1808 SN7434 000 TB 450 2000 AF115 350 7816 2200 4042 1808 SN7434 900 TB 450 2000 AF116 350 7810 7810 7810 7810 7810 7810 7810 781	220 mF 12 V 12	0 7809 2200	4035	2400		A			
250 mF 25 V 160 7834 2200 4045 800 SN74441 900 TEAS20 2000 AF113 350 250 MF 50 V 220 DISPLAY E LED 4049 800 SN74441 900 TEAS30 2200 AF113 350 250 AF137 350 AF137 35		7812 2200					2200	AF114	350
250 mF 50 V 160 7824 2200 4045 800 SN7414 190 TBA540 2200 AF118 550 300 mF 16 V 140 TIPO LIRE 4050 800 SN7444 1500 TBA550 2200 AF118 550 400 SN7444 1500 TBA550 2200 AF118 550 300 mF 16 V 200 Led verdi 800 40552 1600 SN7444 1500 TBA550 2200 AF118 350 400 SN7444 1500 TBA550 2200 AF118 350 400 SN7444 1500 TBA550 2200 AF118 350 400 SN7444 1500 TBA550 2200 AF126 350 400 SN7444 1500 TBA550 2200 AF126 350 400 SN7444 1500 TBA570 2200 AF126 350 400 SN7445 1500 TBA570 2200 AF126 2200		7010		1800	SN7440 400	TBA520			
DISPLAY E LED 100	250 mF 25 V 16	0 7824 2200							350
		DISPLAY E LED				TBA550	2200		
400 mF 25 V 200 led veral about 4052 led veral about 4052 led veral about 4053 led veral abou	320 mF 16 V 15	0 TIPO LIRE	4051	1600					
100		0 200 10001					2000	AF127	350
		0 Led bianchi 800			SN7446 1800	TBA716			
Sequence	500 mF 25 V 20	0 Led gialli 800	4066		0111				
1000 mf		ENDOCT 0000					2200	AF200 2	
1000 mF 50 V 400 D1.147 3900 D1.000 mF 50 V 900 A7102 1000 mF 50 V 900 A7102 1000 mF 50 V 900 A7106 1000 mF 50 V 900 A7106 1000 A7106		0 FND500 3500			SN7451 400	TBA760			
1000 mF 100 V 900 DIOD TPO LIRE SN7460 400 TBA800 2000 AF290 1200 2000 mF 100 V 900 A7102 1000 BF24 700 SN7474 600 TBA820 2400 A1100 1400 2000 mF 50 V 900 A7103K 600 BF24 700 SN7476 800 TBA820 2400 A1100 2100 2200 mF 63 V 900 A7105K 700 MP102 700 SN7476 800 TBA920 2400 A1102 1200 2000 mF 63 V 900 A7105K 700 MP102 700 SN7476 800 TBA920 2400 A1102 1200 2000 mF 63 V 900 A7105K 700 MP102 700 SN7483 1800 TBA920 2000 A1112 1000 2000 mF 63 V 900 BA100 140 2000 2003822 1800 SN7484 1800 TCA240 2400 A2113 1000 2000 mF 63 V 800 BA129 140 2003822 1800 SN7485 1400 TCA240 2400 A5Y75 400 20030 mF 63 V 900 BA129 140 2003822 1800 SN7486 1800 TCA440 2400 A1000 MF 63 V 400 BA129 140 2003824 700 SN7486 1800 TCA440 2400 A1000 A1000 MF 63 V 400 BA129 140 2003824 700 SN7486 1800 TCA440 2400 A1000 A1000 MF 63 V 400 BB106 300 2003832 1000 SN7486 1800 TCA440 2400 A1000	1000 mF 25 V 40	0 DL147 3800			01111100				
DIODI		0.400			Oldi io.		2000	AF279	
2000		10			SN7473 80			AF280	
2000 mF 50 V 900 Ay103	2000 mF 25 V . 50	00 TIPO LIRE		700					
2200 mF 63 V 1000 AY104K 700 MPF102 700 SN7483 1800 TBA940 2800 AL132 1000 AY105K 700 MPF102 700 SN7483 1800 TBA940 2800 AL132 1000 SN7483 1800 TCA940 2800 AL132 1000 AL132 1000 AL132 1000 AL132 1000 AL132 AL1						TBA920	2400	AL102	
3000 mF 16 V 400 AY105K 700 AY105K 700 B 20 AY105K 700 AY105 1000 B 20 AY105 1000 AY105 1000 mF 50 V 900 BA100 140 2N3822 1800 SN7488 1800 TCA440 2400 ASY75 400 AV106 AV106 MP 100 V 800 BA102 300					SN7481 180				
3000 mF 50 V 900 BA100 140 2N8819 650 300 mF 50 V 1300 BA128 100 2N8819 650 300 mF 50 V 1300 BA128 100 2N8820 1000 SN7485 1400 TCA440 2400 AU106 2200 AU106 TCA940 950 PT CA811 2200 AU107 1500 PT CA811 2200 AU108 PT CA811	3000 mF 16 V 40	00 AY105K 700	MPF102		0.11		2500	AL113	1000
3000 mF 100 V					SN7484 180	0 TCA240			
A000 mF 25 V 300 BA128 100 2N3823 1800 SN7489 5000 TCA630 900 AU108 1500 4700 mF 35 V 900 BB105 350 2N5458 700 SN7490 900 SN7490 900 AU111 2000 TCA630 900 AU111 2000 AU108	3000 mF 100 V 180	00 BA102 300		1000					1500
A 100 0 1 1 1 1 1 1 1						0 TCA600	900	AU108	
4700 mF 63 V 1400 BB106 350 2N5458 700 5N7493 1000 TCA940 950 AU1112 2100 200 TCA940 2000 TCA9					SN7490 90				
Syntain Synt		00 BB106 350	2N5458				900		2100
200 + 100 + 50 + 25 mF 300 TV18 700 TV20 750 TV20			3N128	1500	SN7495 90	0 TCA910			
Tipo Scr	200+100+50+25 mF	TV18 700		IAC					
1 A 100 V 600 1 N4003 160 1 N4004 170 1 N4005 180 1 N4006 200 1 N4007 220 1 N4007 2 N4007	300 V 13	400					2000	AU213	
1 A 100 V 600	TIPO SCR LIF		Da 400						
1,5 A 100 V 800 1N4004 1/0 DARLINGTON 1PO LIRE SN74193 2400 SASS570 2400 BC114 220 SASS580 2200 BC114 220 SASS580 2200 BC114 220 SASS580 2200 BC114 220 SASS580 2200 BC115 240 SASS580 2200 BC115 240 SASS580 2200 BC115 240 SASS580 2200 BC116 240 SASS580 2200 BC115 240 SASS580 2200 BC116 240 SASS580 2200 SASS580 2200 BC116 240 SASS580 2200 SASS580 2200 BC116 240 SASS580 2200		00 1N4003 160	Da 500	V 300			2400		220
2.2 A 200 V 900 1N4006 200 BD701 2000 SN74196 2200 SASS590 2200 BC115 240 N4007 220 SASS90 2200 SASS90 2200 BC115 240 SASS90 2200 SASS90 2					SN74192 220	00 SASS570	2400	BC113	
3,3 A 400 V 1000					SN74193 240				
8 A 200 V 1050	3,3 A 400 V 10	00 1N4007 220							240
8 A 300 V 1200					SN74198 240	00 SN29861	2600		350
6,5 A 400 V 1600			BD700	1800	SN74544 210				
8 A 600 V 2000		600 AA117 80	TIP120	1600	SN74150 200 SN76001 180		2000	BC120	360
8 A 600 V 2000	6.5 A 600 V 16		TIP121	1600	SN76005 22	00 Semicon	nduttori	BC121	
10 A 400 V 1800 2N1671 3000 TIP127 1600 SN76544 2200 AC126 250 BC134 220 10 A 600 V 2000 2N2160 1600 TIP127 1600 SN76660 1230 AC127 250 BC135 220 2N2646 700 TIP140 2000 SN74H00 600 AC127K 330 BC136 400 25 A 600 V 6400 MPU131 800 TIP141 2000 SN74H01 650 AC128 250 BC137 400 AC127K 330 BC138 400 AC128 AC1	8 A 600 V 20	000 LINIGHINZIONI	1111122	1000		00 AC125	250		300
10 A 800 V 2800 2N2160 1600 TIF127 1600 SN76660 1230 AC127 250 BC135 220 2N2646 700 TIF140 2000 SN74H00 600 AC127K 330 BC136 400 SN74H01 650 AC128 250 BC137 400 SN74H01 650 AC128 250 BC137 400 SN74H01 650 AC128 250 BC138 400 SN74H01 650 AC128 250 BC138 400 SN74H01 650 AC128 250 BC138 400 SN74H01 650 AC128 SN74H01 650 AC138 SN74H01 650		2N1671 3000	TIP126	1600	SN76544 22	00 AC126	250	BC134	220
25 A 400 V 5200 2NZ647 900 TIP141 2000 SN74H01 650 AC128 250 BC137 400 TIP145 22:00 SN74H02 650 AC128 250 BC137 400 SN74H02 650 AC128 SN74H02 650 AC128 SN74H02 650 AC128 SN74H02 650 AC128 SN74H03 650 AC138 SN74H03	10 A 800 V 28	300 2N2160 700	TIP127	1600	SN76660 12			BC135	
25 A 600 V 7000 MPU131 800 TIP142 2000 SN74H02 650 AC128K 330 BC138 400 50 A 500 V 11000 ZENER TIP145 22:00 SN74H03 650 AC132 250 BC140 400 SN74H04 650 AC138 250 BC140 400 SN74H05 650 AC138 250 BC140 400 BC140 A 600 V 46000 Da 4 W 750 SN74H05 650 AC138K 330 BC141 400 SN74H05 650 AC138K 330 BC141 400 BC141	25 A 400 V 52	200 2012647 900	111 110				250	BC137	400
50 A 500 V 11000 ZENER TIP145 22:0 SN74H03 650 AC132 250 BC140 400 90 A 600 V 29000 Da 400 mW 220 MJ3000 3000 SN74H04 650 AC138 250 BC140 400 120 A 600 V 46000 Da 1 W 300 MJ3001 3100 SN74H05 650 AC138 C 30 BC141 400 SN74H05 650 AC138 C 30 BC141 400 SN74H05 650 AC138 C 30 BC142 400 BC142		100 1401	TIP142	2000	SN74H02 6	50 AC128K	330	BC138	
90 A 600 V 29000 Da 400 mW 220 MJ3000 3000 SN74H04 400 200 A 600 V 46000 Da 1 W 300 MJ3001 3100 SN74H05 650 AC138K 330 BC141 400 240 A 1000 V 64.000 Da 4 W 750	50 A 500 V 110	000 ZENER	TIP145	22:10	SN74H03 6				
120 A 500 V 4500 Da 4 W 750 SN74H10 650 AC139 250 BC142 400	90 A 600 V 290	000 Da 400 mW 220			SN74H05 6	50 AC138K	330	BC141	400
. Da 10 W 1200 . SN/4H2U 000 AC141 200 BO140 100		000 Da 4 W 750)	12700000	SN74H10 6				
		. Da 10 W 1200	3	2	· SN/41120 0	AU141	200	. 55110	

Lo strumento che presentiamo non è solo in grado di riprodurre sullo schermo di un televisore le solite barre verticali e orizzontali, bensì di presentarci altre figure egualmente interessanti dal punto di vista pratico, quali il reticolo, la scacchiera e la punteggiatura, necessari per controllare la linearità nei TV in bianco e nero e la convergenza in quelli a colore.

UN GENERATORE di BARRE per TV

Presentare degli strumenti da laboratorio, come voi ci richiedete, non è per noi un problema, almeno dal punto di vista della progettazione, mentre può esserlo per voi il realizzarlo.

Il primo scoglio che dobbiamo superare in questi frangenti è infatti rappresentato dalla domanda che noi sempre ci poniamo:

- come e con quali mezzi il lettore tarerà lo strumento?
- come potrà riuscirci se non dispone di una attrezzatura sufficiente?

Quindi anche nel progettare questo generatore di barre per TV il primo obiettivo che ci siamo prefissi è stato quello di presentare uno schema facile che tutti abbiano la possibilità di montare e realizzare anche se nel proprio laboratorio dispongono solo di un saldatore e di un tester. Per raggiungere questo risultato il cammino non è stato dei più agevoli: basti pensare che sui primi prototipi avevamo tentato di inserire un oscillatore UHF da noi progettato disegnando sullo stampato le due piste parallele per l'accordo; tuttavia, all'atto pratico, quando abbiamo sottoposto il montaggio alla prova delle « cavie », ecco che si sono scoperte le pecche.

I tecnici esperti di AF infatti non hanno avuto alcuna difficoltà a far oscillare questo gruppo esattamente sulla gamma di frequenze desiderate, cioè da 450 MHz a 750 MHz, anche se qualche transistor faceva un po' le bizze e « voleva » autooscillare, ma poiché fra le « cavie » da noi prescelte per la prova vi erano anche studenti di elettronica pieni di entusiasmo ma con poca pratica e qualche giovane radioriparatore con strumentazione limitata, come lo è in pratica la maggioranza dei radioriparatori, abbiamo dovuto riscontrare che per questa categoria di persone il « neo » più grosso era proprio rappresentato dagli stadi di AF.

Molti taravano l'oscillatore sulle armoniche, an-

ziché sulla fondamentale, quindi il segnale in uscita risultava tanto debole che solo qualche TV molto sensibile riusciva a captarlo.

In altri montaggi invece la frequenza di oscillazione risultava instabile e si aveva una deriva tale che risultava necessario correggere continuamente la sintonia del televisore se non si voleva veder scomparire l'immagine dallo schermo in pochi secondi.

Quindi ci siamo ben presto resi conto che pubblicare un progetto di questo genere significava dare la possibilità a ben pochi di realizzarlo con successo, cioè deludere la maggioranza dei lettori.

È ovvio che se in una situazione di questo genere qualche lettore ci avesse scritto accusandoci di un insuccesso, con giusta ragione avremmo potuto rispondergli che l'alta frequenza e in particolar modo le UHF non era pane per i suoi denti, quindi consigliarlo di intraprendere solo progetti più confacenti alle sue capacità.

Ma il nostro obiettivo non è questo e se anche in passato qualche progetto critico è apparso sulla rivista, l'esperienza ci ha insegnato che se è possibile è meglio evitarlo.

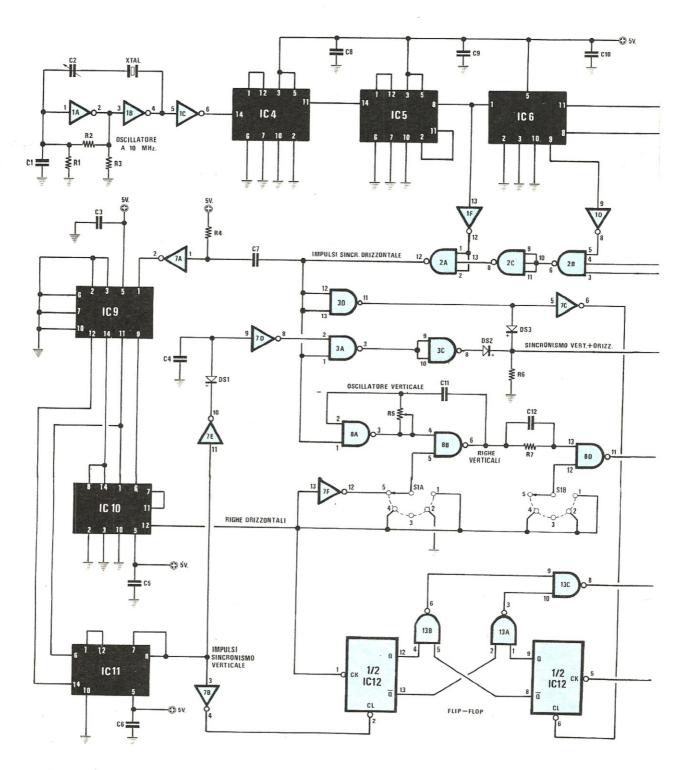
Perciò, visti i risultati delle prove condotte, abbiamo rifatto il progetto togliendo dal circuito lo stadio che si era rivelato più denso di insidie, ed abbiamo risolto il problema inserendo sul nostro generatore di barre, come oscillatore UHF, un gruppo premontato (oltretutto completamente schermato), già tarato e collaudato. In tal modo abbiamo eliminato elegantemente tutta la parte critica, al punto che, come constaterete, appena terminato il montaggio, il generatore vi funzionerà immediatamente.

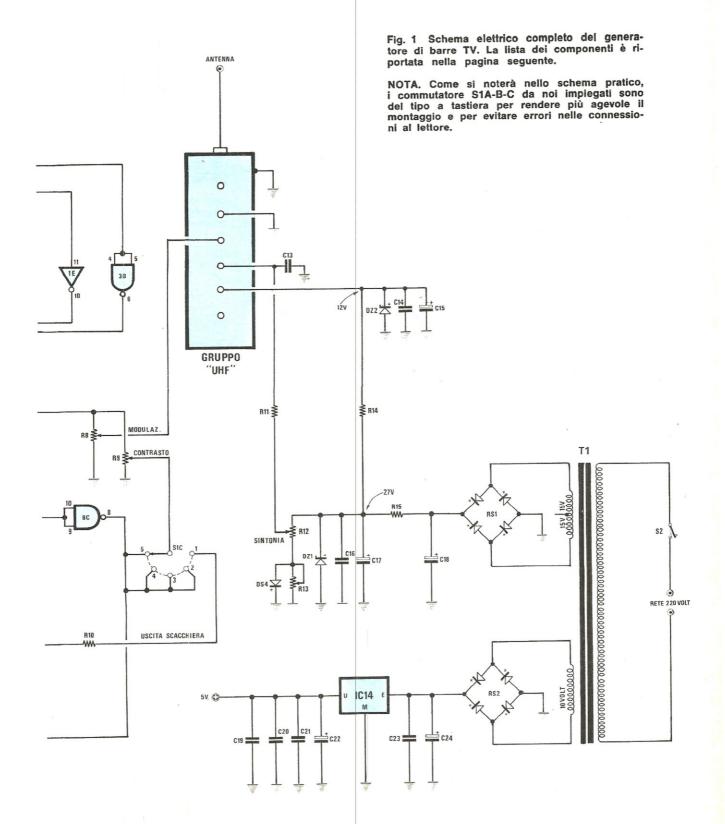
È ovvio che anche così facendo ci sarà sempre quell'uno per mille che ci scriverà dicendo che il suo montaggio non gli funziona ma è anche altrettanto ovvio che quando controlleremo

questo montaggio scopriremo come sempre che il lettore si è dimenticato di eseguire un ponticello, oppure ci accorgeremo che toccando con un dito quel componente che lui ritiene saldato, questo si muove come il battacchio di una campana.

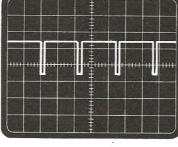
In questo un per mille comprendiamo anche coloro che inserito un integrato alla rovescia ed accortisi dell'errore solo dopo aver alimentato il circuito per una buona mezz'ora, lo rimontano in senso giusto e a questo punto, con un integrato « bruciato » e con il circuito che giustamente non funziona, si lamentano con noi dell'insuccesso. Questi errori che a prima vista sembrerebbero assurdi, li riscontriamo invece proprio sui montaggi che ci vengono spediti da riparare perché non funzionano ed è proprio per limitarli in futuro che abbiamo preferito inserire nel nostro progetto un gruppo premontato commerciale anche se questa non era la soluzione più economica in assoluto.

Qualcuno ancora obietterà che si è usato un gruppo UHF e non VHF ed anche in questo caso possiamo rispondere che la scelta è stata fatta di proposito per agevolarvi nella realizzazione pratica.


Non bisogna infatti dimenticare che la maggioranza dei gruppi VHF disponibili in commercio a basso prezzo sono a tamburo, quindi occupano uno spazio maggiore. Non solo ma questi richiedono in ogni caso una manomissione sullo stadio oscillatore, in quanto generano una frequenza ben diversa dal canale su cui è sintonizzato il televisore.


D'altra parte modificare le spire della bobina oscillatrice non è sempre facile, quindi la soluzione è stata scartata a priori.


I gruppi UHF invece hanno il pregio di possedere in primo luogo la sintonia a diodi varicap, quindi non richiedono taratura né c'è bisogno di realizzare bobine, sono di dimensioni più ridotte e presentano infine l'indubbio vantaggio di potersi sempre sintonizzare col televisore, su qualsiasi canale esso risulti commutato.


Quindi se abbiamo scelto un gruppo UHF anziché VHF è perché abbiamo constatato che questo comporta per voi dei vantaggi e tanti da semplificare al massimo la realizzazione del generatore di barre, generatore che come avrete appreso dal titolo, non solo fa apparire sullo schermo delle righe orizzontali o verticali, ma pure il reticolo, la scacchiera e la punteggiatura.

Lo strumento è per il momento idoneo solo per i televisori in bianco e nero (o meglio le figure compaiono anche su un televisore a colori, però naturalmente in bianco e nero) e poiché sappiamo già che ci chiederete se è allo studio anche un generatore per il colore, vi possiamo antici-

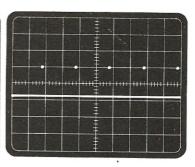


Fig. 2 Chi dispone di un oscilloscopio potrà rilevare le diverse forme d'onda che risultano presenti nei vari punti del circuito. Per ogni misura indicheremo su quale posizione dovranno risultare commutati l'amplificatore verticale e la manopola della base del tempi (cioè lo sweep-time) dell'oscilloscopio.

Fig. 3 Forma d'onda del sincronismo orizzontale che rileverete sul piedino 12 dell'integrato IC2 nand 2A

Amplif. vert. = 2 volt×cm Time-base = 30 micros×cm

Fig. 4 Forma del sincronismo verticale che rileverete sul piedino 8 dell'integrato IC11 cioè l'SN7492.

Amplif, vert, = 2 volt×cm Time-base = 10 millis.×cm.

pare che quando avremo risolto il problema dei quarzi e logicamente anche altri problemi tecnici che ora sarebbe inutile elencare, vedrete senz'altro apparire il progetto sulla rivista.

Anticipiamo inoltre che tale progetto non sarà, come non lo è questo, uno strumento da « principianti », bensì un vero e proprio strumento da laboratorio. Il nostro segnale infatti è completo degli impulsi di sincronismo perfettamente in linea con lo standard europeo che prevede una frequenza di riga di 15.625 Hz e così dicasi pure per la frequenza « verticale ».

Inoltre la stabilità del segnale AF è eccellente e nel generatore è previsto pure un comando di « contrasto », cioè abbiamo realizzato un perfetto strumento che voi ancora non potevate acquistare per l'elevato costo commerciale.

SCHEMA ELETTRICO

Per realizzare un generatore di barre per TV occorre innanzitutto disporre di un oscillatore UHF modulato in grado di generare un segnale adatto ad essere captato dall'antenna di un qualsiasi televisore.

Per ottenere questo noi potevamo scegliere due strade diverse, e cioè:

- a) progettare direttamente tale oscillatore,
- b) sfruttare un gruppo UHF già costituito e presente in qualsiasi televisore bianco-nero.

Come vi abbiamo già anticipato, dopo aver analizzato il problema e aver valutato tutti i pro

e i contro, siamo giunti alla conclusione che la strada più giusta da seguire era proprio la seconda.

Bisogna infatti tener presente che la costruzione di un oscillatore UHF richiede in genere una strumentazione e un'esperienza che non tutti i nostri lettori ovviamente possiedono e poiché è nostro desiderio che ogni progetto che pubblichiamo possa essere realizzato con eguali probabilità di successo sia dai più esperti che dal principiante, è ovvio che non potevamo decidere altrimenti.

Premesso questo, passiamo velocemente ad analizzare lo schema elettrico del generatore visibile in fig. 1. In questo schema notiamo immediatamente, sulla destra in alto, il gruppo UHF di cui abbiamo appena parlato, il quale viene alimentato dal primo secondario del trasformatore T1.

Su tale secondario sono presenti circa 30 volt che raddrizzati dal ponte RS1, vengono poi livellati e stabilizzati da C14-C15-DZ2 sul valore di 12 volt, per alimentare appunto l'oscillatore.

La frequenza del segnale generato da quest'ultimo può essere variata a piacimento entro la gamma compresa tra 450 e 750 MHz circa, variando la tensione presente sul piedino a cui è collegato il condensatore C13, che in pratica corrisponde al piedino di alimentazione dei diodi varicap della sintonia. I due potenziometri R12-R13 presenti nel circuito servono entrambi per perseguire questo scopo (cioè per sintonizzarci esattamente sulla frequenza di ricezione del televisore): il primo (R12) serve per effettuare una regolazione approssimata della frequenza in uscita, mentre il

R1 = 2.200 ohm 1/4 wattR2 = 470 ohm 1/2 watt R3 = 2.200 ohm 1/4 wattR4 = 10.000 ohm 1/4 wattR5 = 500 ohm trimmer R6 = 100 ohm 1/4 watt R7 = 4.700 ohm 1/4 wattR8 = 10.000 ohm trimmer R9 = 470 ohm potenziometro lin. R10 = 100 ohm 1/4 wattR11 = 22.000 ohm 1/4 wattR12 = 10.000 ohm potenz. lin. R13 = 1.000 ohm potenz. lin. R14 = 1.200 ohm 1/4 watt R15 = 680 ohm 1/4 watt C1 = 27 pF ceramico a disco C2 = 10/60 pF compensatore ceramico C3 = 47.000 pF ceramico a disco C4 = 150.000 pF poliestere 250 volt C5 = 47.000 pF ceramico a disco C6 = 47.000 pF ceramico a disco C7 = 560 pF ceramico a disco C8 = 47.000 pF ceramico a disco C9 = 47.000 pF ceramico a disco C10 = 47.000 pF ceramico a disco C11 = 4.700 pF ceramico a disco C12 = 100 pF ceramico a disco C13 = 330.000 pF poliestere 250 volt C14 = 47.000 pF ceramico a disco C15 = 100 mF elettrolitico 16 volt C16 = 47.000 pF ceramico a disco C17 = 100 mF elettrolitico 50 volt C18 = 1.000 mF elettrolitico 50 volt C19 = 47.000 pF ceramico a disco C20 = 47.000 pF ceramico a disco C21 = 47.000 pF ceramico a disco C22 = 22 mF 16 volt elettr. tantalio C23 = 47.000 pF ceramico a disco C24 = 1.000 mF elettrolitico 16 volt DS1 = diodo al silicio tipo 1N4148 DS2 = diodo al silicio tipo 1N4148 DS3 = diodo al silicio tipo 1N4148 DS4 = diodo al silicio tipo 1N4148 DZ1 = diodo zener 27 volt 1 watt DZ2 = diodo zener 12 volt 1 watt RS1 = ponte raddrizzatore tipo B80C1000 RS2 = ponte raddrizzatore tipo B80C1000 IC1 = integrato tipo SN7404 IC2 = integrato tipo SN7410 IC3 = integrato tipo SN7400 IC4 = integrato tipo SN7490 IC5 = integrato tipo SN7490 IC6 = integrato tipo SN7493 IC7 = integrato tipo SN7404 IC8 = integrato tipo SN7400 IC9 = integrato tipo SN7490 IC10 = integrato tipo SN7490 IC11 = integrato tipo SN7492 IC12 = integrato tipo SN7473 IC13 = integrato tipo SN7400 IC14 = integrato tipo uA7805 S1A-S1B1S1C = commutatore a pulsante S2 = interruttore di rete T1 = trasformatore n. 27 da 20 watt primario: 220 volt secondario: 15+15 volt 0,3 ampère 10 volt 0,6 ampère

XTAL = quarzo da 10 MHz Un gruppo UHF premontato e tarato secondo (R13) serve ovviamente per una regolazione fine. Il segnale generato internamente dal gruppo UHF non è modulato, quindi per ottenere la figura richiesta è necessario un segnale di modulazione che preleveremo dal cursore centrale del trimmer R8. È proprio in questo punto che giungerà il segnale di volta in volta generato dalla restante parte del circuito segnale che a seconda della posizione assunta dal commutatore S1A-S1B-S1C farà comparire sul video del nostro televisore le seguenti figure geometriche:

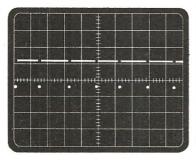
POSIZIONE 1 = Scacchiera

POSIZIONE 2 = Linee orizzontali

POSIZIONE 3 = Linee verticali

POSIZIONE 4 = Reticolo

POSIZIONE 5 = Puntini bianchi sugli incroci del reticolo.


Prima però di vedere passo per passo come viene generato e come si presenta questo segnale in corrispondenza ad ogni figura, ci sentiamo in dovere di fare un breve riepilogo riguardo le caratteristiche essenziali di un segnale televisivo qualsiasi.

Come tutti saprete infatti l'immagine su uno schermo televisivo viene ottenuta grazie ad un fascio di elettroni che esplora tutta la superficie dello schermo percorrendo 625 righe orizzontali.

Questo percorso in pratica avviene in due riprese, cioè la prima volta il fascio di elettroni fa comparire sullo schermo una riga si ed una no e la seconda volta completa la scansione facendo comparire le righe precedentemente tralasciate. In altre parole in una prima passata il fascio percorre tutte le righe dispari e la seconda volta tutte le righe pari in modo che alla fine di ogni scansione si ottiene una immagine e di queste immagini, nello standard europeo. ne abbiamo 25 al secondo.

Per ottenere un'immagine questo fascio durante il suo cammino necessita di un segnale di sincronismo costituito da un impulso positivo (vedi impulso più grosso a sinistra sulla fig. 2) indispensabile per far ripartire il fascio luminoso dall'angolo in alto a sinistra dello schermo, poi una serie di impulsi positivi ma di durata più breve necessari per riportarlo all'inizio della riga successiva quando giunge alla fine di ogni riga, poi ancora un impulso simile a quello iniziale sempre per ritornare nell'angolo in alto a sinistra e così via.

Come noterete, a pilotare il ritorno è sempre una tensione positiva e poiché durante il ritorno

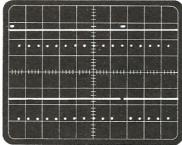


Fig. 6 Pigiando il pulsante « ri-

ghe orizzontali » sul cursore di

R8 dovremo rilevare la forma

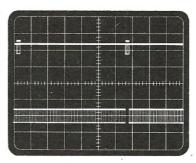


Fig. 5 Impulsi negativi necessari per ottenere le righe bianche orizzontali che potremo rilevare sul piedino 12 dell'integrato ICIO.

d'onda riportata in questa foto. Amplif, vert. = 0,3 volt×cm

Fig. 7 Pigiando il pulsante « righe verticali » sul cursore di R8 otterremo invece la fgura che qui presentiamo.

Amplif. vert. = 2 volt×cm Time-base = 1 millis, cm

Time-base = 3 millis. \times cm.

Amplif. vert. = 0,3 volt×cm Time-base = 3 millis. \times cm.

stesso la traccia deve rimanere spenta altrimenti falserebbe l'immagine, ne discende che con un segnale d'ingresso a «livello alto» si avrà un puntino nero sullo schermo, mentre con un segnale a «livello basso» si otterrà un puntino bianco.

Tra un impulso di ritorno di riga e il successivo è ovvio che troverà posto il segnale analogico che pilota la luminosità del fascetto in movimento dando luogo complessivamente all'immagine sullo schermo,

In altre parole un segnale televisivo è un misto analogico-logico: la parte logica serve, come abbiamo visto, per i sincronismi, mentre la parte analogica contiene l'informazione dell'immagine.

Per quanto affermato in precedenza, è altresì ovvio che se noi tra un impulso di ritorno e il successivo abbiamo tensione nulla, sullo schermo comparirà una riga bianca, ed al contrario se abbiamo una tensione positiva tale riga diventerà grigia oppure nera a seconda del livello di questa tensione.

Nel nostro caso, poiché ci proponiamo di far apparire sullo schermo delle figure geometriche, anche il segnale cosiddetto «analogico» sarà in pratica un segnale « logico », cioè un segnale costituito da tanti stati logici « 0 » e da tanti stati logici «1» o se preferite da tanti «livelli bassi di tensione » e da tanti «livelli alti ». Tale segnale viene ottenuto, come vedremo, dividendo ed elaborando in modo opportuno il segnale ad onda quadra alla frequenza di 10 MHz generato dall'oscillatore costituito dagli inverter 1A-1B-1C, tutti contenuti nell'integrato IC1 (un SN7404).

Il segnale alla frequenza di 10 MHz viene applicato all'ingresso (piedino n. 14) dell'integrato IC4 (un SN7490 impiegato come divisore per dieci), ottenendo pertanto sull'uscita (piedino 11) un segnale ad onda quadra alla frequenza di:

10:10 = 1 MHz pari cioè a 1.000.000 di Hz.

Questo segnale viene mandato a pilotare l'integrato IC5 (un altro SN7490) il quale però questa volta viene impiegato come divisore X 8 (collegando l'uscita D, piedino 11, all'ingresso di reset, piedino 2, tale integrato funziona da divisore X 8) quindi sulla sua uscita (piedino 8) ritroveremo un'onda quadra alla frequenza di:

1.000.000:8 = 125.000 Hz

Questa frequenza viene a sua volta nuovamente divisa X 8 dall'integrato IC6 (un SN7493) ottenendo pertanto in uscita un segnale alla frequenza di:

125.000:8 = 15.625 Hz

cioè la frequenza di riga dello standard europeo. Infatti, se vi ricordate, abbiamo detto che sullo schermo debbono apparire 625 righe e che queste 625 righe si ripetono per ben 25 volte in un secondo, quindi moltiplicando 625 x 25 otterremo appunto in totale 15.625 righe al secondo.

Il segnale disponibile sul piedino 11 di IC6 tuttavia, pur avendo una frequenza di 15.625 KHz come richiesto dal sincronismo TV, non soddisfa le nostre esigenze in quanto a formato, infatti si tratta di un'onda quadra perfettamente simmetrica, con uno stato logico «1» che dura 32 microsecondi ed uno stato logico « 0 » che dura altrettanto.

Noi invece abbiamo bisogno sì di un segnale a questa frequenza, però tale segnale deve essere formato da impulsi positivi aventi una durata di circa 4 microsecondi e questo lo si ottiene con la rete costituita dagli inverter 1D-1E-1F inclusi nell'integrato IC1 (di tipo SN7404), e dai nand 2A-2B-2C inclusi nell'integrato IC2 (di tipo SN7410) e 3B incluso nell'integrato IC3 (di tipo SN7400).

In particolare sull'uscita n. 12 del nand 2A noi avremo uno stato logico « 0 » (cioè un livello basso di tensione) solo ed esclusivamente quando sull'uscita 8 di IC5 e sulle uscite 8-9-11 di IC6 è presente uno stato logico « 0 » e questa condizione si verifica una volta ogni 64 microsecondi (corrispondente appunto ad una frequenza di 15.625 Hz) e per una durata di 4 microsecondi (vedi forme d'onda, in fig. 3).

Questo segnale, che come abbiamo detto rappresenta il sincronismo di riga (o orizzontale) verrà poi invertito dal nand 3D (incluso nell'integrato IC3) ed applicato, tramite il diodo DS3 (che sieme a DS2 costituisce una porta OR), agli estremi del « trimmer di modulazione » R8.

Lo stesso segnale presente sull'uscita 12 del nand 2A viene inoltre applicato all'ingresso 1 dell'inverter 7A (incluso nell'integrato IC7) e dall'uscita 2 di quest'ultimo va a comandare la catena di divisori costituita da IC9-IC10-IC11, i due primi di tipo SN7490 e l'ultimo un SN7492. In tal modo sull'uscita 8 di IC11 noi avremo disponibile il segnale di sincronismo verticale, costituito da

un impulso positivo ogni 19 millisecondi pari ad una frequenza di circa 50 Hz (vedi fig. 4). Tale frequenza non è critica come si potrebbe supporre in quanto ogni apparecchio TV è in grado di accettare tolleranze anche superiori al 5%.

Sul piedino 12 di IC10 ritroviamo invece un segnale del tipo di quello visibile in fig. 5, cioè una serie di impulsi chiamiamoli negativi anche se in realtà in corrispondenza ad essi si ha tensione quasi nulla, alla frequenza di 625 Hz (cioè un impulso ogni 1,6 millisecondi). Questo segnale verrà sfruttato, come vedremo in seguito, per costruire le varie figure sullo schermo.

Per ora occupiamoci invece del sincronismo verticale e vediamo come esso si combina con quello orizzontale.

Come noterete il segnale disponibile sul piedino 8 di IC11, viene applicato all'ingresso 11 dell'inverter 7E contenuto nell'integrato IC7 il quale insieme a DS1, a C4 e all'inverter 7D (sempre contenuto in IC7), serve per allungare la durata degli impulsi. Infatti sull'uscita n. 8 dell'inverter 7D ritroviamo ancora la nostra serie di impulsi positivi a 50 Hz, però questi impulsi sono molto più larghi che non sul piedino 8 di IC11 (da notare, a titolo puramente informativo, che la durata di uno di questi impulsi, contiene in pratica 6 impulsi di riga, cioè nell'intervallo di tempo in cui la tensione sul piedino 8 dell'inverter 5 si mantiene ad un livello alto, si hanno sul piedino 12 del nand 2A sei impulsi di riga).

Questi ultimi due segnali (cioè quello verticale e quello orizzontale) vengono applicati, come no-

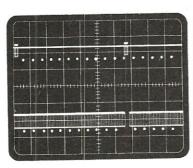


Fig. 8 Pigiando il pulsante del « reticolo » sul cursore di R8 rileveremo sovrapposte le fig. 6 e la fig. 7.

Amplif. vert, 0,3 volt \times cm Time-base = 3 millis. \times cm

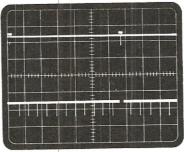


Fig. 9 Pigiando invece il pulsante dei « punti » sempre sul cursore del potenziometro R8, rileveremo questa figura.

Amplif. vert. = $0.3 \text{ volt} \times \text{cm}$ Time-base = $3 \text{ millis} \times \text{cm}$.

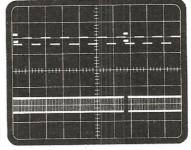


Fig. 10 Pigiando il pulsante della « scacchiera » la figura che rileveremo su R8 sarà simile a questa foto.

Amplif. vert. = 0,3 volt×cm Time-base = 3 millis.×cm

Fig. 11 Per controllare la convergenza di un TV a colore si consiglia di impiegare il « reticolo ». Se la convergenza è regolare, le righe del reticolo si vedranno bianche, diversamente parte del reticolo assumerà un « colore » che dovremo eleminare agendo sui controlli blu-verde-rosso di « taratura convergenza ».

terete, agli ingressi 1 e 2 dei nand n. 3A il quale provvederà a combinarli opportunamente in modo da ottenere, sul catodo di DS2-DS3, il segnale di sincronismo completo visibile in fig. 2.

Questo segnale, anche se in figura non si riesce a vedere a causa della frequenza troppo elevata, si compone in pratica di un impulso di sincronismo verticale seguito da circa 300 impulsi più brevi di sincronismo orizzontale, poi ancora un impulso di sincronismo verticale, poi altri 300 impulsi orizzontali e così via.

Una volta che ci sia chiaro il meccanismo di questi impulsi, scoprire come vengono costruite le varie figure sullo schermo diventa semplicissimo.

Cominciamo ad esempio con le righe orizzontali che è forse la figura più semplice e che si ottiene spostando il commutatore S1 sulla posizione 2.

In questa situazione, come noterete, l'oscillatore costituito dai nand 8A e 8B entrambi contenuti in IC8 rimane bloccato in quanto l'ingresso 5 del nand 8B è collegato a massa, quindi sul piedino 6 dello stesso nand ritroveremo una tensione positiva.

La stessa tensione positiva sarà pure presente sull'ingresso del nand 8D (sempre contenuto in IC8) quindi il segnale proveniente dal piedino 12 di IC10 (vedi fig. 5) potrà attraversare questo nand e il successivo nand 8C per raggiungere, attraverso il contatto 2 di S1C, il cursore centrale del trimmer R9, ed andare quindi a sovrapporsi al segnale di sincronismo.

Poiché la frequenza di questo segnale è esattamente 1/25 della frequenza del sincronismo orizzontale, è ovvio che ogni 25 impulsi di riga. ci ritroveremo uno degli impulsi dovuti al segnale stesso (vedi fig. 6) e questo impulso, risultando un impulso in discesa, determinerà come abbiamo precisato all'inizio, una riga bianca orizzontale sull oschermo. Le 24 righe precedenti e le 24 righe successive invece risulteranno nere in quanto in quel frangente il segnale ch enoi inietteremo sul trimmer sarà ad un livello alto (Livello del nero).

A questo punto possiamo farci un rapido calcolo per vedere quante righe bianche orizzontali compariranno sullo schermo.

Per far questo ricordiamo che tra un impulso di sincronismo verticale ed il successivo ci sono circa 300 righe orizzontali e poiché ogni 25 di queste righe ce n'è una bianca, in totale queste ultime dovrebbero essere:

300:25 = 12

In pratica tuttavia saranno visibili solo 11 righe bianche in quanto l'ultima verrà assorbita dall'impulso di sincronismo verticale.

Analizzato il meccanismo di formazione delle righe orizzontali, passiamo ora ad occuparci di quelle verticali che si ottengono commutando S1 in posizione 3.

Così facendo il segnale proveniente dal piedino 12 di IC10 viene escluso e non ha nessuna influenza sulla figura.

Viene invece sbloccato l'oscillatore costituito

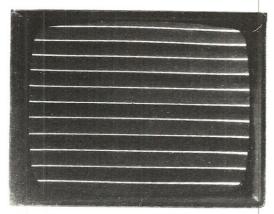


Fig. 12 Sullo schermo del televisore, quando pigieremo il pulsante « righe orizzontali » appariranno le righe orizzontali.

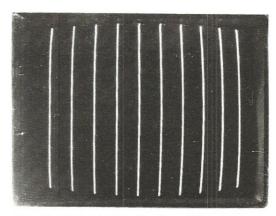


Fig. 13 Pigiando il pulsante « righe verticali » otterremo queste righe che potremo anche modificare di numero agendo su R. 5.

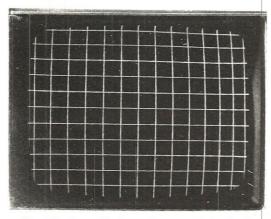


Fig. 14 II « reticolo » ci permetterà di rilevare, come in questa foto, le eventuali distorsioni di linearità.

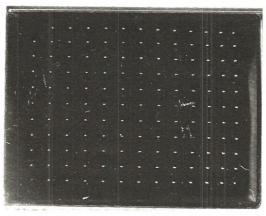


Fig. 15 Il pulsante dei « punti » ci permetterà di riprodurre sullo schermo del televisore questa figura.

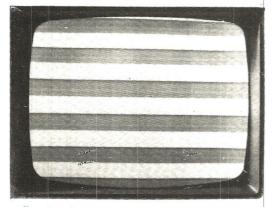


Fig. 16 Pigiando il pulsante « scacchiera » e ruotando il trimmer R5 da un estremo all'altro, si riuscirà ad ottenere anche questa figura.

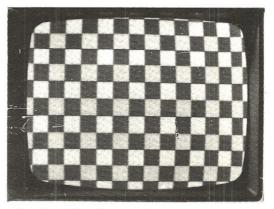


Fig. 17 Si noti come in posizione « scacchier a» si evidenzia (vedi a destra) la irregolare linearità del verticale.

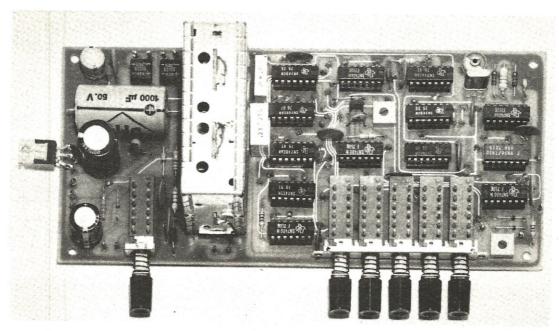


Fig. 18 Come si presenta a costruzione ultimata il nostro generatore di barre. Si noti a sinistra l'integrato stabilizzatore ICI4 (uA.7805) che dovremo poi fissare sul piano orizzontale di alluminio del contenitore, in modo che quest'ultimo esplichi la funzione di aletta di raffreddamento.

dai nand 8A e 8B la cui frequenza d'uscita può essere variata a piacimento da un minimo di 150 ad un massimo di 500 KHz ed il segnale da esso generato, passando attraverso i nand 8D e 8C ed il contatto 3 di S1C, va a sovrapporsi al segnale di sincronismo.

Questo oscillatore tuttavia è pilotato dal segnale di sincronismo orizzontale applicato al piedino 1 del nand 8A, in modo che quando arriva un impulso di riga l'oscillatore si blocca,

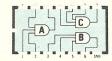
In questo modo, tra un impulso di riga ed il successivo noi avremo da un minimo di 10 ad un massimo di 30-32 (dipende dalla posizione di R5) impulsi in discesa (o negativi, come preferiamo chiamarli), i quali daranno origine ad altrettanti punti bianchi lungo la riga sullo schermo. Poiché ad ogni riga la situazione si ripete inalterata (cioè i puntini occupano sempre la stessa posizione), è ovvio che l'effetto visivo finale che otterremo sarà un certo numero di righe bianche verticali sullo schermo.

Il numero di queste righe, inutile ripeterlo, sarà determinato dalla frequenza del segnale disponibile sull'uscita 6 del nand 8B e poiché questa può essere variata agendo su R5, ne consegue che anche il numero delle righe può esser variato agendo su R5. Le altre figure cui abbiamo accennato, sono in pratica una combinazione di queste due figure semplici.

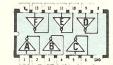
Consideriamo ad esempio il cosiddetto « reticolo » che si ottiene sulla posizione 4 di S1.

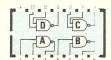
In questo caso, come noterete, l'oscillatore centrale è pilotato sia dal segnale di sincronismo orizzontale, sia dal segnale disponibile sul piedino 12 di IC10.

In pratica quindi il segnale che ci ritroveremo sul piedino 8 d'uscita del nand 8C, sarà per 24 righe quello generato dall'oscillatore e che come abbiamo visto dà origine a linee verticali sullo schermo, mentre in corrispondenza della 25.ma riga farà sentire il suo effetto quell'impulso negativo che determina appunto una riga bianca orizzontale sullo schermo.


In tal modo si otterrà il reticolo.

Anche questa volta il numero delle righe verticali, quindi la larghezza delle maglie del reticolo, potrà essere variato agendo sul trimmer R5. Anche i puntini (posizione 5 di S1) si ottengono con una combinazione dei due segnali precedenti e più precisamente con il segnale generato dall'oscillatore centrale pilotato però questa volta dalla negazione del segnale disponibile sul p'edino 12 di IC10.


IC2


IC3

IC7

IC8

IC13

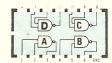
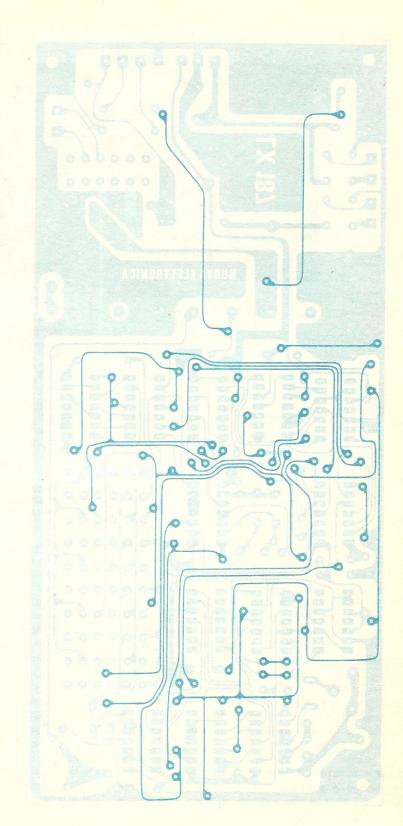



Fig. 19 Disposizione dei vari nand e inverter nell'interno degli integrati.

Fig. 20 a destra - disegno a grandezza naturale del circuito stampato.

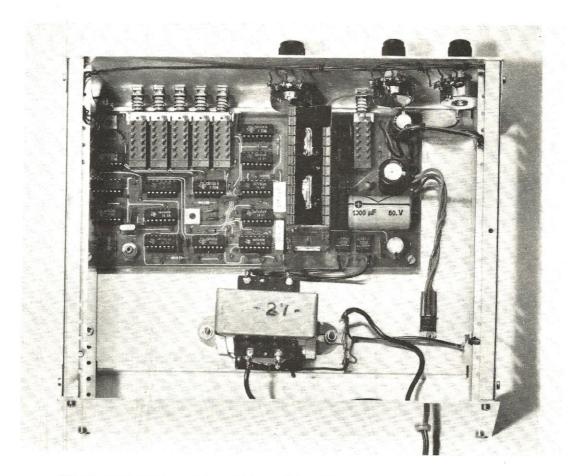


Fig. 21 Come verrà montato nell'interno del mobile, il circuito stampato del generatore di barre. Si noti la posizione del trasformatore di alimentazione e l'integrato uA. 7805 (a destra) fissato sul pannello di sostegno orizzontale.

Questa negazione viene operata dall'inverter 7F.

Così facendo l'oscillatore rimarrà normalmente bloccato e verrà sbloccato solo una volta ogni 25 righe, quindi avremo 24 righe nere seguite da una riga punteggiata, poi altre 24 righe nere, poi un'altra riga punteggiata e così di seguito.

Naturalmente anche questa volta è possibile variare tramite R5 il numero dei puntini che stanno su una stessa orizzontale, mentre il numero dei puntini che stanno su una verticale è fisso.

Detto questo non ci resta che esaminare l'ultima figura che è poi anche la più complessa e cioè la «scacchiera» che si ottiene col commutatore S1 in posizione 1.

Come noterete questa volta il segnale disponibile sull'uscita 8 del nand 8C non viene più mandato direttamente in uscita, ma serve da clock per il flip-flop che vediamo in basso sulla destra indicato con la sigla 1/2 IC12. Questo segnale è in pratica lo stesso che sfruttavamo per ottenere il reticolo.

Il secondo flip-flop contenuto nell'integrato IC12 viene invece pilotato dal segnale a 625 Hz che determina le righe orizzontali. Inoltre il flip-flop di sinistra viene azzerato dal segnale di sincronismo verticale mentre quello di destra dal segnale di sincronismo orizzontale.

Grazie a questo tipo di collegamenti, tra un impulso di sincronismo orizzontale ed il successivo, sull'uscita 8 del nand 13C (contenuto nell'integrato IC13) otterremo un « treno d'onde quadre » che per 25 righe inizierà con un livello basso, per le successive 25 inizierà con un livello alto, poi riprenderà la prima forma, poi la seconda e così di seguito.

Questo significa che il primo quadretto a sinistra sullo schermo sarà nel primo caso bianco e nel secondo nero in modo da ottenere complessivamente una scacchiera.

Se il clear (piedino 2) del flip-flop di sinistra, anziché essere collegato all'uscita 4 dell'inverter 7B, risultasse collegato a massa, in uscita dal nand 13C avremmo sempre la forma d'onda visibile in figura, quindi sullo schermo comparirebbero delle fasce verticali alternativamente bianche e nere.

Questo dimostra altresi che con un minimo di ragionamento. modificando in maniera opportuna i vari collegamenti, potremmo ottenere da questo stesso circuito tantissime altre figure che però avrebbero più carattere coreografico che pratico quindi lasciamo alla fantasia del lettore la possibilità di elaborare lo schema a piacimento per ottenere quanto desiderato.

Chi invece utilizzerà questo circuito per lavoro. è ovvio che ne avrà abbastanza di sfruttare le caratteristiche di cui questo attualmente dispone.

Ricordiamo infine che il trimmer R8 serve per variare l'ampiezza del segnale modulante mentre il trimmer R9, agendo sul livello del «nero». serve per variare il contrasto sullo schermo.

Per quanto riguarda invece l'alimentazione degli integrati notiamo che essa viene fornita dal secondo secondario del trasformatore T1 il quale eroga 8 volt che vengono raddrizzati da RS2 e stabilizzati sul valore di 5 volt dall'integrato IC14. un 11A7805 o equivalenti.

REALIZZAZIONE PRATICA

Il circuito stampato necessario per la realizzazione di questo generatore di barre risulta naturalmente a doppia faccia ed è visibile a grandezza naturale in fig. 20; esso reca la sigla LX187.

Una volta che si disponga di detto circuito, la prima operazione da compiere sarà quella di effettuare tutti i ponticelli di collegamento fra le piste inferiori e superiori seguendo scrupolosamente i consigli che già tante volte vi abbiamo dato su queste pagine.

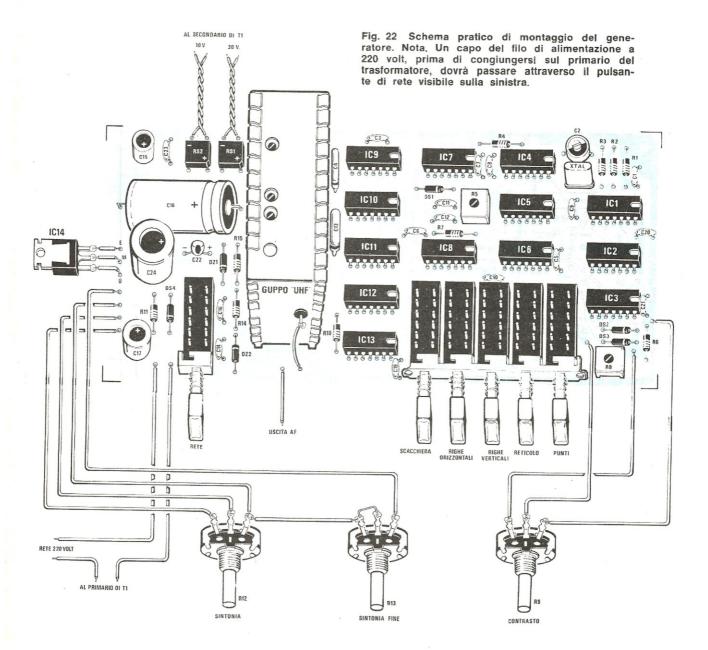
In altre parole, e non ci stancheremo mai di ripeterlo, non dimenticatevi di controllare. a ponticello ultimato, con un tester che esista effettivamente il contatto elettrico fra le due piste. altrimenti correrete il rischio di introdurre nel circuito una causa di malfunzionamento estremamente difficile da rintracciare.

Eseguiti i ponticelli, dovremo montare innanzitutto sullo stampato le resistenze e i diodi (ricordatevi di rispettarne la polarità), in quanto questi sono i componenti a dimensioni minori e se non li inserissimo per primi diventerebbe poi problematico farlo in un secondo tempo.

Potremo quindi montare gli zoccoli per integrati ed a questo proposito, trattandosi di uno strumento da laboratorio, vi consigliamo di utilizzare solo ed esclusivamente zoccoli di buona qualità.

Dagli zoccoli per integrati passeremo ai condensatori, ricordando di non cambiare fra di loro i terminali + e — negli elettrolitici e soprattutto nel condensatore al tantalio C22: per maggior sicurezza vi ripetiamo ancora una volta che guardando quest'ultimo dalla parte in cui trovasi il punto di colore, il terminale + si trova sulla destra e il terminale — sulla sinistra, come appare chiaramente nel disegno pratico di fig.

Per quanto riguarda l'integrato stabilizzatore IC14, l'individuazione dei suoi tre terminali Entrata-Massa-Uscita non presenta alcun problema: basta infatti osservare attentamente lo schema pratico per rilevare che la sua parte metallica deve risultare rivolta verso il condensatore C24, cioè verso l'interno della basetta.


Questo integrato durante il funzionamento scalda leggermente per cui sarà necessario, anziché inserirlo direttamente sullo stampato, applicarlo con una vite di fissaggio al contenitore o ad un'aletta di raffreddamento e collegarne i terminali allo stampato mediante degli spezzoni di filo di rame isolato.

Non è necessario interporre tra il metallo dell'integrato ed il metallo del contenitore la solita mica isolante in quanto il terminale centrale dell'integrato è già collegato a massa.

Nel montare i ponti RS1 ed RS2 dovremo fare attenzione ad inserire i terminali contrassegnati da un + e da un — esattamente nei fori che gli competono, mentre per quanto riguarda il montaggio dei trimmer R5-R8 e del compensatore C2 non esiste alcun problema in quanto i loro piedini sono disposti in maniera da poter essere inseriti in un solo verso.

Un discorso analogo vale per il gruppo UHF in quanto esso pure può venir inserito in un solo verso.

Il terminale d'uscita di AF, che come appare evidente sullo schema pratico, si trova posto frontalmente sul gruppo, dovrà essere collegato con uno spezzoncino di filo ad uno dei due fori presenti in basso sullo stampato al di sotto del medesimo: al secondo foro collegheremo invece un altro spezzoncino per congiungerlo alla boccola d'uscita « antenna » sulla mascherina frontale oppure, se lo si desidera, direttamente all'ingresso « antenna » del televisore. Per quanto riguarda il commutatore S1A-S1B-S1C, che per

motivi di praticità e di estetica, è stato scelto del tipo a pulsanti, esso troverà alloggio direttamente sullo stampato così come sullo stampato fisseremo il tasto di accensione dello strumento, che vedesi sulla sinistra dello schema pratico.

Per il corretto collegamento di questo « interruttore di rete » ci dovremo attenere esattamente alle indicazioni dello schema pratico, cioè dei due fili collegati alla spina di rete 220 volt, uno lo manderemo direttamente al primario del trasformatore T1, mentre il secondo lo collegheremo ad uno dei due fori posti accanto all'interruttore.

Collegheremo infine con uno spezzoncino il foro rimasto libero al secondo terminale di primario di T1.

Dei due secondari di T1, quello che eroga una tensione di 30 volt lo collegheremo al ponte RS1, mentre quello che eroga 10 volt al ponte RS2.

Da notare che nel trasformatore che noi vi forniremo (siglato con il n. 27) il secondario dei 30 volt dispone di presa centrale che ovviamente non dovremo utilizzare, quindi dei 3 terminali

presenti sfrutteremo solo i due estremi, lasciando libero il centrale.

I tre potenziometri R9-R12 ed R13 dovranno essere sistemati sulla mascherina frontale e collegati allo stampato con degli spezzoni di filo come vedesi in fig. 22. Prima però di fissare qualsiasi componente alla mascherina o al mobile vi consigliamo di terminare il montaggio inserendo gli integrati ed il quarzo sugli appositi zoccoli e di eseguire una sommaria prova al banco per avere la certezza di non aver commesso alcun errore.

Procuratevi quindi a questo scopo un qualsiasi televisore, accendetelo e commutate la sintonia sulle UHF. Collegate l'uscita « antenna » del generatore di barre all'antenna del TV ed a questo punto fornite tensione anche al nostro apparecchio, dopo aver pigiato ad esempio il primo pulsante sulla sinistra (che corrisponde alla « scacchiera »). Se così facendo sullo schermo non compare alcuna immagine, agite prima su R12 poi su R13 fintantoché non riuscirete a sintonizzarvi esattamente col televisore. A questo punto agendo prima su R8 poi su R9 dovrete regolare il contrasto poiché come constaterete l'immagine potrebbe risultare così sbiadita da vedere i quadretti tutti grigi anziché bianchi e neri come debbono risultare.

Se non basta agire su R9 per ottenere un'immagine perfetta, potrete regolare anche il « contrasto » del televisore stesso agendo sull'apposita manopola mentre se invece dei quadretti vi appaiono dei rettangoli, dovrete agire sul trimmer R5 fino ad ottenere dei quadretti perfetti, alternativamente bianchi e neri proprio come in una scacchiera.

Potrete quindi pigiare il secondo pulsante per ottenere le righe orizzontali ed immediatamente sullo schermo vi compariranno 11 linee bianche parallele ed equidistanti.

Anche in questo caso potrà tuttavia rendersi necessaria una piccola regolazione del contrasto qualora le stesse non risultassero ben luminose.

Pigiando ancora un altro pulsante vedrete comparire le linee verticali, poi il reticolo ed infine i puntini.

In ogni caso comunque, una volta regolati i trimmer R8 ed R5 per la scacchiera, tale regolazione varrà automaticamente per tutte le altre figure, quindi se una di queste non risultasse ben nitida sullo schermo, l'unico componente variabile su cui si dovrà agire sarà il potenziometro R9, nonché i comandi del televisore.

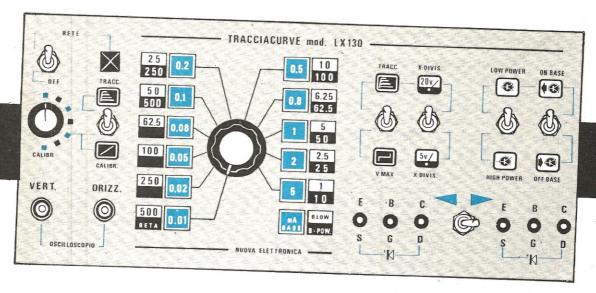
Se poi, pur ruotando i vari trimmer e potenziometri, non riusciste a sintonizzarvi col televisore, innanzitutto dovrete controllare che que-

st'ultimo sia veramente centrato sulle UHF ed ammesso che lo sia, è ovvio che avrete commesso un errore di montaggio oppure che qualche componente se n'è andato fuori uso. Armatevi quindi di un tester e provate a controllare le tensioni presenti sul catodo dei due zener DZ1 e DZ2: sul primo dovrete misurare circa 27 volt, mentre sul secondo 12 volt.

Provate inoltre a controllare se sui piedini di alimentazione dei vari integrati sono presenti i 5 volt positivi erogati dall'integrato IC14.

Infine, se non avrete ancora riscontrato alcuna anormalità e se disponete di un oscilloscopio, provate a controllare le forme d'onda presenti nei punti critici del circuito confrontandole con le figure riportate nel corso dell'articolo per vedere se si equivalgono.

Ultima possibilità di errore è che abbiate utilizzato un gruppo UHF non idoneo: bisogna infatti tener presente che i gruppi UHF che noi forniamo vengono tarati uno per uno da tecnici esperti per oscillare esattamente sulla gamma richiesta, quindi se deciderete di utilizzare un gruppo diverso dal nostro, dovrete essere in grado di effettuare voi stessi questa regolazione indispensabile, altrimenti il circuito non funzionerà a do-


Terminate le prove di collaudo, non dovrete far altro che inserire il montaggio all'interno del contenitore e dopo aver fissato l'integrato IC14 ad una parete interna della scatola, applicare sulla parte anteriore di quest'ultima l'apposita mascherina (visibile nella foto accanto al titolo) che vi verrà fornita insieme al kit.

In tal modo avrete realizzato con pochissima spesa uno strumento da laboratorio perfetto e indispensabile per il vostro lavoro di radioriparatori.

COSTO DEI COMPONENTI

Tutto il materiale occorrente per la realizzazione e cioè: resistenze, trimmer di precisione, potenziometri, condensatori ceramici, elettrolitici, tantalio, diodi al silicio, zener, ponti raddrizzatori, tutti gli integrati, commutatori a tastiera complete di tasto cromato, interruttore a tastiera con tasto cromato, trasformatore, gruppo UHF già montato e tarato, manopole, BNC, diodo Led, zoccoli per integrati, cordone di alimentazione, circuito stampato doppia faccia con serigrafia già forato, mobile e masche-. L. 75.000

Il solo circuito stampato doppia faccia con serigrafia, già forato, tipo LX187 . L. 8.000

MISURE PRATICHE sui DIODI

Sul numero 40/41 vi abbiamo presentato il progetto di un tracciacurve, di uno strumento cioè in grado di evidenziare sullo schermo di un oscilloscopio ad esso collegato le curve caratteristiche di qualsiasi semiconduttore.

Prendendo spunto da questo progetto abbiamo poi iniziato una serie di articoli teorici aventi il duplice scopo sia di insegnare ad usare, il tracciacurve, sia di fornire ai più inesperti alcune indicazioni per interpretare le varie curve che di volta in volta appaiono.

Abbiamo così passato in rassegna prima i transistor (vedi numeri 42/43 e 45/46), poi gli SCR ed infine i TRIAC (vedi n. 48).

Oggi, continuando in questa nostra panoramica, prenderemo invece in considerazione quello che fra tutti i semiconduttori presenta il funzionamento più semplice, cioè il diodo.

Siamo infatti certi che ognuno di voi saprà che cosa è un diodo, cioè quel particolare semiconduttore in grado di lasciar passare la corrente in un solo verso (dall'anodo verso il catodo), quindi idoneo per raddrizzare una tensione alternata, per rivelare un segnale di AF e per mille altri impieghi analoghi.

Siamo però altrettanto certi che non tutti di voi sapranno taluni altri particolari riguardo questo componente che sono importantissimi per impiegarlo in modo corretto e che solo analizzandolo al tracciacurve si possono scoprire e comprendere.

Accingiamoci dunque ad eseguire questa prova ricordandoci innanzitutto di collegare il nostro tracciacurve all'oscilloscopio e di tarare gli assi di quest'ultimo, come ampiamente descritto nei numeri precedenti (vedi nn. 40/41 a pag. 301 e nn. 42/43 a pag. 121), in modo che:

- ad ogni quadretto verticale corrispondano 5 milliampère;
- ad ogni quadretto orizzontale corrisponda 1 volt.

Dovremo poi disporre i diversi comandi del tracciacurve come segue:

deviatore TRACC./CALIBR. in posizione TRACC.; deviatore TRACC./V.MAX. in posizione TRACC.; deviatore X-DIVISIONE in posizione 20 volt; deviatore LOW POWER/HIGH POWER in posizione LOW

deviatore ON BASE/OFF BASE in posizione ON

A questo punto potremo collegare i due terminali del nostro diodo rispettivamente alle boccole E-C del tracciacurve, come vedesi in fig. 1. A tale proposito il lettore troverà dissegnato sulla mascherina il simbolo del diodo nel verso in cui dovrebbe risultare disposto, ma ammettendo che non si conosca a priori né il catodo né l'anodo, noi potremo inserire il diodo nel verso che ci pare, poiché sarà il tracciacurve stesso ad indicarci quali dei due terminali è il catodo e quale l'anodo. Se infatti sullo schermo compare una curva

In questo articolo vi spieghiamo come usare il nostro tracciacurve per visualizzare sullo schermo di un oscilloscopio le curve caratteristiche dei diodi al silicio e al germanio, degli zener e dei diac.

COME USARE II TRACCIACURVE

simile a quella di fig. 2, cioè una specie di sdraiata con il lato più corto rivolto verso l'alto e verso destra, il catodo sarà il terminale collegato alla boccola E; se invece compare una L con lato più corto rivolto verso il basso e verso sinistra (vedi fig. 3) il catodo è il terminale collegato alla boccola C. In altre parole, anche se sull'involucro del diodo si è cancellata l'indicazione della polarità, col nostro strumento possiamo facilmente individuare i due terminali.

COME SCOPRIRE SE UN DIODO È UN GERMANIO O UN SILICIO

L'individuazione dei terminali è però una prova banale che può essere eseguita anche con un normalissimo tester mentre il n'ostro tracciacurve ha poteri ben più ampi, per esempio può dirci se il diodo che stiamo esaminando è un germanio oppure un silicio. Il metodo per scoprire questo è molto semplice. Supponiamo infatti che il nostro diodo sia un silicio: collegando il catodo alla boccola E e l'anodo alla boccola C, sullo schermo comparirà la curva di fig. 4.

Se adesso osserviamo attentamente questa curva noteremo che subito prima del tratto in salita trovasi un punto più luminoso.

Questo punto, che per intenderci in seguito chiameremo « PUNTO ZERO », non è altro che l'inizio degli assi cartesiani a cui è riferito il nostro diagramma, cioè il punto a tensione e corrente nulla.

A sinistra di questo punto la curva è perfettamente orizzontale e questo è più che logico infatti con tensioni negative (a sinistra del punto zero le tensioni sono negative) la corrente che attraversa il diodo è nulla.

Quello che può stupire è invece che vi sia un tratto (sia pur breve) di curva orizzontale anche a destra del punto zero.

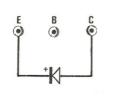


Fig. 1 Per controllare un diodo con il tracciacurve dovremo sfruttare le due sole boccole E-C, come del resto risulta anche disegnato sul pannello dello strumento.

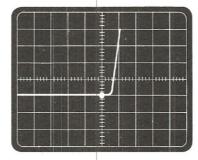


Fig. 2 Collegando il diodo come indicato in fig. 1, sullo schermo dell'oscilloscopio vi apparirà questa figura, cioè una linea orizzontale, la cui estremità di destra salirà verso l'alto. Si noti nella foto il « punto zero », in prossimità della linea verticale

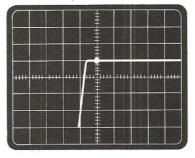


Fig. 3 Se collegheremo il catodo del diodo sul terminale C anziché su E (cioè in senso opposto a quanto indicato nella fig. 1) sullo schermo dell'oscilloscopio apparirà una figura invertita rispetto a quella visibile in fig. 2,

10

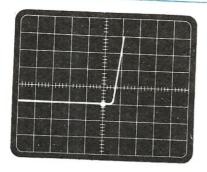


Fig. 4 In un diodo al silicio, come vedesi in questa foto, il tratto vertica-le parte a circa 0,7 volt dal « punto zero » e sale con una retta molto ripida.

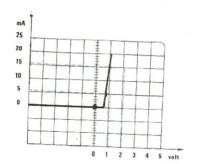


Fig. 6 Poiché ogni quadretto verticale corrisponde a 5 milliamper, se nel diodo al silicio scorrono correnti comprese tra 0 e 5 mA, si ha una caduta di tensione di circa 0,7 volt; con 15 mA si ha invece una caduta di circa 1 volt.

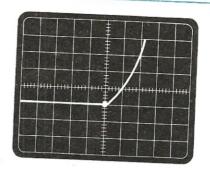


Fig. 5 In un diodo al germanio il tratto verticale sale vicinissimo al « punto zero », però la linea verticale è molto meno ripida rispetto a quella di un diodo al silicio.

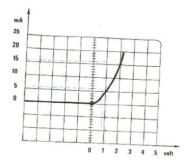


Fig. 7 Per un diodo rivelatore al germanio abbiamo una caduta irrisoria se la corrente che scorre nel diodo risulta inferiore a 1 mA; tale caduta però sale a 1 volt con correnti di circa 5 mA e a 2 volt con 15 mA.

Questo tratto di curva sta ad indicare che anche quando la tensione anodo-catodo è positiva, finché la stessa non supera un certo valore che possiamo facilmente calcolarci, il diodo non conduce, oppure, in altre parole, che un diodo quando è attraversato dalla corrente non si comporta mai come un perfetto cortocircuito bensì introduce una piccola caduta di tensione.

È proprio l'entità di questa caduta di tensione, nonché la pendenza della curva, che ci permette di stabilire, come vedremo, se un diodo è al silicio oppure al germanio.

Se infatti trattasi di un silicio, come nel nostro caso, il tratto di curva orizzontale compreso fra il punto zero e il tratto in salita è lungo circa 3/5 di quadretto (vedi fig. 4) e poiché ad ogni quadretto orizzontale corrisponde una tensione di 1 volt,

possiamo affermare che la caduta di tensione introdotta dal diodo per una corrente inferiore ad 1 milliampère è pari a circa 0.6-0.7 volt.

Se invece andiamo ad esaminare un diodo al germanio, sullo schermo comparirà una curva simile a quella di fig. 5, cioè ancora una L sdraiata con la punta verso l'alto però è immediato notare come in questa curva il tratto in salita sia molto meno verticale e parta molto più vicino al punto zero che non nel caso precedente.

La caduta di tensione introdotta da un diodo al germanio per correnti inferiori a 1 milliampère si mantiene infatti, come potrete rilevare dallo lunghezza del tratto orizzontale a destra del punto zero, sull'ordine di 0.3 volt.

Cosa significa inoltre il fatto che la caratteristica di un diodo al germanio abbia una pendenza molto più accentuata rispetto a quella di un diodo al silicio?

Significa che la caduta di tensione cui abbia mo appena accennato non è costante per qualsi asi corrente bensì dipende fortemente da quest ultima.

Riferendoci infatti alla curva di fig. 7, note remo immediatamente che se la corrente che attraversa il diodo risulta di 5 milliampère, la caduta di tensione risulta pari a circa 1 volt; se invece la corrente risulta di 15 milliampère, tale caduta rasenta i 2 volt.

Al contrario, se il diodo è un silicio (vedi fig. 6), con una corrente di 5 mA si ha una caduta di circa 0,7 volt e con una corrente di 15 mA si ha una caduta di circa 1 volt.

Questo significa che la caduta di tensione trodotta da un diodo al silicio è sì più alta rispetto a quella introdotta da un diodo al germanio quando si tratta di deboli correnti, però questa caduta si mantiene abbastanza costante all'aumentare della corrente, cosa che invece non avviene per un diodo al germanio.

LA TENSIONE MASSIMA DI LAVORO

Un'altra prova molto interessante che si può effettuare su un diodo con il nostro tracciacurve è quella di misurarne la tensione massima di avoro, cioè la più alta tensione inversa che il diodo può sopportare prima che la giunzione si rompa.

In tal modo noi potremo stabilire se il diodo è un raddrizzatore ed in tal caso dovremo rilevare una tensione superiore ai 150 volt, oppure se è un rivelatore. Ricordiamo tuttavia che non è possibile, col nostro strumento, evidenziare tensioni di rottura superiori ai 220 volt, in quanto la tensione massima alternata disponibile al suo interno è di 160 volt efficaci.

Per effettuare questa prova dovremo innanzittutto collegare il catodo del diodo alla boccola E del tracciacurve e l'anodo alla boccola C.

Sposteremo poi:

il deviatore TRACC./CALIBR. in posizione TRACC.;

il deviatore TRACC./V. MAX in posizione V. MAX.;

il deviatore X.DIVIS. in posizione 20 V.;

il deviatore LOW POWER/HIGH POWER in posizione LOW;

il deviatore ON BASE/OFF BASE in posizione ON.

Così facendo sullo schermo dell'oscilloscopio comparirà una curva simile a quella di fig. 8,

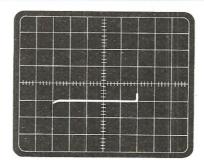


Fig. 8 Come spiegato nell'articolo, è possibile con il tracciacurve determinare la tensione di « rottura » di un diodo. Riferendoci alla curva di questa foto, sapendo che un quadretto in orizzontale equivale a 20 volt, potremo affermare che il diodo è da 100 volt.

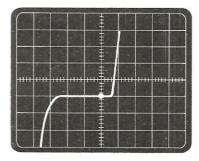


Fig. 9 I diodi zener, a differenza dei diodi al germanio ed al silicio, ci faranno apparire sullo schermo dell'oscilloscopio una figura con due tratti verticali agli estremi.

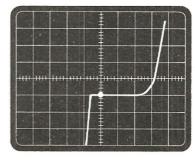


Fig. 10 Se inseriremo sulle boccole del tracciacurve il diodo zener in senso opposto a quella consigliato in fig. 1, sullo schermo dell'oscilloscopio apparirà una figura rovesciata rispetto a quella presentata in fig. 9.

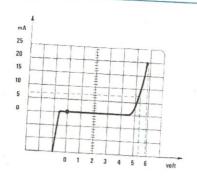


Fig. 11 Meno risulta ripido il tratto di linea verticale a destra del « punto zero », meno stabile risulta la tensione di zener. In questo esempio si può notare che facendo scorrere nel diodo 5 mA si ha una stabilizzazione a 5,1 volt, ma questa raggiungerebbe i 6 volt se la corrente aumentasse a circa 20 mA.

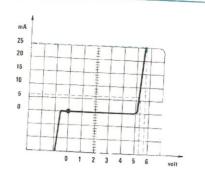


Fig. 12 Questo diodo avendo la linea verticale molto più ripida del precedente (fig. 11) ci conferma che facendo scorrere attraverso ad esso 5 mA. stabilizza la tensione a 5.1 voluma anche se aumentassimo la correrte a circa 25 mA, le variazioni massime risulterebbero di soli 0,2 volt (cicè 5.4 volt).

cioè una linea orizzontale con un breve tratto verticale ad un'estremità.

È proprio la lunghezza di questa linea che ci fornisce la massima tensione di lavoro del diodo infatti poiché ad ogni quadretto orizzontale corrispondono 20 volt, essendo la linea di fig. 8 lunga 5 quadretti, significa che il diodo che stiamo esaminando può sopportare una tensione massima di:

5 x 20 = 100 volt

ovvero che il nostro diodo può raddrizzare solo tensioni più basse di 100 volt.

Se invece prendessimo un altro diodo ed applicandolo sempre nel solito modo alle boccole del tracciacurve sullo schermo comparisse una curva che pur agendo sui comandi di spostamento orizzontale dell'oscilloscopio non si riesce in alcun modo a far rientrare completamente entro lo schermo, questo significa, come abbiamo già annunciato in precedenza, che la massima tensione di lavoro del diodo è superiore ai 220 volt massimi di cui dispone il tracciacurve, cioè ci troviamo di fronte ad un diodo raddrizzatore vero e proprio.

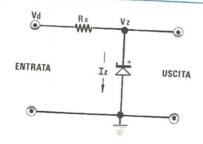


Fig. 13 Calcolare il valore della resistenza RX da porre in serie il diodo zener senza tener conto delia corrente assorbita dal « carico » porterà sempre ad un errore, in quanto collegando il carico, la corrente che attraversa lo zener automaticamente si riduce.

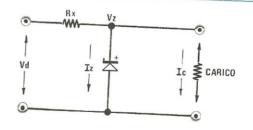


Fig. 14 Come spiegato nell'articolo, per far scorrere albaverso il diodo zener la corrente più idonea per la miglior stabilizzazione, è necessario conoscere quanti milliamper assorbirà il carico che dovremo stabilizzare.

PROVE SUGLI ZENER

Archiviato l'argomento diodi, passiamo adesso a considerare gli zener per vedere quali sono le loro caratteristiche essenziali.

Prendiamone ad esempio uno qualsiasi ed applichiamone i terminali anodo e catodo alle boccole E-C del tracciacurve; dopo aver posizionato i vari comandi di quest'ultimo e dell'oscilloscopio come indicato all'inizio di questo articolo.

Immediatamente il tracciacurve ci dirà quale dei due terminali è l'anodo e quale il catodo, infatti se il catodo è applicato alla boccola E come indicato dal disegno sulla mascherina, sullo schermo comparirà la curva di fig. 9, cioè una specie di Z sdraiata con il tratto in discesa a sinistra molto più distante dal PUNTO ZERO che non il corrispondente tratto in salita a destra.

Viceversa se il catodo è applicato alla boccola C. sarà più distante dal PUNTO ZERO il tratto in salita sulla destra (vedi fig. 10).

Analizzando la caratteristica dello zener, noteremo immediatamente che esso può condure sia se la tensione positiva è applicata all'anoco sia se è applicata al catodo: la caduta che esso introduce nei due casi è però notevolmente diversa.

Quando applichiamo tensione positiva all'anodo infatti, lo zener si comporta come un normalissimo diodo al silicio ed introduce una caduta di tensione pari a circa 0.7 volt.

Quando invece applichiamo tensione positiva al catodo, finché questa non supera un certo valore detto « tensione di zener » il diodo si comporta come un circuito aperto mentre si trasforma praticamente in un cortocircuito al di sopra di detto valore.

MISURA DELLA TENSIONE DI ZENER

Quasitutti sono convinti che se sull'involucro di uno zener c'è scritto ad esempio 5,1 volt, questi inserito in qualsiasi tipo di circuito debba necessariamente introdurre una caduta di tensione pari a 5,1 volt.

Se invece osservate attentamente la curva caratteristica di fig. 11 ottenuta appunto con uno zener da 5.1 volt, noterete immediatamente che questa affermazione è completamente sbagliata.

Infatti l'unico punto della curva caratteristica corrispondente ad una tensione di 5,1 volt (distante cioè 5,1 quadretti in orizzontale dal PUNTO ZERO) è il punto in cui si ha uno corren-

te di circa 7 milliampère (infatti ogni quadretto in verticale corrisponde a 5 milliampère).

In altre parole una tensione di 5,1 volt. con questo zener, la si ottiene solo se lo si fa attraversare da una corrente catodo-anodo pari a 7 milliampère. Supponendo invece che detta corrente risulti di 20 milliampère, la tensione di zener sarà di 5,8 volt.

Questo significa che se non si dispone di un tracciacurve che ne evidenzi la curva caratteristica e che permetta quindi di calcolare i valori esatti delle resistenze da porre in serie allo zener per limitare opportunamente la corrente, non si riuscirà mai ad ottenere dallo zener stesso la caduta voluta a meno che non si decida di procedere sperimentalmente con diversi valori di resistenza.

Il metodo da seguire per il calcolo della resistenza è il seguente: riferendoci sempre alla fig. 11 supponiamo innanzitutto che lo zener alimenti nessun carico, come vedesi ad esempio in fig. 13 dove:

Vd la tensione disponibile;

Vz la tensione che vogliamo ottenere sullo zener; Rx la resistenza incognita da calcolare;

Iz la corrente che dobbiamo far scorrere sullo zener;

Nota la tensione Vd e la corrente ¿z che ci viene fornita dal tracciacurve, la formula che ci permette di calcolare la Rx è estremamente semplice e cioè:

Rx = 1.000 x (Vd — Vz) : Iz dove la resistenza Rx è espressa in ohm le tensioni Vd e Vz in volt e la corrente Iz in milliampère

Supponendo ad esempio che la tensione disponibile Vd risulti di 12 volt, che si voglia ottenere una tensione stabilizzata dallo zener a Vz = 5,8 volt e che il tracciacurve ci abbia permesso di rilevare che è possibile ottenere questo solo se sullo zener scorre una corrente Iz = 20 milliampère, sostituendo questi valori nella formula precedentemente indicata, si avrà:

Rx = 1.000 x (12 - 5,8) : 20 = 310

che potremo arrotondare al più prossimo valore commerciale, cioè 330 ohm.

L'esempio appena riportato ha comunque più carattere teorico che pratico in quanto nel 99% dei casi lo zener alimenta un carico (vedi fig. 14) e di conseguenza nella formula precedente bisogna tener conto anche della corrente assorbita da questo carico.

Tale formula si trasformerà quindi nella seguente:

Rx = 1.000 x (Vd - Vz) : (Iz + Ic)

dove lc è la corrente assorbita dal carico (cioè quella assorbita dai transistor alimentati dalla tensione che il diodo zener deve stabilizzare e che potremo misurare con un tester alimentando il carico stesso con una tensione pari a quella dello zener) espressa ancora in milliampère.

Tanto per fare un esempio supponiamo di voler ancora ottenere una tensione di zener di 5,8 volt, alimentando il tutto con una Vd = 12 volt e sapendo che l'assorbimento del carico risulta

Avremo allora:

Rx = 1.000 x (12 - 5.8) : (20 + 18) = 163 Ohmche potremo arrotondare a 150 ohm.

COME STABILIRE SE UNO ZENER È MIGLIORE DI UN ALTRO

Non tutti gli zener comunque sono così sensibili alla corrente che li attraversa come quello che abbiamo appena esaminato, anzi ve ne sono di quelli la cui curva caratteristica presenta una rampa in salita così ripida (vedi ad esempio la fig. 12) che anche per forti sbalzi di corrente la tensione si mantiene pressoché costante. Riferendoci infatti a questa fig. 12, noteremo che mentre con una corrente di 5 milliampère la tensione di zener vale 5.2 volt, con una corrente di 25 milliampère, cioè con una corrente 5 volte superiore a quella del primo punto, la tensione vale 5,4 cioè è superiore alla precedente di

Questa constatazione ci offre quindi un metodo per stabilire se uno zener è più affidabile dell'altro infatti è ovvio che inserendo il secondo zener in un circuito saremo più sicuri di ottenere la tensione desiderata che non nel primo caso in quanto nel primo caso al variare della corrente si possono ottenere variazioni di tensione piuttosto elevate mentre nel secondo caso questo

Il modo migliore per stabilire col nostro tracciacurve se uno zener è stabile oppure no è comunque quello di spostare il deviatore LOW POWER/ HIGH POWER dalla posizione LOW alla posizione HIGH: se così facendo il tratto in salita si sposta molto verso destra significa che la tensione di zener dipende moltissimo dalla corrente, quindi che lo zener stesso non è molto stabile.

Se invece lo spostamento verso destra è quasi

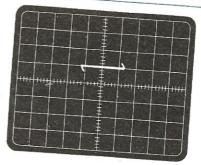


Fig. 15 Un diodo DIAC, a differenza di qualsiasi altro diodo, ci presenta sull'oscilloscopio una linea orizzontale, alle cui estremità sono presenti due cortissime iinee oblique, come vedesi

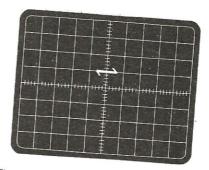


Fig. 16 Se il diodo diac sotto controllo ci fa apparire sullo schermo dell'oscilloscopio una linea orizzontale non più lunga di un centimetro, noi potremo come indicato qui sotto amplificarla di circa 4 volte.

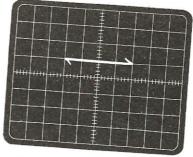


Fig. 17 Spostando il deviatore da « 20 volt X divis » su quello «5 volt X divis » qualsiasi traccia orizzontale verrà ampliata di ben 4 volte, questo perché nei primo caso ogni quadretto orizzontale corrisponde ad una tensione di 20 volt, nel secondo caso a soli

impercettibile significa che lo zener presenta una buona stabilità.

Si può poi provare a riscaldare lo zener con la punta del saldatore ed anche in questo caso la curva sullo schermo si modifica parecchio significa che lo zener ha una scarsa stabilità termica, se invece la curvva rimane pressoché inalterata, significa che lo zener ha uno buona stabilità termica quindi anche scaldandosi mantiene inalterate le sue caratteristiche.

PROVE SUI DIAC

Dopo aver esaminato i diodi al silicio e al germanio e gli zener, passiamo adesso come ultima prova a visualizzare la caratteristica di un diac. Questo componente, come tutti saprete, viene normalmente utilizzato per eccitare il gate di un triac in quanto, se sottoposto ad una tensione alternata di ampiezza sufficiente, permette di tagliare sia la semionda positiva che quella negativa al livello desiderato trasformando quindi una sinusoide in una specie di onda quadra.

Per visualizzare la caratteristica di un diac dovremo innanzitutto posizionare i comandi del tracciacurve come segue:

deviatore TRACC./CALIBR. in posizione TRACC.; deviatore TRACC./V. MAX. in posizione V. MAX.; deviatore X DIVIS. in posizione 20 Volt;

altri comandi in posizione qualsiasi.

Potremo quindi applicare i terminali del nostro diac indifferentemente alle boccole E-C del tracciacurve: così facendo sullo schermo dell'oscilloscopio comparirà una curva simile a quella di fig. 15, cioè una specie di Z sdraiata lunga nel nostro caso 2,5 cm.

Questa curva ci permette di calcolare l'ampiezza del segnale alternato che può essere appicato al diac senza che questo intervenga operando dei tagli.

Infatti ricordando che con i deviatori sistemati nelle posizioni attuali ad ogni cm. in orizzonta e corrispondono 20 volt, possiamo affermare che finché il segnale si mantiene inferiore ai

20 x 2,5 = 50 volt picco-picco

il semiconduttore non agisce da diodo diac.

Se invece tale segnale ha un'ampiezza superiore ai 50 volt picco-picco, è ovvio che l'eccedenza verrà « tagliata » dal diac, ottenendo quindi un'onda sinusoidale squadrata alle estremità, cioè una specie di onda quadra.

Non tutti i diac però intervengono allo stesso

livello di tensione infatti, come vedesi in fig. 16, il diac in esame fa apparire una curva molto più corta (lunga un solo quadretto).

In questo caso, spostando il deviatore X-DIVIS. sulla posizione 5 Volt (cioè facendo corrispondere ad ogni quadretto orizzontale 5 volt anziché 20), la nostra curva si trasformerà in quella di fig. 17 che rispetto alla precedente è lunga quattro volte di più e presenta i tratti verticali più obliqui.

Misurando la lunghezza di questa curva possiamo determinare il valore di tensione a cui il diac innesca e nel nostro caso avremo:

3,8 x 5 = 19 volt

cioè quest'ultimo diac richiede una tensione di ampiezza inferiore per « squadrare » la sinusoide.

CONCLUSIONE

Chi ha seguito attentamente questo articolo avrà capito che il nostro tracciacurve consente di individuare facilmente l'identità di qualsiasi diodo sconosciuto e precisamente:

DIODI AL GERMANIO: si riconoscono per avere li tratto in salita della loro caratteristica che parte vicinissimo al punto ZERO e sale con una pendenza non trascurabile (vedi fig. 5)

DIODI AL SILICIO: si differenziano da quelli al germanio per avere il tratto in salita più ripido e che parte un po' più distante dal punto ZERO (vedi fig. 4).

DIODI ZENER: si riconoscono dai precedenti poiché la loro curva, oltre a un tratto in salita, presenta anche un tratto in discesa corrispondente alla tensione di zener (vedi fig. 9).

DIODI DIAC: sono caratterizzati dal fatto che se ne può evidenziare la caratteristica solo col tracciacurve in posizione V.MAX ed in tal caso sullo schermo compare una retta con due piccoli uncini agli estremi: uno rivolto verso l'alto e uno verso il basso (vedi fig. 15).

Perciò quando vi capiterà tra le mani un diodo avente una sigla sconosciuta o addirittura illeggibile perché cancellata dall'usura del tempo, sarà per voi uno scherzo affermare, dopo averlo applicato alle boccole del tracciacurve, che esso è un germanio, un silicio, un diodo zener da 5,6 volt oppure un diac.

Non solo ma dovendo sostituire in un circuito uno zener con un altro avente caratteristiche leggermente diverse saprete come comportarvi in proposito.

ERRATA CORRIGE e...

Anche se qualche lettore ritrovando sulla rivista queste pagine borbotterà come al solito: ma costoro non riescono proprio a far nulla senza che ci scappi un errore!

noi rispondiamo in anticipo che chi sbaglia in questo caso è proprio chi esprime tale giudizio.

Un errata corrige infatti (e questo non dobbiamo ignorarlo) si rende necessario solo ed esclusivamente perché il progetto pubblicato è di tale importanza per il lettore che questi si sofferma a leggere l'articolo con maggior attenzione oppure (caso più frequente) che durante il montaggio rileva per forza maggiore le eventuali discordanze che potrebbero esistere fra lo schema elettrico e lo schema pratico. Siamo infatti più che certi che nessuno di coloro ai quali non ha interessato ad esempio il progetto del Covertitore CB/OM apparso sul n. 47, pur avendo letto l'articolo, avrà rilevato che nella «lista componenti» il condensatore C7 viene indicato da 27 pF mentre nell'articolo si parla di un condensatore C7 da 8,2 pF e così pure nessuno di quelli che non erano interessati al Sintonizzatore FM (riv. 48) si sarà accorto che nello schema elettrico di quest'ultimo esistono due R1.

Quelli invece che hanno montato questi due progetti, controllando attentamente uno per uno i vari valori, hanno scoperto immediatamente queste due sviste e ce le hanno fatte notare.

In questi casi, quando qualcuno ci chiede una delucidazione, noi potremmo come fanno altri rispondere privatamente con una lettera ed in tal modo dimostreremmo che non sbagliamo mai forti anche del fatto che non vedendo comparire l'errata corrige chi non realizza questi progetti non potrebbe mai rilevare le incongruenze.

A questo punto però vogliamo porvi una domanda:

=: secondo voi è più giusto e più corretto, una volta scoperto l'errore, renderlo di dominio pubblico, oppure far finta di ignorarlo per dimostrare ai lettori di essere infallibili?

A noi sembra più corretta la prima soluzione, anche se non condivisa dalla totalità del nostro pubblico.

Inutile poi che ci si venga a dire che sulle altre riviste non compare mai un'errata corrige: noi possiamo affermare con cognizione di causa che gli errori esistono ugualmente, solo che nessuno è in grado di notarli per i motivi sopraccitati, e se qualcuno ha dei dubbi in proposito non deve far altro che seguire il nostro consiglio: provi a realizzare uno solo di quei progetti che all'apparenza sembrano perfetti, poi... esprima il suo giudizio in proposito.

È altresi comprensibile che qualcuno si chieda come mai avvengono tutti questi errori quando noi stessi, nei nostri articoli, non ci stanchiamo mai di ripetere che ogni progetto, prima di essere pubblicato, viene provato e riprovato nei nostri laboratori. Sembra assurdo ma è proprio questa una delle cause principali d'errore. Se infatti noi presentassimo esclusivamente degli sche-

CONSIGLI UTILI

mi **teorici**, avremmo sì meno errori sulla rivista, però le probabilità di ottenere alla fine un circuito funzionante si ridurrebbero a « zero » in quanto, ben si sa, la teoria è una cosa importante ma senza la pratica non risolve nulla.

Noi invece, anche se partiamo sempre da uno schema elettrico progettato in via teorica a tavolino, una copia di detto schema passa al laboratorio per la realizzazione pratica ed una copia alla «redazione» per la preparazione del cosiddetto «brogliaccio», cioè una prima bozza dell'articolo basata esclusivamente sui valori ricavati in via teorica.

Una volta che il progetto è stato montato ed ha subito i vari collaudi, il laboratorio passa alla redazione le caratteristiche tecniche salienti del medesimo, ne elenca i punti critici, indica come si procede alla taratura ecc. in modo che si possa correggere il «brogliaccio» e dare una stesura definitiva all'articolo. Assieme ai dati tecnici, la redazione riceve anche il prototipo in modo da poter controllare direttamene su di esso quali valori sono stati cambiati rispetto allo schema originario.

Per ridurre gli errori ai minimi termini infatti, le liste componenti vengono redatte leggendo esclusivamente i valori dei componenti inseriti direttamente sul prototipo, in quanto l'esperienza ci ha insegnato che non ci si può fidare troppo nemmeno dei tecnici i quali cambiando una resistenza a volte si ricordano di segnare nell'apposito foglio il nuovo valore, ma a volte, troppo intenti a curare il funzionamento, si dimenticano di trascrivere la variazione eseguita, creandoci non pochi grattacapi.

Controllando però i valori dei componenti sul prototipo, può capitare (e sarà certamente capitato anche a voi), di scambiare una striscia rossa su una resistenza per una marrone e viceversa, così come può capitare di non interpretare esattamente il valore di un condensatore che utiliz-

za un codice fuori standard (vedi ad esempio i condensatori di AF per il TX21); in altre parole, anche mettendoci tutta la buona volontà possibile, il redattore può lui stesso introdurre un errore.

Proprio per salvaguardarci da questa eventualità, abbiamo disponibile un revisionatore il dui compito specifico è quello di controllare schema elettrico — note tecniche — prototipo e articolo prima di affidare quest'ultimo alla tipografia.

Quando l'articolo viene composto però il linbtipista battendo a macchina, può scrivere ad esempio 1800 hm anziche 180 Ohm (cioè porre la O di Ohm accanto allo 0 del 180) ed in tal caso il correttore di bozze, ritenendo che il linotipista abbia commesso l'errore di scrivere hm anziché Ohm, può aggiungere a cuor leggero una O davanti a hm trasformando automaticamente 180 ohm in 1.800 ohm e a questo punto se il nostro progetto fosse uno schema teorico che nessuno mai realizzerà, anche se in luogo di 180 ohm apparisse 2.200 o 47.000 ohm chi se ne accorgerebbe? Poiché al contrario ogni nostro progetto subisce l'esame critico di centinaia di realizzatori più o meno esperti i quali sanno benissimo che alla fine il progetto stesso deve funzionare, è ovvio che un errore di questo genere (che ripetiamo su uno schema teorico non avrebbe avuto alcuna importanza) non può sfuggire. Proprio per questo, riteniamo sia nostro dovere renderlo di dominio pubblico il più presto possibile in modo che almeno chi deve ancora terminare il montaggio o chi si accingerà in futuro ad eseguirlo non abbia intoppi al suo lavoro a causa di una simile banalità.

Del resto non siamo i soli a cui può sfuggire un errore, dato che anche a Cape Kennedy dove esistono tecnici ben superiori a noi, pur provando e riprovando a terra per mesi e mesi una capsula spaziale, solo quando questa è nello spazio scoprono sempre che esiste un piccolo errore il quale a volte può compromettere la vita degli astronauti. Per fortuna i nostri errori sono più modesti e non certo così importanti da rischiare la vostra vita; la nostra forse sì perché siamo convinti che se qualche lettore ci avesse a portata di mano nel momento in cui scopre un errore, un saldatore ben caldo infilato in un occhio potremmo, anche per « errore », veramente trovarcelo.

LX171 - CAPACIMETRO (Rivista n. 45/46)

Relativamente a questo progetto, ci sono stati segnalati due errori:

Nella lista componenti a pag. 280 si legge: C8 = 47 pF ceramico a disco

Tale condensatore deve invece risultare da 470 pF sempre ceramico a disco.

2) Sono state invertite le sigle dei trimmer nelle due tabelle inserite nel paragrafo **TARATURA** a pag. 287. Per eseguire una perfetta taratura dello strumento dovrete perciò modificare dette tabelle come segue:

1. TABELLA				
Portata	Posizione di S1	Posizione di S2	Trimmer	
50 mF	1	A	R1	
5 mF	2	Α	R3	
500.000 pF	3	A	R5	
50.000 pF	4	A	R7	
5.000 pF	1	С	R9	
500 pF	2	С	R11	
50 pF	3	С	R13	
5 pF	4	С	R15	

2º TABELLA				
Portata	Posizione di S1	Posizione di S2	Trimmer	
100 mF	1	В	R1	
10 mF	2	В	R3	
1 mF	3	В	R5	
100.000 pF	4	В	R7	
10.000 pF	1	D	R9	
1.000 pF	2	D	R11	
100 pF	3	D	R13	
10 pF	4	D	R15	

D'altra parte era ovvio che non si poteva ad esempio pensare di tarare la portata 50 mF f.s. agendo sul trimmer R9 infatti se andiamo a controllare lo schema elettrico di pag. 280 noteremo che su questa portata. cioè con S1 in posizione 1 e S2 in posizione A l'unico trimmer collegato al positivo dello strumento è R1, quindi in questo casto meriterebbe una bella tiratina d'orecchie sia chi ha scritto l'articolo sia chi l'ha corretto.

LX134 - ANTIFURTO PER CASA (Rivista n. 45/46)

Nella lista componenti a pag. 253 sono stati scambiati fra di loro i valori delle resistenze R33 ed R36.

La resistenza R33 infatti deve risultare da 56.000 ohm mentre la R36 deve risultare da 6.800 ohm.

RX21 - RICEVITORE (Rivista n. 45/46)

A pag. 271, nel paragrafo denominato PER EVI-TARVI INSUCCESSI, sottotitolo « Il ricevitore sente le Onde Medie », verso la fine si legge:

— avete utilizzato per R5 una resistenza di valore troppo basso (ad esempio 180 ohm invece di 1.800 come da noi consigliato).

Se invece andiamo a leggere la lista componenti di pag. 264 troviamo R5 = 820 ohm, quindi c'è una incongruenza tra i due valori.

In realtà il valore esatto di R5 è quello riportato nella lista componenti, cioè 820 ohm.

Sempre relativamente a questo ricevitore dobbiamo poi fare una precisazione e cioè che nel kit che noi vi spediamo è compreso **uno solo dei cinque quarzi** e non nessuno oppure cinque come molti credono.

LX190 - CONVERTITORE CB/OM (Rivista n. 47)

In questo progetto non esistono errori tuttavia dobbiamo far presente un piccolo particolare che ci ha costretti a rispondere a molti lettori. Nello schema elettrico di fig. 2 a pag. 441, sul piedino 13 dell'integrato IC1, trovasi indicata una tensione di 14,5 volt, cioè una tensione addirittura superiore a quella di alimentazione: il valore esatto di tensione che si deve rilevare in questo punto è invece di 1,45 volt. Sempre relativamente a questo progetto dobbiamo poi ricordare che il valore esatto di capacità del condensatore C7 è 27 pF, come indicato nella lista componenti di pag. 441, e non 8,2 pF come inavvertitamente è stato scritto nel corso dell'articolo a pag. 442 e 444.

In pratica infatti, utilizzando un condensatore da 8,2 pF si sintonizza la MF al di sopra dei 2.000 KHz.

LX183 - PROTEZIONE PER CASSE (Rivista n. 47)

Taluni lettori ci hanno spedito il loro montaggio dicendo che questo non funzionava e controllando i transistor TR1 e TR2 ci siamo accorti che erano stati utilizzati degli equivalenti i quali avevano i terminali collettore ed emettitore disposti in modo diverso da come richiede lo schema (in pratica presentavano il collettore al posto dell'emettitore e viceversa).

Quindi se utilizzate un equivalente del PN2484 fate molta attenzione a non incorrere in questo errore altrimenti il circuito funzionerà in maniera molto irregolare.

A qualche lettore abbiamo pure consigliato di aumentare la capacità del condensatore C4 portandola dagli attuali 22 mF a 47 mF ma questo è valido solo se si sostituiscono i transistor da noi consigliati.

LX193 - SINTONIZZATORE FM (Rivista n. 48)

Nello schema elettrico di pag. 500 non è venuto stampato, per un difetto di cliché, un numero su una resistenza dello schema elettrico, infatti noi troviamo due resistenze indicate con la sigla R1: la prima in alto a sinistra collegata ai diodi varicap DV1 e DV2 e la seconda al centro collegata fra i piedini 1 e 3 dell'integrato IC2.

In realtà però questa seconda resistenza non è la R1 bensì la R13 come potevasi facilmente dedurre spuntando una per una tutte le rimanenti sigle e considerando che la nostra numerazione segue sempre un ordine progressivo.

Sempre a proposito del sintonizzatore, a pag. 507, nel sottotitolo «Bobina L3/L4» non è indicato il diametro del filo costituente la bobina L3: questo filo deve essere smaltato ed avere un diametro di mm. 05, - 0,6. Se qualcuno, pur agendo sul nucleo di questa bobina, non riuscirà a capire la gamma, soprattutto nelle frequenze più basse, potrà aumentare da 3 a 4 il numero di spire sia di L3 che di L4

Infine c'è da fare una piccola precisazione a proposito del filtro ceramico FC1: di questi filtri infatti ne esistono in commercio diversi tipi e non tutti presentano sul loro involucro il punto colorato cui noi facciamo riferimento nella fig. 5 a pag. 505, quindi individuarne i terminali può diventare problematico.

Quando non c'è il punto però, sull'involucro è sempre riportata una scritta (ad esempio il nome della Casa costruttrice oppure un numero): orbene guardando questa scritta di fronte, noi avremo sulla destra il piedino 1, al centro il piedino 2 e sulla sinistra il piedino 3.

LX184 - AMPLIFICATORE 80 WATT (Rivista n. 48)

A pag. 540 in alto a sinistra si legge:

« Per ottenere queste condizioni è sufficiente modificare il valore della resistenza R2 da 120 ohm, posta in serie al condensatore elettrolitico C1 ».

In realtà però se si va a controllare nella lista componenti di pag. 535 si scopre che la resistenza R2 non è da 120 ohm, bensì da 220.000 ohm e che invece risulta da 120 ohm la resistenza R3. La frase precedente va quindi modificata come

« Per ottenere queste condizioni è sufficiente modificare il valore della resistenza R3 da 120 ohm, posta in serie al condensatore elettrolitico C3 ».

Cioè in pratica la resistenza su cui si deve agire è la R3 non la R2.

Nella lista componenti di pag. 535 troverete inoltre scritto: TR8 = trans. npn tipo BD140. Questo transistor è invece un pnp come appare evvidente dallo schema elettrico di fig. 1.

IMPORTANTE

È in preparazione e apparirà sui prossimi numeri, un perfetto TRASMETTITORE in FM gamma 80-108 MHz. per stazioni private a un prezzo modico, con caratteristiche corrispondenti a quelle richieste dal MINISTERO PP.TT.