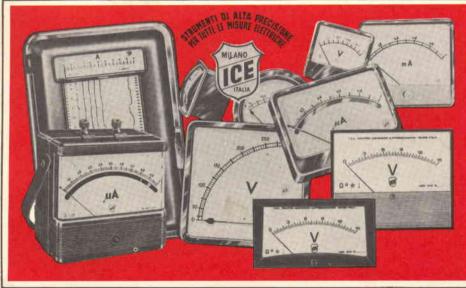
perimentare ELEZION

RIVISTA MENSILE DI TECNICA ELETTRONICA
E ALTA FEDELTA A CARATTERE PRATICO DIVULGATIVO L. 800

ARGENTINA ... Pesos 31 AUSTRALIA ... \$ 1,50 AUSTRIA Sc. 37 BELGIO . . . Fr. Bg. 74 BRASILE Crs. 13 CANADA . . \$ Can. 2,10 CILE Esc. 3.000


DANIMARCA Kr. D. 11,50 EGITTO Lira 1,30 ETIOPIA \$ 4 FRANCIA Fr. Fr. 8,80 GERMANIA O . . . M . 5 GIAPPONE . . . Yen 535 GRECIA . . . Dracme 60

INGHILTERRA . Ster. 1 ISRAELE Lira 8,20 JUGOSLAVIA . . . Din. 31 LIBANO Lira 5,10 LIBIA Din. 0,70 LUSSEMBURGO . Fr. 74 MALTA . . . Sterlina 0,70

NORVEGIA Kor. N. 11,40 OLANDA . . . F. Ol. 5,20 PERU' Soles 103 POLONIA . . . Zloty 160 PORTOGALLO Esc. P. 50 SPAGNA . . . Pesetas 115 SUD AFRICA Rand 1,70

SVEZIA Kr. S. 9 SVIZZERA .. Fr. S. 6,50 TURCHIA Lira 30 BUSSIA . Rublo 7,50 URUGUAY . . . Peso 2100 U.S.A. \$ 2.10 VENEZUELA . . Bolivar 9

VOLTMETRI
AMPEROMETRI
WATTMETRI
COSFIMETRI
FREQUENZIMETRI
REGISTRATORI
STRUMENTI
CAMPIONE

PER STRUMENTI DA PANNELLO, PORTATILI E DA LABORATORIO RICHIEDERE IL CATALOGO I.C.E. 8 - D.

Supertester 680 2/

ATTENZIONE

SERIE CON CIRCUITO RIBALTABILE!!

Brevetti Internazionali - Sensibilità

20.000

STRUMENTO A NUCLEO MAGNETICO schermato contro i campi magnetici esterni!!! Tutti i circuiti Voltmetrici e amperometrici di questo nuovissimo modello 680 R montano RESISTENZE A STRATO METALLICO di altissima stabilità con la PRECISIONE ECCEZIONALE DELLO 0.5 %!!

OUESTA NUOVA SERIE IL CIRCUITO STAMPATO PUÒ ESSERE RIBALTATO SENZA ALCUNA DISSALDATURA E CIÒ PER FACILITARE L'EVENTUALE SOSTITUZIONE DI QUALSIASI COMPONENTE!

Record di ampiezza del quadrante e minimo ingombro ! (mm. 128×95×32) Record di precisione e stabilità di taratura! (1% in C.C. - 2% in C.A.!) Record di semplicità, facilità di impiego e rapidità di lettura!

Record di robustezza, compattezza e leggerezza! (300 grammi)

Record di accessori supplementari e complementari! (vedi sotto)

+20

500...4

Qv1

500 LOW Q

2x10

Ωx100

MOD. 680 R-PATENTED

ē

5A=

Record di protezioni, prestazioni e numero di portate!

10 CAMPI DI MISURA 80 ORTAT

VOLTS C.A.: 11 portate: da 2 V. a 2500 V. massimi. VOLTS C.C.: 13 portate: da 100 mV. a 2000 AMP C.C.: 12 portate: da 50 µA a 10 Amp 10 portate: da 200 μA a 5 Amp 6 nortate: da 1 decimo di ohm a OHMS: Rivelatore di 100 Megaohms. 1 portata: da 0 a 10 Megaohms, 6 portate: da 0 a 500 pF - da REATTANZA. CAPACITA': - da 0 a Fe da 0 a 50.000 µF in quattro scale.

JENZA: 2 portate: da 0 a 500 e da 0 a 5000 Hz.

CITA: 9 portate: da 10 V, a 2500 V,

ELS: 10 portate: da — 24 a 70 dB. FREQUENZA: V. USCITA: DECIBELS:

Inoltre vi è la possibilità di estendere ancora maggiormente le prestazioni del Supertester 680 R con accessori appositamente progettati dalla L.C.E. Vedi illustrazioni e descrizioni più sotto riportate. Circuito elettrico con speciale dispositivo per la compensazione degli errori dovuti agli sbalzi di temperatura.

Speciale bobina mobile studiata per un pronto smorzamento dell'indice e quindi una rapida lettura. Limitatore statico che permette allo strumento indimille volte superiori alla portata scelta!!!

catore ed al raddrizzatore a lui accoppiato, di poter sopportare sovraccarichi accidentali od erronei anche

IL TESTER PER I TECNICI VERAMENTE ESIGENTI!!!

ertester 680R

REG

0

Strumento antiurto con speciali sospensioni elastiche. Fusibile, con cento ricambi, a protezione errate inserzioni di tensioni dirette sul circuito ohmetrico. Il marchio « I.C.E. » è garanzia di superiorità ed avanguardia assoluta ed indiscussa nella progettazione e costruzione degli analizzatori più completi e perfetti. PREZZO SPECIALE propagandistico franco nostro stabilimento completo di puntali, pila e manuale d'istruzione. Per pagamenti all'ordine, od alla consegna, <mark>omaggio del relativo astuccio</mark> antiurto ed antimacchia in resinpelle speciale resistente a qualsiasi strappo o lacerazione. Detto astuccio da noi **BREVETTATO** permette di adoperare il tester con un'inclinazione di 45 gradi senza doverlo estrarre da esso, ed un suo doppio fondo non visibile, può contenere oltre ai puntali di dotazione, anche molti altri accessori. Colore normale di serie del SUPERTESTER 680 R: amaranto; a richiesta:

10W Q

20,000

ACCESSORI SUPPLEMENTARI DA USARSI UNITAMENTE AI NOSTRI "SUPERTESTER 680"

PROVA TRANSISTORS PROVA DIODI Lranstest MOD. 662 I.C.E.

Esso può eseguire tutte le seguenti misure: Icbo (Ico) -Lebo

(leo) - Iceo (lces - Iceo (lces - Iceo - Ice hFE (B) per i Minimo ingombro: 128 x 85 x 30 mm. completo di astuccio - pila - puntali e manuale di istruzione

VOLTMETRO ELETTRONICO con transistori a effetto d campo (FET) MOD. I.C.E. 660 Resistenza d'ingresso = 11 Mohm - Tensione C.C.: da 100 mV a 1000 V - Tensione picco-picco: da 2,5 V a

1000 V - Ohmetro: da 10 Kohm a 10000 Mohm pedenza d'ingresso P.P = 1,6 Mohm con circa 10 pF in parallelo Puntale schermato con commutatore incorporato per le seguenti commutazioni: V-C.C.; Vpicco-picco: Ohm. Circuito elettronico con doppio stadio differenziale. Completo di puntali - pila e manuale

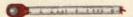
TORE I.C.E. MOD. 616 per misure amperometriche

in C.A. Misure eseguibili: 250 mA - 1-5-25-50 e 100

Amp. C.A. - Dimensioni 60 x x 70 x 30 mm - Peso 200 gr. completo di astuccio e istruzioni

TRASFORMA-I A M P F R O M F T R O TENAGLIA Amperclamp

per misure amperometriche immediate in C.A. senza interrompere i circuiti da esaminare -7 portate: 250 mA 2,5-10-25-100-250 500 Amp. C.A. - Peso: solo 290 grammi. Tascabile! completo di astuccio, istruzioni


e riduttore a spina Mod. 29.

PUNTALE PER ALTE TENSIONI MOD 18 I.C.E. (25000 V CC)

LUXMETRO MOD. 24 LC.E. a due scale da 2 a 200 Lux e da 200 a 20,000 Lux, Ottimo pure come esposimetro!!

SONDA PROVA TEMPERATURA istantanea a due scale: - 50 a +40 °C e da # 30 a + 200 °C

SHUNTS SUPPLEMENTARI (100 mV) MOD. 32 I.C.E. per portate amperometriche: 25.50 e 100 Amp. C.C.

OGNI STRUMENTO I.C.E. È GARANTITO. RICHIEDERE CATALOGHI GRATUITI A:

RUTILIA. 20141 MILANO - TEL. 531.554 5 6

WEGA

la migliore tecnica ed estetica tedesca è arrivata anche in Italia

WEGA, la casa tedesca che da più di mez-zo secolo contribuisce in modo decisivo all'evoluzione della radiotecnica, con i suoi famosi compatti ha dato una nuova dimensione all'alta fedeltà.

Ciò è stato possibile grazie alla perfezione costante e alla creazione di forme e tecniche inedite, frutto della tradizione di questa impresa di grandissima esperienza.

La combinazione illustrata in questa pagina ne è un classico esemplo.

COMBINAZIONE STUDIO HI-FI 3212B composta da:

1 - Sinto-amplificatore con cambiadischi stereo

Sezione Sintonizzatore

Gamme d'onda: FM - OM - OC - OL Sensibilità FM: 2 µV

5 tasti di preselezione in FM

Sezione Amplificatore Potenza di uscita: 2 x 18 W RMS, 2 x 25 W

Risposta di frequenza: 20 ÷ 20.000 Hz

± 3 dB

musicali Distorsione armonica: 0,6%

Cambiadischi

Tipo Dual 1216 con testina magnetica Shure M 75 D

Dimensioni: 720 x 190 x 330

2 - Casse acustiche LB 3516

A due vie Banda passante: 40 ÷ 20.000 Hz

Potenza continua: 25 W Frequenza di taglio crossover: 2.200 Hz

Impedenza: 4 - 8 Ω Dimensioni: 450 x 290 x 100

RICHIEDETE I PRODOTTI WEGA AI MIGLIORI RIVENDITORI

Catalogo a FURMAN S.p.A.

Sped. in abb. post. Gr. 111/70

Direttore Responsabile: RUBEN CASTELFRANCHI

Editore: J.C.E.

Febbraio 1974

SOMMARIO

in copertina:		elettronica e didattica (dal nuovo poster AMTRON)
realizzazioni pratiche	211	telecomando radio per l'azionamento dell'otturatore di una macchina fotografica
	219	allarme per gas
	224	contagiri esterno per velcoli
	227	alimentatore 6 + 6 o 12 Vc.c.
radioamatori	231	oscillatore modulato - III parte
	241	rassegna di antenne - Il parte
	248	convertitore per onde corte
	259	antenna mobile a rapida variazione di gamma
scatole di montaggio	263	generatore di luci psichedeliche
	267	trasmettitore per apriporte
	271	ricevitore per apriporte
QTC	275	
	280	la saldat <mark>ura dell'alluminio</mark>
telecomunicazioni	283	la radiogoniometria - I parte
l'angolo del CB	289	un esemplo da imitare: "BREAK" - dai clubs - notizie in breve - un gioiello della Courier: Centurion
rassegna delle riviste estere	295	"self-service" per chi possiede un impianto hi-fi - rivelazione misura ed analisi delle vibrazioni meccaniche - le esigenze di eccitazione degli altoparlanti - costruzioni di apparecchi elettronici per principianti - un miscelatore compressore per circuiti di bassa frequenza
i lettori ci scrivono	303	
equivalenze dei	300	

Si accettano abbonamenti soltanto per anno solare da gennaio a dicembre. E' consentito sottoscrivere l'abbonamento anche nel corso dell'anno, ma è inteso che la sua validità parte da gennaio per cui l'abbonato riceve, innanzitutto, i fascicoli arretrati.

309

© TUTTI I DIRITTI DI RIPRODUZIONE O TRADUZIONE DEGLI ARTICOLI PUBBLICATI SONO RISERVATI

INSERZIONISTI:

semiconduttori

AMTRON ARI BASF B&O BOUYER BRITISH	209-324 240 327 315 322 226	BSR CASSINELLI CHINAGLIA EDMA ELAC EXELCO	208 317 325 316 204 223	FACON GBC HELLESENS ICE IST. SVIZZERO DI TECNICA	318 202-207-270 326 198-199	PHILIPS PRESTEL RCF SCUOLA RADIO EL. SICTE SIEMENS ELETTRA	279-319 321 324 203 274 328	SILVERSTAR SONY STOLLE ULTRAERMETICA UNAOHM WEGA	205 210 206 258 320 200

mod. FM/855

Gamme di ricezione: Controllo automatico di frequenza in FM Cambio gamme a tasti

Prese per registratore, altoparlante supplementare e antenna autorádio

Antenna telescopica per FM

Alimentazione: Semiconduttori: Dimensioni:

9 Vc.c. oppure 220 V - 50 Hz 22 transistori 280 x 160 x 70

men DIO - T

Editore: I.C.E.

Direttore responsabile RUBEN CASTELFRANCHI

> Direttore tecnico PIERO SOATI

Redattore capo GIAMPIETRO ZANGA

Redattori MARCELLO LONGHINI ROBERTO SANTINI

Segretaria di redazione MARIELLA LUCIANO

Impaginatori GIANNI DE TOMASI IVANA MENEGARDO

Collaboratori

Lucio Biancoli - Ludovico Cascianini Italo Mason - Domenico Serafini Sergio d'Arminio Monforte Gianni Brazioli - Alligatore Alberto Franco Simonini - Gloriano Rossi Mauro Ceri - Arturo Recla Gianfranco Liuzzi

Rivista mensile di tecnica elettronica e alta fedeltà a carattere pratico divulgativo

Direzione, Redazione, Pubblicità: Via Pelizza da Volpedo, 1 20092 Cinisello B. - Milano Tel. 92.72.671 - 92.72.641

Amministrazione: Via V. Monti, 15 - 20123 Milano Autorizzazione alla pubblicazione Trib, di Monza n. 239 del 17-11-73

Stampa: Tipo-Lito Fratelli Pozzoni 24034 Cisano Bergamasco - Bergamo

Concessionario esclusivo per la diffusione in Italia e all'Estero:

SODIP-V. Zuretti, 25 - 20125 Milano V. Serpieri, 11/5 - 00197 Roma Spediz. in abbon. post. gruppo III/70

> Prezzo della rivista L. 800 Numero arretrato L. 1.600 Abbonamento annuo L. 8.000

Per l'Estero L. 10.500

I versamenti vanno indirizzati a: Jacopo Castelfranchi Editore

Via V. Monti, 15 - 20123 Milano mediante l'emissione di assegno circolare, cartolina vaglia o utilizzando il c/c postale numero 3/56420

Per i cambi d'indirizzo, allegare alla comunicazione l'importo di L. 500, anche in francobolli, e indicare insieme al nuovo anche il vecchio indirizzo.

NOI VI AIUTIAMO A DIVENTARE "QUALCUNO"

Noi. La Scuola Radio Elettra. La più importante Organizzazione Europea di Studi per Corrispondenza. Noi vi aiutiamo a diventare «qualcuno» insegnandovi, a casa vostra, una di queste professioni (tutte tra le meglio pagate del momento):

Le professioni sopra illustrate sono tra le più affascinanti e meglio pagate: la Scuola Radio Elettra, la più grande Organizzazione di Studi per Corrispondenza in Europa, ve le Insegna con i suoi

CORSI TEORICO-PRATICI

RADIO STEREO A TRANSISTORI - TELEVI-SIONE BIANCO-NERO E COLORI - ELET-TROTECNICA - ELETTRONICA INDUSTRIA-LE - HI-FI STEREO - FOTOGRAFIA.

Iscrivendovi ad uno di questi corsi riceverete, con le lezioni, i materiali necessari alla creazione di un laboratorio di livello professionale. In più, al termine di alcuni corsi, potrete frequentare gratuitamente i laboratori della Scuola, a Torino, per un periodo di perfezionamento.

CORSI PROFESSIONALI

ESPERTO COMMERCIALE - IMPIEGATA D'AZIENDA - DISEGNATORE MECCANICO PROGETTISTA - TECNICO D'OFFICINA - MOTORISTA AUTORIPARATORE - ASSI-STENTE E DISEGNATORE EDILE e i modernissimi corsi di LINGUE.

Imparerete in poco tempo ed avrete ottime possibilità d'impiego e di guadagno.

CORSO-NOVITÀ

PROGRAMMAZIONE ED ELABORAZIONE DEI DATI.

Per affermarsi con successo nell'affascinante mondo dei calcolatori elettronici.

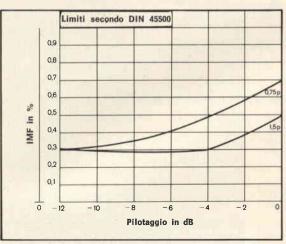
E PER I GIOVANISSIMI

c'è il facile e divertente corso di SPERI-MENTATORE ELETTRONICO.

IMPORTANTE: al termine di ogni corso la Scuola Radio Elettra rilascia un attestato da cui risulta la vostra preparazione. Inviateci la cartolina qui riprodotta (ritagliatela e imbucatela senza francobollo). oppure una semplice cartolina postale, segnalando il vostro nome cognome e indirizzo, e il corso che vi interessa.

Noi vi forniremo, gratuitamente e senza alcun impegno da parte vostra, una splendida e dettagliata documentazione a colori.

Via Stellone 5/704 10126 Torino



quando i tecnici parlano di intermodulazione di frequenza

conviene ascoltarli Recentemente, la nota rivista tedesca «HI-FI Stereofonie», a proposito delle cartucce ELAC, ha pubblicato: «L'intermodulazione di freguenza - IMF assieme alla facilità d'esplorazione è data per due distinti valori della forza d'appoggio. Essa è determinata con le due frequenze concomitanti 300/3000 Hz e con pieno pilotaggio. Nelle cartucce ELAC la IMF è stata notevolmente migliorata e nel modello STS444-E raggiunge valori molti inferiori all'1%». Inoltre, sulla stessa rivista si legge: «...la caratteristica di risposta, la diafonia e l'analisi delle onde quadre rendono un'idea oltremodo rassicurante sulla qualità dei pick-up ELAC». La prova musicale uditiva dimostra che i pick-up ELAC STS244-17 e STS344-17 dal punto di vista

della qualità musicale sono eccellenti.

Distorsioni non lineari — IMF —
in funzione del pilotaggio
per diverse potenze
Disco campione:
DIN45542, zona 1
Dall'andamento della curva
è rilevabile il valore minimo
di intermodulazione di frequenza
della cartuccia Elac
tipo STS444-E.
Esso è di —6 dB
(3 cm/s 300 Hz 0,75 cm/s 3000 Hz) ed anche
con la minima forza,
d'appoggio è dello 0,4%.

Gli orecchi critici ascoltano con ELAC!

I tipi STS444 appartengono, sotto ogni punto di vista, alla classe più elevata. Le prove riportate nelle riviste tecniche confermano che le cartucce ELAC sono fra le migliori del mondo. Non sono però fra le più costose. Desiderate altre informazioni? Rivolgetevi presso tutti i migliori rivenditori.

il sistema Hi-Fi

E' interessante notare che tutti i pick-up Hi-Fi ELAC sono compatibili con i dischi incisi secondo il sistema a matrice quadrifonica (per esempio CBS - SQ).

Telequipment IOMHz D6 UN OSCILLOSCOPIO

TELEGUIPMENT

Dacilloscope D61 power off

Banda passante 10 MHz

Sensibilità 10 mV/cm

Schermo 8x10 cm

Doppia traccia

on

E' uno strumento da laboratorio, ma per la sua forma nuova, le dimensioni ridotte e il poco peso è più «portatile» dei tanti «portatili».

«NUOVO»

Canali indipendenti X - Y Trigger TV quadro e riga

E' uno strumento di precisione dalle moltissime possibilità di misura, ma, per le ingegnose soluzioni adottate nei suoi circuiti è più «semplice» da usare di tanti strumenti «semplici».

E' uno strumento di valore, ma costa molto meno di tanti strumenti «economici».

Per informazioni, quotazioni e dimostrazioni rivolgersi a:

5ilverstar,

Itd, Spa

Milano: Via dei Gracchi, 20 telef. 49 96

Roma: Via Paisiello, 30

telef. 84 48 841

Torino: P.zza Adriano, 9 telef. 443 275-6 stolle

ANTENNE UHF

Elementi: 91 - riflettore a lambda Impedenza: $60 \div 240 \Omega$

 Canali:
 21 ÷ 28

 Guadagno:
 16 dB

 Rapporto Av./in.:
 30 dB

 Ang. di apertura:
 H = 22°

 Carico del vento:
 14,5 Kp

Codice GBC:

NA/4737-02

Elementi: 91 - riflettore a lambda Impedenza: $60 \div 240 \Omega$

 Canali:
 29 ÷ 37

 Guadagno:
 16,5 dB

 Rapporto Av./In.:
 30 dB

 Ang. di apertura:
 H = 21°

 Carico del vento:
 13,5 Kp

Codice GBC:

NA/4737-06

Elementi: 43 - riflettore a lambda Impedenza: $60 \div 240 \Omega$

 Canali:
 21 ÷ 28

 Guadagno:
 15 dB

 Rapporto Av./In.:
 29 dB

 Ang. di apertura:
 H = 30°

 Carico del vento:
 9,8 Kp

Codice GBC:

NA/4737-00

Elementi: 43 - riflettore a lambda Impedenza: $60 \div 240 \Omega$

Canali: $29 \div 37$ Guadagno:15 dBRapporto Av./In.:29 dBAng. di apertura: $H = 30^{\circ}$ Carico del vento:9,5 Kp

Codice GBC:

NA/4737-04

punti di vendita dell'organizzazione

italiana

in ITALIA

FILIALI

70126 BARI 40128 BOLOGNA 40122 BOLOGNA 20092 CINISELLO B. 16132 GENOVA 16124 GENOVA **20124 MILANO** 20144 MILANO 80141 NAPOLI 00141 ROMA 00182 ROMA 00152 ROMA

Via Capruzzi, 192 Via Lombardi, 43 Via Brugnoli, 1/A Vde Matteotti, 66 Via Borgoratti, 23 I/R P.zza J. Oa Varagine 7/8-R Via Petrella 6 Via G. Cantoni, 7 Via C. Porzio, 10/A
V.le Carnaro, 18/A-C-D-E
L.go P. Frassinetti, 12-13-14 - Via Dei Quattro Venti, 152/F

- Via Empedocle, 81/83

CONCESSIONARI

92100 AGRIGENTO 15100 ALESSANDRIA 60100 ANCONA 52100 AREZZO 36061 BASSANO D. G. 32100 BELLUNO 24100 BERGAMO 13051 BIELLA 39100 BOLZANO 25100 BRESCIA 72100 BRINDISI 09100 CAGLIARI 95128 CATANIA 62012 CIVITANOVA M. 10093 COLLEGNO '(TO) 26100 CREMONA **12100 CUNEO** 72015 FASANO 44100 FERRARA 50134 FIRENZE 34170 GORIZIA 58100 GROSSETO 19100 LA SPEZIA 73100 LECCE 22053 LECCO 57100 LIVORNO 62100 MACERATA

46100 MANTOVA 98100 MESSINA **30173 MESTRE** 41100 MODENA 28100 NOVARA 15067 NOVI LIGURE 35100 PADOVA 43100 PARMA 27100 PAVIA 06100 PERUGIA 61100 PESARO

- Via Donizetti, 41 - Via De Gasperi, 40 - Via M. Da Caravaggio, 10-12-14 - Via Parolini Sterni, 36 - Via Bruno Mondin, 7 - Via Borgo Palazzo, 90 - Via Rigola, 10/A Via Napoli, 2 Via Naviglio Grande, 62 - Via Saponea, 24 - Via Dei Donoratico, 83/85 Via Torino, 13 - Via G. Leopardi, 15 - Via Cefalonia, 9 - Via Del Vasto, 5 Paza Libertà, 1/A - Via Roma, 101 Corso Isonzo, 99 Via G. Milanesi, 28/30 Oso Italia, 191/193 Via Oberdan, 47 Via Fiume, 18 - V.le Marche, 21 A-B-C-D - Via Azzone Visconti. 9 - Via Della Madonna, 48 Via Spalato, 126 - P.zza Arche, 8 - P.zza Duomo, 15 (Casella Postale 38) - Via Cà Rossa, 21/B - V.le Storchi, 13

- Baluardo O. Sella, 32

- Via Savonarola, 107

- Via Dei Mille, 31

- Via E. Casa, 16

- Via Bonazzi, 57

- Via Verdi, 14

- Via G. Franchi, 6

65100 PESCARA 10064 PINEROLO 5100 PISTOIA 50047 PRATO 97100 RAGUSA 48100 RAVENNA 89100 REGGIO CALABRIA - Via Possidonea, 22D 42100 REGGIO EMILIA - V.le Isonzo, 14 A/C 47037 RIMINI 96100 SIRACUSA 05100 TERNI 10152 TORINO 10125 TORINO 38100 TRENTO 34127 TRIESTE 31100 TREVISO

33100 UDINE 21100 VARESE 37100 VERONA 55049 VIAREGGIO 36100 VICENZA

- Via F. Guelfi. 74 - Via Saluzzo, 53 - V.le Adua, 350 - Via F. Baldanzi, 17 - Via Ing. Migliorisi, 27 - V.le Baracca, 56 - Via Paolo Veronese, 14/16 47037 RIMINI - VIA PADIO VERGILESE, 147/10
63039 S. B. DEL TRONTO - Via Luigi Ferri, 82
30027 S. DONA' DI PIAVE - Via Jesolo, 15
53100 SIENA - Via S. Martini, 21/C - 21/D - Via Mosco, 34 - Via Porta S. Angelo, 23 - Via Chivasso, 8/10 - Via Nizza, 34 - Via Madruzzo, 29 - Via Fabio Severo, 138 - Via IV Novembre, 19 -Condominio 2000 - Via Volturno, 80 - Via Verdi, 26

- Via Aurelio Saffi, 1

- Via Monte Zovetto, 65

- Via A. Volta, 79

DISTRIBUTORI

70031 ANDRIA 11100 AOSTA 14100 ASTI 83100 AVELLINO 93100 CALTANISETTA 81100 CASERTA 03043 CASSINO 21053 CASTELLANZA 47100 FORLI' 03100 FROSINONE 18100 IMPERIA 10015 IVREA 04100 LATINA 20075 LODI 70056 MOLFETTA 12086 MONDOVI' 00048 NETTUNO 29100 PIACENZA 85100 POTENZA 02100 RIETI 00141 ROMA **18038 SAN REMO** 21047 SARONNO 17100 SAVONA 71016 SAN SEVERO 74100 TARANTO

04019 TERRACINA

00019 TIVOLI 10141 TORINO

00041 ALBANO LAZIALE - Borgo Gariba, 286 - Via Annunziata, 10 - Via Adamello, 12 - C.so Savona, 281 - Via Circonvallazione, 24-28
- Via R. Sattimo, 10
- Via C. Colombo, 13
- Via D'Annunzio, 65
- V.le Lombardia, 59 - Via Salinatore, 47 - Via Marittima I, 109 - Via Delbecchi - Pal. GBC - C.so Vercelli, 53 - Via C. Battisti, 56

- V.le Rimembranze, 36/B - Estramurale C.so Fornari, 133 Largo Gherbiana, 14 Wa C. Cattaneo, 68 Via IV Novembre, 58/A Via Mazzini, 72 Via Degli Elci, 24 Via Val Padana, 102 Via M. Della Libertà, 75/77 Via Varese, 150 Via Scarpa, 13/R Via Mazzini, 30

- Via Principe Amedeo, 376 - P.zza Bruno Buozzi, 3 Via Paladina, 42-50Via Pollenzo, 21

Ray Charles, Sinatra, Beethoven, soddisfatti della BSR MCDonald.

Infatti con i prodotti della BSR McDonald. Voi suonate Beethoven e sentite solamente Beethoven. Voi suonate Sinatra e sentite solamente Sinatra. Voi suonate Ray Charles e sentite solamente Ray Charles.

La BSR McDonald produce quasi la metà dei cambiadischi e giradischi venduti nel mondo ed ora entra nel mercato italiano. Anche per Voi è ora possibile sentire "solamente" musica, musica "pulita". Fate una prova con l'810, l'HT70, l'MP60 o il cambiadischi automatico 610. Ne sarete soddisfatti.

Per ottenere dettagliate informazioni è sufficiente inviarci questo tagliando:

BSR (ITALIA) S.p.A. – Piazza Luigi di Savoia 22–20124 MILANO. Vi prego spedirmi una documentazione completa e dettagliata sulla nuova serie BSR McDonald

Nome

Cognome

Cognome ____

Indirizzo ______ Citta'___

BSR (ITALIA) S.p.A.—Piazza Luigi di Savoia 22—20124 MILANO.

lui forse no...

ma voi potete certamente realizzare il 12" a transistori tutto vostro

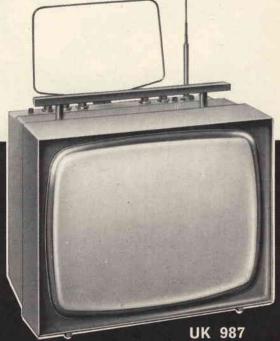
TELEVISORE PORTATILE DA 12"

Questa scatola di montaggio, frutto della grande esperienza AMTRON, è stata studiata e messa a punto sulla scorta delle tecniche più moderne. Essa possiede la rara qualità di soddisfare le esigenze dei tecnici di ogni livello, dagli amatori ai professionisti. Le varie fasi ed operazioni di montaggio sono ampiamente descritte e illustrate nell'opuscolo di istruzioni, allegato alla confezione del kit.

Caratteristiche tecniche

Ricezione: UHF-VHF
Bande: I - III - IV - V
Impedenza di
ingresso UHF e UHF: 75 Ω
Impedenza di
uscita suono: 8 Ω
Potenza d'uscita suono: 300 mW
Alimentazione:

12 Vc.c. oppure 220 Vc.a.


Dimensioni: 250x300x280

Peso: 6,5 kg

Prezzo netto imposto

L. 85.000

4 tracce 2 canali stereo in registrazione e riproduzione

Velocità di trascinamento: 4,8 cm/s

Risposta di frequenza: 20 ÷ 17.000 Hz con nastri al biossido di cromo

Rapporto segnale/disturbo: 49 dB con Dolby escluso

Wow e flutter: 0,1%

Distorsione armonica: 2%

Ingressi: microfono, linea, connettore registrazione/riproduzione

Uscite: linea cuffia, connettore registrazione/riproduzione

Alimentazione: 110-127-220 o 240 Vc.a.

Dimensioni: 460 x 127 x 276

RICHIEDETE PRODOTTI SONY AI MIGLIORI RIVENDIFORI

Cataloghi a: FURMAN S.p.A. - Via Ferri, 6 - 20092 CINISELLO B. (MI)

TELECOMANDO RADIO

PER L'AZIONAMENTO DELL'OTTURATORE DI UNA MACCHINA FOTOGRAFICA

di Jani CADOVIC

Il telecomando descritto, pur essendo stato progettato per l'azionamento a distanza dell'otturatore di una macchina fotografica, si presta ad essere impiegato in un gran numero di altre applicazioni.

on preoccupatevi. Questo progetto vi potrà interessare anche se non siete fotografi o fotoamatori. Si tratta in definitiva di un telecomando-radio, e di conseguenza, oltre che allo scopo specifico di azionare a distanza l'otturatore di una macchina fotografica può essere usato anche per mettere in funzione qualsiasi altro dispositivo.

Ecco infatti alcuni altri possibili impieghi del telecomando:

- apertura e chiusura di una valvola,
- apertura e chiusura di una porta di un garage o del cancello di una villa,
- azionamento a distanza di un campanello,
- azionamento di un sistema di allarme da una certa distanza,
- cambia-diapositive di un proiettore.
- nei più svariati tipi di giocattoli.

La macchina fotografica telecomandata viene solitamente impiegata per studiare il comportamento naturale di alcuni animali che di solito non tollerano la presenza dell'uomo.

Un'altra interessante applicazione di questo progetto si ha quando si desidera che nella foto venga incluso il fotografo medesimo. Ovviamente, nel primo e nel secondo caso, il telecomando non è assolutamente richiesto ma indubbiamente il suo impiego contribuisce a semplificare i due problemi. Vediamone più da vicino il perché.

Prima dell'introduzione di questi sistemi di telecomando-radio, il fotografo che avesse voluto riprendere dal vero la vita che si svolge in una foresta o il comportamento di alcuni animali domestici doveva possedere delle qualità e delle caratteristiche non sempre associate all'attività di fotografo. Innanzitutto, doveva costruire nel luogo prescelto, un nascondiglio o una capanna ben camuffata. Nel fare questo nascondiglio non doveva sostanzialmente modificare l'ambiente naturale e più che altro non spaventare l'animale oggetto del suo studio.

Doveva infine rimanere in questo nascondiglio immobile come u-

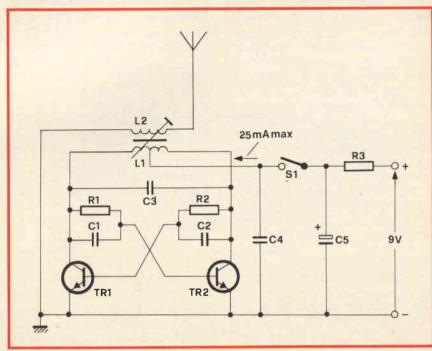


Fig. 1 - Schema elettrico del trasmettitore per telecomando, descritto in questo articolo.

ELENCO DEI COMPONENTI DEL TRASMETTITORE

R1 : resistore da 68 kO.

R2 : resistore a carbone da 68 k Ω - 0,33 W

R3 : resistore da 1 k Ω

C1 : condensatore ceramico da 10 pF C2 : condensatore ceramico da 10 pF

C3 : condensatore ceramico da 100 pF
C4 : condensatore ceramico da 10 pF

C5 : condensatore elettrolitico da 1.000 µF - 10 V

TR1 : transistore al silicio n-p-n BC 108
TR2 : transistore al silicio n-p-n BC 108
S1 : interruttore tutto/niente qualsiasi tipo

L1 : 6 spire di filo di rame smaltato da 0,5 mm. Presa al centro. Supporto per la bobina con diametro di 7 mm e nucleo in poliferro a vite

L2: 8 spire di filo di rame smaltato da 0,5 mm avvolte sopra quelle della hobina L1.

na statua per ore e ore aspettando l'occasione più propizia per scattare le sue fotografie. Questo però era il momento più critico in quanto un movimento involontario benché minimo o un rumore appena percettibile avrebbero messo a repentaglio molte ore di lavoro e di pazienza.

Con l'impiego del telecomandoradio tutte queste difficoltà scompaiono automaticamente. Infatti, la macchina fotografica può essere sistemata sul ramo di un albero, su un apposito treppiede o in qualsiasi altra posizione più opportuna agli effetti della ripresa della scena, mentre il fotografo può nascondersi a molti metri di distanza, senza alcun pericolo di essere scorto, e osservare il campo di studio mediante un binocolo. Al momento opportuno basta premere il bottone e la fotografia è fatta.

Vediamo ora l'impiego di questo telecomando nel secondo caso, e

Collegamento = filo nudo continuo collegamento = filo isolato

Fig. 2 - a) Come appare la piastra sulla quale è montato il trasmettitore vista dalla parte dove si trovano i componenti; b) la piastra vista dalla parte dove vengono effettuati i collegamenti dei componenti.

cioè, la fotografia nella quale sia incluso anche il fotografo. Tutte le macchine fotografiche possiedono questa possibilità: il noto autoscatto. Questo sistema meccanico ha però molti inconvenienti. Ne citiamo alcuni. Una volta messo in funzione l'autoscatto, il fotografo deve precipitarsi nel gruppo senza perdere tempo perché l'apertura dell'otturatore (il click) avviene dopo un tempo ben determinato. In genere, non essendo conosciuto esattamente l'istante in cui il diaframma viene azionato, tutte le persone del gruppo assumono un aspetto teso, molte volte innaturale, e se poi capita in quell'istante un evento improvviso esterno che distrae l'attenzione del gruppo, la fotografia può considerarsi mal riuscita.

Anche in questo caso, il telecomando radio semplifica enormemente le cose; infatti, il fotografo ha tutto il tempo e la possibilità di sistemarsi nel gruppo e scegliere a piacere il momento più opportuno e più significativo per scattare la fotografia.

Le macchine fotografiche di una una certa classe posseggono un cavetto avvitabile per l'azionamento dell'otturatore.

Il telecomando che descriviamo è progettato in maniera che la parte elettrica e la parte meccanica del medesimo azionino il pulsante del suddetto cavetto.

Il telecomando-radio è costituito, come facilmente si può intuire, da un trasmettitore e da un ricevitore al quale è opportunamente accoppiata la parte meccanica destinata ad azionare il cavetto dell'otturatore.

IL TRASMETTITORE

Il trasmettitore è costituito da un oscillatore bilanciato così chiamato per il fatto che tutto il circuito risulta simmetrico (fig. 1). Il circuito accordato è costituito dalla bobina L1 e dal condensatore C3 collegati tra i collettori dei transistori TR1 e TR2. Ciascun transistore riceve attraverso C1 e C2, una tensione di reazione ricavata dal colcollettore dell'altro, e di conseguenza, è possibile l'innesco di oscillazioni persistenti. La tensione di po-

larizzazione delle basi è determinata dai valori scelti per i resistori R1 e R2.

L'accoppiamento dell'antenna al circuito accordato è ottenuto collegando l'antenna alla bobina L2. Quest'ultima è costituita da 8 spire di filo avvolte sopra la bobina del circuito accordato.

La tensione di alimentazione viene applicata al circuito tramite una presa centrale sulla bobina L1. Per ridurre le dimensioni di ingombro del trasmettitore si è pensato di impiegare una batteria di piccole dimensioni: in parallelo alla batteria si è inserito un condensatore elettrolitico (C5) da 1.000 uF in quanto la hatteria da sola non sarebbe stata sufficiente a fornire l'energia necessaria al trasmettitore quando questo è in funzione. Le cose si svolgono in questo modo: il condensatore elettrolitico viene caricato lentamente dalla batteria tramite il resistore R3. Quando viene premuto il pulsante S1, che serve alla messa in funzione del trasmettitore, tutta l'energia accumulata nel condensatore elettrolitico è in grado di alimentare e fare oscillare il trasmettitore.

Evidentemente, questo sistema di alimentazione implica che il trasmettitore non potrà restare in funzione che per pochi secondi, sufficienti però allo scopo prefisso. Questo sistema offre d'altra parte il vantaggio di richiedere normalmente una massima corrente di soli 25 mA mentre, se si dovesse far funzionare il trasmettitore in modo continuo, occorrerebbe una corrente maggiore e di conseguenza si dovrebbero impiegare due batterie da 4.5 V.

L'ANTENNA

E' richiesta un'antenna lunga 1 metro, e pertanto si consiglia di impiegarne una telescopica.

Se questo radiotelecomando è utilizzato per cambiare le diapositive del proiettore, l'antenna telescopica può essere usata da colui che illustra il contenuto delle diapositive, come il bastoncino usato dall'insegnante per mettere in evidenza qualche particolare dell'immagine proiettata.

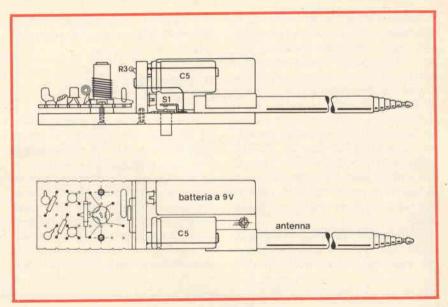


Fig. 3 - In alto: il trasmettitore visto lateralmente; in basso: il medesimo visto dall'alto.

REALIZZAZIONE PRATICA DEL TRASMETTITORE

Il trasmettitore viene montato su un pannello di plastica facilmente reperibile in commercio con fori metallizzati: questi servono per la saldatura dei terminali dei vari componenti. Il pannello può misurare 3 cm x 4,5 cm. Il primo componente che dovrà essere montato è il supporto delle bobine. Infatti, su di esso viene innanzitutto avvolta la bobina L1 con presa centrale, costituita da 6 spire di filo di rame smaltato: sopra questo avvolgimento verrà disposto quello della bobina L2 costituito da 8 spire. I terminali di queste due bobine vengono saldati sui fori metallizzati come indicato in fig. 2a. Terminata la costruzione delle bobine, si montano sul pannello gli altri componenti dell'oscillatore inserendo i relativi terminali sui fori metallizzati, (fig. 2a). Il collegamento vero e proprio tra i vari componenti del circuito si effettua sul lato opposto della piastra come appunto indicato in fig. 2b. Gli altri componenti vengono assiemati come indicato in fig. 3.

Il pulsante S1 e l'antenna vanno montati su una robusta piastrina di perspex, di dimensioni 3,2 x 10 cm la quale costituirà anche una solida base di montaggio per tutto il trasmettitore. I rimanenti compo-

nenti, vale a dire i terminali per il contatto della batteria e il condensatore elettrolitico, sono montati su una piccola piastrina, a sua volta fissata ad angolo retto sulla piastra di base di perspex.

Naturalmente, i componenti possono anche essere sistemati in modo diverso; quello da noi presentato e consigliato consente di occupare uno spazio molto ridotto e non dà inconvenienti al funzionamento del trasmettitore.

I contatti per il collegamento della batteria sono quelli tolti da una vecchia batteria da 9 V, come quella impiegata per l'alimentazione di questo trasmettitore. Questi contatti vengono fissati mediante rivetti alla piastrina disposta in senso verticale parallelamente al condensatore elettrolitico.

L'interruttore a pulsante si fissa sulla base di supporto del trasmettitore, mentre l'antenna viene bloccata dietro l'interruttore del pulsante medesimo. Ad assiemaggio finito avremo che l'interruttore-pulsante e l'antenna si troveranno immediatamente sotto il condensatore elettrolitico.

Completato il montaggio del trasmettitore, e fatte le ultime saldature, il tutto verrà allogato in una scatoletta metallica (vedi la fotografia). Le dimensioni della scatoletta potranno essere 3,5 cm x 3,5 cm x 10,5 cm. Facciamo presente

in proposito l'assoluta necessità di impiegare una scatoletta metallica allo scopo di evitare l'«effetto mano»; se, infatti, il trasmettitore non venisse sistemato in una scatoletta di metallo, avremmo una variazione di frequenza tutte le volte che il trasmettitore viene preso in mano. Impiegando un contenitore metallico ciò non si verifica in quanto, collegando al negativo della batteria la scatoletta metallica, essa funziona da schermo poiché quando l'operatore la prende in mano, risulta a massa.

Nella scatoletta dovrà essere praticato un foro in corrispondenza del supporto delle bobine L1/L2

allo scopo di poter tarare le medesime una volta chiuso il trasmettitore

IL CIRCUITO DEL RICEVITORE

E' stato scelto per questo impiego un ricevitore del tipo a superreazione (fig. 4). Lo stadio ricevitore vero e proprio è costituito da un transistore, un circuito accordato e pochi altri componenti. Un ricevitore a superreazione può considerarsi essenzialmente un oscillatore la cui frequenza di funzionamento corrisponde alla frequenza del segnale che si vuole ricevere. A que-

sto particolare oscillatore però non è permesso di oscillare in modo continuo: viene infatti prodotta una tensione che sopprime (effetto «quench») 50.000 volte al secondo questa oscillazione. La sensibilità dello stadio diventa massima tutte le volte che il funzionamento del circuito passa dalla condizione di bloccaggio (quench) alla condizione di oscillazione: la condizione di massima sensibilità si verifica ogni volta per un tempo brevissimo e alla frequenza di 50 kHz. Questo funzionamento è in grado di assicurare una buona ricezione, sufficiente ad ogni modo a soddisfare le nostre esigenze.

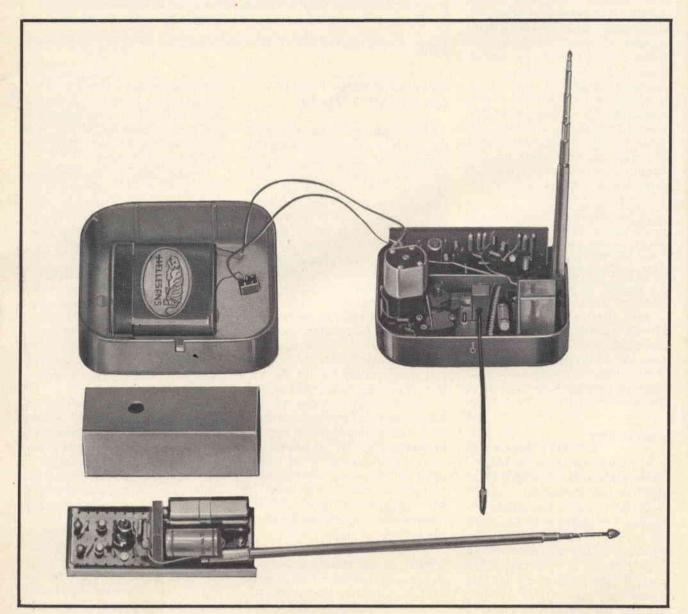
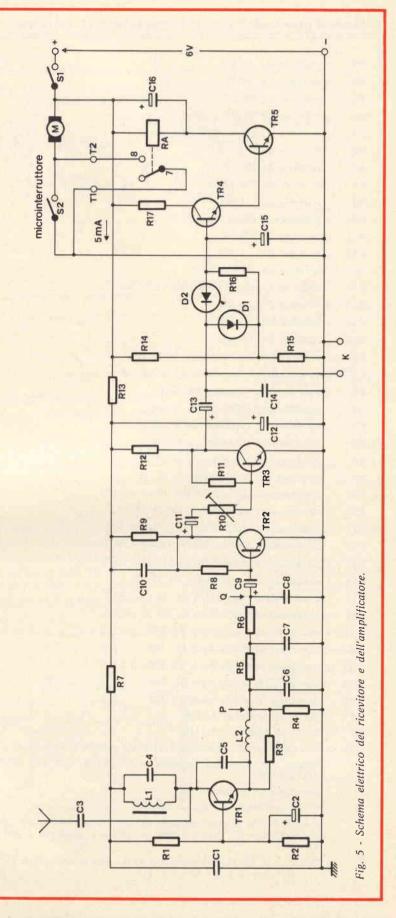


Fig. 4 - Esempio di realizzazione del trasmettitore e del ricevitore.


Caratteristica particolare di un ricevitore a superreazione è quella di produrre un elevato livello di rumore in assenza di portante. Questo rumore è prodotto innanzitutto dai segnali spuri captati quando lo stadio si trova in condizioni di massima sensibilità; altre sorgenti di rumore sono le condizioni atmosferiche e il rumore prodotto dal transistore medesimo. Il nostro sistema di telecomando-radio sfrutta appunto questo «apparente» inconveniente: infatti, il ricevitore è stato progettato in maniera che il relè di uscita risponda soltanto all'assenza del rumore.

L'uscita del ricevitore viene prelevata sul punto «P» (fig. 5).

Quando non si riceve la portante, il segnale presente su questo punto è costituito dal segnale di rumore in precedenza descritto mescolato con un forte segnale a 50 kHz. Quest'ultimo segnale viene rimosso da un filtro costituito dai resistori R5 e R6 e dai condensatori C6, C7 e C8: sul punto «Q» sarà quindi presente soltanto la tensione di rumore.

Per trasformare questo segnale di rumore in un segnale utile, è prevista una forte amplificazione del medesimo ad opera dei transistori TR2 e TR3, e di conseguenza sul punto «K» il segnale di rumore avrà un livello sufficientemente elevato da poter essere udito distintamente in cuffia. Il segnale di rumore amplificato nella maniera descritta e presente sul collettore del transistore T3 viene applicato ai diodi D1/D2 i quali provvedono a raddrizzarlo: la tensione continua di polarità negativa così ottenuta viene applicata sulla base del transistore TR4 che risulterà pertanto bloccato e, di conseguenza, bloccherà a sua volta anche il transistore TR5. In queste condizioni, nel circuito di collettore del transistore TR5 non scorrerà corrente e pertanto anche il relè RA risulterà diseccitato.

Quando il trasmettitore è in funzione avremo ricezione della portante, e di conseguenza sparizione del rumore al ricevitore e l'assenza di tensione negativa sulla base di TR4. In queste condizioni, la tensione sulla base di questo transistore diventa positiva a causa del par-

ELENCO DEI COMPONENTI DEL RICEVITORE ED AMPLIFICATORE

```
· resistore da 15 kO.
D 1
      · resistore da 10 kO.
R2
R3
      : resistore da 5.6 k\Omega
      : resistore da 3.3 k\Omega
R4
      resistore a carbone da 2.2 kΩ - 0.33 W
D5
      : resistore da 2.2 kΩ
R6
R7
      : resistore da 100 \Omega
      : resistore da 220 k\Omega
R8
      : resistore da 1 k\Omega
R9
      : potenziometro semifisso da 22 kΩ
R10
      : resistore da 220 kΩ
R11
R12
      : resistore da
                       1 k\Omega
R13
      : resistore da 47 \Omega
      : resistore a carbone da 5,6 kΩ - 0,33 W
R14
      : resistore da 2.2 kO
R15
      : resistore da 2.2 k\Omega
R 16
      : resistore da 1.5 kΩ
R17
C1
       : condensatore in poliestere da 10 nF
       : condensatore elettrolitico da 32 µF - 4 V
C2
       : condensatore ceramico da 2,2 pF
C3
       : condensatore ceramico da 56 pF
C4
       : condensatore ceramico da 47 pF
C5
       : condensatore ceramico da 2,2 nF
C6
       : condensatore in poliestere da 22 nF
C7
       : condensatore in poliestere da 22 nF
C8
       : condensatore elettrolitico da 10 µF - 16 V
C9
      : condensatore in poliestere da 33 nF
C10
       : condensatore elettrolitico da 4 µF - 10 V
C11
       : condensatore elettrolitico da 320 µF - 6,4 V
C12
       : condensatore elettrolitico da 10 µF - 16 V
C13
      : condensatore in poliestere da 33 nF
C14
       : condensatore elettrolitico da 10 µF - 16 V
C15
       : condensatore elettrolitico da 100 µF - 6,4 V
C16
TR1: transistore al silicio n-p-n BF 115
TR2: transistore al silicio n-p-n BC 108
TR3: transistore al silicio n-p-n BC 108
TR4: transistore al silicio n-p-n BC 108
TR5: transistore al silicio n-p-n BC 108
       : diodo al germanio AA119
D<sub>1</sub>
       : diodo al germanio AA119
D2
      : relè da 2,8 a 12 V Siemens Tr1s 154D oppure k Tkfs 97 d
RE1
       : motore con ingranaggi riduttori da 75 giri/m 9904 120 53101
M
         (Polymotor)
       : interruttore - qualsiasi tipo
S1
S2
       : microinterruttore - qualsiasi tipo
       : 6 spire di filo di rame smaltato da 0,5 mm avvolte su un supporto
L1
```

con diametro di 7 mm e avente un nucleo di poliferro a vite per l'

: 100 spire di filo di rame smaltato da 0,1 mm avvolte su un supporto

con diametro di 3 mm lungo 12 mm

titore di tensione formato da R14, R15, per cui il transistore comincerà a condurre. Ma anche il transistore TR5 entrerà in conduzione, e la corrente circolante nel collettore di quest'ultimo potrà azionare il relè RA.

La portata di questo sistema di trasmissione è di circa 100 metri in area libera. Nei caseggiati, tale portata risulta fortemente ridotta; da qui, la presenza del resistore variabile R10 che permette di adattare la sensibilità del sistema alle condizioni reali di lavoro.

Nel nostro caso il relè RA serve per chiudere il circuito di alimentazione di un motore di ridotta potenza; nulla vieta però che cambiando tipo di relè possa essere chiuso o aperto un circuito di maggiore potenza. Per esempio, nel caso il circuito da aprire o chiudere dovesse essere alimentato dalla tensione alternata di rete, consigliamo di impiegare il relè Siemens tipo Trls 154d oppure k, con bobina da 4.5 V.

Facciamo presente che il nostro ricevitore è molto sensibile a qualsiasi forma di disturbo e di interferenza, e di conseguenza la sua antenna dovrà essere tenuta lontano da tutte le possibili sorgenti di interferenza.

Siccome, per l'impiego da noi suggerito, il ricevitore deve trovarsi costantemente in funzione per un periodo anche lungo di tempo senza ricevere la portante, si è pensato di scegliere una corrente di riposo molto bassa con valore approssimativo di 5 mA. Naturalmente, all'atto della ricezione della portante, tale corrente salirà a centinaia di milliampère.

REALIZZAZIONE DEL RICEVITORE

Non presenta difficoltà apprezzabili. In fig. 6 abbiamo riportato, in alto, la disposizione dei componenti sulla piastra con fori metallizzati. In basso, sempre nella stessa figura, la piastra è vista dalla parte opposta dove si trovano i collegamenti.

Il sistema di costruzione è identico a quello suggerito per la realizzazione del trasmettitore.

L₂

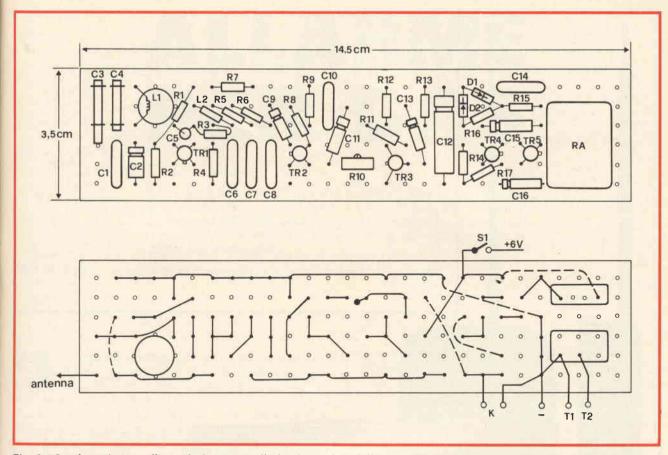


Fig. 6 - In alto: piastra sulla quale è montato il ricevitore vista dalla parte dei componenti; in basso: vista dalla parte dove vengono effettuati i collegamenti.

LA PARTE MECCANICA

Non possiamo qui dare una descrizione dettagliata di come potrà essere realizzata la parte meccanica del sistema, in quanto essa dipende dal tipo di macchina fotografica impiegata e dai sistemi meccanici disponibili. Ci limiteremo pertanto a descrivere sommariamente un sistema di azionamento meccanico tipico che potrà essere di valido aiuto nella realizzazione di quello desiderato.

Il sistema meccanico in questione è raffigurato in fig. 7.

Siccome il numero dei giri dell' albero del motore impiegato è troppo elevato per il nostro scopo, si è provveduto a demoltiplicarlo mediante apposito ingranaggio. Esistono in commercio dei motori nei quali è già incorporato un sistema meccanico di demoltiplica, per esempio il tipo 9904 120 53101 prodotto dalla **Polymotor** italiana, ha un rapporto di riduzione di 27: 1 ed è pochissimo rumoroso. Tale riduzione

non è ancora sufficiente per il nostro scopo e di conseguenza è necessario un sistema aggiuntivo di riduzione nella misura di 5 : 1 in maniera che la riduzione complessiva dall'albero del motore all'albero azionatore dell'ingranaggio finale abbia un rapporto di 135 : 1.

La messa in moto del sistema meccanico ha inizio all'atto della pressione del pulsante-interruttore del trasmettitore.

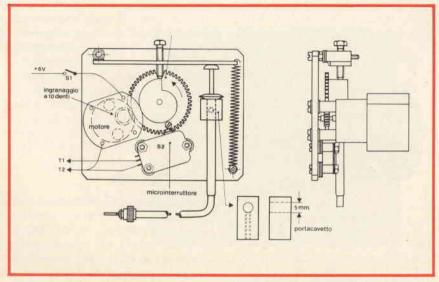
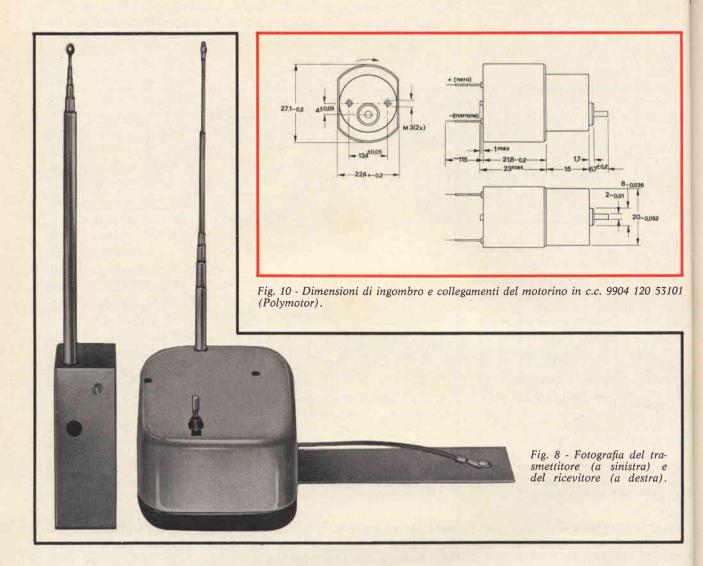



Fig. 7 - Esempio di sistema meccanico per l'azionamento del diaframma.

Appena la portante emessa da quest'ultimo perviene al ricevitore, il relè viene azionato e i suoi contatti chiuderanno il circuito che applica tensione al motore. A questo punto inizia il movimento dell'albero del motore, e di conseguenza

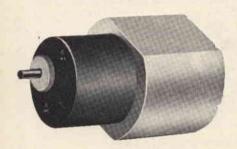


Fig. 9 - Esempio di motorino in c.c. prodotto dalla Polymotor (n. di catalogo 9904 120 53101). La tensione di alimentazione è 3 Vc.c., il rapporto di riduzione è 27 : 1, la velocità è 96 giri al minuto, la potenza di ingresso è 0,45 W, la coppia è 150 gcm.

dell'ingranaggio terminale sul quale si trova anche una camma e una vite (fig. 7). Questa vite durante la rotazione dell'ingranaggio «preme» il pulsante di un microinterruttore. I contatti di quest'ultimo, chiudendosi, stabiliscono un secondo ritorno per il circuito di alimentazione del motore. Contemporaneamente, la vite che slitta sulla camma, sotto l'azione di una molla posta all'estremità di una levetta, «salta» nella pista inferiore, per cui la levetta preme il pulsante collegato alla macchina fotografica azionando in questo modo l'otturatore. La fotografia è scattata.

Come già precedentemente accennato, il segnale trasmesso dura soltanto pochi secondi, di conseguenza all'atto della sua sparizione anche il relè si diseccita e, ritornando nella sua posizione normale, toglie la tensione di alimentazione al motore. Quest'ultimo però non si blocca immediatamente dato che ad esso viene ancora applicata la tensione di alimentazione tramite i contatti del microinterruttore. La camma continua quindi a ruotare fino a quando il sistema meccanico risulta pronto per lo scatto di una nuova fotografia.

Il motore infatti si blocca soltanto quando la vite fissata sull'ingranaggio terminale apre di nuovo i contatti del microinterruttore. E quest'ultima condizione rimane invariata fino all'arrivo di un nuovo segnale di radiofrequenza da parte del trasmettitore.

Il ricevitore, la batteria e il sistema meccanico sono sistemati in una scatoletta di dimensioni 10 cm x 8 cm x 6 cm. Il tutto può essere applicato sia sulla macchina fotografica che sul treppiede della medesima.

ALLARME PER GAS a cura dell'Ing. CERI

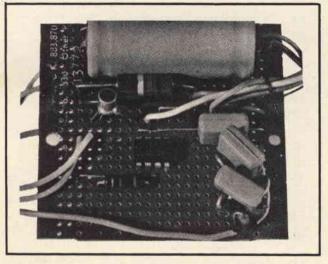
Questo articolo descrive un dispositivo di allarme per rivelare gas combustibili, vapori e fumo, adatto per impieghi domestici. L'elemento principale sensibile è un dispositivo a conducibilità variabile la cui resistenza varia in modo notevole in presenza di un gas combustibile.

l dispositivo è sensibile a: n-butano, propano, etano, metano, gas di città, idrogeno, monossido di carbonio e fumo rivelando questi gas nella concentrazione dello 0,2% che è molto al di sotto del loro limite esplosivo, come indicato alla tabella 1. L'apparecchio è anche utile come allarme per fumo o fuoco quando gas combustibili sono presenti come risultato del fuoco. Il livello al quale l'allarme agisce può essere variato usando il circuito descritto.

SENSORE

L'elemento sensibile è un semiconduttore tipo n. Il drogaggio è tale che, quando il materiale del sensore è riscaldato in aria, esso reagisce con l'ossigeno causando una diminuzione nella conduttività. Ciò può essere visto quando il sensore è inserito per la prima volta, perché all'inizio esso conduce fortemente, poi lentamente, la sua resistenza si incrementa col tempo nel periodo di riscaldamento dato che vi sono pochi elettroni liberi disponibili. Questa condizione cambia quando un deossidante, per esempio un gas o vapore combustibile, è presente, perché allora si formano degli elettroni liberi e si incrementa la conducibilità del sensore.

CIRCUITO


Il circuito completo di allarme per gas è riportato alla fig. 1 e può considerarsi composto da quattro distinte sezioni: l'alimentazione, la regolazione del livello, l'amplificatore d'uscita e l'allarme udibile.

Il riscaldatore del sensore può lavorare a c.a. o c.c., decidendo di usare un'alimentazione c.a. la tensione e la corrente richieste sono rispettivamente 1 V e 500 mA.

TA	DE	LLA	1
E /4		L / E / A	

Gas	Limite inferiore di esplosione *		
Butano	1,8		
Propano	2,12		
Etano	3,0		
Metano	5,0		
Idrogeno	4,0		
Monossido di carbonio	12,55		

Espresso come percentuale in volume in aria alla temperatura ambiente.

Vista della piastrina recante i componenti a realizzazione ultimata.

FEBBRAIO - 1974

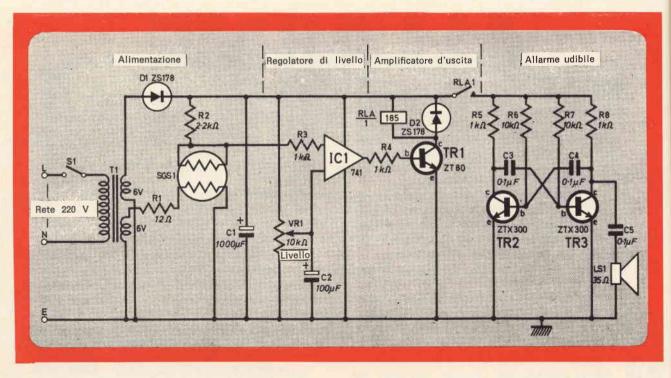


Fig. 1 - Schema elettrico dell'allarme per gas descritto in questo articolo.

ELENCO DEI COMPONENTI

: resistore da 12 Ω - 5 W **R1** : resistore a carbone da 2,2 kΩ - ½ W - 10% R2 1 kΩ - ½ W - 10% : resistore a carbone da R₃ 1 kΩ - ½ W - 10% : resistore a carbone da : resistore a carbone da 1 kΩ - 1/2 W - 10% **R5** : resistore a carbone da 10 kΩ - ½ W - 10% R6 : resistore a carbone da 10 kΩ - ½ W - 10% R7 : resistore a carbone da 1 kΩ - ½ W - 10% : potenziometro lineare a carbone da 10 kΩ VR1 : condensatore elettrolitico da 1000 µF - 9 V C1 : condensatore elettrolitico da 100 µF - 9 V C2 **C**3 : condensatore da 0.1 uF : condensatore da 0,1 µF : condensatore da 0,1 µF C5 TR1 : transistore NPN al silicio ZT80 oppure 2N3704 : transistore NPN al silicio ZTX300 TR2 TR3 : transistore NPN al silicio ZTX300 : diodo ZS178 oppure 1N4001 D1D2 : diodo ZS178 oppure 1N4001 IC1 : amplificatore operazionale 741 SGS1 : semiconduttore sensibile al gas S1 : interruttore di rete **T**1 : trasformatore di rete con 2 secondari a 6 V - 500 mA

: relè da 185 Ω con una serie di contatti

normalmente aperti : altoparlante miniatura da 35 Ω

Il trasformatore di alimentazione usato nel prototipo è facilmente reperibile essendo del tipo a due secondari a 6 V. Uno di essi è usato per il riscaldatore del sensore in serie ad R1, un resistore per provocare una caduta di tensione, mentre la tensione dell'altro avvolgimento è rettificata a semionda da D1 e poi spianata dal condensatore C1. Così si ottengono circa 8 V c.c. per alimentare il resto del circuito.

Il resistore R2 serve a limitare la corrente che circola attraverso la sezione rivelatrice del sensore.

Lo stadio che regola il livello impiega un circuito integrato IC1, che è un amplificatore operazionale; ciò consente di predisporre un livello di segnale, al disotto del quale non vi è segnale al circuito del carico. In modo dissimile a quanto normalmente usato, non vi è resistore di feedback.

Un ingresso è usato come riferimento per mezzo del potenziometro VR1 e l'altro è alimentato dall'uscita del sensore con un resistore limitatore di corrente R3.

Quando il livello di tensione dell'uscita cade al di sotto di quanto predisposto dal potenziometro, l'uscita del IC1 passa dalla tensione zero a quella della piena alimentazione positiva. Il contrario avviene quando l'uscita cresce al di sopra del valore predisposto al potenziometro.

Il condensatore C2 all'ingresso dell'IC1 provvede ad uno spianamento addizionale al segnale, ciò che previene balbettio dell'uscita al punto di inserzione.

Il circuito di uscita può essere di diverso tipo a seconda della forma dell'indicazione di allarme che

RLA

LS₁

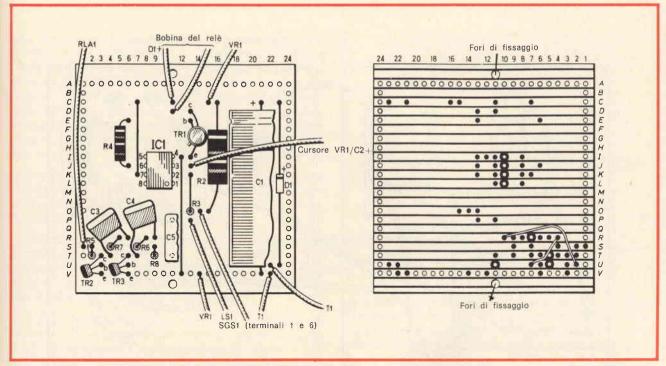


Fig. 2 - Montaggio dei componenti sulla piastrina preforata.

è richiesta. Nella sua più semplice forma l'uscita dell'IC1 può inserire una lampadina a bassa potenza o un l.e.d. Se si usa un l.e.d. bisogna inserirgli in serie un resistore limitatore. Quando solo questo tipo di allarme è richiesto, sono omessi TR1, RLA e l'altoparlante.

Per questi circuiti di uscita che richiedono più corrente di quanta l'uscita dell'IC1 possa dare, è richiesta una amplificazione di corrente. Ciò può essere facilmente ottenuto con un unico transistore TR1.

Il carico per TR1 può essere una lampada, o una bobina di relè come nel prototipo. Il resistore R4 è usato per limitare la corrente di base di TR1. Il diodo D2 inserito sulla bobina protegge il transistore da contro f.e.m. quando il relè si apre. I contatti del relè possono essere usati per inserire le tensioni di rete.

Un paio di contatti sono usati nel prototipo per inserire l'allarme udibile, un semplice multivibratore astabile, che fornisce un tono continuo nelle condizioni di allarme, attraverso l'altoparlante LS1.

Altri allarmi, incorporati o remoti, possono essere ottenuti usando dei contatti di relè addizionali, nei quali la potenza dell'allarme dipende dalla portata dei contatti.

COSTRUZIONE

I componenti sono montati su una piastra Veroboard, da 24 x 22 fori. La disposizione dei componenti risulta dalla fig. 2.

Si raccomanda di cominciare la costruzione praticando i due fori di fissaggio, poi montare e saldare i resistori, i condensatori e il circuito integrato. Effettuare i collegamenti attraverso i vari conduttori, come indicato in figura 2.

Ciò fatto, saldare i transistori, ricordando di usare un dissipatore di calore.

Il dispositivo può essere contenuto in una scatola avente le dimensioni di 170 x 120 x 50 mm, come indicato in figura 3. Si raccomanda una scatola di metallo perché il resistore di caduta R1 dissipa un certo calore. Il contenitore deve essere, per ragioni di sicurezza, messo a terra.

Occorre sistemare i componenti: trasformatore, interruttore di rete, altoparlante, basetta del circuito e relè, nella scatola come mostrato in fig. 3 in modo che nessuno di essi sia fisicamente troppo vicino l'uno all'altro, specialmente il trasformatore di rete; ricordare anche di verificare la posizione in modo che non vi sia nessun contatto quando il coperchio è chiuso.

Effettuate tutte queste prove si possono fissare i vari componenti e collegarli.

Il sensore può essere montato all'esterno della scatola per mezzo del suo apposito contenitore.

Se, invece, è richiesto un organo sensibile portatile, per l'esame di perdite di gas in aree limitate, il contenitore può essere montato su un pezzo di legno con un manico e collegato alla scatola metallica.

Il resistore R1 deve essere montato in un pezzo di Veroboard su distanziatori e staccato dalla scatola. E' opportuno tenerlo lontano dal resto del circuito elettronico per rendere minimo l'effetto termico.

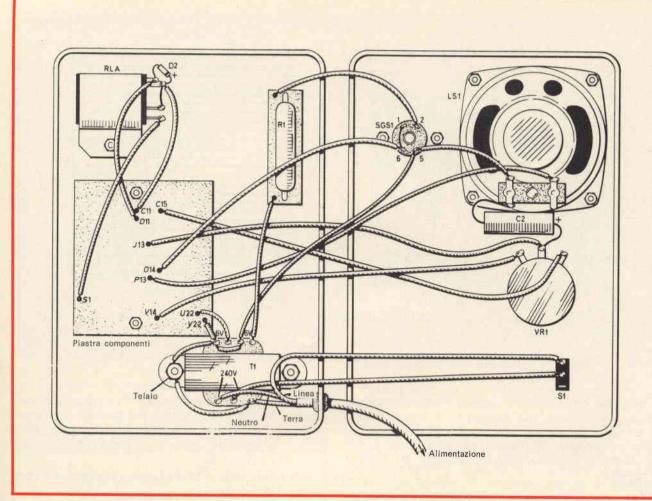
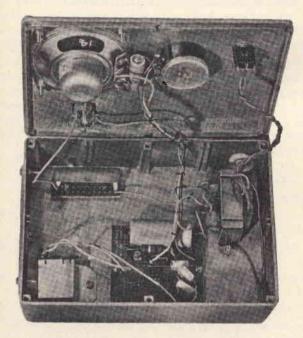



Fig. 3 - Collegamenti da effettuare all'interno del contenitore.

Interno della scatola contenente il dispositivo rivelatore di gas, descritto in questo articolo.

PROVE E FUNZIONAMENTO

Prima di introdurre la spina nella rete, verificare che tutte le connessioni siano esatte. In caso favorevole inserire il sensore nel contenitore ricordando che il lato del riscaldatore del sensore è marcato con un cerchio sul bordo metallico esterno, vedi fig. 4. Inserire la rete e verificare che la tensione ai capi del riscaldatore e la c.c. sia rispettivamente di 1 V e 8 V.

Il circuito funzionerà nelle condizioni di allarme per alcuni minuti mentre il sensore si riscalda. Dopo un certo tempo, l'allarme cesserà e il sensore raggiungerà l'equilibrio.

Si ruoti il potenziometro VR1 che stabilisce il livello fino a che l'allarme riappare. Questo punto è la posizione di massima sensibilità e facilmente rivelerà la presenza di gas combustibile quando la concentrazione raggiungerà lo 0,2% in aria.

Uno dei vantaggi della rettificazione a semionda per il circuito illustrato è che l'alimentazione di tensione dipende un poco dal carico. Ciò significa che, al punto di inserzione dell'IC1, la tensione di 8 V c.c. cade in seguito all'incremento di corrente attraverso il relè. Ciò avviene quando la concentrazione di gas è sufficiente a produrre una tensione dal sensore che cade al di sotto di quella regolata dal potenziometro VR1, e cioè inserendo IC1. L'incremento della corrente del carico causa una diminuzione della tensione di sbarra, ciò creerà una tensione del sensore superiore a quella predisposta su VR1 che manda a terra l'uscita di IC1.

Il risultato di una concentrazione di gas che causa l'inserzione di IC1 è quindi un tono di allarme pulsante dell'altoparlante. Alle concentrazioni superiori, l'uscita assumerà un tono continuo.

L'uscita pulsante avverrà quando la tensione predisposta su VR1 è superiore di 1 V, rispetto alla tensione del sensore, e l'uscita del sensore varia al di sotto di questo valore. Ciò significa, in pratica, che due condizioni di allarme avvengono:

- (1) Tono pulsante quando la concentrazione del gas è approssimativamente uguale a quella predisposta sul potenziometro VR1
- (2) Tono continuo quando la concentrazione del gas è al di sopra di questo punto.

Gli impieghi dell'allarme per gas sono solo limitati dalla fantasia o dalle esigenze dell'utilizzatore, ma ap-

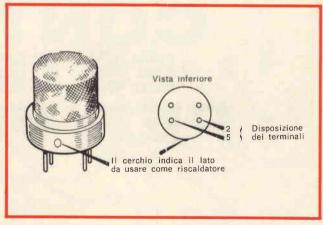


Fig. 4 - Dettagli del semiconduttore sensibile al gas.

plicazioni come allarme per piccole perdite, livelli di monossido di carbonio in autorimesse, verifica di fughe in apparecchi domestici, per camping o per bordo, allarmi per incendi, e rivelatori di fumo sono quelle più immediatamente pensabili. Alcune precauzioni devono essere seguite per ottenere il massimo risultato. Quanto più densa è l'aria che deve essere esaminata, il sensore dovrebbe essere posto tanto più sotto la possibile sorgente di perdita; per gas meno densi, esso deve essere disposto al disopra.

FEBBRAIO — 1974 223

CONTAGIRI ESTERNO PER VEICOLI

a cura del Dott. A. RECLA

l contagiri collegabile esternamente al veicolo per la prova del motore non dovrebbe mancare in nessuna officina di riparazione.

Utilissimo per registrare il numero dei giri a vuoto, serve durante le prove di avviamento di automobili non provviste di contagiri. Lo strumento qui descritto è di semplice impiego in quanto viene collegato alla bobina di accensione

e alla batteria mediante filtri flessibili. Esso risulta utile pure a quegli automobilisti che desiderano effettuare la manutenzione da sè regolando anche l'accensione.

L'apparecchio si basa sulla linearità esistente tra la frequenza dell' accensione e il numero dei giri del motore; per cui, dal contatto dell' interruttore dell'accensione, vengono prelevati e misurati i relativi impulsi.

IL CIRCUITO

Dall'interruttore gli impulsi di accensione arrivano per mezzo dei due gruppi R1, C1 e R2, C2 allo stadio traslatore degli impulsi T1 che ha lo scopo di limitare gli impulsi e di inviarli al multivibratore seguente T2 e T3. Il multivibratore, del tipo monostabile, è in condizione stabile quando T3 conduce e T2 è bloccato. Quando arriva un

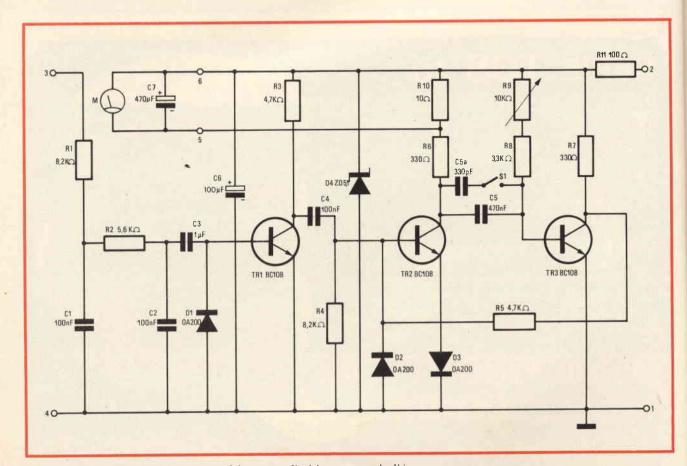


Fig. 1 - Schema elettrico del contatore del numero di giri per autoveicoli.

impulso positivo sulla base di T2 esso conduce; ciò determina una variazione di tensione sul collettore che, tramite il condensatore C5, viene inviata alla base del T3 e questo si blocca. La scarica di C5 avviene attraverso le resistenze R8 e R9 dopo di che il circuito ritorna nella condizione stabile.

Col regolatore R9 si può variare la durata del tempo nel quale T2 è conduttivo, facendo così passare corrente attraverso lo strumento M. La tensione di alimentazione (12 V), prelevata dalla batteria del veicolo, viene stabilizzata per il tramite della resistenza R11 e del diodo Zener D4. Il circuito è disposto in modo che, impiegando uno strumento di misura a bobina mobile con sensibilità a fondo scala di 1 mA, si può coprire un campo di giri da 0 a 10.000 al minuto. Ciò corrisponde alla indicazione di 0,1 mA per 1.000 giri/min. Siccome l' indicazione è lineare, un aumento di 0,1 mA corrisponde all'aumento di 1.000 giri/min. Ad es. 4.000 giri saranno letti come 0,4 mA.

Per regolare la corsa a vuoto di un motore è prevista una commutazione del campo che permette di estendere l'indicazione nel regime inferiore del numero dei giri. Azionando l'interruttore a tasto S1 al condensatore C5 viene messo in parallelo il condensatore C5a, così il campo d'indicazione dello strumento corrisponde solo a 1.000 giri a fondo scala. Un aumento di 0,1 mA corrisponde all'aumento di 100 giri/min. Siccome il numero dei giri a vuoto nei soliti motori è sempre inferiore a 1.000 giri/min. è conveniente effettuare le misure in questo campo.

L'apparecchio viene collegato al motore con tre fili flessibili, i terminali 2 e 1 vengono collegati col positivo e col negativo della batteria ovvero alla massa. Il terminale 3 viene collegato alla bobina d'accensione.

IL MONTAGGIO E LA TARATURA

Tutti i componenti vanno montati sul circuito stampato (fig. 2); questo è fissato in una custodia nelle vicinanze dello strumento di misura (fig. 3). Il circuito stampato

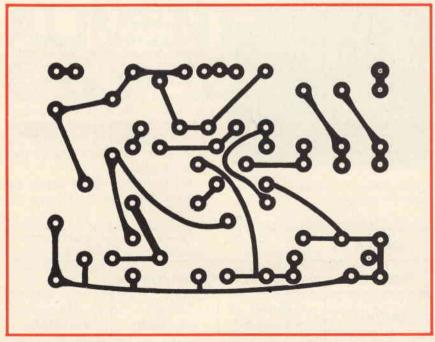
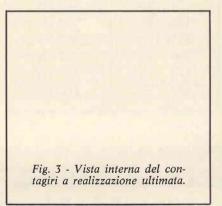
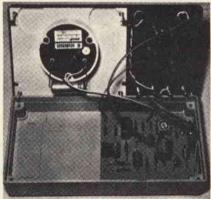




Fig. 2 - Circuito stampato visto dal lato rame. Il disegno è in scala 1:1.

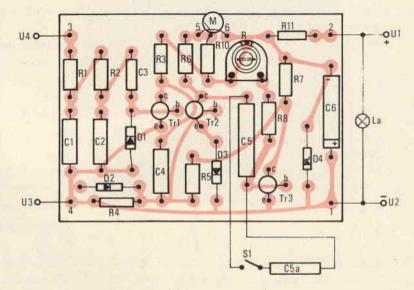


Fig. 4 - Circuito stampato visto dal lato componenti.

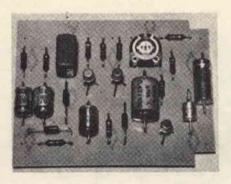


Fig. 5 - Prototipo del montaggio a realizzazione ultimata.

completo dei componenti è rappresentato in fig. 4.

Per la taratura è necessario impiegare un oscillatore BF da collegare alle prese 4 e 3. Siccome fra il numero dei giri di un motore e la frequenza esiste una certa relazione, si può effettuare una taratura solo per un certo tipo di motore (a 2 tempi oppure a 4 tempi) di essi il più usato è quello a quattro tempi, della tabella 1.

Sul generatore BF si regola per una frequenza di 200 Hz con una tensione di uscita di ca. 10 V. Col regolatore R9 si porta lo strumento su 0,6 mA, il che corrisponde a 6.000 giri/min. e la taratura è così finita poiché, data la linearità, tutti gli altri valori coincidono, ossia per es. 0.5 mA significa 5.000 giri al minuto.

Per controllare il campo inferiore del numero dei giri e cioè da 0 a 1.000, il generatore BF viene portato su di una frequenza che corrisponda a 0,1 mA ossia a ca. 33 -34 Hz. Dopo aver commutato, l'indice deve arrivare a fondo scala. Dato che la frequenza è piccola. l'indicazione è piuttosto incostante e la vibrazione dell'indice può venir smorzata collegando, in parallelo ai terminali dello strumento, il condensatore C7.

Il calcolo delle frequenze per un motore a quattro tempi è ottenuto $n \cdot Z$

e per il motore a due tempi con:

$$f = \frac{n \cdot Z}{60}$$

dove f è la frequenza cercata in Hz, n il numero dei giri e Z il numero dei cilindri.

TABELLA 1

Rapporto del numero dei giri rispetto alla frequenza

П.						
	Giri/min.	Motore a 4 cilindri	Motore a 6 cilindri	Motore a 8 cilindri		
	750	25 Hz	37,5 Hz	50 Hz		
١	1.500	50 Hz	75 Hz	100 Hz		
1	3.000	100 Hz	150 Hz	200 Hz		
1	4.500	150 Hz	225 Hz	300 Hz		
١	6.000	200 Hz	300 Hz	400 Hz		
1	7.500	250 Hz	375 Hz	500 Hz		
١	9.000	300 Hz	450 Hz	600 Hz		
1						

Le Industrie Anglo-Americane in Italia Vi assicurano un avvenire brillante

INGEGNERE

regolarmente iscritto nell'Ordine di Ingegneri Britannici

Corsi POLITECNIGI INGLESI Vi permetteranno di studiare a casa Vostra e conseguire tramite esami, i titoli di studio validi:

INGEGNERIA Elettronica - Radio TV - Radar - Automazione - Computers - Meccanica -Elettrotecnica ecc., ecc.

LAUREATEVI

all'UNIVERSITA' DI LONDRA

seguendo i corsi per gli studenti esterni « University Examination »: Matematica -Scienze - Economia - Lingue ecc...

RICONOSCIMENTO LEGALE IN ITALIA in base alla legge n. 1940 Gazz. Uff. n. 49 del 20-3-'63

- una carriera splendida
- un titolo ambito
- un futuro ricco. di soddisfazioni

Informazioni e consigli senza impegno - scriveteci oggi stesso

BRITISH INST. OF ENGINEERING

Italian Division

10125 TORINO - Via P. Giuria 4/s Sede centrale a Londra - Delegazioni in tutto il mondo

ALIMENTATORE 6+6 o 12 Vc.c.

a cura di Franco SIMONINI

a tecnica elettronica si evolve continuamente. Ormai gli «integrati» fanno capolino dovunque. E' interessantissimo fare delle prove, degli esperimenti, ma occorrono delle ottime sorgenti di alimentazione; e per di più, disporre di due sorgenti indipendenti di energia a corrente continua.

Si deve poi provvedere ad assicurare, specie per i radioamatori, l'alimentazione autonoma da rete per i mezzi mobili da usare «in portapile» (il termine «mobile» non è ancora entrato nel vocabolario del radioamatore italiano).

A questo punto si impone l'impiego di un alimentatore realizzato con un accumulatore. Di corrente ne basta poca (in VHF bastano 1 o 2 W sui 144 MHz per dare ottimi risultati) e pure le prove sugli integrati non richiedono quasi mai potenze elevate.

Vale allora la pena di equipaggiare l'alimentatore con delle celle al Ni-Cd che costano discretamente, ma non danno luogo a fughe di gas in quanto realizzate in esecuzione stagna, ed eliminano quindi, corrosioni e conseguenti falsi contatti.

A differenza degli accumulatori al piombo, permettono erogazioni di punta in Ampère fino a 3-4 volte il valore della capacità in Ah. Ad esempio con 0,25 Ah di capacità si può arrivare a picchi di 1 A di alimentazione.

Permettono una regolazione di tensione notevole e cioè qualche decina di millivolt per una corrente anche pari in Ampère alla capacità nominale.

Ma soprattutto, se restano per qualche motivo scariche anche per

lunghi periodi non si alterano, non si deteriorano, non perdono di capacità. Basta ricaricarle e ricominciano a funzionare subito.

Per di più non richiedono manutenzione, non richiedono aggiunte di liquido, controlli, verifiche o altro. Le batterie al Ni-Cd si comportano cioè come un componente «passivo» (resistenze, capacità, induttanze di buona qualità) con in più la possibilità di erogare energia.

L'unica accortezza è quella di «non superare», a capacità raggiunta, una corrente continua residua di fine carica (la cosiddetta corrente di «mantenimento») superiore al 2% (un cinquantesimo, dicono le norme) della capacità in Ampèreora. Se la batteria opera cioè con 0,5 Ah di capacità, la corrente mas-

sima non dovrà superare i 10 mA ed i 5 mA con 0.25 Ah.

Ci si chiederà il perchè di questa limitazione. E' semplice! La corrente residua di mantenimento dà luogo in pratica ad una dissipazione di potenza elettrica all'interno dell'involucro stagno della batteria. Ebbene, se questo involucro può sopportare questa dissipazione non succede nulla, ma se si supera un certo limite l'elettrolita alcalino si surriscalda, genera del gas che preme sulle pareti dell'involucro fino a provocarne la rottura che, qualche volta, è accompagnata da un piccolo scoppio con ovvia irrimediabile rottura della batteria.

Questa dunque è l'unica «spina» in una bellissima «rosa».

Si tratta però di una spina poco pericolosa. Lo dimostreremo con

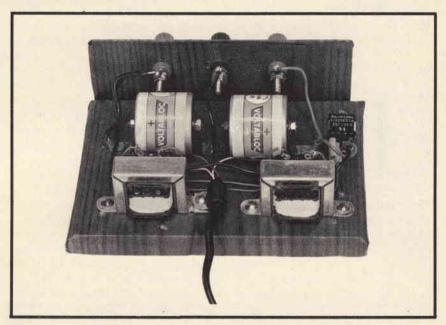


Fig. 1 - Montaggio pratico realizzato, con due trasformatori da 6,3 V con i secondari disposti in serie fra loro.

DATI TECNICI

Alimentazione di rete

: 220 V e circa 6 W di consumo

Tensione di uscita in c.c.: 1.5 V oppure 6.25 ÷ 6.25 V

in serie fra loro

Corrente in uscita in c.c.

: da 0 a 250 mA con picchi fino

a 1 A

Capacità delle batterie

: 0.25 Ah

Modalità di funzionamento: a) fisso in laboratorio con l'alimentazione in c.a. sempre

connessa a rete

: b) mobile con 0,25 Ah di capa-

cità di erogazione.

questa modesta realizzazione alla portata di ogni principiante ed utile per ogni laboratorio.

A COSA PUO' SERVIRE

Elenchiamo qualche nota per le applicazioni più comuni:

1) Alimentazione di un apparato ricetrasmittente per uso mobile. Ormai lo standard di tensione di lavoro è 12 V, quindi andiamo bene.

PONTE DA 30%, 200mA

da 2 W di uscita in trasmissione

Il rapporto di tempo tra trasmissione e ricezione lo possiamo considerare infatti 1 a 1. Vale a dire che la metà del tempo trasmetteremo e per l'altra metà ascolteremo il corrispondente.

In trasmissione il consumo si aggirerà sui 300 mA ed in ricezione sui 60 mA. Quindi i nostri con-

ACCUMULATOR

5VB25

at Mi Dit.

ACCUMULATOR

5V825

at Ny. Cd.

Potremo alimentare un apparato per circa due ore di servizio continuo.

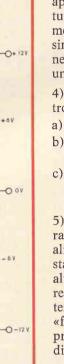


Fig. 2 - Schema elettrico dell'alimentatore. E' semplice e di comprensione immediata. La resistenza R serve a limitare, con le batterie cariche, la corrente di mantenimento a 1/50 della capacità in Ah. Nel nostro caso a 5 mA.

simazione, tornano. 2) Alimentazione di un circuito integrato ad esempio del tipo TTL.

ti, anche se validi in prima appros-

Sono «integrati» che operano con + 5 e - 5 V rispetto al polo «freddo» di ingresso e di uscita.

Il nostro alimentatorino fornisce a vuoto + 6.25 V e - 6.25 V. Se si vuole fare i pignoli, con due Zener da 5 V, scelti opportunamente, si può ricavare una tensione di notevole stabilità proprio come è prescritto per questi circuiti.

Se si alimenterà invece uno o più integrati della serie «Cosmos» meno veloci come commutazione. ma più indipendenti dalla tensione di alimentazione, si potrà utilizzare direttamente l'alimentatore così come è stato previsto.

3) Alimentazione di circuiti transistorizzati a 6 o 12 V di tensione di lavoro.

A tutti gli effetti questo apparato si comporta come un buon alimentatore stabilizzato per un'erogazione massima di 250 mA con picchi fino a 1 A.

Non è poco! Si presta quindi per alimentare radioricevitori od altri apparati (giradischi a pile ecc..) tutte le volte che vorremo fare a meno delle pile o nel caso volessimo controllare se è l'alimentazione delle pile che è responsabile di un cattivo funzionamento.

- 4) Alimentazione di piccoli elettrodomestici come:
- a) rasoi elettrici
- b) giocattoli come trenini elettrici, motorini per gru ecc..
- c) telecomandi per modelli (per imbarcazioni, aerei ecc.) che sono ormai di uso comune.
- 5) Alimentatore ausiliario. Non è raro il caso che accanto al normale alimentatore a tensione variabile e stabilizzata sia necessario anche un altro alimentatore ausiliario sia pure di piccola potenza ma con una tensione indipendente come capo «freddo» da quella di lavoro della prima e una più potente sorgente di energia.

In questo caso le due tensioni di 6 e 12 V saranno utilissime anche in quanto stabilizzate.

Se desiderassimo poi una tensione intermedia fra 0 ÷ 6 o 6 ÷

220 V Rete

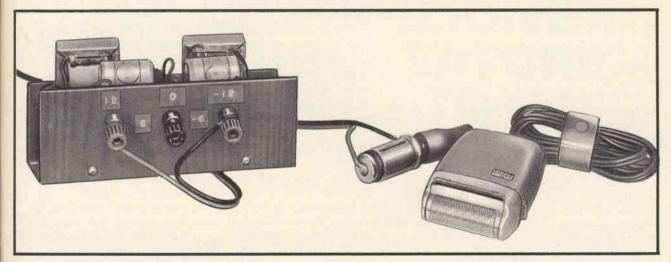


Fig. 3 - Una buona idea, poco materiale, buoni risultati, un sacco di applicazioni. Così si può definire questo piccolo ma utilissimo alimentatore in tampone con una coppia di batterie al Ni-Cd da 6 V - 0,25 Ah ciascuna.

12 V basterà aggiungere un circuitino con uno Zener ed un transistore di modesta dissipazione, secondo una delle tante indicazioni comparse nella Rivista.

E ci fermiamo qui! Abbiamo fornito validi motivi per questa modesta ma utile realizzazione.

C'è quello che gli anglosassoni definirebbero come un «Wide range of utility», cioè una vasta gamma di applicazioni.

Daremo l'ultima spinta specie al principiante annunziando che la realizzazione poi è semplicissima.

LO SCHEMA ELETTRICO

Basta dare un'occhiata alla fig. 2 per rendersi conto della sua semplicità.

L'elenco dei componenti è presto fatto:

- 2 trasformatori (da 220/6,3 V da
 5 W) (oppure uno da 220/12,6 V da 6 ÷ 10 W).
- 1 raddrizzatore a ponte al silicio da 15-20 V di ingresso max in c.a. e 200 mA di max corrente di uscita in c.c. rettificata.
- 2 accumulatori di Ni-Cd da 0,25 Ah e 6 V nominali di lavoro.
- 1 resistore di limitazione da 1 W (R).
- 3 morsetti di uscita (due di colore re rosso ed uno di colore nero).
- 1 spina con cordone per collegamento a rete.

1 basetta in legno con una mascherina frontale in alluminio; il tutto coperto di plastica autoadesiva color legno.

I due trasformatorini (sono stati scelti due da 220/6,3 V perché più facilmente reperibili e di piccole dimensioni) sono collegati in parallelo al primario ed in serie al secondario.

Se si dispone di un unico pezzo da 220 V di primario, 12-14 V di secondario e 4 o 6 W di potenza, lo si potrà ugualmente impiegare.

I 12 V c.a. alimentano un ponte di diodi al silicio che a loro volta forniscono la tensione rettificata di alimentazione delle due batterie disposte in serie fra loro e connesse come indicato ai tre morsetti di uscita.

La resistenza di limitazione R potrà venire scelta per tentativi nel campo dei $40 \div 100 \Omega$.

Non si può fornire il valore esatto in quanto essa deve limitare la corrente di carica, come si è detto, al 2% del valore della capacità in Ampère-ora delle batterie.

A determinare questo valore contribuiscono vari fattori, come la tensione effettiva di alimentazione del ponte, la curva dei diodi al silicio del ponte di rettificazione, la resistenza interna dei trasformatori oltre alla resistenza di limitazione R.

Naturalmente saranno le punte delle semionde rettificate ad alimentare, con dei guizzi di corrente, le batterie e lo strumento inserito per controllo, all'atto della determinazione del valore di R, indicherà la corrente media di alimentazione.

Qualcuno potrà pensare che sia conveniente filtrare questi picchi di rettificazione con un elettrolitico. In realtà è del tutto inutile perché le due batterie, disposte in serie in modo da fornire un massimo di 12 V, si comportano già come un condensatore di capacità ben superiore ad un normale elettrolitico. Tanto più che l'effettiva resistenza interna delle batterie al Ni-Cd è molto bassa ed il residuo di tensione impulsivo, ai capi dell'uscita in corrente continua, è quindi del tutto trascurabile.

Se proprio si volesse filtrare meglio l'alimentazione da rete si potrebbe sostituire la R con una impedenza di solo un decimo di Henry di induttanza e di resistenza interna dell'ordine di quello determinato per R.

Ma nella stragrande maggioranza dei casi ciò non sarà necessario.

Le batterie completamente cariche forniscono a vuoto una tensione di circa 13 V che nel corso della scarica si riducono mano a mano fino a 12 V.

Il collegamento in uscita con i tre morsetti permette, come si è già detto, di ricavare le due tensioni di 6 e 12 V come pure l'alimentazione contemporanea di + 6 e - 6 V rispetto alla terra di riferimento.

LA REALIZZAZIONE ED I RISULTATI

Le illustrazioni forniscono ogni indicazione utile per la realizzazione.

L'alimentazione da rete va direttamente alle connessioni dei due avvolgimenti primari senza interposizione di fusibili. D'altra parte le potenze in gioco sono modeste, la possibilità di corto circuito in uscita e quindi di surriscaldamento dei trasformatori sono estremamente improbabili; per di più è possibile proteggere con una efficace nastratura i collegamenti a rete.

Diciamo che l'ancoraggio del terminale del cordone di rete va curato in modo particolare perché uno strappo può dare luogo ad un corto circuito con le solite fiammate, i fusibili domestici che saltano, le imprecazioni relative, poiché ciò naturalmente accade sempre di se-

Anche nella nastratura si dovrà abbondare, perché questo apparecchietto può capitare nelle mani di un ragazzo e quindi occorrono delle precauzioni.

La realizzazione, così come è stata impostata, non desta preoccupazioni perché tutte le connessioni «in vista» sono a bassa tensione.

Tuttavia se si impiegasse una scatoletta non sarebbe male.

Noi abbiamo preferito, per comodità e rapidità di assemblaggio, ricorrere ad una basetta in legno coperto in plastica autoadesiva.

Il legno tiene bene una normale vite senza dado e la plastica non «trattiene» la polvere che può venire...soffiata via alla buona periodicamente.

Il frontalino in alluminio è stato forato per portare i tre terminali di uscita e due viti a legno per il fissaggio alla basetta.

Poi è stato completato di copertura in plastica e fissato dopo essere stato corredato di terminali a morsetto e scritte relative in «Dymo».

Più elegante può risultare una dicitura in «letraset»; basta saperci un poco fare e curare una buona adesione delle lettere.

Basta così. Le fotografie dicono il resto.

Ultimato il montaggio abbiamo connesso l'apparato alla rete ed abbiamo controllato la corrente di carica con un tester e la tensione ai morsetti con un analizzatore digitale della UNA.

Inizialmente la corrente era di circa 35 mA dato che le batterie erano scariche. Mano a mano che la tensione saliva verso i 12 V la corrente diminuiva, fermandosi infine sugli 8 mA dopo mezz'ora

dall'inizio della carica.

Dopo circa 24 ore la corrente si è poi ridotta fino a 4-4,5 mA di «residuo di mantenimento» della carica delle batterie.

La tensione invece era salita a 13.25 V.

Si sono controllate le due tensioni di 6 ÷ 6 V ai morsetti. Erano perfettamente eguali tra loro e controllate «in digitale» davano per somma esattamente quella precedentemente misurata.

A questo punto constatato che la resistenza interna dell'alimentatore provvedeva già alla limitazione della corrente di mantenimento, non si è provveduto ad inserire la R relativa indicata in circuito.

Raccomandiamo però di eseguire in ogni caso la verifica così come descritto (beninteso anche con il solo tester) senza ricorrere al Voltmetro digitale che abbiamo impiegato per curiosità solo per controllare l'equilibrio di funzionamento delle due celle di accumulatori al Ni-Cd.

Le nostre erano delle Voltabloc da 0,25 Ah tipo 5 VB 25, comunque sul mercato ne esistono di vari tipi.

Sarà meglio naturalmente impiegarne due da 6 V nominali, per usufruire così di una doppia tensione di uscita.

SPERIMENTARE
SELEZIONE RADIO-TV

ELETTRONICA OGGI

LE DUE RIVISTE

CAMPAGNA ABBONAMENTI 1974

L. 8.000

anziché

9.600

0.800

L. 9.000

L. 16.000

anziché

anziché

. 20.400 o

LA COSTRUZIONE DI UN OSCILLATORE MODULATO

DI CARATTERISTICHE SEMIPROFESSIONALI

terza parte di I2EO dott. Guido SILVA

COSTRUZIONE
DELLE CASSETTE
IN ALLUMINIO

bbiamo lasciato per ultime le due distinte realizzazionii perché, di proposito, abbiamo inteso assoggettare il Lettore (non ce ne voglia, per carità!) ad un lento processo di... maturazione costruttiva.

Infatti la realizzazione delle due distinte cassette costituisce un impegno non da poco.

Ci richiamiamo d'altra parte alle nostre premesse sulla presentazio-

ne meccanica del lavoro.

Da essa, in gran parte, dipenderà l'esito positivo di tutto l'impegno. La costruzione deve risultare assolutamente a regola d'arte. La chiusura delle due cassette non ammette spiragli o sconnessioni di sorta.

In particolare la più piccola, quella interna, relativa al circuito di generazione, deve essere a tenuta stagna.

La cosa è fattibile anche con mezzi comuni.

Si inizi il lavoro ritagliando da una lastra di alluminio crudo, di 1,5 mm di spessore, il rettangolo di 155 x 105 mm, riportato in fig. 27.

E' opportuno usare un seghetto da traforo o una taglierina, mai delle cesoie che fatalmente deformano, ondulando. Esso costituirà il frontale della cassetta interna.

E' necessario ricorrere all'alluminio crudo ed allo spessore di almeno 1,5 mm perché la rigidità di questo frontale è assolutamente fuori discussione agli effetti della stabilità dell'oscillatore e quindi del segnale generato.

I fori vanno dimensionati esattamente secondo quanto suggerito. Fa eccezione quello grosso, a destra, del passaggio dell'asse e del fissaggio del condensatore variabile, che andrà sagomato secondo le esigenze del variabile stesso, caso per caso. Noi abbiamo impiegato un vecchio CV della Safar, in due sezioni distinte. Le capacità massime e minime sono rispettivamente: C¹ max = 428,3 pF; C¹ min = 14,2 pF; C² max = 188,6 pF; C² min = 14,5 pF.

La scelta del CV è importantissima: essa condiziona tutto il gioco delle bobine necessarie a coprire le gamme desiderate.

E' necessario, d'altra parte, ricorrere ad un CV a sezione di capacità diverse in cui la minore sia approssimativamente $1/2 \div 1/3$ dell'altra e convenientemente spaziata. Altrimenti si può far conto che le ultime due gamme saranno attive anche per meno della metà di copertura teorica. (Il fenomeno è comune a non pochi apparati dell'industria).

Infatti, quando il rapporto L/C si riduce sotto un certo limite la

Rd (Resistenza dinamica) del C.O. decresce a valori tali da non consentire all'oscillatore di... oscillare.

Lo vedremo comunque in seguito, quando svilupperemo il tema dei circuiti risonanti impiegati. Per ora possiamo solo suggerire la scelta di un CV di caratteristiche professionali, quindi: costruzione molto robusta e compatta, isolamento in ceramica possibilmente trattata al silicone, spaziatura larga per la sezione O.C., movimento meccanico su cuscinetti a sfere, contatti a minima resistenza, ecc. ecc. assenza di compensatori montati sui CV medesimi.

La serie dei fori periferici (a circa 2,5 cm l'uno dall'altro, non va ridotta per non propiziare gli spifferi di segnale R.F). E' inutile, per il momento cercare di livellare oltre un certo limite i bordi dello schermo.

Vedremo poi come operare per ottenere il meglio con gli scarsi mezzi a nostra disposizione.

Iniziando da sinistra, precisiamo che i 2 fori di 6 mm praticati sullo stesso asse, servono al passaggio di 2 condensatori passanti di 1.500 ÷ 2.000 pF, a vite.

Gli altri 2 da 9,5 mm sono previsti per il bloccaggio di un potenziometro il primo, di un commutatore ceramico a 6 posizioni (6 gamme), il secondo.

Il foro da 3 mm che segue, serve al fissaggio della basetta dell'oscillatore di BF-modulatore, unitamen-

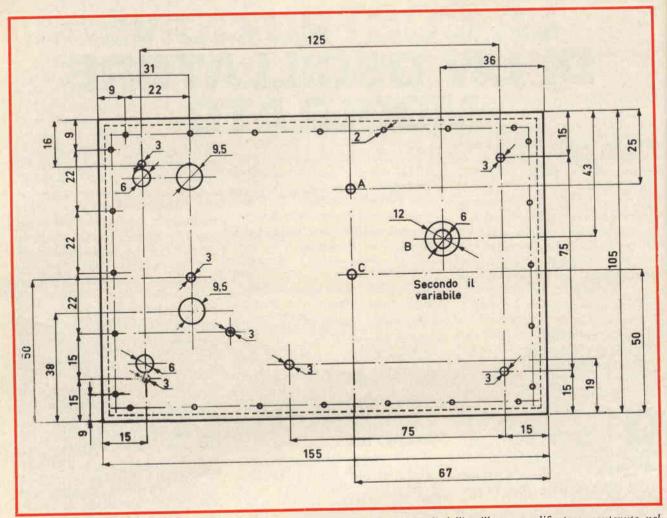


Fig. 27 - Piano di foratura, dello schermo anteriore e supporto di tutti i comandi dell'oscillatore-amplificatore, contenuto nella cassetta schermante di Fig. 28.

te all'altro a destra, in basso, (che abbiamo già visto) e che porta un distanziatore in plastica.

Gli altri fori a metà schermo, in alto e in basso, sono previsti per il passaggio di 2 viti destinate al bloccaggio di altri componenti, come diremo in seguito.

Ora è opportuno provvedere a far tornire 4 tondini di ottone, del diametro di 8 mm, lunghi 31 mm i primi 3, e 21,5 mm il quarto, quello che fissa in basso la basetta del modulatore.

Per una profondità di 10 mm, ogni distanziatore verrà forato con una punta da 2,5 mm e filettato con passo 3 M, da entrambe le parti.

Le interdistanze misurate tra centro e centro dei fori relativi sono: in orizzontale 125 mm, in verticale 75 mm.

La costruzione delle fiancate del-

la cassetta schermante (di cui in fig. 28 è fotografata la parte posteriore con fianchi relativi) non è certo meno impegnativa del frontale.

Essa va portata a termine, se possibile, con cura ancora maggiore. La cassetta finita infatti deve risultare rigida e perfettamente a squadra.

Come potrebbero altrimenti incunearsi i suoi piolini troncoconici negli incastri ammortizzatori fatti di boccole di gomma (gommine passa-cavo di alimentazione) montate all'interno della cassetta esterna, di cui a fig. 29 è riportata la fotografia?

Se ciò non avverrà; una gran parte della colpa dovrà attribuirsi alle fiancate male tracciate o male piegate.

Ad ogni buon conto, da una lastra di alluminio crudo, di spessore pari ad 1 mm si traccino e si ritaglino le 2 fiancate della cassetta secondo i dati riportati alla **fig. 30.**

Abbiamo preferito sagomare le fiancate a 2 a 2 per non porre al Lettore un problema gravido di incognite: una tracciatura non perfetta su uno sviluppo limitato può ancora essere corretta; su uno sviluppo considerevole lo è ben più difficilmente. (In genere, le interdistanze tra due rette si misurano con ben definita apertura di compasso, e non con una riga millimetrata. Gli errori di parallasse, in questo caso, sono pressoché trascurabili).

Per la piegatura a squadra ci siamo avvalsi di due angolari che usiamo da molti anni in ferro ad L, lunghi circa 55 cm ed affacciati in modo da costituire una doppia JL con sviluppo in direzioni opposte

(vedi fig. 31). A 2 cm avanti gli estremi, sono praticati due fori passanti da 10 mm che interessano entrambi i ferri ad L. I fori, perfettamente centrati ed in coppia, contengono un bullone da 10 mm ognuno lungo 5 cm, la cui testa è brasata all'esterno, mentre un dado per parte provvede a bloccare la lamiera che va piegata tra i due angolari in oggetto.

Bloccata ora la lamiera di alluminio lungo la retta più interna tracciata, (si comincia sempre con la traccia più lunga), in modo che sporga all'insù la striscia di larghezza minore, con un martello di legno, si diano piccoli colpetti così da iniziare a piegarla a 90°, in genere all'interno.

La piegatura completa e perfetta si otterrà solo dopo, usando un blocco parallelepipedo di materiale plastico che, appoggiato all'angolo da ribattere, verrà martellato al centro e spostato avanti e indietro sino ad ottenere un lavoro fatto ad arte.

Va da sé che questo criterio potrà essere seguito alla lettera sinché non si incontreranno, ad angolo retto, lembi già ripiegati. (Ecco perché conviene operare prima sugli sviluppi maggiori e quindi sui minori).

Quando è previsto che una bandella già piegata a 90° vada ripiegata ancora perpendicolarmente è necessario sagomare a squadra, preventivamente, uno spacco tale che i due lembi ortogonali vengano poi a coincidere in modo perfetto.

Ciò è molto importante e si ottiene facilmente disponendo una squadretta con il vertice coincidente con il punto di congiunzione, interno, tra le due tracciature parallele e quella perpendicolare che determinerà, a piegatura avvenuta, la costolatura tra i due piani che risulteranno tra loro a squadra.

Sulla tracciatura parallela esterna, sempre nel punto di congiunzione con la retta perpendicolare, si apra, per tentativi, un compasso in modo da far coincidere il secondo ago con il punto di intersezione della squadra, simmetricamente, dall'una e dall'altra parte. (Vedi fig. 32).

Nella realizzazione della cassetta, si provveda a ripiegare i due

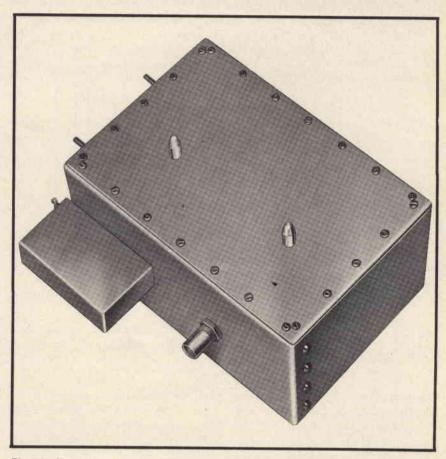


Fig. 28 - Fotografia del retro della cassetta schermo di R.F. il cui frontale è riportato a Fig. 27. Si notino i due piolini di alluminio che servono a tenere bloccata la cassetta nei gommini autocentranti disposti all'interno della custodia esterna (come si può vedere a fig. 29), la scatola-filtro sul + 10 V, il bocchettone BNC che andrà connesso all'attenuatore e le viti portatrasformatore a sinistra.

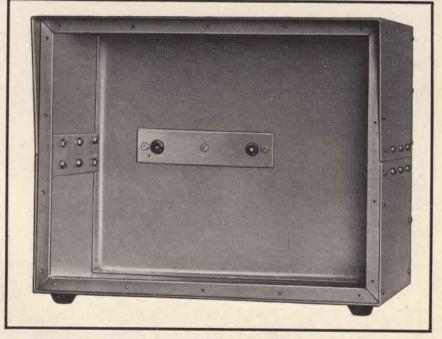


Fig. 29 - Fotografia dell'interno della cassetta esterna. Si notino le battute ed i gommini di autocentraggio disposti su una robusta striscia di alluminio.

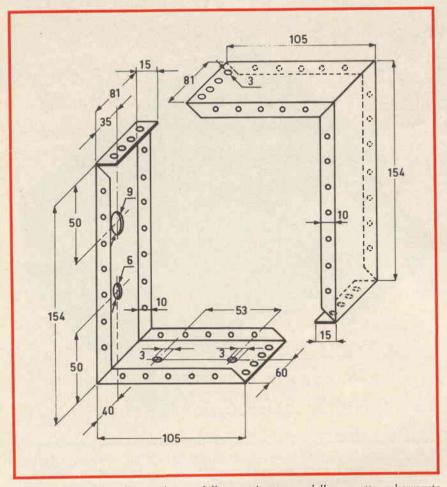


Fig. 30 - Dettaglio di tranciatura delle pareti esterne della cassetta schermante di fig. 28.

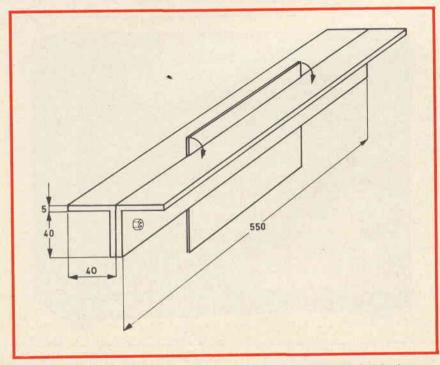


Fig. 31 - Come piegare a squadra una lamiera, mediante due angolari in ferro.

lembi, (secondo appunto la fig. 30), anteriore e posteriore, nello stesso verso ed a squadra. Detti lembi misurano 10 mm di larghezza ognuno.

Quelli che invece uniscono le fiancate laterali a due a due, misurano 15 mm. Ciò è stato fatto nello intento di irrobustire i fianchi e di ridurre la possibilità di fuoruscita del segnale di RF dallo schermo.

Sagomate a misura le fiancate della cassetta, con martello e lima, si provveda a montarla dopo aver forato i lembi da 15 mm con punta da 3 mm e bloccati con 4 viti per parte del 3 M, lunghe 5 mm, secondo quanto si può rilevare dalla fotografia di fig. 28.

I dadi interni vanno stretti al «limite di rottura» con una chiave tubolare. Naturalmente, prima è bene accertarsi che nessuna traccia di sbavatura corra il rischio di restare impigliata tra le due superfici sovrapposte, ad evitare quanto si è già paventato.

Ora si dovrà cercare di disporre tra loro, a squadra, le 4 pareti. Il lavoro non è facile, ma con un po' di impegno ci si arriva sempre, naturalmente se si è lavorato giusto.

Il lavoro successivo consiste nel «mettere in piano» effettivo le due facciate, livellando le 4 bandelle per parte ripiegate in dentro.

Allo scopo ci si provveda di un piano di marmo o comunque... di un piano degno di tal nome. Su una tela a smeriglio, di grana sottile, si muova, con moto vario agli effetti della traiettoria, la cassetta sino ad ottenere dalle due parti, tra i bordi ribaltati, una buona levigatura.

Si controlli quindi, tutt'intorno, che l'apertura del calibro resti costante spostandolo lungo il perimetro della cassetta medesima.

I fori periferici da 2 mm, praticati sul pannello di fig. 27 vanno rigorosamente riportati sui lembi piegati, ma, attenzione, con punta di 1.6 mm.

Nei fori andranno inserite viti di acciaio autofilettanti adeguate, secondo quanto si è visto in fotografia di fig. 28. (Non conviene stringere a fondo le viti nel primo tentativo di montaggio). Lo si farà poi, in seguito, sia su una faccia come sull'altra.

Durante la segnatura dei punti da forare sui bordi è buona norma forare ed avvitare prima le 8 viti agli angoli, facendosi aiutare da persona... molto tollerante (!) a tenere le fiancate rigorosamente ad angolo retto.

I fori intermedi potranno essere praticati ora con più comodo e molta maggior precisione. Smontato tutto il piano testé fissato si provveda, con una lima adeguata e punta da 4 mm impiegata leggermente a togliere la sbavatura inevitabile, prodotta dalle viti autofilettanti.

Dopo di che si potrà rimontare il tutto.

Per la facciata posteriore si segua lo stesso criterio, con la sola differenza che si dovranno praticare altri 2 fori con punta da 3 mm per fissare i due piolini, di cui a fig. 28, forati in centro per 0,5 cm, con punta da 2,5 mm, e filettati con passo da 3 M. Ora viene la parte, diciamo... più rumorosa di tutto il lavoro. Con la cassetta completamente montata ed a squadra, le pareti disposte secondo piani paralleli tra loro, si inizi il lavoro di «martellatura», inteso a far combaciare perfettamente le pareti avvitate tra loro.

Il colpo di martello non va dato secco, ma strisciato, per deformare i bordi delle facce anteriore e posteriore, stirandoli quasi, sino a farli seguire la prima parte di curvatura del bordo stesso.

Il lavoro deve proseguire per un po' di tempo sinché non si noterà che non esistono più soluzioni di continuità tra le superfici ad angolo retto tra loro.

Una lima strisciata leggermente verso l'esterno e ripassata parecchie volte sagomerà, in modo perfetto i piani ortogonali rendendo le superfici perfettamente continue. L'ultima ripassata avverrà usando la stessa lima non più perpendicolarmente, ma in senso longitudinale.

Si osserverà, non senza sorpresa, che lentamente le superfici si amalgamano quasi.

Da ultimo, strofinando un tondino di ferro o di acciaio, sempre in senso longitudinale, sui bordi convergenti, si riuscirà a compiere l'opera, restando piacevolmente sorpresi della propria abilità!!!

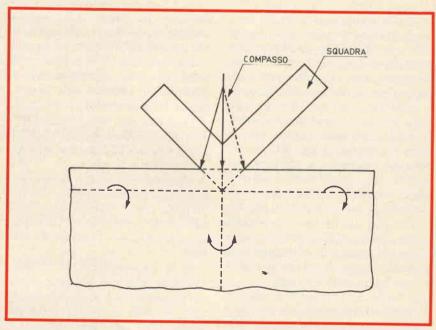


Fig. 32 - Come sagomare preventivamente una lamiera con bordi già piegati perpendicolarmente, quando la si deve ripiegare una seconda volta a squadra.

Terminata la cassetta piccola si può iniziare l'altra esterna.

Le sue dimensioni interne sono: 25 x 19 cm.

Circa la luce interna della cassetta esterna è necessario precisare alcune cose: le dimensioni fissate sono le minime consentite per contenere con... un certo respiro tutti i componenti. Ma nessuno intende imporle come «ottimali».

Poi, il commercio offre cassette esterne anche di pregevole fattura (e di costo altrettanto rispettabile). Chi non vuole realizzarla da sé è libero di farlo.

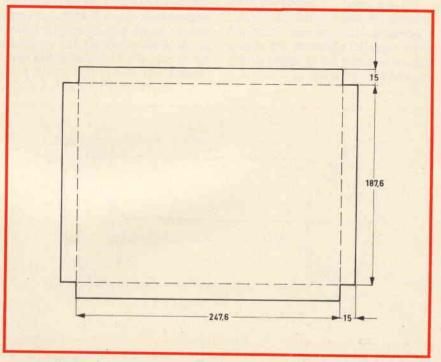


Fig. 33 - Quote e sagomatura del fondo della cassetta esterna di fig. 29, in alluminio ricotto da 12/10.

Noi ci rivolgiamo a quanti hanno, come noi, il gusto inveterato di fare tutto il fattibile da sé e lo sanno realizzare, senza doversene pentire poi a cose fatte! A costoro diciamo: prima del pannello frontale o delle fiancate laterali della cassetta esterna è necessario realizzare il fondo, secondo quanto appare dalla fotografia di fig. 29. Esso è costruito piegando a squadra, sui quattro lati, una lamiera di alluminio ricotto, dello spessore di 12/10, secondo le quote fissate a fig. 33.

Si incida, avanti tutto, profondamente, (circa 2/10 di mm) con una punta la traccia di piegatura e si proceda come già precisato a proposito della cassetta piccola.

I lembi del piano di fondo, ripiegati, devono assolutamente risultare in piano e dopo la battitura con il pezzo di plastica interposto, è necessario tirarli in piano con tela smeriglio.

Quando si tratterà poi di stringere nelle ganasce (fig. 31) gli stessi lembi già ripiegati a squadra, sarà necessario inserire lungo il tratto di piegatura un pezzo di ferro lineare, poco più spesso dei lembi stessi, in modo che, stringendo gli angolari, non si ottenga il risultato di deformare i bordi già ripiegati.

Ad ogni modo, a piegatura avvenuta, naturalmente tutta all'interno, controllata la rigorosa planarità delle superfici ripiegate, (si ricorra ancora al piano ed al foglio di tela smeriglio), si dovrà provvedere a

realizzare le pareti della cassetta esterna. Si usi sempre alluminio da 12/10, ma questa volta crudo.

(Lo spessore di 12/10 rappresenta un buon compromesso tra la facilità di lavorazione e la robustezza del manufatto).

La forma dei fianchi può essere diversa. Noi abbiamo scelto quella che si rileva a fig. 29, con una specie di visiera in alto.

Volendo, si può far partire l'inclinazione dal basso invece che dalla metà circa. Tutto dipende dal criterio di preferenza. «Tot capita, tot sententiae,» ammonivano i latini!

Se il Lettore opta per la stessa soluzione che noi abbiamo scelta dovrà preparare il «tetto» della cassetta secondo le quote di fig. 34. In fig. 35, invece, sono riportate le quote del «fondo».

Secondo quanto appare dalla fotografia di fig. 29, dal momento che le fiancate laterali del «sopra» e del «sotto» vanno poi tra loro unite e bloccate con un listello di alluminio spesso 2 mm, alto 3 cm e lungo esattamente quanto richiesto, allo scopo di ermeticizzare al massimo la cassetta, si provveda a tracciare, dalle due parti contigue, il segno dei 6 fori (3 per parte), a circa 7 mm dal termine comune. (Si tenga presente che il listello testé nominato andrà poi raccorciato quando si dovrà disporre un angolare da 10 mm, in dural, destinato a supportare e fissare tutt'intorno il pan-

nello frontale).

Praticati i fori nei segni del bulino, con punta da 3 mm, si provveda a stringere i dadi, al limite, con la chiave tubolare.

Suggeriamo di fissare prima il «tetto» della cassetta e di lasciare un poco più lungo del richiesto il doppio laterale del «sotto». Così sarà più facile adattarlo facendolo combaciare perfettamente con la mezza fiancata superiore.

In caso di non perfetta riuscita non ci si perda d'animo: c'è sempre lo stucco per carrozzieri che fa miracoli! Le 12 viti da usare sono lunghe 5 mm.

Si provveda ora, controllato che il lavoro procede nel migliore dei modi, a tracciare con il compasso aperto per 5 mm, una riga perimetrale lungo tutti i bordi posteriori della cassetta.

Ad interdistanze eguali verranno praticati dei fori con punta da 2 mm, sulla cassetta; con punta da 1,6 mm sui fianchi ripiegati a squadra della base.

Sopra e sotto noi abbiamo fatto 7 fori: sui laterali 6.

Comunque, la fotografia di fig. 29 servirà a chiarire qualsiasi dubbio. Nei fori andranno bloccate delle viti di acciaio autofilettanti, eguali a quelle che abbiamo già nominate a proposito della cassetta interna.

Al solito, è bene fissare le viti angolari estreme, tenendo in piano il fondo e verticali ed a squadra i fianchi. Le altre viti intermedie saranno fissate in seguito, con maggiore precisione.

Quando la cassetta esterna risulterà montata del tutto, si riprenda in mano il martello e, con la tecnica usata nella realizzazione della cassetta interna, la si batta tutta, lungo gli spigoli facendo in modo di adattare reciprocamente le superfici tra loro, nell'intento di chiudere ogni spiraglio.

Lo stesso criterio si seguirà quindi svasando con punta da 4 mm e lima i fori deformati dalle viti autofilettanti.

A cose fatte si stringano a fondo tutte le viti, dopo aver accertato che le linee di congiunzione tra i laterali della cassetta sono contigue e ben sagomate. A cassetta ultimata seguirà la messa in opera delle 4

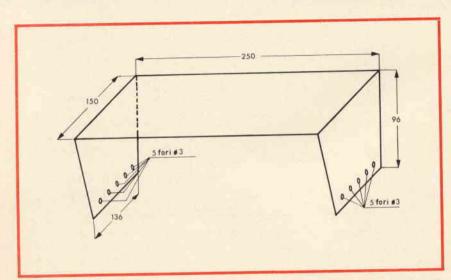


Fig. 34 - Quote interne del «sopra» della cassetta di cui a fig. 29, in alluminio crudo da 12/10.

squadrette in dural che, come abbiamo detto servono a sostenere il pannello frontale fissandolo alla cassetta stessa.

Gli incastri angolari sono fatti a 45° e gli angolari stessi sono lunghi rispettivamente nel nostro caso: 25,1 cm e 19 cm.

Gli angolari vanno fissati alla cassetta con 5 viti sopra e sotto e 6 ai due lati, come ben appare, sempre da fig. 29.

E' necessario andare molto cauti nel definire la posizione dei 4 angolari porta-pannello frontale, in quanto essa è legata alla profondità totale della cassetta interna + i 4 supporti in ottone torniti, +, sulla parte posteriore della cassetta interna, lo spessore del listello con i due gommini che vanno inseriti sui due pioli di ancoraggio e i 3 distanziatori da 3 mm. Inoltre va tenuto conto dello spessore del pannello frontale (2 mm, nel nostro caso), che non deve sporgere dalla cassetta.

In totale abbiamo totalizzato 13,3 cm, misurati dal fondo della cassetta al livello esterno dell'angolare a squadra.

Per trovare la posizione esatta del listello-porta gommini, in alluminio di 11 x 2,5 cm, spesso 2 mm, ci siamo avvalsi (dopo aver inserito il listello in parola sui 2 piolini) e bloccata la cassetta interna al frontale di una punta tenuta perpendicolare al piano di fondo, fatta passare attraverso il foro dello strumento praticato nel frontale, e mossa avanti e indietro, a definire la posizione dell'angolo inferiore destro del listello medesimo.

E' necessario, durante questa misura essere molto precisi, mantenersi perpendicolari e praticare i 3 fori di fissaggio nel listello stesso, da ultimi, dopo aver già fatto quelli, ben centrati, nel fondo della cassetta, a squadra ed esattamente interdistanti.

Se le cose saranno state fatte a regola d'arte i 3 fori nel listello risulteranno in linea retta ed egualmente interdistanti. A questo punto, abbiamo finito anche la cassetta esterna.

Dopo aver fissato sotto la cassetta 4 gommini a circa 17 mm da tutti gli estremi angolari, con le solite viti autofilettanti, inserite in un foro praticato con punta da 2,5 mm, provvederemo a dare una mano di vernice alla nitro cellulosa mediante uno spruzzatore elettrico che, certamente, non mancherà nel nostro ben attrezzato laboratorio.

La vernice, secondo la migliore tradizione, è bene sia del tipo «martellato». Nel caso non fossimo attrezzati, potremmo sempre avvalerci del primo carrozziere... all'angolo.

Abbiamo lasciato buon ultimo il pannello frontale che illustriamo subito, nella speranza che i Lettori ci abbiano fedelmente seguiti sino a questo punto.

Il pannello frontale

Se fino ad ora i suggerimenti dati sono stati seguiti con coscienza lo potremo ritagliare, a cuor leggero, da una lastra di alluminio crudo, di 2-2,5-3 mm. Il dato non è determinante: basta che la lastra sia ben squadrata e non gibbosa. Solo questo è importante.

Le dimensioni sono: 25,1 x 19 cm. Naturalmente dipendono dalla luce interna della cassetta, in modo che il rettangolo del pannello frontale entri di misura nel vano assegnatogli. Da fig. 36 appaiono le quote dei fori del pannello e le interdistanze.

Naturalmente, se qualche Lettore avesse modificato qualche particolare, per sue personali esigenze, dette quote andrebbero modificate, caso per caso. Il pannello, se si è avuta l'avvertenza di sceglierlo esente da scalfitture o da segni deturpanti, può essere inciso al pantografo. Certo la spesa non è trascurabile, ma ovviamente tutto dipende dalle preferenze e dalla disponibilità economica del singolo Lettore.

Più semplicemente lo si può «trattare» con diversi procedimenti.

Il primo, da noi seguito, prevede l'impiego di un particolare lamierino fotosensibile prodotto dalla 3M americana e fornito, in Italia, dalla omonima Ditta rappresentata a Milano.

Sagomato il lamierino secondo le dimensioni del pannello frontale (ved. fig. 36) (è opportuno non lavorare alla luce del sole ma a luce elettrica altrimenti si potrebbe impressionare «a vuoto» il lamierino) lo si ricopra con il lucido in grandezza naturale ricavato da fig. 37. ben teso ed appiccicato con del comune scotch agli angoli, o meglio fissato ad un asse di legno. Il lucido può essere in carta speciale da disegno, o meglio in mylar (usato dai disegnatori professionisti dell'industria). Il disegno, comunque, va fissato sulla faccia colorata del lamierino e tenuto ben fermo.

La lastra fotosensibile deve presentare ai raggi ultravioletti la superficie verde.

Va da sé che le diciture devono risultare perfettamente in piano, diritte e non capovolte.

Si esponga ora il tutto ad un ge-

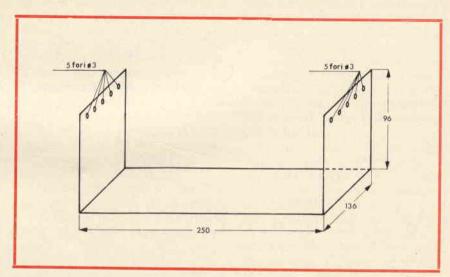


Fig. 35 - Quote interne del «sotto» della cassetta di cui a fig. 29, in alluminio crudo da 12/10.

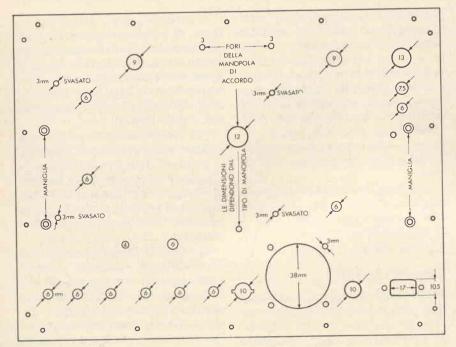


Fig. 36 - Quote del pannello frontale in alluminio crudo da 2, 2,5 oppure 3 mm.

neratore di raggi ultravioletti (con tutte le precauzioni del caso per la persona), durante un lasso di circa 5÷6 minuti. Il generatore può essere una lampada per «bromografo» a raggi ultravioletti, un apparato a raggi attinici in genere o, più semplicemente, una comune lampada a raggi ultravioletti, così cara alle si-

gnore, in questi tempi di comune abbronzatura.

Il tutto, come si è accennato, va tenuto a circa 50 cm dal generatore, per la durata prevista. La distanza è necessaria per ridurre il pericolo delle radiazioni termiche sul lucido o sul mylar, quando si usi una lampada domestica al quarzo. Nelle

CW-EST
AM . FM
FREQ.FINE

FREQ.FINE

The state of the sta

Fig. 37 - Maschera frontale dell'Oscillatore Modulato per il lumierino fotosensibile o per la pellicola al mylar.

stesse infatti, si usa inserire (forse per non raffreddare la delicata epidermide delle figlie di Eva esposte alle radiazioni attiniche senza altra protezione!) anche i radiatori termici, in serie.

Dopo l'esposizione prevista, tolto il lucido, si frizioni tutta la lastrina di alluminio con una soluzione fornita dalla Casa (in gran parte soda caustica). Ne risulterà il lamierino di alluminio nudo, con le iscrizioni in verde intenso. Sarà allora sufficiente ripassare le iscrizioni con inchiostro grasso nero (va benissimo quello serigrafico usato per i circuiti stampati) per ottenere in nero, su fondo alluminio, tutte le diciture che abbiamo previste in fig. 37.

Il pannello così ottenuto è di bell'effetto, anche se molto delicato, in quanto basta una scalfittura per graffiarlo inesorabilmente. Per proteggerlo, può essere impiegata una lastra sottile di perspex.

Altra soluzione può essere l'uso dello stesso foglio di mylar, verniciato sul rovescio con vernice di colore grigio o argenteo, bloccato tra viti e dadi, sempre sotto una lastrina di perspex, come si è detto sopra.

Altra soluzione ancora, letta su una famosa rivista tecnica inglese, consiste nel fare ricorso ad un foglio di perspex dello spessore di 1 ÷ 2 mm che va scritto sul rovescio, con normografo capovolto e pennino da 0,3 o 0,5.

Va notato che sul perspex o sul plexiglass normalmente non è concesso scrivere, in quanto l'inchiostro di china scivola con tutta facilità. Per farlo aderire è necessario prima assoggettare il rettangolo trasparente ad una leggera graffiatura dei punti che devono essere impressionati.

Si può ricorrere alla solita paglietta abrasiva, impiegata comunemente dalle massaie in cucina, oppure si può impiegare un tipo di graffietto molto usato dai grafici.

Esso comprende dei bastoncini sottilissimi di fibra di vetro, tenuti uniti da una legatura ed impiegati in una matita speciale che regge il tutto.

Anche questa può essere una buona soluzione, a condizione che, a cose fatte, si spruzzi il tutto con uno spruzzatore elettrico e con vernice alla nitro di colore a scelta, (noi consigliamo il grigio o l'alluminato), sempre comunque di tonalità non carica.

Un'altra soluzione ancora, può essere impiegata: riportare al bromografo, su pellicola non sensibile all'acetone, il disegno di fig. 37, spruzzandone il retro con vernice alluminata e ricoprire il tutto, davanti, con una lastra di perspex.

Al Lettore la scelta secondo le

Sue personali preferenze.

Si distinguono sul pannello frontale, oltre alla cerchia delle viti periferiche di fissaggio alla cassetta, alla sinistra, in alto, il bottone di comando del potenziometro P1 che regola l'«accordo fine» della Frequenza generata.

Ruotando a destra, la Frequenza aumenta, a sinistra ovviamente decresce. Sotto, il commutatore di gamma S1-A-B-C, a 6 posizioni, da A ad F. Sotto ancora i due morsetti della Modulazione esterna; quello a sinistra è a potenziale massa.

In fondo al pannello prende posto l'attenuatore di cui abbiamo già detto nella prima parte dell'articolo.

Si notano: il Potenziometro di ingresso, i 5 deviatori da 20 dB di attenuazione l'uno, l'uscita RF del segnale attenuato. In alto, verso la manopola che aziona il doppio variabile, il Selettore S2A-B-C.

Commutata la manopola a sinistra il generatore emette un segnale modulato in ampiezza, abbiamo già visto, a frequenza di 1000 Hz. In posizione centrale emette un segnale puro (CW) oppure, a volontà, modulato con frequenza esterna.

Ruotato a destra l'indice del commutatore, il segnale emesso è modulato in frequenza, come si è già detto avanti.

La manopola di comando della Frequenza generata è bene sia demoltiplicata. Può essere, se non si ha altro sotto mano, il tipo giapponese, quello più grande dei tre che ricorre in molti montaggi sperimentali.

Sotto la manopola si nota lo strumento da 100 µA f.s., da 40 x 40 mm, la cui scala dovrà essere modificata e corretta, come si vedrà a suo tempo.

A destra dello strumento il bocchettone di uscita per il pilotaggio

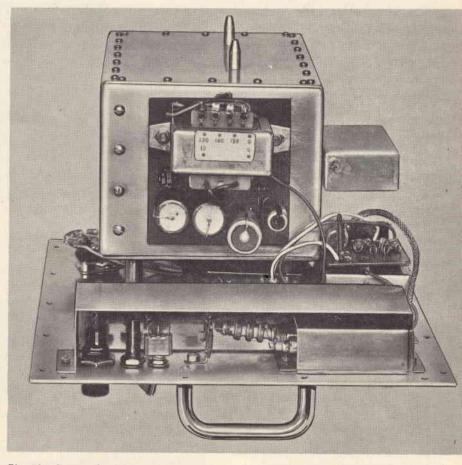


Fig. 38 - Fotografia del pannello frontale, ripreso dal fianco destro ad evidenziare la schermatura dell'alimentazione dalla rete.

dell'asse X dell'oscilloscopio, indi la presa ad incasso per la rete, di cui si è pure ampiamente già detto.

Il potenziometro che regola la profondità di modulazione in AM ed in Δf in FM, si trova in alto a destra del Comando di Frequenza. Sotto ancora il micro-deviatore che consente di leggere il livello del segnale RF, all'uscita del potenziometro, prima della rete di attenuazione, oppure la percentuale di modulazione del segnale stesso modulato in AM.

Da ultimo, a destra, in alto, un portafusibile da 50 mA, una lampadinetta al neon (giapponese) ed un micro-interruttore della rete.

Sia che per il pannello frontale si scelga l'una, l'altra o l'altra ancora delle soluzioni, sarà necessario preparare, avanti il montaggio, la pellicola o il lamierino ed il perspex con tutti i fori richiesti.

Servirà da modello il pannello di alluminio, forato secondo le quote di fig. 36.

Si faccia molta attenzione a non sfregiare la plastica. I fori piccoli si faranno con punta elicoidale; i fori grossi è bene siano praticati con «fustelle» di acciaio che andranno martellate sul punto giusto, previa inserzione, sotto, di un asse di legno duro, ricoperto da alcuni fogli di giornale.

Va da sè che le 2 maniglie (necessarie per l'inserzione dell'apparato nella sua cassetta) completeranno l'opera. Le interdistanze dei fori sono facilmente deducibili sem-

pre da fig. 36.

Prima di iniziare il montaggio definitivo del pannello frontale, è però necessario procedere al bloccaggio della cassetta interna, (con i suoi 4 distanziatori e le 4 viti di ottone a testa svasata) con tutti i suoi circuiti elettrici, al pannello frontale ed al montaggio della parte che riguarda l'alimentazione dalla rete con: fusibile, interruttore, schermi vari e filtri, secondo la fotografia di fig. 38.

Montaggio sul pannello frontale dei componenti già predisposti.

Il fatto di avere un sovrapannello offre il pregio indiscusso di mascherare le viti a testa svasata anpegate nell'alluminio, ma pone anche il problema di smontare tutto il frontale nel caso si debba ispezionare la cassetta interna o rimuovere qualche componente fissato al pannello stesso, oltre a complicare le cose in fase di montaggio.

Comunque, i primi componenti che vanno fissati sono: la cassetta schermo del I filtro di rete di fig. 2 che va bloccata con 4 vitine di ottone da 2 M, a testa piana e svasata.

lunghe 5 mm.

E' necessario, però, fissare prima del sovrapannello e quindi sul perspex, la maniglia di destra per la parte che si inserisce sotto il primo schermo di filtro rete. La presa relativa di corrente ad incasso può anche essere inserita in un secon-

do tempo.

Indi si fisseranno le altre due bobinette di filtro da 100 µH, ad un doppio ancoraggio isolato in bachelite, come appare in fotografia di fig. 38. L'interruttore può venire montato subito, il fusibile e la lampadina al neon saranno solo predisposti come cablaggio, ma non bloccati e saldati, in quanto potranno esserlo dopo il fissaggio del sovrapannello e del perspex.

Il bocchettone BNC per l'asse X dell'oscilloscopio andrà fissato dopo. Così la cassetta schermante dello strumento ed il potenziometro del

livello di modulazione.

Invece il deviatore connesso ad M1 può subito essere inserito. La manopola per il Comando di Frequenza verrà montata per ultima.

Si procederà quindi al cablaggio dei morsetti metallici che fanno capo alla Modulazione Esterna. Il primo, di destra, deve essere isolato. il secondo va a massa con un dischetto isolante frontale eguale all' altro per mantenere entrambi allo stesso livello.

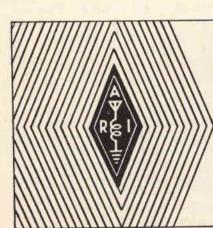
Il Commutatore di «Funzione» può essere montato solo dopo che lo sarà la scatola schermante interna. Lo stesso vale anche per i due comandi di «spostamento fine della frequenza» e per il Commutatore di Gamma.

Diversamente si può dire a proposito dell'Attenuatore che va bloccato sul pannello frontale con i dadi dei vari deviatori, con quello del potenziometro, e che per evidenti esigenze costruttive, non può essere invece bloccato con il dado del bocchettone BNC dell'uscita RF, in quanto lo stesso è già stretto tra due dadi al suo telaietto di supporto, come ben appare dalle fotografie di figg. 9 e 10.

E' opportuno stringere i dadi di bloccaggio dei deviatori, commutatori e potenziometri mediante chiavi tubolari adeguate, ad impedire inevitabili sfregi sul frontale.

Per le viti a testa svasata, dopo aver provveduto al loro alloggiamento nel pannello di alluminio, è buona norma limare in piano, dall' esterno, la parte eventualmente sporgente, ad evitare la comparsa di bitorzoli sul frontale, a cose fatte. Le vitine periferiche di acciaio, autofilettanti, di fissaggio alla cassetta, possono essere dal canto loro, a testa svasata o non. Dipende dalle preferenze del Lettore.

Va notato anche che gli schermi relativi alla parte alimentazione della rete vengono fissati con 8 vitine incassate da 2 M. mentre il supporto isolante delle 2 impedenze di rete è bloccato con una vite a testa svasata da 3 M.


Abbiamo così passato in rassegna e costruito gran parte dei componenti elettro-meccanici che riguardano il nostro Oscillatore Modula-

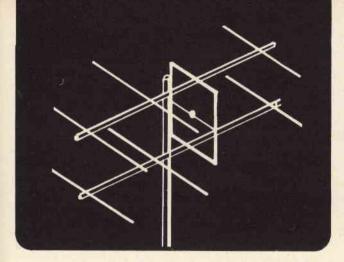
Fa eccezione tutto il lato costruttivo che interessa il circuito oscillatore-separatore e circuiti annessi. Tutto ciò è stato tenuto buon ultimo, nell'intento di svilupparlo in una luce di migliore comprensione.

Lo esamineremo quindi, il nostro Oscillatore Modulato, a conclusione del lungo articolo e lo analizzeremo convenientemente, fornendo tutti i dati di calcolo, di progetto e costruttivi e quanto d'altro possa interessare il Lettore per metterlo in condizioni di apprezzare il nostro ed il suo lavoro.

Prima di concludere è opportuno precisare che ulteriori prove hanno dimostrato un miglior funzionamento del circuito modificando il valore del resistore R3 (citato nello schema elettrico dell'alimentatore stabilizzato a pag. 1687 del n. 12/73) in 330 Ω 1/2 W.

Questo apparecchio è coperto da brevetti nazionali, pertanto ne autorizziamo la costruzione a titolo personale a chiunque, salvi ed impregiudicati restando i diritti dell'autore a termini di legge.

Un hobby intelligente?


saotemeoibea et

e per cominciare, il nominativo ufficiale d'ascolto

basta iscriversi all'ARI

filiazione della "International Amateur Radio Union" in più riceverai tutti i mesi

Richiedi l'opuscolo informativo allegando L. 100 in francobolli per rimborso spese di spedizione a: ASSOCIAZIONE RADIOTECNICA ITALIANA - Via D. Scarlatti 31 - 20124 Milano

RASSEGNA DI ANTENNE

seconda parte di I2AT G. BOSCHETTI

In questa seconda parte analizziamo altri tipi di antenne per radioamatori.

La scelta di un tipo, piuttosto che un altro, dipende essenzialmente dalla frequenza d'impiego, dalle caratteristiche e dalle singole esigenze.

WINDOM

forse l'antenna più semplice che esista, adatta in casi di emergenza quando non sia disponibile cavo coassiale per la discesa e sia necessaria una grande rapidità di installazione. (Fig. 15). Il principio di funzionamento è abbastanza semplice e si basa sul fatto che l'impedenza lungo l'antenna è variabile da punto a punto assumendo, tra gli altri, un valore prossimo a quello presentato da un filo qualunque in aria (circa 2000 - 4000 Ω) che, in questo caso funziona come cavo di alimentazione; in questo punto avverrà la connessione tra il filo e l'antenna.

Presenta l'inconveniente di avere delle perdite di irradiazione abbastanza elevate.

Il punto di connessione ottimo è da ricercare muovendosi attorno ai valori riportati in fig. 5, onde ottenere il miglior adattamento tra l'antenna e il filo di discesa che è conveniente far scendere perpendicolarmente al radiatore per alcuni metri.

Il guadagno si aggira attorno ai 2 dB e la polarizzazione è mista.

L'angolo di radiazione verticale è funzione dell' altezza a cui si trova con andamento del tipo di quello del dipolo orizzontale.

Accontentandosi di ROS non troppo buoni è possibile farla funzionare contemporaneamente su più bande con una lunghezza L pari a $\lambda/2$ per la frequenza più bassa che si desidera e cercando il miglior compromesso tra le varie gamme per quanto riguarda il punto di alimentazione.

Un sistema di alimentazione un po' più sofisticato è quello di Fig. 16 dove è impiegata la piattina da 300 Ω ed è basato sul fatto che, se tra i due punti A e B esiste una differenza di impedenza di 300 Ω il sistema è adattato. Anche qui occorre ricercare la condizione

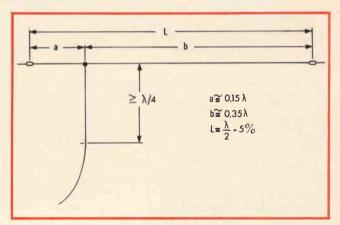


Fig. 15 - Antenna «Windom».

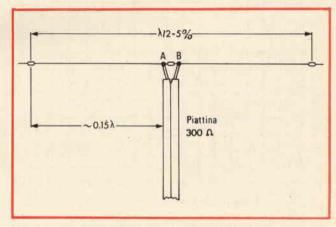


Fig. 16 - Antenna «Windom» con alimentazione a 300 Ω.

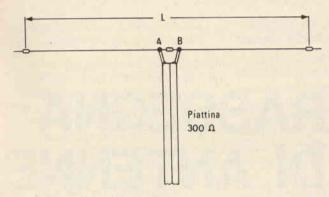


Fig. 17 - Dipolo multibanda.

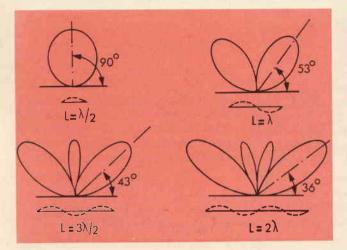


Fig. 18 - Diagrammi d'irradiazione orizzontale della «Long wire» in funzione della sua lunghezza.

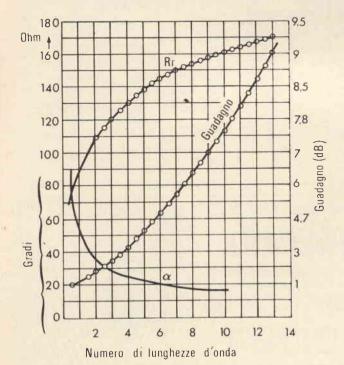


Fig. 19 - Andamento di alcuni parametri della «Long wire» in funzione della lunghezza.

migliore muovendo un punto rispetto all'altro tenendo a minimizzare il ROS.

DIPOLO MULTIBANDA

E' un dipolo ricavato in parte dalle considerazioni e dai problemi della «Windom»; lavora discretamente su 3 bande e l'alimentazione è al centro con piattina da 300 Ω (Fig. 17).

Con L=51 metri l'antenna va bene per 80-40 e 20 metri; se L=25 metri si possono ottenere buoni risultati per le bande dei 40-20 e 10 metri.

La polarizzazione è orizzontale e il guadagno è di 2-3 dB, in funzione dell'altezza a cui è posta l'antenna.

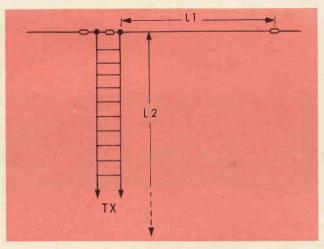


Fig. 20 - Antenna «Long wire».

LONG WIRE

E' formata da un semplice filo molto lungo e può andar bene per qualsiasi frequenza per la quale la lunghezza dell'antenna sia superiore al corrispondente $\lambda/2$; ne consegue che un unico filo può quindi essere sfruttato per più bande.

Il diagramma di irradiazione sul piano orizzontale, per una data frequenza, è funzione della sua lunghezza (in numero di lunghezze d'onda) ed è alquanto variabile come si può riscontrare dalla Fig. 18 dove sono riportati gli andamenti teorici relativi a quattro diverse lunghezze.

Come si vede più lunga è l'antenna più basso sarà l'angolo di radiazione orizzontale (α); lo stesso discorso vale per quello verticale che da valori di 15° - 20° si approssima ai 5° - 10°.

Nel grafico di Fig. 19 sono riportati gli andamenti del guadagno in dB rispetto al dipolo $\lambda/2$ orizzontale, dell'angolo di radiazione orizzontale (α) e della resistenza di radiazione in funzione della lunghezza.

Si può vedere che il guadagno della «long wire» comincia ad essere migliore quando la sua lunghezza è pari a molte lunghezze d'onda.

Per gli 80 metri ad esempio il guadagno diventa di 3 dB superiore a quello del corrispondente dipolo a $\lambda/2$ quando $L \cong 4 \lambda$ cioè 320 metri circa; d'altra parte

con una simile lunghezza il guadagno sarebbe di 6 dB superiore al dipolo, sui 40 metri.

Una sua peculiarità è quella di avere, in ricezione, efficienza superiore a quella di antenne direttive con lo stesso guadagno teorico e questo per un certo effetto di «diversità di spazio» insito in questa antenna.

Il sistema di alimentazione non è molto pratico e consiste nell'impiegare una linea risonante aperta (con impedenza uguale a quella di radiazione) connessa ad una estremità. Fig. 20.

Se è previsto il funzionamento su una sola banda, questo sistema di per sè è sufficiente; se invece si vogliono sfruttare contemporaneamente più bande occorre interporre tra la linea ed il trasmettitore un opportuno accordatore del tipo di Fig. 21 che permetta di realizzare il miglior adattamento per ogni banda.

Se, per qualsiasi motivo, l'alimentazione dovesse essere fatta in punti diversi, c'è da aspettarsi una variazione del diagramma di radiazione orizzontale (ved. Fig. 22).

Se $L_1 = 40,5$ m ed $L_2 = 13,5$ m l'antenna darà buoni risultati su quasi tutte le bande dagli 80 ai 10 metri, usando un circuito di adattamento tipo serie.

ANTENNA A V

Combinando opportunamente due «long wire» si ottiene un'antenna a V del tipo di Fig. 23 con caratteristiche bidirezionali molto spinte.

L'andamento del guadagno ed il valore più opportuno da dare all'angolo β , in funzione della lunghezza dell'antenna sono riportati nel grafico di Fig. 24.

L'impedenza di ingresso è dell'ordine di qualche $k\Omega$, se i due lati dell'antenna sono corti (poche lun-

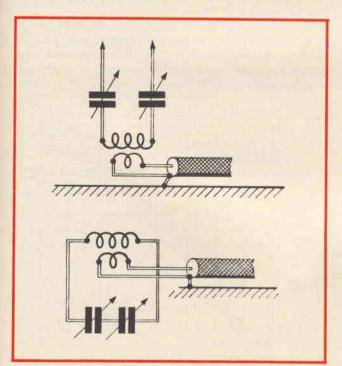


Fig. 21 - Accordatori d'antenna da usare per impieghi multibanda della «Long wire». In alto: circuito serie, in basso: circuito parallelo.

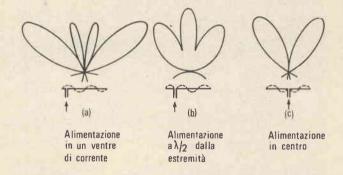


Fig. 22 - Variazione del diagramma d'irradiazione orizzontale in funzione del punto di alimentazione adottato.

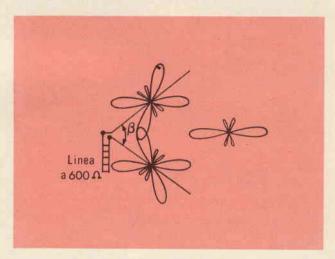


Fig. 23 - Antenna a «V».

ghezze d'onda) mentre si aggira sui 500 - 800 Ω se sono molto lunghi.

Per completezza in Fig. 25 sono riportati i diagrammi di radiazione orizzontale e verticale corrispondenti a due particolari casi.

Per quanto riguarda il tipo di alimentazione vale quanto detto per la «long wire» (usualmente viene impiegata una linea a $600~\Omega$ connessa al trasmettitore tramite un adattatore del tipo di quelli precedentemente menzionati).

La polarizzazione è orizzontale.

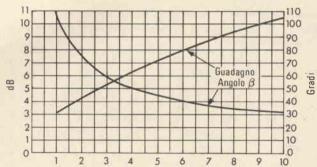


Fig. 24 - Andamento del guadagno e dell'angolo ottimo da adottare in funzione della lunghezza dell'antenna.

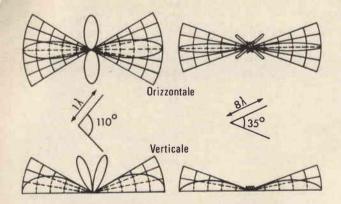


Fig. 25 - Diagrammi d'irradiazione orizzontale e verticale per due casi particolari.

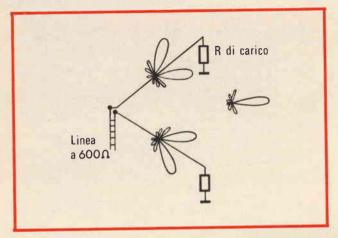


Fig. 26 - Antenna a «V» terminata.

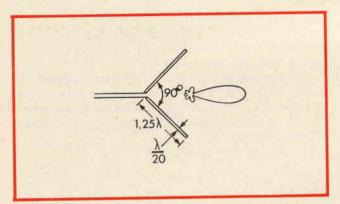


Fig. 27 - Unidirezionalità di un'antenna a «V» senza terminazioni alle estremità.

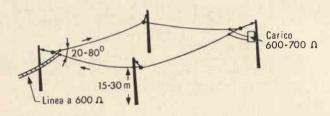


Fig. 28 - Antenna rombica.

ANTENNA A V TERMINATA

Se i due rami dell'antenna sopra descritta sono ter minati sulla loro impedenza caratteristica i fili porteranno solamente le onde viaggianti in un senso, attenuando fortemente quelle in direzione opposta; questo fa si che l'antenna diventi unidirezionale con un lobo molto stretto (Fig. 26).

Il guadagno è superiore a quello della V normale di circa 3 dB e l'alimentazione è la solita.

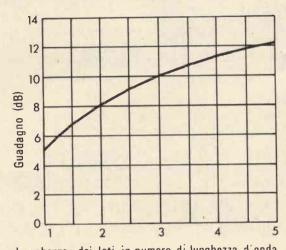
Le due resistenze di terminazione devono essere in grado di dissipare 1/3 - 1/2 della potenza con la quale viene alimentata l'antenna.

Un effetto unidirezionale può anche essere raggiunto senza terminazioni, usando conduttori di un certo spessore.

Ad esempio, un'antenna a V consistente in due conduttori lunghi 1,25 λ con un diametro di 1/20 λ e con un angolo $\beta=90^{\circ}$ ha un'ottima direttività del tipo di Fig. 27.

ROMBICA

Combinando due antenne a V si ottiene la «rombica» (Fig. 28) la quale può essere unidirezionale o bidirezionale in dipendenza del fatto che sia o no terminata sulla propria impedenza caratteristica.


Il guadagno e la direttività sono molto spinti e l'unico inconveniente è quello di necessitare di un grande spazio a disposizione.

Per quanto riguarda la resistenza di carico e l'alimentazione, vale quanto detto per la «V terminata».

L'andamento del guadagno teorico, in funzione del la lunghezza dei lati (riferito al dipolo $\lambda/2$) è riportato nel grafico di Fig. 29.

Gli andamenti dei due angoli di radiazione per diverse lunghezze dei lati sono riportati in Fig. 30.

Se al posto della resistenza di carico si mette un isolatore, l'antenna diventerà bidirezionale con un guadagno leggermente inferiore.

Lunghezza dei lati in numero di lunghezza d'onda

Fig. 29 - Andamento teorico del guadagno di un'antenna rombica in funzione della lunghezza dei lati.

SEMIROMBICA VERTICALE (INVERTED V)

Questo tipo di antenna unidirezionale (Fig. 31) è indicato quando sia necessario avere una polarizzazione verticale; come conformazione e funzionamento non si discosta da quelle precedentemente descritte.

Alcuni dati indicativi sono riportati nella tabella 3.

Se il dimensionamento è subordinato all'altezza H del sostegno disponibile la lunghezza L ottima di lato, per una data frequenza di lavoro può essere ricavata con la seguente formula:

$$L = \frac{H^2 f}{223} + \frac{56}{f}$$

dove L ed H sono in metri mentre f è in MHz L'alimentazione è sbilanciata e l'impedenza di ingresso è dell'ordine dei $500 - 600 \Omega$.

DIPOLO A «V» VERTICALE

Volendo impiegare un dipolo a $\lambda/2$ per le bande dei 40 od 80 metri uno dei problemi principali da risolvere è quello di trovare due punti di ancoraggio alla distanza necessaria (rilevante specialmente nel caso degli 80 metri).

Un metodo che permette di semplificare, se non risolvere il problema, è quello di disporre il dipolo conformemente alla Fig. 32.

La lunghezza L è ricavabile con la solita formula:

$$L = \frac{\lambda}{2} - 5\%$$

Le estremità dell'antenna, se necessario, possono anche essere ripiegate, perché essendo il valore della corrente massimo nella parte centrale dell'antenna, decrescendo man mano verso le estremità; quest'ultime avranno poco peso sul comportamento globale dell'an-

90 80	70 6	0 50	40	30		
	11	X	X	1		20
H	1/	$\times \times$	Piano vertical	e \	1	
11/	1X	1		1	1	
17/7	42	# T	1	1-1-	3)	10
HAZ	X	*	X	+-	7	
11/2				+		
0 0	1 0.2	03 0	4 0.5	0.6 0.7	0.8 (0.9 1.0
90	60	30	2	0		
Th	47		ano	1 1	11	H10
14/	/X/) or	izzontale	++	1	
		NA O			3)	1.0
	0 2	2 0	2λ	06	08	1-0 0
THY.	T	1	-			
	XX	XX	1		ntensità di ci elativa	ampo 10
90	60	30	2	0		

Fig. 30 - Lobi di irradiazione orizzontali e verticali di una antenna rombica per diverse lunghezze (numero di lunghezze d'onda) dei lati.

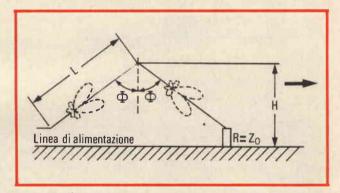


Fig. 31 - Antenna semirombica verticale.

TABELLA 3						
Lunghezza di lato L/λ	Altezza dell'apice H/λ	Guadagno approssimativo in dB rispetto al dipolo λ/2				
1	0,87	1,9				
2	1,244	3,7				
3	1,57	4,9				
4	1,85	5,9				
5	2,04	6,5				
6	2,26	7,1				
7	2,40	7,6				
8	2,73	8,1				

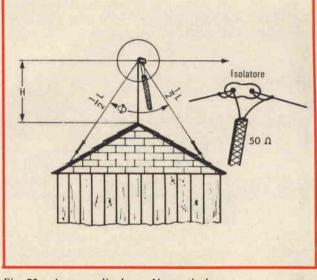


Fig. 32 - Antenna dipolo a «V» verticale.

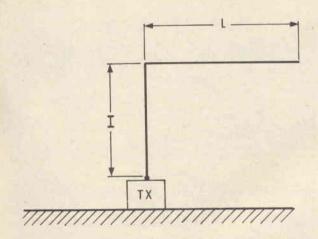


Fig. 33 - Antenna a «L» rovesciata.

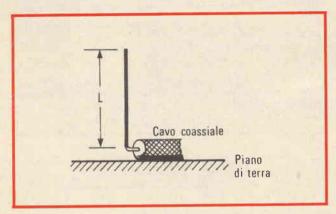


Fig. 34 - Antenna a stilo verticale.

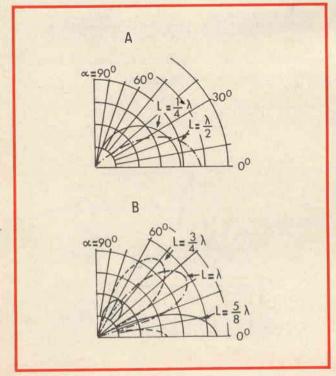


Fig. 35 - Andamento dell'angolo di radiazione verticale in funzione della lunghezza dello stilo.

tenna (resta inteso che la lunghezza totale L deve rispettare le formule generali per la risonanza).

L'impedenza è molto bassa quando l'apice H è inferiore a $\lambda/4$; ad ogni modo con un cavo coassiale da 50 Ω il ROS è normalmente inferiore a 2:1.

L'angolo \emptyset assume normalmente valori uguali o superiori a 90°; la sua riduzione comporta un abbassamento del valore dell'impedenza.

Questa antenna si comporta meglio del dipolo orizzontale a $\lambda/2$ avendo valori dell'angolo di radiazione verticale minori; il guadagno è pressoché identico.

L ROVESCIATA

Volendo impiegare un'antenna verticale per gli 80 metri (ad esempio) ci si trova di fronte alla difficoltà di realizzarla, a causa delle dimensioni proibitive; dovrebbe essere infatti alta 20 metri, se si desidera un funzionamento in $\lambda/4$ e addirittura 40 metri se invece deve funzionare in $\lambda/2$.

Un accorgimento per rendere l'altezza elettrica dell'antenna superiore a quella fisica è quello di Fig. 33.

In questo modo il rendimento è superiore a quello di un'antenna verticale, fisicamente alta uguale, portata a risonare sulla banda voluta tramite una bobina alla base per il fatto che la corrente che scorre nel tratto verticale è nettamente superiore nel primo caso. Ne consegue che la resistenza di radiazione è maggiore.

L'antenna può avere una lunghezza totale (H+L) uguale a $\lambda/4$ se l'uscita del trasmettitore è a bassa impedenza; pari a $\lambda/2$ se invece l'impedenza è alta.

I diagrammi di irradiazione verticale ed orizzontale non sono ben definiti e definibili essendo risultanti dalle irradiazioni parziali che competono al tratto verticale ed a quello orizzontale; sono inoltre funzione del rapporto H/L.

La connessione al TX avviene normalmente per mezzo di un semplice filo. Il guadagno è inferiore a quello del dipolo a causa delle perdite di irradiazione insite nel semplice sistema di alimentazione.

La polarizzazione è prevalentemente verticale.

STILO VERTICALE

E' una delle antenne più semplici e versatili che esistano, largamente impiegata dalle VHF alle UHF (Fig. 34). Le sue prestazioni dipendono molto dalla bontà e dal tipo di piano di terra a cui è riferita. Questo problema è forse più sentito nel caso di installazioni fisse, perché nel caso di impieghi mobili (specialmente autoveicoli) la massa stessa della macchina è un buon riferimento.

L'andamento dell'angolo di irradiazione verticale in funzione della lunghezza dell'antenna (sempre in numero di lunghezze d'onda) è riportato in Fig. 35 A e B dalla quale si può dedurre che la lunghezza dell'antenna non deve essere scelta a caso, ma in funzione del particolare tipo di impiego che si desidera.

Nel campo delle VHF-UHF dove, nella maggioranza dei casi i collegamenti avvengono per onda diretta, conviene usare uno stilo lungo 5/8 λ, perché in questo caso l'angolo di radiazione verticale è prossimo a 0°; la potenza irradiata è cioè concentrata sul piano orizzontale che è quello che interessa.

Sulle decametriche, per collegamenti su lunghe distanze per onda riflessa, dove gli angoli incidenti sono molto bassi, la condizione ottima è per $L=\lambda/2$. In pratica viene usato $L=\lambda/4$ condizione alla quale corrisponde un angolo leggermente superiore ma, nel contempo, una resistenza di radiazione più vicina ai 50 Ω semplificando quindi il problema dell'alimentazione.

Se i collegamenti debbono essere su corta distanza, sempre per riflessione, è da preferire una lunghezza pari a 0.75λ .

L'andamento della resistenza di radiazione, in funzione della lunghezza dell'antenna deve essere tenuto nel dovuto conto; andamento che è funzione del piano di terra e che teoricamente, per piano di terra infinito assume un andamento del tipo di Fig. 36.

La polarizzazione è ovviamente verticale ed il guadagno è di circa 3,5 dB rispetto all'isotropico.

Per quanto riguarda l'alimentazione viene normalmente impiegato cavo coassiale a 50 Ω , salvo per casi in cui L = 0,3 - 0,4 λ dove è più conveniente impiegare cavo da 75 Ω .

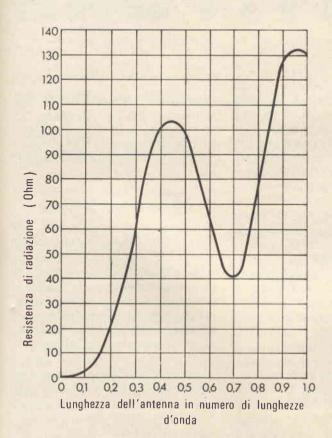


Fig. 36 - Resistenza di radiazione in funzione della lunghezza dello stilo.

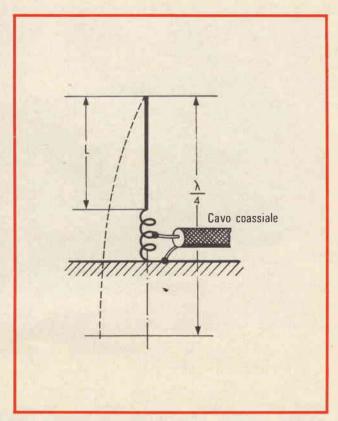
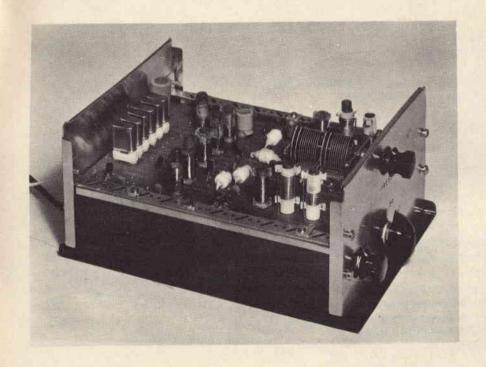


Fig. 37 - Stilo caricato alla base.

STILO CARICATO


Desiderando impiegare una stilo a frequenze molto basse, sorge il problema delle dimensioni che cominciano ad essere proibitive, o quasi. Si può ovviare all'inconveniente usandone una più corta caricandola però alla base con una induttanza in modo da compensare la reattanza capacitiva presente nell'antenna quando $L < \lambda/4$ (in altre parole, si porta la stilo a risonare sulla frequenza voluta (Fig. 37).

L'efficienza di questo tipo di antenna è d'altra parte piuttosto bassa per i seguenti motivi:

- 1) quanto più corta è l'antenna rispetto alla lunghezza d'onda, tanto maggiore dovrà essere il valore della induttanza da inserire alla base per ottenere la risonanza e pertanto maggiore sarà la parte della potenza di alimentazione che verrà assorbita dall'induttanza e non irradiata.
- 2) La corrente alla base è tanto minore quanto più è corta l'antenna e quindi tanto minore è la potenza irradiata.
- 3) La resistenza di radiazione è estremamente bassa, dell'ordine dei $10~\Omega$ necessitando quindi di opportuni accorgimenti al fine di limitare le perdite quando la si alimenta con cavo coassiale da $50~\Omega$ (sfruttando ad esempio la bobina stessa come trasformatore d'impedenza).

Ciò nonostante, ottimizzando i vari parametri tra di loro, si possono ottenere discreti risultati e guadagni dell'ordine dei 2 dB riferiti all'isotropico.

(continua)

di Giuseppe CONTARDI

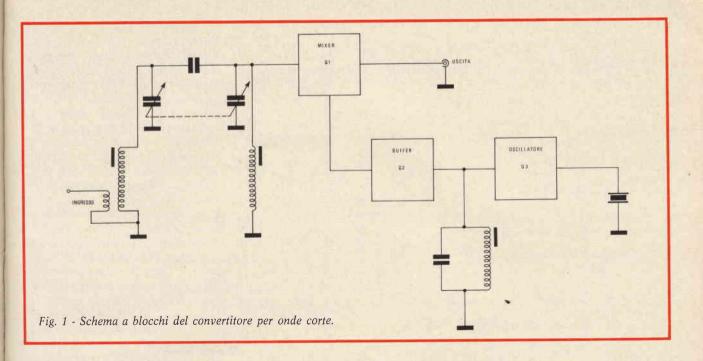
CONVERTITORE

olti lettori hanno chiesto alla redazione lo schema di un convertitore per ricevere le onde corte con una comune radio a onde medie. Solo ora siamo in grado di pubblicarlo in quanto, in fase di progettazione, si sono dovute superare diverse difficoltà.

In un primo tempo si era realizzato un convertitore con transistori normali, ma vi erano alcuni inconvenienti quali: l'intermodulazione che si verificava in presenza di segnali forti, e il circuito elettrico che risultava complicato e critico in quanto erano necessari partitori di tensione per la polarizzazione di base, e da questa polarizzazione dipendeva, naturalmente, il punto di lavoro dei transistori; succedeva infatti che l'apparecchio con un transistore funzionava perfettamente, mentre sostituendolo con un altro dello stesso tipo non funzionava più e si metteva ad auto-oscillare. Per ovviare a questi inconvenienti si è preferito usare i FET che, pur essendo semiconduttori, possono essere paragonati alle valvole in quanto hanno una impedenza di ingresso molto elevata e non necessitano di critici partitori per la polarizzazione del gate.

Oltre al convertitore, in questo articolo si trova: un 'S' meter, un B.F.O. e un rivelatore a rapporto per la ricezione della S.S.B.

Tutte le caratteristiche tecniche sono nella tabella 1; in figura 1 vi è lo schema a blocchi. Il circuito a blocchi è di una semplicità estrema, le complicazioni vengono quando si devono eseguire le commutazioni di banda. Ecco ora una rapida spiegazione del motivo per cui, con un solo cristallo, si ottengono due diverse bande di ricezione.


Consideriamo un oscillatore a cristallo, ad esempio da 20400 kHz che immette il segnale generato in un convertitore; si hanno ora due

possibilità di conversioni: una per somma e una per differenza. Se, ad esempio, la frequenza di uscita del convertitore è 600 kHz, le due bande di ricezione sono rispettivamente:

$$20400 + 600 = 21000$$

 $20400 - 600 = 19800$

E' interessante notare che le due bande ricevute sono tra loro invertite, infatti per la conversione per somma alla frequenza più bassa in ricezione, corrisponde la frequenza più bassa all'uscita; invece, nel caso di conversione per differenza, alla frequenza più bassa in ingresso corrisponde la frequenza più alta in uscita.

La selezione tra la banda più bassa e quella più alta viene effettuata da un condensatore variabile C1-3. Dopo questa spiegazione passiamo ad esaminare il circuito elettrico del convertitore illustrato in figura 2.

PER ONDE CORTE

LO SCHEMA ELETTRICO

All'ingresso si trova la prima sezione del commutatore che provvede a inserire i segnali captati dalla antenna nei vari link di antenna a seconda delle frequenze che si vogliono ricevere.

Le bobine lavorano rispettiva-

L1 = 10 metri L2 = 15-20 metri L3 = 40-80 metri

Il segnale, mediante CM2 è immesso sullo statore della prima sezione del condensatore variabile, indicato nello schema come C1. Questa sezione provvede a fare una prima sintonizzazione del segnale che si desidera ricevere; questo segnale, oramai separato da tutti quelli indesiderati, viene inviato, tramite C2, in un altro circuito accordato la cui frequenza di risonanza è determinata da C3 e dalle bobine L4, L5, L6 che sono a loro volta

TABELLA 1 - CARATTERISTICHE TECNICHE

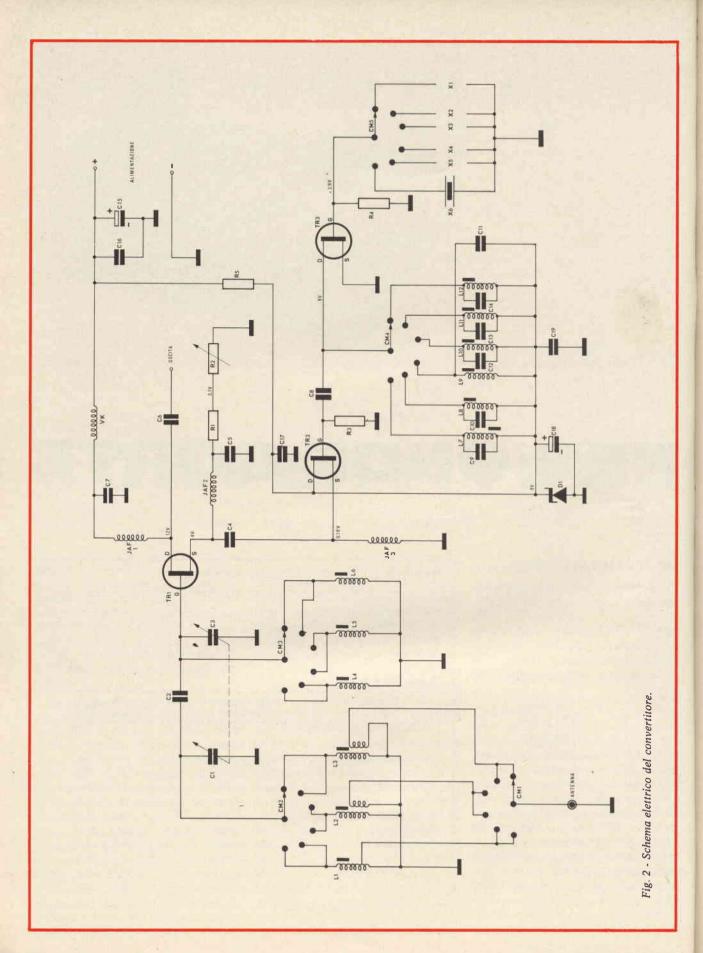
Alimentazione:

Assorbimento:

12 V con negativo a massa
15 - 20 mA
Sensibilità:

2 μV
Ingresso:

Sbilanciato impedenza 50 - 75 Ω
Uscita:


adatta per ogni autoradio
Bande ricevute:

dodici

Cristallo inserito	Posizione variabile	Banda ricevuta MHz
2900 kHz	più chiuso	1,8 - 2,3
»	più aperto	3,5 - 4
6400 kHz	più chiuso	5,3 - 5,8
»	più aperto	7 - 7,5
13400 kHz	più chiuso	12,3 - 12,8
»	più aperto	14 - 14,5
20400 kHz	più chiuso	19,3 - 19,8
»	più aperto	21 - 21,5
27400 kHz	più chiuso	25,9 - 26,8
»	più aperto	28 - 28,9
28200 kHz	più chiuso	26,7 - 27,6
»	più aperto	28,8 - 29,7

Valore della frequenza di uscita:

600 - 1100 kHz per prime 8 bande 600 - 1500 kHz per le ultime 4 bande

selezionate da CM3; la frequenza di risonanza di questo circuito è naturalmente uguale a quella del circuito di ingresso e in questo modo si ottiene un elevato grado di selettività che permette di separare i forti segnali molto vicini.

Il segnale che si vuole ricevere viene iniettato sul gate di TR1 che funge da convertitore. Sul source di questo FET entra la tensione a radio frequenza che determina la banda di ricezione: questa frequenza è ottenuta mediante un oscillatore a cristallo, di cui parleremo in seguito. Sul drain di TR1 troviamo il segnale risultante dal battimento tra la frequenza della stazione ricevuta e la frequenza generata dall'oscillatore locale. Dalla figura 3 si ricava il punto di lavoro di TR1. Come TR1 può essere impiegato un FET 2N3819 oppure un TIS34 prodotti dalla Texas e reperibili presso tutte le sedi della GBC.

Il partitore presente sul source determina il punto di lavoro di TR1. Anche per l'oscillatore locale sono stati impiegati i FET e più precisamente TR3 come oscillatore e TR2 come separatore o buffer, L' oscillatore, oltre che da TR3, è costituito da 6 quarzi e 6 bobine commutabili rispettivamente con CM5 e CM4. L'oscillatore che abbiamo scelto è il Pierce che presenta una tensione di uscita molto elevata e una stabilità di frequenza veramente buona. Sempre al fine di avere una stabilizzazione di frequenza migliore si è inserito il FET TR2 che funge da separatore tra l'oscillatore e il convertitore. Proprio in questo caso l'alta impedenza dei FET dimostra il suo pregio, infatti TR2 carica pochissimo l'oscillatore, permettendo nello stesso tempo un notevole carico all'uscita.

Tutta la parte dell'oscillatore locale viene alimentata mediante una tensione stabilizzata a 9 V dal diodo zener D1. Raccomandiamo di non togliere per nessun motivo i condensatori a carta posti sull'alimentazione in quanto essi evitano l'insorgere di auto-oscillazioni.

A questo circuito di base, e che funziona già di per sé perfettamente, è possibile apportare diverse migliorie. Al fine di aumentare la sensibilità è possibile inserire all'ingresso un altro FET siglato nella

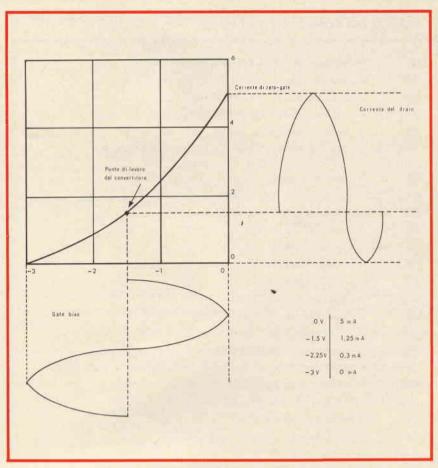


Fig. 3 - Curve caratteristiche del convertitore a FET.

TABELLA 2 - DATI DELLE BOBINE

L1	=	9	spire,	filo	argentato	Ø	8/10	su	supporto	tipo	GBC
		0	0/0691	.00. p	resa antenn	a 1	spira d	lal la	ato freddo		

L2 = 17 spire, filo argentato Ø 8/10 su supporto tipo GBC OO/0691-00, avvolgimento di antenna 4 spire, filo smaltato Ø 6/10 avvolte sul lato freddo del precedente avvolgimento

L3 = 28 spire, filo smaltato Ø 6/10 su supporto tipo GBC OO/0673-00, avvolgimento di antenna 8 spire, filo smaltato Ø 6/10 avvolte sul lato freddo del precedente avvolgimento

L4-L5-L6 = rispettivamente uguali a L1 - L2 - L3 ma senza l'avvolgimento di antenna

L7 = 10 spire L10 = 20 spire L8 = 12 spire L11 = 28 spire L9 = 13 spire L12 = 37 spire

Tutte queste bobine sono avvolte su supporti tipo GBC OO/0673-00 con filo di rame smaltato da Ø 6/10

Tutti i supporti sono dotati di nuclei tipo GBC OO/0624-04.

Dimensioni supporti

Tipo OO/0673-00 = Ø 9, lunghezza totale supporto: 27, lunghezza utile: 19

Tipo OO/0691-00 = Ø 10, lunghezza totale supporto: 34, lunghezza utile: 19 passo della spirale 1

ELENCO DEI COMPONENTI DI FIG. 2

```
= resistore da 1 k\Omega 1/4 W - 5%
D 1
           potenziometro semifisso da 10 kΩ
R2
            resistore da 120 kΩ 1/4 W - 5%
R3
R4
            resistore da 100 kΩ 1/4 W - 5%
R5
            resistore da 82 Ω 1/4 W - 5%
            condensatore variabile doppio da 300+300 pF
C1-3
             (GBC OO/0172-00)
         = condensatore da 47 pF
C
C4
         = condensatore da
                              5 nF
            condensatore da 10 nF
C5
           condensatore da 100 pF
C6
            condensatore da 50 nF
C7
         = condensatore da 39 pF
CR
           condensatore da 22 pF
C9
C10
            condensatore da 22 pF
         = condensatore da 39 pF
C11
         = condensatore da 39 pF
C12
         = condensatore da 120 pF
C13
C14
            condensatore da 270 pF
            condensatore elettrolitico da 500 µF
C15
            condensatore da 50 nF
C16
C17
            condensatore da 50 nF
          = condensatore elettrolitico da 220 µF
C18
C19
          = condensatore da 10 nF
            commutatore 5 vie 6 posizioni (modificare il tipo
CM
             GBC GN/0800-00)
         = impedenze per AF da 3 mH (GBC OO/0498-03)
         = bobina d'arresto (GBC OO/0502-20)
Vk
TR 1-2-3
         = transistori FET 2N3819 oppure TIS34
          = diodo 1N757
D1
          = quarzo da 2900 kHz
X1
X2
          = quarzo da 6400 kHz
          = quarzo da 13400 kHz
X3
          = quarzo da 20400 kHz
X4
          = quarzo da 27400 kHz
X5
          = quarzo da 28200 kHz
Tutti i quarzi sono in contenitore miniatura oscillazione serie.
```

ELENCO DEI COMPONENTI DI FIG. 4

C1-C3 = vedere elenco di fig. 2
C2 = vedere elenco di fig. 2
C20 = condensatore da 10 nF
C21 = condensatore da 50 nF
R6 = resistore da 390 Ω 1/4 W - 5%
Jaf 4 = impedenza per AF da 3 mH
TR4 = transistore FET 2N3819 oppure TIS34

fig. 4 TR4. Con questa modifica si deve curare moltissimo le schermature in quanto è possibile che insorgano delle auto-oscillazioni tra le bobine L1, L2, L3, e L4, L5, L6; per evitare questo inconveniente si possono schermare molto bene le bobine oppure, se nonostante questo accorgimento l'auto-oscillazione persistesse, si può mettere sul gate di TR4 una resistenza di valore compreso tra $10 e 100 \Omega$. Lo stadio smetterà di oscillare e tutto il convertitore tornerà a funzionare perfettamente.

L'altra modifica che si può apportare al convertitore consiste nell'aggiungere un FET all'uscita, vedi

figura 5.

Raccomandiamo di fare questa modifica nel caso che la radio a onde medie accoppiata al convertitore non brilli in sensibilità; infatti, con questo circuito, il segnale in uscita viene amplificato di modo che il segnale più ampio supplisce alla poca sensibilità del ricevitore.

Nel prototipo, sul retro dell'apparecchio, vi è un commutatore a slitta che permette il rapido inserimento di questo circuito. Il potenziometro R8 posto sul source di TR5 regola il guadagno dello stadio e di conseguenza l'ampiezza del segnale in uscita.

LA REALIZZAZIONE PRATICA

L'apparecchio è montato in un contenitore, tutti i componenti trovano posto su un circuito stampato che è fissato mediante delle squadrette ai longheroni della scatola.

Alla fig. 6 è visibile il disegno del circuito stampato il quale, al fine di rendere minime le fughe di RF, va realizzato in vetroresina. Tutti i componenti del convertitore trovano posto su di esso, ad eccezione del commutatore di banda e del potenziometro R8. I condensatori ceramici delle bobine dell' oscillatore sono saldati direttamente ai terminali delle bobine sotto il circuito stampato.

La disposizione dei componenti sul circuito stampato è visibile in fig. 7. Raccomandiamo di non modificare il circuito stampato perché questa disposizione dei componenti è la migliore. Nel cablare il commutatore di banda ci si accerti di non commettere errori in quanto, a causa del grande numero di commutazioni, è facile invertire un filo con un altro. Per i quarzi sono stati utilizzati gli appositi zoccoli poiché, in fase di messa a punto, può essere necessario sfilarli per verificare l'oscillazione.

L'ultima raccomandazione è quella di effettuare le saldature con un saldatore di limitata potenza, 30 W al massimo, onde evitare di scollare le piste del circuito stampato o di 'arrostire' i componenti.

Tutti i componenti sono reperibili presso la GBC. Gli unici componenti che il lettore dovrà farsi sono tutte le bobine e il commutatore di banda.

Per rendere più facile la costruzione delle bobine abbiamo radunato tutti i dati nella tabella 2. Ad avvenuto avvolgimento delle bobine si devono fissare le spire con del collante apposito; ottimo è il 'Frequenzol' che è stato studiato apposta per questo uso.

Il commutatore di banda si realizza modificando il tipo GN/0800-00 nel modo seguente:

- Si smonta completamente il commutatore, dopo di che, da un foglio di alluminio di 1,5 mm di spessore, si ricava il perno centrale del commutatore, che deve essere lungo circa 180 mm e lo si sostituisce a quello preesistente.
- Mediante dei distanziatori esagonali si ricompone il commutatore come da figura 8.

Con ciò il commutatore è pronto. I cristalli purtroppo non sono reperibili in commercio, occorre quindi farli costruire. Noi abbiamo interpellato la ditta Giacomelli, via Pecchio, 20 - Milano alla quale anche voi potrete rivolgervi.

LA TARATURA

Per eseguire la taratura indichiamo due modi:

- il primo con l'oscillatore modulato, il voltmetro elettronico, il counter
- il secondo con l'oscillatore modulato e il tester.

Dopo aver controllato che il circuito non presenti errori di cablaggio si misurino le tensioni sui vari

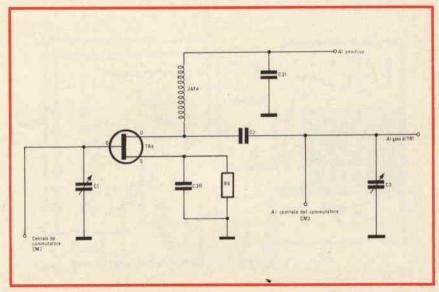


Fig. 4 - Schema elettrico di una possibile modifica da apportare allo stadio d'ingresso.

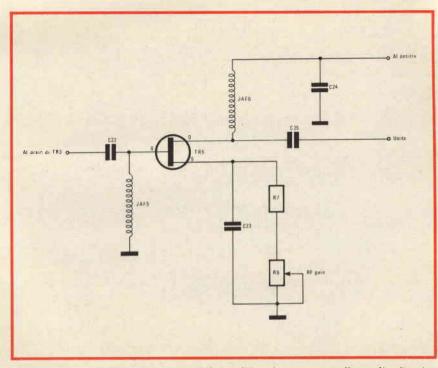


Fig. 5 - Schema elettrico di una possibile modifica da apportare allo stadio d'uscita.

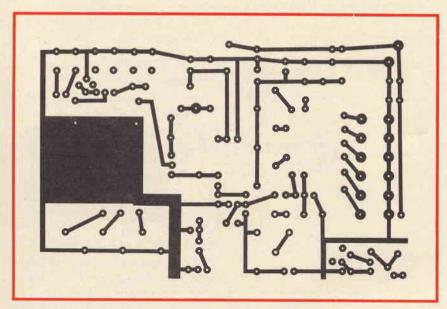


Fig. 6 - Circuito stampato del convertitore visto dal lato rame. Scala 1:2.

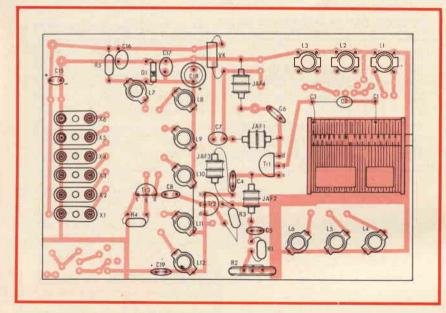


Fig. 7 - Circuito stampato del convertitore visto dal lato componenti.

elettrodi dei FET; tutte queste misure sono state effettuate sulla banda degli 80 metri con l'oscillatore locale già accordato; infatti, se l'oscillatore non oscilla sul gate di TR3, non troverete alcuna tensione. Se la tensione di source di TR1 non è di 4 V la si porti a quel valore mediante R2. Se tutto è regolare, rotare i nuclei L7 - L11 in modo da ottenere l'oscillazione dei rispettivi quarzi. Portare i nuclei delle varie bobine fino ad avere le seguenti tensioni a RF, sul source di TR1.

Banda	Tensione			
80	1,6			
40	2,1			
20	3,3			
15	1,6			
10A	1,8			
10B	2,1			

Questa misura va fatta con voltmetro elettronico e puntale demodulatore a RF. Conclusa questa regolazione, si accerti con il counter che i quarzi risuonino in fondamentale e non in frequenze armoniche.

L'ultima taratura è quella delle bobine L1 - L2 - L3 ed L4 - L5 -L6.

Per accordare queste bobine è sufficiente utilizzare un oscillatore modulato il più preciso possibile. Vanno regolate fino ad ottenere in uscita il segnale più forte possibile. Naturalmente, per quest'ultima taratura, è necessario collegare l'u-

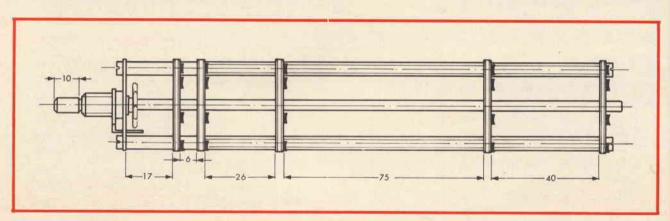


Fig. 8 - Modifiche du apportare al commutatore di banda.

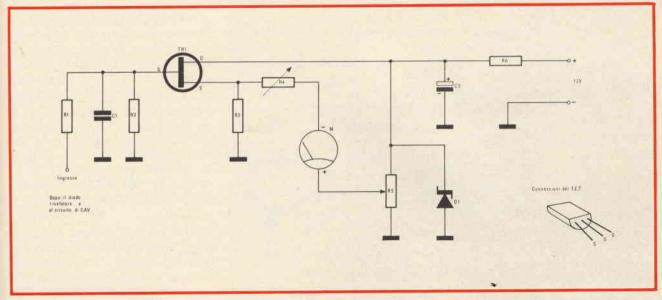


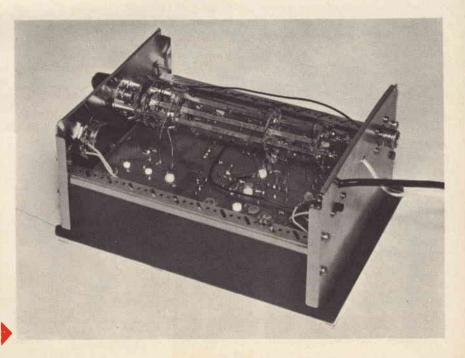
Fig. 9 - Schema elettrico dell'S meter.

scita del convertitore all'ingresso di un autoradio.

Raccomandiamo ancora una volta le bande di accordo delle varie bobine:

> L1 - L4 = 10 m L2 - L5 = 15-20 mL3 - L6 = 40-80 m

Descriviamo ora l'altro metodo di accordo.


Inserire il tester in posizione mA x 50 sull'alimentazione di TR3 e regolare i nuclei delle bobine fino ad avere il minimo assorbimento di corrente che sarà di circa 5 mA; in queste condizioni l'oscillatore è accordato. Infatti, sfilando il quarzo in quel momento inserito, l'assorbimento sale a circa 10 mA.

Dopo di che, con il commutatore in posizione 80 m. e il tester in posizione V, regolare R2 fino ad avere al punto di giunzione tra R1 ed R2, 2,9 - 3 V circa. Con ciò l'oscillatore e il convertitore sono accordati. Si tratta ora di accordare le bobine d'ingresso come indicato nel caso precedente.

E così il convertitore è tarato; consigliamo di realizzare dapprima la parte di cui alla fig. 2 e di apportare le modifiche dopo aver accertato il funzionamento di questa parte.

Vista del commutatore di banda che deve essere ricavato modificando il tipo GBC GN/0800-00.

ELENCO DEI COMPONENTI DI FIG. 9 = resistore da 1 M Ω R1 = resistore da 1 M Ω R₂ R3 = resistore da 2.2 k Ω R4 potenziometro semifisso da 47 kΩ = potenziometro semifisso da 10 k Ω **R5** = resistore da 330 Ω R6 C1 = condensatore da 47 nF = condensatore elettrolitico da 220 µF C2 = diodo 1N751 D1 TRI = transistore FET 2N3819 oppure TIS34 M = microamperometro da 500 μA con la scala tarata in punti «S»

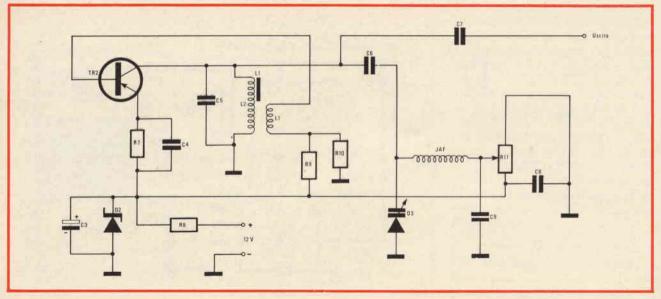


Fig. 10 - Schema elettrico del BFO.

ELENC	DEI COMPONENTI DI FIG. 10
R7	= resistore da 1 k Ω
R8	= resistore da 82 Ω
R9	= resistore da 10 k Ω
R10	= resistore da 47 $k\Omega$
R11	= potenziometro lineare da 10 k Ω
C3	= condensatore elettrolitico da 100 µF
C4	= condensatore da 10 nF
C5	= condensatore da 330 pF
C6	= condensatore da 33 pF
C7	= condensatore da 5 pF
C8	= condensatore da 10 nF
C9	= condensatore da 10 nF
Jaf	= impedenza per AF da 3 mH
L1	= media frequenza 468 kHz (GBC OO/0189-02)
TR2	= transistore BC225
D2	= diodo zener 1NZ57
D3	= diodo varicap BA102

L'IMPIEGO

Come usare questo convertitore è semplicissimo: è sufficiente scegliere, mediante CM, la banda desiderata e mediante il variabile selezionare il segmento desiderato; poi, per la ricerca delle emittenti, ruotare lentamente il variabile della radio ad onde medie.

Per avere più soddisfazione da questo convertitore si possono apportare due modifiche all'autoradio, e precisamente aggiungergli un 'S' meter ed un rivelatore a rapporto per la ricezione della SSB.

Alla figura 9 vi è lo schema della 'S' meter. Il circuito del nostro 'S' meter è costituito praticamente da un voltmetro a FET, che presenta

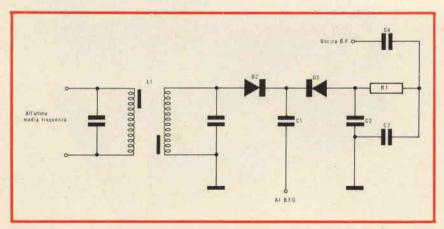


Fig. 11 - Schema elettrico del rivelatore a rapporto per la ricezione della SSB.

ELENCO DEI COMPONENTI DI FIG. 11

R1 = resistore da 47 kΩ 1/4 W

C1 = condensatore da 10 pF

C2 = condensatore da 470 pF

C3 = condensatore da 470 pF

C4 = condensatore da 10 nF

D2 = diodo 1N67A

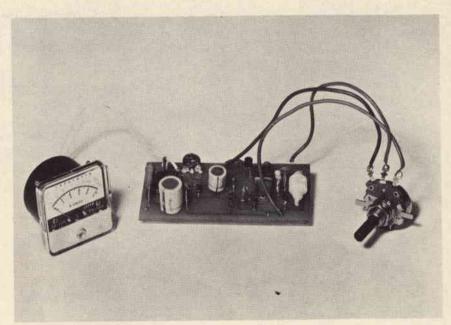
D3 = diodo 1N67A

il vantaggio di disporre di un'elevata sensibilità e di non caricare, per la sua notevole resistenza d' ingresso, il circuito rivelatore a cui è collegato.

Per ottenere una perfetta stabilità, l'alimentazione dell'S meter è stabilizzata a 5 V da un diodo zener. L'unica messa a punto del circuito consiste nell'azzerare mediante R5 lo strumento e regolare la sensibilità mediante R4, dopo averlo collegato al diodo rivelatore dell'autoradio.

Questo circuito sarà anche utile per perfezionare la messa a punto del convertitore; infatti, con esso si può trovare il miglior accordo delle bobine d'ingresso.

Per finire questo articolo, descriviamo un semplice BFO (fig. 10) con relativo rivelatore a rapporto (fig. 11).


Il BFO è principalmente composto da una bobina (L1) e da un transistore (TR2). La bobina è una normalissima media frequenza simile a quelle usate nelle radio a transistori; a seconda della bobina usata va determinato C5, nel nostro caso è risultato essere di 330 pF.

La frequenza generata dal BFO varia da 400 kHz a 700 kHz, quindi potrete regolarla sia su 455 kHz che su 476 kHz, rotando semplicemente il nucleo della bobina. Il diodo varicap D3 sposta la frequenza di oscillazione di più o meno di 6 kHz circa e serve quindi per regolare la nota prodotta da BFO.

Per avere la necessaria stabilità in frequenza si è provveduto a stabilizzare la tensione con un diodo zener, D2 da 9,1 V.

La RF generata dal BFO viene immessa mediante C7 nel rivelatore a rapporto (vedi figura 11); in questo caso C7 vale 10 pF e C1 viene eliminato dal circuito.

Il rivelatore a rapporto è essenzialmente un miscelatore a diodi che provvede a miscelare il segnale di MF con quello prodotto dal BFO. Questo circuito deve essere cablato il più vicino possibile all'ultima media frequenza dell'autoradio come L1 al fine di evitare di caricarla eccessivamente. L'uscita della BF

Prototipo a realizzazione ultimata del circuito BFO e S meter.

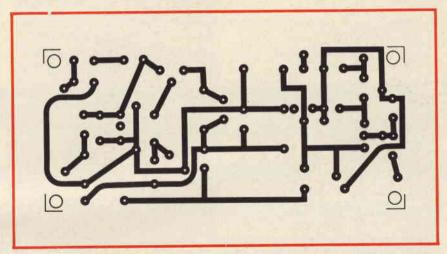


Fig. 12 - Circuito stampato del BFO e dell'S meter visto dal lato rame. Il disegno è al naturale.

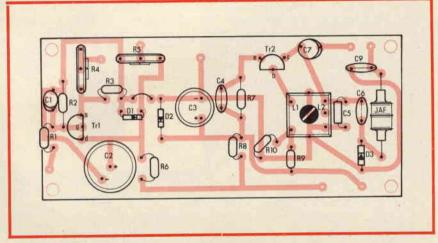
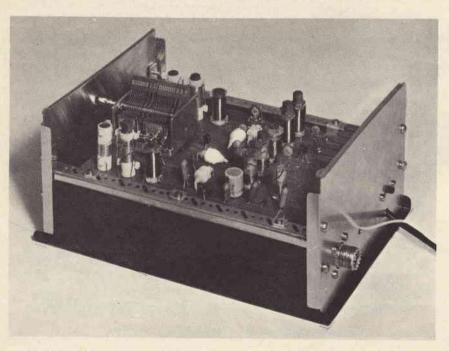



Fig. 13 - Circuito stampato del BFO e dell'S meter visto dal lato componenti.

Altra vista interna del convertitore per onde corte a realizzazione ultimata,

va, tramite un commutatore, al potenziometro di volume; detto commutatore servirà quindi per commutare l'AM e la SSB e per togliere in AM l'alimentazione al BFO.

La taratura del BFO consiste nel porre R11 al centro della corsa e di regolare il nucleo della bobina fin quando l'oscillatore generi un segnale di frequenza uguale a quello della MF della radio usata.

Il BFO e l'S meter trovano posto su un apposito circuito stampato, vedi le figg. 12-13, anche questo circuito va realizzato in vetroresina.

Per la ricezione delle stazioni in SSB è sufficiente, con il potenziometro R11 al centro della sua corsa, sintonizzare la stazione, e ruotarlo in senso orario o anti-orario, a seconda che l'emissione sia in LSB o USB fin che si riceve chiaramente la stazione desiderata.

Provvedetevi in tempo per difendervi dal vento e dalla polvere

Chiudete ermeticamente porte e finestre con guarnizioni in acciaio inox della ULTRAERMETICA MILANO - Telef. 817.980-810.974

Dieci anni fa i tecnici della Ultraermetica misero a punto una brillante soluzione per ottenere la più assoluta ermeticità nelle chiusure di porte e di finestre di qualsiasi tipo. Questa applicazione che oggi è entrata in innumerevoli case e uffici, viene eseguita con rigorosa perfezione e con tempi di lavorazione relativamente brevi.

La lamina d'acciaio inox, che i tecnici della Ultraermetica applicano lungo il perimetro e nella parte centrale di porte e finestre, risolve brillantemente il dannoso problema degli spifferi e delle fessure cioè quelle piccole ma fastidiose anomalie insite nella maggior parte dei serramenti.

L'eliminazione di questi difetti,

Nel disegno, in sezione, la soluzione messa a punto dalla "ULTRAERMETICA"

oltre a isolare veramente l'habitat dai rumori molesti della strada, impedisce le infiltrazioni di polvere dannose alle persone, alle tappezzerie ed ai mobili, contribuisce notevolmente alla funzione del condizionatore d'aria sia esso di tipo fisso o trasferibile.

Per maggiori spiegazioni inerenti il problema interpellate la ULTRA-ERMETICA. Con i suoi tecnici specializzati e la decennale esperienza vi potrà garantire le migliori prestazioni. Rappresentanze in tutta Italia.

ULTRAERMETICA MILANO

Via Bari 26, tel. 817.980 / 810.974 c.a.p. 20143

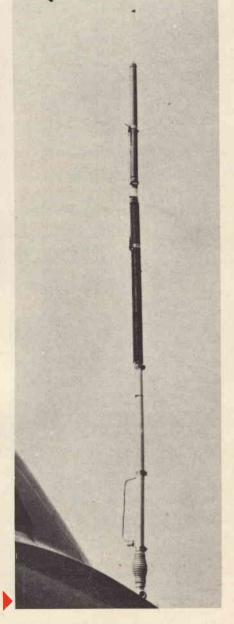
ANTENNA MOBILE A RAPIDA VARIAZIONE DI GAMMA

a cura di Lucio BIANCOLI

utti i sistemi di antenna rappresentano invariabilmente un compromesso: tra i più interessanti, è opportuno citare quello che consente di «comprimere» un elemento in quarto di onda, in grado di funzionare su 3 MHz, con dimensioni tali da consentirne l'installazione sul retro di un'autovettura.

Una semplice occhiata al talloncino del prezzo applicato alle antenne di questo tipo nella versione commerciale è sufficiente a costituire un forte incentivo per procedere alla realizzazione dell'elemento in forma privata ed autonoma.

Occorre però aggiungere che il prezzo, sebbene sia uno dei fattori più importanti, può non costituire l'unica considerazione utile. Ad esempio, l'Autore della nota originale sostiene di aver avuto la necessità di disporre di un'antenna efficace, ed a rapida variazione di gamma, per poter operare sulle frequenze di 7.305, 4.590 e 3.311 kHz.


L'antenna illustrata nella foto di figura 1 costituisce il risultato della iniziativa. Il primo prototipo è stato tenuto in uso soltanto temporaneamente, in quanto era stato realizzato adottando come supporto una canna da pesca di bambù. Lungo l'avvolgimento erano state praticate delle prese, che — dopo molti tentativi ed errori — avevano permesso di effettuare l'adattamento. Tuttavia, questa antenna di uso temporaneo aveva funzionato talmente bene che era stata lasciata in funzione sulla vettura finché que-

Quando un'antenna viene impiegata con un rice-trasmettitore di tipo mobile, si presentano tutti gli inevitabili problemi relativi alle dimensioni dell'elemento radiante, soprattutto in rapporto alla portata, all'orientamento, alla potenza di uscita, ed alla necessaria sensibilità. Buona parte di queste difficoltà possono essere però ridotte adottando la geniale soluzione che presentiamo, traendone lo spunto da quanto è stato proposto recentemente da «73 Magazi-

st'ultima non era stata mandata in demolizione.

Se l'Autore avesse rivestito la canna da pesca di resina epossidica, probabilmente l'elemento sarebbe ancora in uso attualmente. Lo stilo era stato avvolto con filo flessibile (ossia a trecciola) del diametro di 0,9 mm, isolato in plastica.

Fig. 1 - Aspetto dell'antenna installata sul retro di un'autovettura, così come è stata realizzata dall'Autore. La bobina è avvolta in due sezioni, ma il rendimento sarebbe assolutamente il medesimo se essa consistesse in un unico avvolgimento. La barra di cortocircuito visibile verso l'estremità superiore è quella che predispone la sintonia sulla gamma dei quaranta metri.

Una volta decretata la demolizione del prototipo in canna di bambù, l'Autore decise di effettuare una realizzazione più elegante e solida, riferendosi ai numerosi manuali disponibili a tale riguardo. Egli lesse e studiò, ed alla fine progettò una antenna dall'aspetto assai gradevole, munita di una bobina di grosso filo al centro.

Una volta collegata quest'antenna all'impianto, la sezione di ricezione funzionava assai bene. C'era soltanto un piccolo problema: nessuno riusciva a ricevere i segnali irradiati.

Era piuttosto difficile stabilire la causa del fenomeno, mentre era inevitabile giungere alla conclusione che il segnale da trasmettere subiva una eccessiva attenuazione. La antenna a carico centrale non era perciò in grado di fornire in uscita, e quindi di irradiare nello spazio, tutto il segnale che la vecchia antenna rudimentale era in grado invece di irradiare.

Per questo motivo, il costruttore decise di ricostruire una nuova «canna da pesca» di migliore aspetto e più robusta, ma in grado di funzionare.

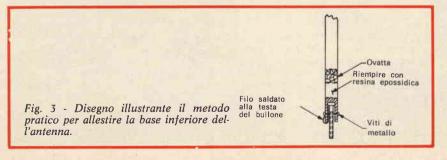
L'elemento attualmente in uso è provvisto di due bobine, ciascuna delle quali presenta una lunghezza di 30 cm. L'unico motivo per il quale è stato necessario impiegare due bobine consiste nel fatto che, allentando un morsetto, la sezione superiore dell'antenna può essere

facilmente asportata. Inoltre, è necessario disporre di una bobina molto lunga per poter ottenere il regolare funzionamento della gamma dei 3.311 kHz, ed i relativi supporti possono essere disponibili soltanto con lunghezze inferiori.

Indipendentemente dal fatto che le suddette bobine siano avvolte in un unico tratto oppure in due tratti, il funzionamento non subisce alterazioni, sia per quanto riguarda la sensibilità, sia per quanto riguarda la sintonia dell'antenna.

Infine, è possibile usare anche una bobina di minore lunghezza se si desidera coprire soltanto le frequenze più elevate: per la gamma compresa tra 40 e 10 m, è necessaria una bobina avente la lunghezza di circa 35,5 cm, nel qual caso è necessario aumentare la lunghezza della base, portandola a 152,4 cm. Per una gamma compresa tra 75 e 10 m, sono necessari in totale circa 91.5 cm.

La pratica realizzativa dell'antenna, e le relative operazioni di sintonia, sono assai facili. Non sono necessari attrezzi speciali, né speciali apparecchiature di misura.


La sezione di base dell'antenna è un pezzo di tubo di alluminio avente la lunghezza di 76 cm. Il bullone, munito di filettatura adatta per un sistema di supporto a molla di una certa robustezza, viene fissato ed ancorato alla base mediante resina epossidica. Tre viti autofilettanti con la punta limata in modo tale che ciascuna di esse tocchi a stento il bullone si rivelano utili in due diversi modi. Uno di essi consiste nel fatto che esse contribuiscono a centrare il bullone, e l'altro nel fatto che si evita al tappo in resina epossidica di girare all'interno del tubo dopo essersi solidificato, in quanto la treccia di rame viene saldata al bullone e portata fuori attraverso un piccolo foro praticato nel tubo.

La suddetta calza metallica viene successivamente fissata all'antenna mediante un capocorda, che rinforza la base e mantiene lo zoccolo di supporto.

Il disegno di figura 2 illustra la struttura verticale dell'antenna, mettendo in evidenza in A i diversi settori in serie, ed in B la struttura dell'elemento superiore.

Fig. 2 - Particolari realizzativi dell'antenna: in «A» sono precisate tutte le lunghezze in centimetri, nonché i valori fondamentali delle frequenze di sintonia. La sezione «B» della figura riproduce invece in particolare l'aspetto del settore superiore, mettendo in evidenza la parte del perno che serve per l'innesto dell'elemento irradiante superiore, e per il raccordo alla sezione inferiore.

Il disegno di figura 3 chiarisce invece il particolare della base inferiore alla quale viene fissato il bullone che agisce da supporto nei confronti dell'intero elemento. La ovatta indicata dalla freccia provvede a mantenere la resina epossidica nella zona in cui essa deve solidificarsi. Sotto questo aspetto, occorre procedere con notevole perizia e prudenza, in quanto il bullone deve risultare perfettamente diritto nell'istante in cui il materiale liquido viene versato all'interno del tubo.

Un modo soddisfacente agli effetti pratici col quale è possibile avvolgere le bobine, consiste nell'eseguire l'avvolgimento su di un supporto di legno filettato. Se si dispone di un tornio, il perno di legno deve essere filettato in modo da distanziare tra loro le spire con lo spazio corrispondente al diametro dello stesso conduttore. Diversamente, è possibile avvolgere un altro filo di egual diametro tra le spire, asportandolo al termine dello avvolgimento. Sotto questo aspetto, occorre precisare che le spire non devono essere mai perfettamente affiancate, a meno che non si faccia uso di un conduttore isolato in plastica. In questo caso, l'isolamento in plastica permette di ottenere la necessaria spaziatura.

Il perno di legno, della lunghezza di almeno 150 mm, deve essere tornito, levigato e ridotto di diametro finché si adatta perfettamente al diametro interno del tubo di alluminio che costituisce la base. Infine, occorre praticare nella sommità del tubo una fessura di circa 25 mm. Ciò fatto, un morsetto potrà servire per mantenere al suo posto la bobina, e per costituire anche il terminale di ancoraggio per il conduttore.

Lo stilo dell'antenna può essere allestito impiegando qualsiasi tipo di conduttore: tuttavia, dal momento che è assai facile che l'estremità dell'elemento radiante subisca urti, torsioni, ecc., è consigliabile impiegare un'astina di ottone del diametro di circa 6 mm. A questa astina sarà bene saldare un conduttore, dopo di che si potrà praticare un foro del diametro di circa 15 mm all'estremità del perno di legno che costituisce il nucleo sul quale è av-

volta la bobina. Il filo e l'astina di ottone verranno in ultimo ancorati al perno di legno, impiegando ancora della resina epossidica.

Dopo aver avvolto la bobina, e dopo aver fissato l'estremità di ottone, coprire il tutto con un grosso strato di resina, in modo da assicurare la costanza della posizione delle spire.

Un altro metodo per eseguire lo avvolgimento consiste nell'impiegare un pezzo di tubo di plastica del diametro di circa 28 mm, o qualsiasi altro supporto, e nell'inserire questo manicotto al di sopra del perno di legno, che può essere in questo caso costituito da un comune manico di scopa, con l'aggiunta di uno strato di nastro adesivo.

Fissare le estremità del tubo di plastica al perno di legno, impiegando delle comuni viti mordenti. Il perno deve presentare una lunghezza sufficiente per penetrare almeno per 150 mm all'interno della base. La punta viene poi fissata nel modo precedentemente descritto.

Diversamente, il tubo di plastica può essere inserito temporaneamente sulla base, e fissato mediante strati di nastro adesivo applicati all'esterno. Successivamente, il supporto della bobina ed i 150 mm della base in legno vengono riempiti con la resina epossidica. La punta viene sistemata nella sua posizione, dopo di che si aspetta che la resina indurisca. Questo metodo risulta particolarmente utile per le bobine corte, adatte al funzionamento con lunghezze d'onda da 40 m in su.

Un pezzo di tubo di plastica della lunghezza di circa 92 mm può essere facilmente reperito presso un negozio di articoli sportivi, ad un prezzo assai ridotto. A tale scopo, è sufficiente chiedere una copertura in plastica disponibile in commercio per impedire che i manici delle mazze da golf si graffino quando vengono trasportate nell'astuccio. L'Autore dell'articolo originale ha provato ad usare bobine realizzate con tutti i sistemi descritti. L'impiego del legno è naturalmente risultato più facile, senza che venisse compromesso il funzionamento. In ogni caso, il conduttore deve sempre essere cementato, in modo da assumere una posizione stabile.

Una volta essiccate le bobine, e dopo che entrambe le estremità sono state collegate elettricamente alla base ed alla punta, l'intero dispositivo è pronto per subire le operazioni di sintonia.

Per ciascuna gamma di frequenze che deve essere coperta, è necessario disporre di un cursore. Ciascun cursore viene realizzato impiegando un morsetto ed un bullone di ottone da 6-32, provvisto di dado.

Per l'esecuzione, è necessario limare la testa del bullone in modo che diventi il più possibile piatta. Successivamente, si pratica un foro attraverso il morsetto e si inserisce il bullone dall'interno di questo ultimo, fissandolo con un dado. La testa del bullone verrà sfruttata per ottenere il contatto con l'estremità della bobina.

Adottando con buona approssimazione le misure indicate, è a questo punto necessario valutare con una certa precisione il punto nel quale deve essere praticata la presa nei confronti della frequenza sulla quale si desidera operare. Impie-

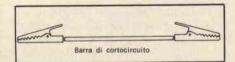


Fig. 4 - Aspetto di una delle barre di cortocircuito, che è necessario allestire per predisporre la frequenza di funzionamento dell'antenna sulle varie gamme.

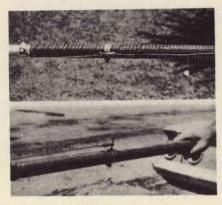


Fig. 5 - La foto illustra due particolari delle operazioni di sintonia. In alto è visibile il raccordo mobile che può essere spostato per la lunghezza dell'indotto; in basso è visibile invece il metodo di fissaggio mediante pinzetta a coccodrillo di una delle barre di cortocircuito.

gando una lima a taglio piuttosto grosso, eliminare la resina e qualsiasi altro strato isolante dal conduttore per circa 100 mm. Ciò fatto, la bobina si presenterà alla stessa stregua di una resistenza a filo da 100 W, munita di cursore.

In seguito, installare l'antenna sulla vettura, e mettere in funzione il ricevitore.

Iniziare con la sintonia su una delle frequenze più elevate; ad esempio, è conveniente sintonizzare innanzitutto il ricevitore sulla frequenza di 7.305 kHz. Successivamente, la sintonia viene predisposta nei confronti della frequenza di 4.590 kHz, ed infine sulla frequenza di 3.311 kHz.

Collegare a questo punto un conduttore alla parte superiore della sezione di base, avente una lunghezza sufficiente per raggiungere la zona superiore di contatto della bobina. Far scorrere questo conduttore avanti ed indietro al di sopra dell'intera superficie di contatto. Sarà possibile udire il rumore di fondo del ricevitore con variazioni di livello fino ad individuare la posizione che corrisponde al livello maggiore.

Se fosse impossibile trovare questo punto, ma se si nota che spostando l'estremità del conduttore in una direzione l'intensità di questo rumore aumenta, ciò sta probabilmente ad indicare l'opportunità di scoprire un maggior numero di spire della bobina.

Una volta trovato il punto in corrispondenza del quale il suono presenta il livello massimo, l'antenna è in grado di sopportare un carico, sebbene possa necessitare di un ulteriore perfezionamento della sintonia.

Agli effetti di quest'ultima, si può usare il collegamento di cortocircuito, costituito da un tratto di conduttore isolato munito di due pinzette a coccodrillo alle estremità, del tipo illustrato alla figura 4. La figura 5 illustra invece il metodo più pratico, consistente nell'impiego di due braccialetti del tipo usato per fissare le canne di gomma sui relativi raccordi filettati, facendo in modo che ciascun braccialetto sia munito di una vite fissata con dado, o meglio ancora saldata, alla quale è possibile ancorare la pin-

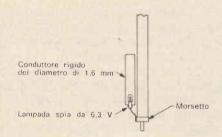


Fig. 6 - Metodo di applicazione dell'indicatore a lampada, che può essere installato nella parte inferiore dell'antenna.

zetta a coccodrillo del raccordo del cortocircuito di cui alla citata figura 4.

A questo punto, è possibile installare l'indicatore di uscita illustrato alla figura 6, consistente in una lampada spia di tipo comune. L'Autore ha lasciato questo dispositivo ad installazione permanente, nel modo visibile nella foto di figura 7. La disponibilità di questo mezzo di controllo permette di ottenere un'indicazione continua ed assai significativa della quantità di energia che viene irradiata, per non citare ciò che accade di notte quando improvvisamente sbuca una vettura dal retro, per cui il relativo pilota ha in tal modo la possibilità di vedere una luce tremolante nel hujo.

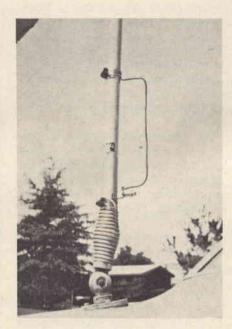


Fig. 7 - Foto illustrante il particolare della base inferiore dell'antenna, con la aggiunta dell'indicatore dell'energia irradiata, costituita dalla lampada spia di cui è detto nel testo.

Il dispositivo indicatore propria mente detto consiste in un'ansa di filo della lunghezza di circa 40 cm, di cui un lato viene fissato mediante nastro all'antenna in corrispondenza della base, mentre l'estremità opposta è in serie alla lampada spia, rispetto al lato esterno dell'ansa.

Se si desidera lasciare questo dispositivo permanentemente installato nel circuito, è possibile praticare una presa alla distanza di circa 20 cm dalla base, impiegando la stessa antenna per costituire uno dei lati del circuito facente capo alla lampada spia, come si osserva appunto alla figura 7.

Usando quest'ultima come dispositivo di indicazione, completare la sintonia fino ad ottenere l'effetto di carico desiderato. Ripetere quindi il procedimento intero di sintonizzazione dell'antenna per ciascuna delle frequenze inferiori. Alla fine, è possibile realizzare nella loro veste definitiva le diverse barre di cortocircuito del tipo illustrato alla figura 4, aventi la lunghezza opportuna. A tale scopo, l'impiego di astine di ottone munite alle estremità di pinzette a coccodrillo costituisce la soluzione ideale.

A costruzione ultimata, il passaggio da una gamma di frequenze all'altra avviene assai semplicemente eliminando o installando la barra di cortocircuito adatta. Se si desidera predisporre l'antenna in modo da ottenere il funzionamento su diverse frequenze prossime tra loro, è possibile praticare diverse prese intermedie, ad ogni spira oppure ogni due spire, ed impiegare brevi segmenti di conduttore flessibile muniti di pinze a coccodrillo, per cortocircuitarne tra loro alcune, fino ad ottenere la sintonia nel modo desiderato.

Questo tipo di antenna, almeno per quanto riguarda l'esperienza dell'Autore, ha dato per lungo tempo ottimi risultati. Inoltre, ogni qualvolta si è presentata la necessità di passare da una gamma all'altra, la relativa operazione ha potuto essere eseguita in meno di 30 secondi, senza compiere gesti affrettati, compreso il tempo necessario per uscire dalla vettura, e per tornare all'interno. Ogni volta l'antenna è stata riscontrata in perfette condizioni di risonanza.

d

p

d

L

p

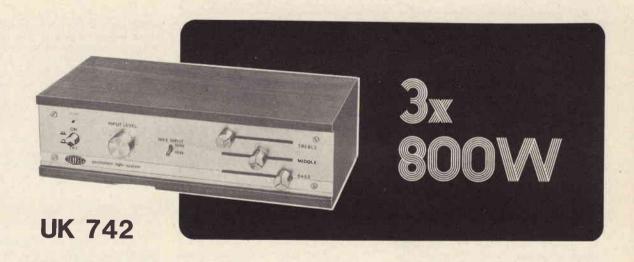
aı

aj l'a

31

L

ae ;a


0

eff

vi

lar

ret

GENERATORE DI LUCI PSICHEDELICHE

Questo apparecchio permette, in collegamento con un parco lampade disposte secondo il gusto dell'utilizzatore, l'azionamento di queste in modo intermittente, in dipendenza dall'andamento di un pezzo musicale diffuso da un impianto di amplificazione.

L'accensione e lo spegnimento delle lampade dipende sia dal volume sonoro in ogni istante che dal tono della musica. Infatti tre distinti canali collegati ciascuno ad un gruppo di lampade di 800 W massimi intervengono sia per i suoni bassi, per i medi e gli alti.

Una apposita regolazione di cui è dotato l'impianto permette di ottenere gli stessi effetti sia per un volume basso di diffusione, sia per un volume alto, indipendentemente dal ritmo di accensione delle lampade per il quale sono previsti altri comandi.

L'applicazione è possibile sia per amplificatori fino a 15 W di uscita che per amplificatori sino a 50 W di uscita. Un apposito comando permette di adattare l'apparecchio a queste due potenze massime.

La connessione col segnale audio avviene direttamente all'uscita di un amplifiatore già installato, ossia in parallelo on gli altoparlanti, sui quali il collegamento dell'UK 742 non provoca che effetti trascurabili. L'alimentazione avviene dalla rete elettrica normale. Le lampade si collegano a prese situate sul retro dell'apparecchio.

CARATTERISTICHE TECNICHE

Alimentazione:

dalla rete a 115 - 220 - 250 V 50 - 60 Hz Potenza massima delle lampade:

800 W per canale

Potenza dell'amplificatore

da collegare per l'azionamento: fino a 15 W oppure fino a 50 W

Diodi impiegati: 8 x BA148

SCR impiegati: 3 x TDAL223

Ponte raddrizzatore: 1 x W 005

Transistori impiegati:

1 x BC107 ed 1 x BC141

uanto abbia in comune una serie di lampi luminosi dipendenti dalle caratteristiche di una musica con le droghe psichedeliche o allucinogene, è meglio non tentare di verificare

Accompagnare la musica, specie quella moderna che sembra fatta apposta per indurre al movimento frenetico, con sensazioni visive che accompagnino e completino quelle acustiche, è un fatto che indubbiamente contribuisce a rendere più completa la soddisfazione che un

amatore può ricavare dall'ascolto.

L'UK 742 non è il primo apparecchio del genere che appare sul mercato ma esso è dotato, a differenza di altri, di alcuni accorgimenti destinati a rendere più sicura ed efficiente la prestazione.

L'uso appropriato di elementi allo stato solido contribuisce a rendere questo accessorio estremamente poco ingombrante e di sicuro affidamento. Il comando del sistema proviene dall'uscita di altoparlante dell'amplificatore di potenza. La musica può provenire sia da un'orchestra che da una registrazione od altro. L'alternarsi delle luci sapientemente disposte, dipenderà dal ritmo, dal livello sonoro e dal rapporto tra i toni alti, medi e bassi. Infatti si sono previsti tre canali distinti collegati a tre diversi gruppi di lampade, comandati da un pilotaggio selettivo che separa il suono in tre toni o bande di frequenza, uno per ciascun canale di cui è dotato lo apparecchio.

La disposizione, la colorazione e l'intensità delle luci è lasciata al gusto individuale dell'utilizzatore che dovrà preoccuparsi solo di stare entro alle caratteristiche elettriche previste per l'entrata e l'uscita, onde non sovraccaricare il circuito, oppure non ottenerne il massimo rendimento.

Nel corso della descrizione del circuito daremo tutte le indicazioni per ottenere le massime prestazioni dal punto di vista elettrico.

Se si seguiranno tutte le prescrizioni il risultato non potrà mancare, e sarà molto soddisfacente.

Dato il bassissimo consumo di potenza all'ingresso, praticamente nessuna influenza sarà esercitata dall'applicazione dell'UK 742 ad un amplificatore ad alta fedeltà.

Grazie all'amplificazione a cui è assoggettato il segnale d'ingresso, solo una minima quota parte del segnale acustico è prelevata per il pilotaggio degli interruttori allo stato solido di cui è dotato l'apparecchio, indipendentemente dal livello acustico della diffusione so-

DESCRIZIONE DEL CIRCUITO

Si noterà immediatamente che il circuito elettrico si può dividere in due sezioni distinte: la sezione di potenza e la sezione di pilotaggio.

La sezione di potenza comprende i diodi controllati, le prese per le lampade, le reattanze antidisturbo ed i fusi-

bili di protezione.

La sezione di pilotaggio comprende un alimentatore in corrente continua dalla rete, un amplificatore del segnale di ingresso, i filtri di bassa frequenza, ed i trasformatori che trasferiscono gli impulsi di azionamento all'ingresso di comando (gate) dei diodi controllati.

Cominceremo a descrivere la sezione

di potenza.

L'interruzione del circuito delle lampade è assicurata da dei particolari elementi a semiconduttore detti SCR (Silicon controlled rectifiers o diodi control-

lati).

Il funzionamento di questi elementi dal punto di vista interno è piuttosto complesso e non staremo a descriverlo in questa sede. Dal punto di vista esterno, i diodi controllati si comportano come dei relè dotati di contatto di autoaggancio disposti in serie ad un raddrizzatore. Infatti se un segnale in corrente continua di bassa potenza viene applicato all'elettrodo di controllo con una determinata polarità rispetto al conduttore comune, il diodo, da una interruzio-

ne quasi perfetta passa ad una condizione altrettanto perfetta. Tale stato di conduzione è stabile e viene mantenuto anche se si leva la tensione di controllo al gate. L'unico sistema possibile per interrompere la conduzione del diodo controllato è quello di ridurre la corrente nel circuito principale fino a valori prossimi allo zero, o meglio ancora di invertirne il segno. E' quanto avviene nel nostro circuito in quanto agli elettrodi di potenza di SCR1, SCR2, SCR3 è applicata la corrente alternata della rete che, come è noto, cambia di segno cinquanta volte ogni secondo. Quindi i diodi rimarranno in conduzione fino a che sarà presente il segnale di pilotaggio. Quando questo verrà a mancare, si interromperanno alla prima inversione di segno della corrente alternata di alimentazione. Siccome i diodi controllati, anche in stato di conduzione, sono pur sempre dei raddrizzatori, avremo attraverso di essi il passaggio di una corrente pulsante formata dalle sole semionde positive della corrente alternata.

Questa è una cosa da tener presente nel dimensionare le caratteristiche elettriche dell'impianto di illuminazione. Infatti la resa luminosa di una lampadina dipende dal valore efficace della tensione applicata ai suoi capi. Nel nostro caso la formula che lega la tensione di rete alla tensione applicata al carico è la seguen-

V carico = V rete : 2,22

Nel caso di una tensione di rete di 115 V avremo a disposizione per le lampade una tensione a vuoto di 51,8 V.

Nel caso di alimentazione a 220 V tale tensione sarà di 99 V.

Nel caso di alimentazione a 250 V tale tensione sarà di 112,6 V.

Da questi valori della tensione bisogna togliere ancora una quota dovuta alla caduta resistiva ed induttiva del circuito di potenza. Tale tensione di caduta varia ovviamente con la corrente assorbita, ed a pieno carico ha un valore di circa 1,8 V.

La potenza disponibile è di 800 W per canale. Le lampade che costituiscono il carico andranno quindi collegate in modo da rispettare le condizioni elettriche

suesposte.

Tenere presente che la tensione di alimentazione ai capi di una serie è data dalla somma delle tensioni di ogni singola lampada. Le lampade della serie devono essere tutte della medesima corrente. La corrente passante attraverso una lampada è data dalla potenza divisa per la tensione. La potenza complessiva sarà data dalle somme delle potenze individuali delle lampade.

Per l'alimentazione in parallelo avremo la medesima considerazione per quanto riguarda la potenza, ma la tensione di ogni singola lampada dovrà essere pari alla tensione disponibile, mentre la corrente assorbita può non essere

uguale per tutte le lampade.

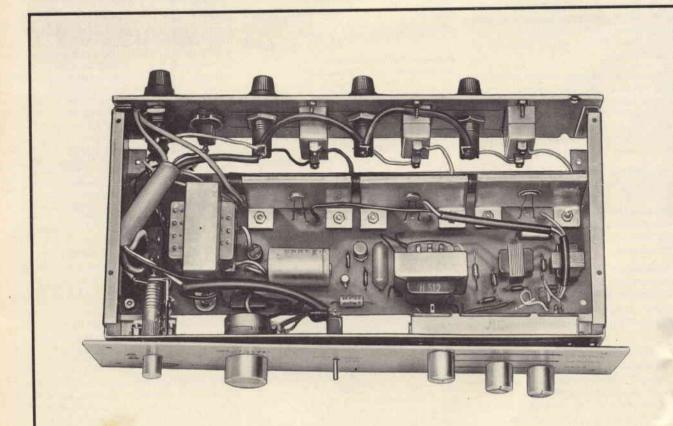


Fig. 1 - Vista interna dell'UK 742 a montaggio ultimato.

Bisogna fare molta attenzione a non superare la massima potenza ammessa, in quanto, data la scarsa capacità termica degli SCR, la bruciatura avviene con estrema rapidità. Se invece il carico è ben proporzionato la durata sarà presoché illimitata perché, al contrario delle valvole, i semiconduttori invecchiano in modo impercettibile.

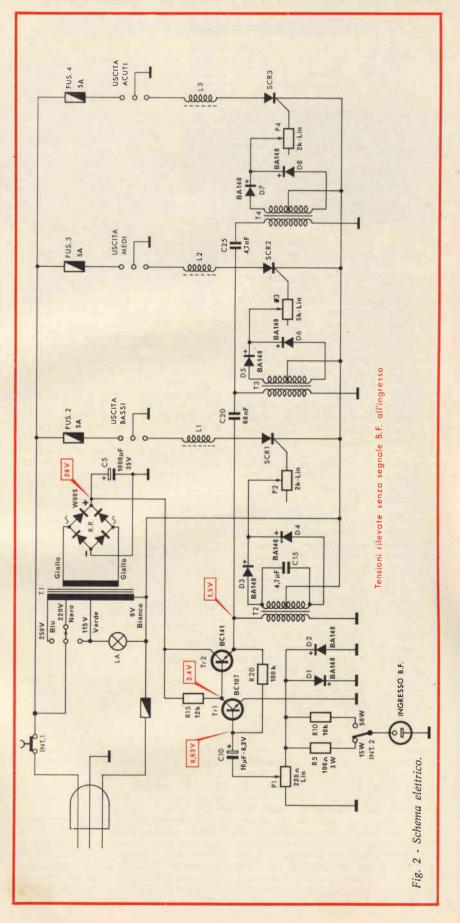
Nel circuito di potenza sono inserite anche le reattanze L1, L2 ed L3. Il compito di queste bobine è duplice. Smussando i picchi di tensione dovuti alle rapide interruzioni del circuito, proteggono i diodi controllati ed evitano la produzione di disturbi ad alta frequenza che andrebbero a disturbare gli apparecchi radio situati nelle vicinanze, favoriti anche dalla prevedibile estensione dei cavi che alimentano le lampade, che in questo caso funzionerebbero da antenna.

Per ridurre la possibilità di danneggiamento in caso di sovraccarico si sono disposti nella rete i fusibili FUS. 2, FUS. 3 e FUS. 4. Però, data l'estrema rapidità con cui avviene la bruciatura degli SCR, non conviene sottoporre troppo spesso al corto circuito le uscite di potenza; ad ogni modo i fusibili devono essere sostituiti in caso di bruciatura con elementi assolutamente uguali a quelli montati all'origine, senza procedere a sostituzioni di fortuna.

Le prese di uscita sono provviste di collegamento a terra secondo le norme antinfortunistiche. E' importantissimo che i collegamenti a terra siano efficienti, per evitare di dover rispondere in caso di incidenti.

Passiamo ora a descrivere il circuito di pilotaggio.

Si deve prelevare la tensione a bassa frequenza ai capi degli altoparlanti dell'amplificatore a cui l'UK 742 deve esse-


re accoppiato.

Il segnale deve entrare nella presa contrassegnata INGRESSO B.F. In dipendenza dalla potenza dell'impianto di amplificazione di cui si dispone, sono stati previsti due ingressi commutabili mediante il deviatore INT. 2. Uno dei due ingressi è valido per potenze di uscita fino a 15 W e l'altro per potenze fino a 50 W.

Non ha molta importanza l'impedenza di uscita dell'amplificatore in quanto lo UK 742 preleva una potenza trascurabile. Si può accoppiare con uscite che vanno dai 4 ai 16Ω .

Il segnale d'ingresso sviluppa una tensione a frequenza acustica ai capi di R5 oppure di R10 a seconda della posizione del deviatore.

Tale tensione è tosata dal gruppo formato dai diodi D1 e D2 e quindi non può superare il valore della tensione minima diretta dei suddetti diodi, corrispondente a poco più di 1 V. In questo modo si produce già all'ingresso una prima selezione dei picchi di tensione che saranno lasciati proseguire. A seconda della posizione del controllo di volume dell'amplificatore, una certa quota parte del segnale andrà a comandare gli SCR. In sostanza il rapporto tra tempo di accensione e quello di spegnimento aumenterà, a parità di regolazione degli

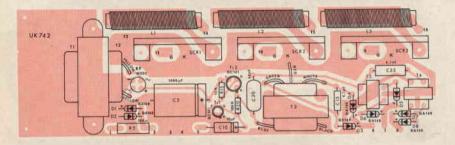


Fig. 3 - Serigrafia del circuito stampato.

altri comandi, all'aumentare del volume negli altoparlanti.

Un'altra importante funzione di questi diodi è quella di non permettere il sovraccarico del circuito di base del primo transistore, per il fatto che il segnale all'ingresso non ha un valore costante.

Il segnale proveniente da questo circuito d'ingresso, che conserverà la forma del segnale audio solo per valori inferiori alla tensione di tosatura, viene in parte prelevato dal cursore del potenziometro P1 ed, attraverso il condensatore C10 applicato alla base di TR1.

La funzione di P1 è analoga a quella di D1-D2, ma la parzializzazione del segnale avverrà in modo lineare, conservando la forma dell'onda. La regolazione di questo potenziometro varierà quindi la sensibilità complessiva dell'apparecchio in rapporto al volume acustico prelevato.

L'amplificatore composto da Tr1 ad emettitore comune e da Tr2 a collettore comune, è dotato di una controreazione fissa dovuta ad R20.

A causa dei dispositivi precedenti il segnale che troveremo sull'emettitore di Tr2 avrà una potenza media costante ed una tensione massima fissa. Questo segnale, prima di passare al pilotaggio dei diodi controllati deve essere diviso in tre gruppi tonali corrispondenti ai bassi, ai medi ed agli acuti. Ciascuno di questi tre gruppi tonali interesserà in prevalenza uno dei tre diodi controllati. La separazione dei toni avviene per mezzo dei tre filtri in cascata formati da T2-C15 che trasferisce al gate di SCR1 i toni bassi, da T3-C20 che applica al gate di SCR2 i toni medi. I toni alti saranno applicati ad SCR3 per mezzo dei due condensatori C20-C25 in serie e da T4. Come regola generale in un filtro, un condensatore in serie con il carico sposta verso l'alto i toni, mentre un condensatore in parallelo li sposta verso il

T2, T3 e T4 sono dei trasformatori che servono a portare il livello del segnale a valori adatti al pilotaggio degli SCR. Il segnale alternativo fornito dal secondario dei trasformatori viene raddrizzato nelle due semionde dai gruppi, rettificatori D3-D4, D5-D6 e D7-D8. Le tre tensioni positive dipendenti dal segnale d'ingresso così ottenute vengono parzializzate dalle resistenze variabili P2, P3, P4 e finalmente applicate al pilotaggio degli SCR. La funzione dei tre resistori variabili è quella di regolare il

livello a cui avviene l'accensione delle lampade di ciascun canale, permettendo una assoluta libertà di scelta nell'accentuazione o nella diminuzione del ritmo di accensione dei tre gruppi di lampade, ciascuno indipendentemente dagli altri.

Quest'ultima regolazione è la più importante per adattare l'impianto ai propri desideri visivi, mentre la regolazione di P1 permette di regolare a piacere il livello acustico degli altoparlanti senza influire con limitazioni sul ritmo di accensione desiderato per le lampade.

L'alimentazione avviene dalla rete, direttamente per le lampade dei tre canali e per mezzo di un alimentatore in corrente continua per la sezione di pilotag-

L'interruttore generale interrompe tutti e due i circuiti, mentre i tre circuiti di potenza ed il circuito di pilotaggio sono ciascuno protetti da un fusibile separato di adeguata potenza. La tensione di alimentazione in corrente alternata per il circuito di pilotaggio può essere scelta tra tre valori 115, 220 e 250 V commutabili con un cambiatensioni.

La frequenza di rete può essere di 50 o 60 Hz.

La tensione alternativa proveniente dal secondario del trasformatore di alimentazione T1 viene raddrizzata da un ponte di Graetz monofase R.P. Il condensatore C5 sottopone la tensione pulsante proveniente dal raddrizzatore ad un livellamento sufficiente data la bassa potenza richiesta dall'amplificatore.

MECCANICA

L'aspetto estetico generale dell'apparecchio che presentiamo è in linea con i criteri modernamente ammessi per le apparecchiature alta fedeltà. Il mobile di legno scuro di forte spessore, il quadro lineare, i comandi razionali effettuati da potenziometri a cursore, fanno in modo che l'UK 742 possa trovare la sua giusta sistemazione accanto alle altre apparecchiature da voi possedute, specie se appartengono alla linea Amtron per l'alta fedeltà.

All'interno del mobile in legno e da questo completamente sfilabile, c'è un robusto telaio in acciaio zincato che sostiene tutti i componenti ed il circuito stampato. L'attacco per il segnale è di tipo normalizzato e non presenta problemi nella connessione con gli elementi a monte.

La maggiore parte dei componenti è sistemata sul circuito stampato.

La necessità di alcuni collegamenti in cavo non presenta eccessivi problemi in quanto gli schemi e le istruzioni per il cablaggio sono molto chiari.

L'elegante pannello anteriore in alluminio anodizzato porta serigrafate tutte le indicazioni per i comandi dell'apparecchio. L'alimentazione avviene dalla rete elettrica per mezzo di cordone con presa di terra.

MONTAGGIO

Per facilitare il compito dell'esecutore pubblichiamo la fig. 3 dove appare la serigrafia del circuito stampato, sulla quale abbiamo sovrapposto l'esatta disposizione dei componenti.

Le fasi di montaggio sono chiaramente illustrate nell'opuscolo che la AMTRON allega in ogni suo kit.

COLLAUDO

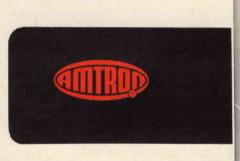
Siccome il circuito non necessita di regolazioni interne, se il montaggio è stato eseguito in maniera corretta, deve funzionare subito.

Per il collegamento alla rete assicurarsi prima che il cambiatensioni sia disposto sulla tensione a disposizione.

Collegare le lampade alle apposite spine. Per una prova non è necessario assorbire la massima potenza: sarà sufficiente collegare una normale lampadina da 60 W a ciascuna delle prese di uscita situate sul pannello posteriore. Dal momento che la tensione a disposizione non è più quella della rete, ma risulta inferiore, le normali lampade si accenderanno con luce attenuata.

Collegare all'ingresso audio l'uscita dell'amplificatore di cui si dispone, posizionando il deviatore delle potenze a seconda delle caratteristiche dell'amplificatore.

Mettere un disco sul giradischi oppure alimentare in un modo qualsiasi l'amplificatore.


Collegare l'UK 742 alla rete elettrica ed accendere l'interruttore principale.

Regolare il potenziometro «input level» a seconda del volume della riproduzione sonora.

Regolare i tre potenziometri a cursore «BASS» «MIDDLE» e «TREBLE» per avere l'intermittenza desiderata dell'accensione delle lampade.

In pratica la regolazione di questi potenziometri è influenzata dalla regolazione del livello d'ingresso che pertanto andrà messo a punto per primo, dopo aver stabilito sulla regolazione di volume dell'amplificatore, il livello sonoro al quale si yuole ottenere la riproduzione.

L'apparecchio è di impiego molto versatile e consente di ottenere una vasta gamma di effetti, che dipendono dal gusto individuale dell'utilizzatore al quale lasciamo il compito di verificare le prestazioni e di rendersi conto delle possibilità di utilizzo dell'UK 742.

scatole di montaggio

UK 942

TRASMETTITORE PER APRIPORTE

Questo kit è destinato ad operare in connessione con il kit UK 947 che costituisce il ricevitore - azionatore del complesso.

L'UK 942 è un vero e proprio trasmettitore, con frequenza stabilizzata a quarzo, stadio amplificatore in alta frequenza e modulatore.

La modulazione avviene in ampiezza, per mezzo di una sottoportante a frequenza acustica, che viene a sua volta interrotta a tratti. La modulazione serve a rendere insensibile il meccanismo dell'apriporta a segnali che non siano quelli emessi dal trasmettitore, come disturbi elettromagnetici, emissioni radio per telecomunicazione ecc.

È stata prevista una possibilità di variazione della frequenza della sottoportante acustica, in modo che non si possa interferire tra due porte molto vicine equipaggiate con lo stesso apparecchio. La frequenza di emissione è fissata in 26,960 MHz. L'emissione avviene senza che vi sia bisogno di antenna. Il contenitore è comodo, di piccole dimensioni e l'azionamento richiede la semplice pressione di un tasto.

È possibile comandare l'apertura di qualsiasi porta o cancello.

CARATTERISTICHE TECNICHE

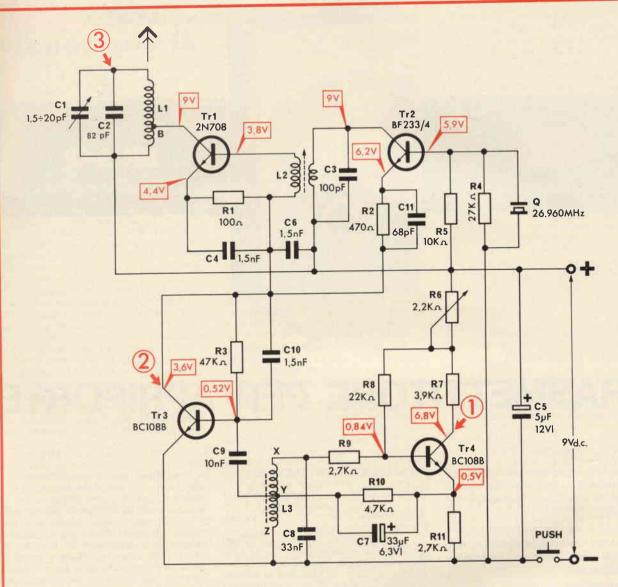
Alimentazione: mediante batteria autonoma a 9 V cc. Assorbimento totale: 15 mA

Frequenza della portante:

26,960 MHz stabilizzata a quarzo Frequenza di modulazione: 5,7 kHz (con possibilità di utilizzazione delle frequenze di 7,3 e 10 kHz con la sostituzione di un condensatore) Frequenza dei treni d'onda di modulazione: circa 20 Hz Transistori impiegati: 1-2N708 1-BF253/4 - 2-BC108B

Dimensioni. 94 x 58 x 34 Peso: 150 gr. ~

ossedere un box privato dove posteggiare la propria autovettura è una comodità non indifferente. L'unico neo di questa ottima soluzione per il parcheggio è che ogni volta che si voglia entrare nel proprio garage, bisogna scendere dalla macchina, aprire con la chiave, alzare la saracinesca. La soluzione che molti adottano è quella di lasciare il garage vuoto ed aperto durante la propria assenza, in modo da poter infilare direttamente la porta al rientro.


Abbiamo fatto l'esempio del box in quanto si tratta dell'applicazione più classica dell'apparecchio che presentiamo in questa scatola di montaggio, ma le applicazioni possono essere parecchie.

Il cancello di una villetta in genere resta chiuso a chiave solo durante le ore notturne, ma durante il giorno ha la sola funzione di delimitare la proprietà, e quindi resta chiuso con la sola maniglia. Lo stesso dicasi per il cancello esterno dello scantinato dei box. Ma al rientro od all'uscita, bisogna scendere dalla vettura anche per aprire questo cancello. Sappiamo che si tratta di piccoli fastidi, ma attualmente la gente ama la vita comoda, e molti, per evitarli optano per il garage comune, dove biso-gna pagare l'uomo addetto alla sorveglianza, lasciare aperta la macchina con le chiavi nel cruscotto a causa dei regolamenti antincendio.

La soluzione ideale per il ricovero notturno della vettura è senz'altro il box privato. Corredato però da un sistema di apertura automatica che si possa azionare senza dover scendere dalla macchina

Non si tratta naturalmente dell'unico sistema di apriporta esistente, ma è piuttosto comodo, ha una sufficiente por-tata e prevede una forma di codifica del segnale, tale da impedire che l'apertura avvenga per azione di una qualsiasi sorgente di segnali.

Naturalmente, oltre che della chiave, costituita dall'UK 942, bisognerà munirsi anche della serratura, che nel nostro caso è costituita dal ricevitore UK 947, che costituisce materia per un altro kit di montaggio, pur essendo stato progettato per funzionare in combinazione

TENSIONI MISURATE CON TESTER 20'000 A/V RIFERITE AL NEGATIVO.

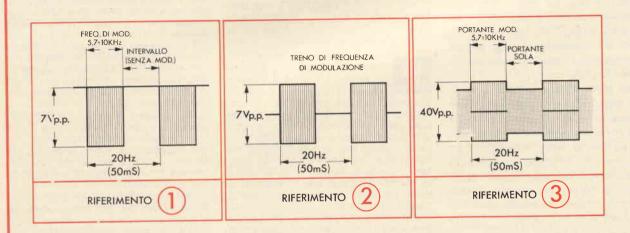


Fig. 1 - Schema elettrico e relative forme d'onda rilevabili ai punti 1 - 2 - 3.

con quello che ora descriveremo.

Nel caso comune di box adiacenti, per non aprire contemporaneamente i due vicini provvisti dello stesso dispositivo, è stata prevista la possibilità di usare tre frequenze diverse di modulazione della portante, in modo che i tre diversi sistemi non possano interagire. L'uso di tre frequenze è sufficiente in quanto la portata del trasmettitore non arriva ad azionare altre porte al di fuori di quelle adiacenti.

DESCRIZIONE DEL CIRCUITO

Si tratta in effetti di una minuscola radiotrasmittente a frequenza fissa, modulata in ampiezza da un segnale costituito da un'oscillazione a frequenza acustica, che viene a sua volta interrotta formando la classica figura di treni d'onda a frequenza subacustica. La modulazione così impostata costituisce il codice che in seguito permetterà al ricevitore di intervenire solo per l'azione della nostra trasmittente e non per altri segnali di disturbo che eventualmente dovesse captare.

Il trasmettitore vero e proprio è costituito dai due transistori Tr1 e Tr2. Il Tr2 funziona come oscillatore a quarzo a collettore accordato. La frequenza di lavoro è di 26,960 MHz.

Come è noto il quarzo costituisce un circuito risonante completo formato nel nostro caso da un'induttanza e da una capacità in parallelo, che dipendono dalle dimensioni e dal taglio del cristallo. Questo circuito risonante al quale il quarzo può essere assimilato, possiede

un fattore di merito
$$Q = (\frac{\omega L}{R})$$

elevatissimo, quindi una minima larghezza di banda. Da questo fatto e dalle caratteristiche di stabilità nel tempo ed alle variazioni di temperatura, proprie del particolare taglio usato per il cristallo, dipende la grandissima precisione nella frequenza che si può ricavare da un oscillatore quarzato. Si noterà che non esiste una rete di reazione che possa far funzionare l'oscillatore. A questo scopo sono sufficienti le piccolissime capacità esistenti tra gli elettrodi del transistore.

In teoria, per un quarzo di buona qualità, e per il funzionamento in fondamentale, il circuito accordato sul collettore sarebbe superfluo, ma esso serve prima di tutto come elemento del trasformatore di accoppiamento con lo stadio successivo, ed in secondo luogo a fornire al circuito una maggiore facilità ad intrattenere l'oscillazione. L'importanza dell'accoppiamento interstadio a trasformatore si ravvisa nel fatto che questo è il sistema più economico e di maggior rendimento che si possa usare per adattare l'impedenza di uscita dell'oscillatore a quella d'entrata dello stadio amplificatore. La necessità di uno stadio amplificatore di radiofrequenza deriva dal fatto che non è opportuno sovraccaricare lo stadio oscillatore, con grande beneficio per la sua stabilità e

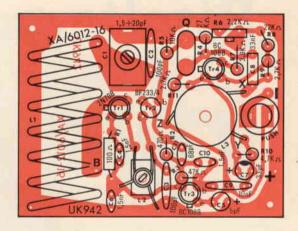


Fig. 2 - Serigrafia del circuito stampato.

precisione, e dal fatto che abbiamo bisogno di una potenza relativamente elevata in uscita, non disponendo il trasmettitore di un'antenna atta ad irradiare nelle più favorevoli condizioni. Questo per ovvie ragioni d'ingombro, in quanto il trasmettitore deve occupare un minimo spazio per essere tascabile e di facile manovra.

L'amplificatore di alta frequenza viene fatto funzionare in classe A quindi con un certo consumo di corrente a vuoto. Nel nostro caso questo non ha importanza in quanto il trasmettitore non deve funzionare in continuità ma

solo per brevi periodi.

L'accoppiamento tra l'oscillatore ad alta frequenza e lo stadio amplificatore di antenna avviene per mezzo del trasformatore accordato formato da L2 (primario e secondario) e da C3. Il ritocco della sintonia di questo circuito avviene mediante la manovra del nucleo magnetico filettato avvitato nel supporto della bobina. Un perfetto accordo di questo circuito è importante in quanto, se esso non è in perfetta sintonia, svolge la funzione di bloccare l'oscillazione anzichè di favorirla.

Il circuito oscillante di antenna è formato dalla bobina L1 con presa per l'adattamento di impedenza (in quanto è consigliabile tenere alto il fattore di merito di questo circuito per restringere la banda di emissione) e dai condensatori C2 fisso e C1 semifisso. Vedremo in sede di taratura finale lo scopo di quest'ultimo condensatore.

C4 e C6 costituiscono la massa fittizia valida solo per la frequenza di emissione, che perciò non è costretta a percorrere il dispositivo di modulazione formato da Tr3 e componenti annessi.

MODULAZIONE

Osservando lo schema di fig. 1 si vedrà che gli emettitori di Tr1 e di Tr2 non sono direttamente collegati a massa, sia pure attraverso una rete di stabilizzazione per la corrente continua. Il percorso del collegamento di ambedue gli emettitori verso massa passa attraverso il transistore Tr3 che costituisce una resistenza variabile modulata dal segnale di bassa frequenza della forma che abbiamo descritto in precedenza.

Questo permette di variare il punto di lavoro dell'oscillatore e dell'amplificatore, quindi, grazie alla non linearità della caratteristica, anche l'ampiezza dell'onda di atta frequenza che risulta all'uscita.

Infatti se la caratteristica dei semiconduttori fosse perfettamente lineare con questo sistema non si farebbe altro che variare il valore della componente in corrente continua, lasciando inalterata l'ampiezza dell'oscillazione.

La modulazione di bassa frequenza avviene mediante un particolare oscillatore. Tale oscillatore, pur essendo del normale tipo a circuito accordato con reazione induttiva, (tipo Hartley), possiede un dispositivo che provoca il periodico bloccaggio dell'oscillazione. Tale bloccaggio è ottenuto mediante il condensatore C7. Durante il transitorio di carica del condensatore, il transistore Tr4 oscilla normalmente ad una frequenza che può essere scelta fra tre a disposizione, cioè di 10, 7,3, o 5,7 kHz. Come ottenere queste frequenze ne parleremo in seguito. Una volta però che il condensatore C7 ha raggiunto un certo livello di carica, la corrente che passa attraverso di lui durante il transitorio di carica, non è più sufficiente a fornire il tasso di reazione necessario per il mantenimento dell'oscillazione, e questa si arresta. Il condensatore inizia a scaricarsi allora attraverso le resistenze R10 + R11. Ad un certo punto il livello di scarica raggiunge un punto di equilibrio, oltre al quale il complesso ricomincia ad oscillare, ed il ciclo riprende.

Variando la tensione di base, ossia il punto di funzionamento di Tr4, si può variare entro certi limiti la frequenza di interruzione dell'oscillazione di modulazione, mediante il trimmer R6.

Questa variazione consente di rispecchiare la medesima frequenza del filtro del ricevitore risonante a circa 20 Hz.

La resistenza R10 limita la reazione necessaria al transistore Tr4 in modo che questo possa funzionare appena al di sotto dell'oscillazione. L'oscillazione è invece indotta e mantenuta, come abbiamo visto, dalla corrente di carica del condensatore C7.

Le resistenze R6, R8 ed R9 formano il partitore di polarizzazione del transistore per la corrente continua. Sempre per la corrente continua, R11 fornisce la

il problema del

di Via CHIVASSO, 10 Tel. 280.434

AMPIO SELF-SERVICE COMPONENTI SALE ESPOSIZIONE E DIMOSTRAZIONE GAMMA COMPLETA PRODOTTI

WEGA

REPARTO SPECIALIZZATO PER OM-CB

controrcazione per la stabilizzazione termica e la somma di R6 con R7 costituiscono il carico di collettore. L'insieme di queste resistenze determina il punto di lavoro del transistore in corrente continua.

Il circuito oscillante a frequenza acustica è costituito dalla bobina L3 con presa centrale per la reazione e dal condensatore C8 che, come vedremo può avere diversi valori a seconda della frequenza che si vuole scegliere per la sottoportante.

Le tre frequenze acustiche di modulazione possono essere scelte sostituendo con diversi valori il condensatore C8 di accordo dell'oscillatore a bassa frequenza. Precisamente, i valori scelti per ottenere delle bande ben separate e praticamente prive di intermodulazione, sono i seguenti:

Frequenza	Capacità (C8)
10 kHz	10 nF toll. 5%
7,3 kHz	22 nF toll. 5%
5,7 kHz	33 nF toll. 5%

Questi cambiamenti sono da effettuare soltanto nel caso che vi sia la possibilità di reciproca azione tra due apparecchi disposti molto vicini.

L'induttanza L3 viene invece fornita pretarata, con il nucleo bloccato, quindi non è consigliabile muoverlo.

Il tasto contrassegnato PUSH serve a connettere l'intero apparecchio all'alimentazione solo per il tempo strettamente necessario ad eseguire la manovra per cui il circuito è destinato.

MECCANICA

Il trasmettitore completo di batteria trova posto in un contenitore in plastica non più grande di un pacchetto di sigarette, quindi perfettamente tascabile. Si può anche riporre nel cassettino portaoggetti della macchina od in qualsiasi altro posto risulti più comodo. L'unico comando da azionare è il pulsante che collega la batteria e mette in funzione il trasmettitore. Il contenitore è formato da due elementi facilmente separabili per la sostituzione della batteria o per la manutenzione o riparazione.

L'intero circuito è montato su un'unica piastrina stampata in vetronite, e quindi non necessita di collegamenti volanti, tranne quelli per la connessione della batteria di alimentazione. Anche il pulsante di azionamento è fissato sul circuito stampato.

MONTAGGIO

Per facilitare il compito dell'esecutore pubblichiamo la fig. 2 dove appare la serigrafia del circuito stampato, sulla quale abbiamo sovrapposto l'esatta disposizione dei componenti.

Le varie operazioni di montaggio sono ampiamente illustrate nell'opuscolo allegato al kit.

RICEVITORE PER APRIPORTE

CARATTERISTICHE TECNICHE

Alimentazione dalla rete:

115 - 220 - 250 V - 50-60 Hz Consumo totale (relè eccitato): 26 mA Frequenza di ricezione: 26,960 MHz Frequenza oscillatore locale:

26,505 MHz

Frequenza intermedia: 455 kHz Prima frequenza di modulazione (sottoportante): 5 ÷ 10 kHz

(sottoportante): 5 ÷ 10 k Frequenza di modulazione della

sottoportante: 20 Hz

Tensione massima sui contatti del relè: 250 Vc.a.
Corrente max. sui contatti del relè: 2 A

Transistori impiegati: 2 x 2N708; 3 x BF233-3; 4 x BC108B; BC303

Diodi impiegati:

3 x AA119; BA 128; 10D1 (1N4002)
Ponte raddrizzatore impiegato: W 005
Zener impiegato: BZY95C13
Dimensioni: 170x95x50
Peso: 630 g

E' un sensibile ricevitore supereterodina destinato a funzionare in combinazione

con il trasmettitore UK 942. L'impiego è quello di comandare a distanza l'apertura di porte oppure altri azionamenti di cui si abbia bisogno.

Il gruppo trasmettitore-ricevitore forma un complesso di alta affidabilità e di ottime caratteristiche che comprendono la stabilità di frequenza, l'immunità ai disturbi di qualsiasi genere, ed il vasto raggio di azione (da 40 ÷ 120 m a secondo degli ostacoli).

L'uso di una combinazione di due frequenze di modulazione e la possibilità di scegliere fra tre valori di una di queste, rende pressoché impossibile lo azionamento del ricevitore se non si dispone del trasmettitore UK 942,

Il basso consumo di corrente e l'abbondante dimensionamento dei componenti permette il collegamento continuo alla alimentazione. L'ottima schermatura elimina qualsiasi interferenza dell'oscillatore locale con ricevitori posti nelle vicinanze

uesto ricevitore è destinato a funzionare in collegamento con il trasmettitore UK 942

che ne costituisce la chiave.

La destinazione originaria di questo gruppo è quella di permettere l'apertura di porte senza dover azionare manualmente la serratura. L'esempio classico di utilizzazione in questo modo è costituito dalla possibilità di aprire la porta di un box per autovettura o di un cancello senza dover scendere dalla vettura. Ma, data la progettazione del sistema, questo può essere applicato ad una va-sta gamma di telecomandi, approfittando della notevole sensibilità di questo ricevitore che, scartando circuiti più economici e più semplici, adotta lo schema classico della supereterodina a conversione di frequenza, che da lungo tempo è il sistema unico per realizzare un radioricevitore di caratteristiche professionali, dotato di grande selettività, sensibilità e stabilità di sintonia.

Nel nostro caso viene usato un ricevitore a frequenza fissa con oscillatore locale pilotato a quarzo. Tale sistema garantisce una stabilità di frequenza quasi assoluta, ed evita la possibilità di rimanere fuori dalla porta a causa di una staratura del ricevitore.

Per mezzo del particolare sistema di doppia modulazione a bassa frequenza si è reso praticamente impossibile l'azionamento del relè terminale con un dispositivo che non sia l'UK 942. Questo è un vantaggio importantissimo, anche a prescindere dall'apertura abusiva della porta comandata. Infatti il sistema rende quasi impossibile l'azionamento fortuito da parte di disturbi atmosferici, da trasmissioni radio in gamma, da emissioni di apparecchi elettromedicali o industriali, eccetera.

Naturalmente, l'impianto di apertura della porta, per essere completo, ha bisogno di alcuni accessori quali un motore di azionamento, i comandi elettrici per to stesso, ed il cinematismo atto a trasformare la rotazione del motore nel movimento che a noi interessa. Il ricevitore si limita a chiudere il contatto di un relè ogni qualvolta riceve l'impulso radio emesso dal trasmettitore.

Siccome il trasmettitore UK 942 emette un'onda radio della frequenza di 26,960 MHz stabilizzata a quarzo e modulata da una sottoportante acustica che può essere di 5,7 - 7,3 oppure 10 KHz regolabile e a sua volta modulata al 100% da una onda quadra di circa 20 Hz, il ricevitore dovrà essere in condizione di poter selezionare queste frequenze mediante appositi filtri che descriveremo successivamente. Alla fine della catena di amplificazione, noi troveremo una corrente continua atta ad azionare il relè solo se tutte le fre-

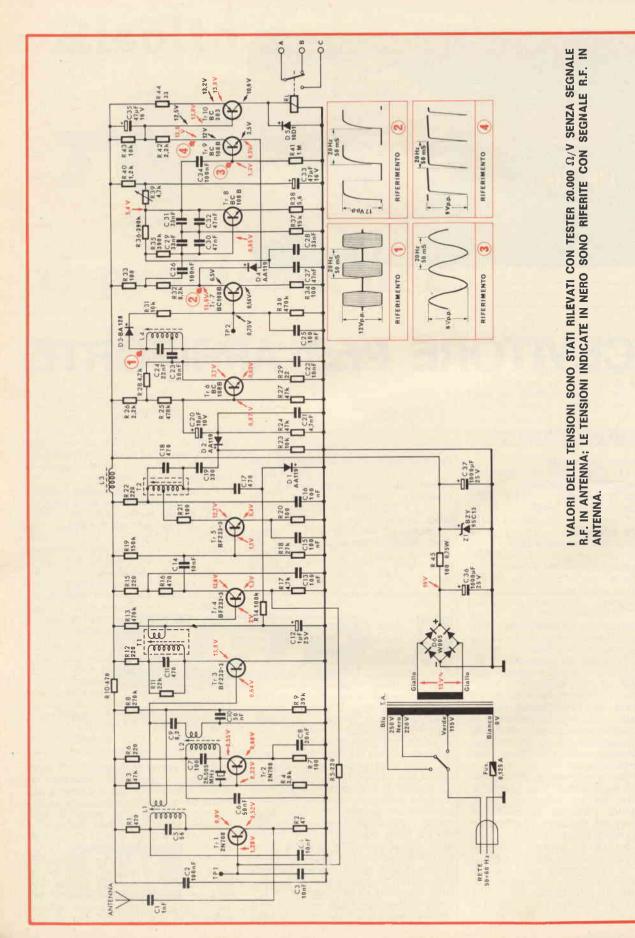


Fig. 1 - Schema elettrico.

quenze nominate sopra coincideranno con quelle di taratura dei filtri.

La realizzazione di un simile dispositivo presenta notevoli difficoltà che sono state in gran parte eliminate con l'uso del montaggio su circuito stampato, di bobine preparate e di componenti di alta qualità.

Il circuito supereterodina funziona con un valore di media frequenza di 455 kHz che è data dalla differenza tra la frequenza del quarzo del trasmettitore e di quella dell'oscillatore locale del ricevitore, di 26,505 MHz.

Data la sua sensibilità, il ricevitore, al pari del trasmettitore, non ha bisogno di particolari installazioni di antenna, bastando allo scopo uno spezzone di filo isolato collegato alla presa di antenna. In questo modo il raggio di azione del sistema è sufficientemente ampio da permettere l'azionamento da una distanza normale.

L'uso di tre possibili frequenze sottoportanti di modulazione acustica, permette di ridurre il pericolo di interferenze con analoghi sistemi presenti nelle vicinanze

DESCRIZIONE DEL CIRCUITO

La parte alta frequenza del circuito elettrico, è disposta secondo uno degli schemi classici della supereterodina, lo stesso che, a parte la frequenza fissa, è usato in quasi tutte le radioriceventi.

Il primo stadio formato dal transistore Tr1 e circuito collegato, è un amplificatore d'ingresso a base comune, che adatta la bassa impedenza d'ingresso dell'antenna a quella più alta necessaria per garantire una prima selezione della frequenza che avviene a mezzo del circuito accordato L1 disposto nel circuito di collettore di Tr1. Inoltre il circuito a base comune, non necessita di neutralizzazione per eliminare la reazione dovuta alle capacità parassite della giunzione del transistore.

L'entrata del segnale avviene sull'emettitore e la tensione si sviluppa sul resistore R2. Il condensatore C1 costituisce l'accoppiamento di antenna, il condensatore C3 collega a massa la base agli effetti dell'alta frequenza ed il condensatore C4 costituisce il ritorno a massa del circuito accordato e di filtro con L1. La polarizzazione di base è fornita dal resistore R5 che arriva dal-

l'emettitore di Tr4.

Questa tensione, essendo prelevata dall'emettitore di Tr4, è anche proporzionale alla tensione del controllo automatico di guadagno (C.A.G.) amplificato e quindi costituisce una regolazione supplementare del ricevitore alle variazioni del segnale.

Il secondario del trasformatore di alta frequenza L1 trasferisce il segnale amplificato alla base di Tr3. Ma in parallelo a questa bobina per mezzo di C9 troviamo il secondario di L2 che è il circuito accordato dell'oscillatore locale a quarzo costituito da Tr2 e circuito annesso. In Tr3, approfittando della non linearità della caratteristica d'ingresso,

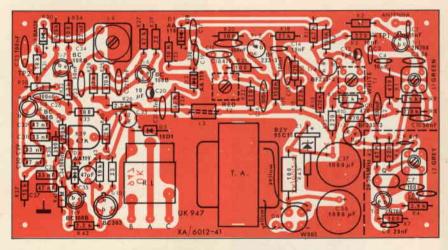


Fig. 2 - Disposizione dei componenti sulla basetta a circuito stampato.

i due segnali vengono mescolati. Come risultato otterremo, insieme alle compo-nenti di frequenza immagine, che per altro sono notevolmente attenuate dalla presenza di L1, un insieme di quattro frequenze, ossia la frequenza della portante, la frequenza dell'oscillatore locale, la loro somma e la loro differenza. Di queste il filtro T1 lascerà passare solo la differenza, essendo le altre frequenze troppo lontane dalla frequenza di accordo di T1. La frequenza differenza, che chiameremo frequenza intermedia, reca impresse tutte le informazioni che prima erano contenute dalla portante. Essendo relativamente bassa, questa frequenza può essere notevolmente amplificata, ottenendo una banda passante relativamente stretta come nel caso in esame, dove la larghezza del canale ammessa deve essere di 10 kHz.

Dunque il trasformatore a primario accordato T1 lascia passare una banda piuttosto stretta, ma non troppo, per la necessità di non attenuare la frequenza sottoportante di modulazione. A questo provvede il resistore R11 che, abbassando il Q di T1, ne allarga la banda, secondo la nota formula:

Larghezza di banda a 3 dB = fo/ Q dove fo è la frequenza di accordo del circuito risonante.

Notiamo inoltre che il circuito in frequenza intermedia non si chiude a massa subito sotto al lato freddo del circuito oscillatorio, ma la chiusura avviene attraverso R12, R10 e C2. Mediante le resistenze serie si diminuisce ulteriormente il Q del circuito, allargando la banda passante ed aumentando la stabilità.

Il segnale a frequenza intermedia, per mezzo del secondario di T1 viene trasferito alla base di Tr4, che forma il primo stadio F.I. Il carico è resistivo ed è formato da R16. Il ritorno a massa avviene attraverso C13.

Il suo punto di lavoro in assenza di segnale, considerando il resistore di emettitore R12, è costituito dai resistori R13, R14 e dal diodo D1.

L'accoppiamento con il successivo stadio Tr5 avviene a resistenza-capacità, quind il primo stadio dell'amplificatore a F.I. non contribuisce alla selettività totale. Il carico di Tr5 è invece accordato, mentre R22 con C16 costituisce una cellula di filtro.

Il segnale proveniente dal circuito accordato T2, viene convogliato in due parti. Una viene fatta proseguire attraverso C19, mentre l'altra, attraverso C17, viene applicata al diodo D1. Questo diodo introduce nella tensione alternata una componente continua proporzionale all'ampiezza del segnale. Il gruppo R14 - C12 provvede ad eliminare le componenti alternate lasciando solo quella continua, che viene applicata alla base di Tr4 riducendo l'amplificazione in rapporto all'intensità del segnale che arriva in antenna. Tale sistema è detto «controllo automatico di guadagno». Se intervenisse immediatamente provocherebbe una distorsione del segnale di modulazione. L'intervento del C.A.G. è invece ritardato dalla costante di tempo di R14 - C12 in modo da ovviare all'inconveniente suddetto.

La parte del segnale che prosegue attraverso C19 viene rivelata dal diodo D2. Fondamentalmente il circuito è analogo a quello del C.A.G. ma i valori delle resistenze e delle capacità sono scelti in modo da non eliminare tutte le componenti alternate ma solo quelle a frequenza intermedia attraverso C21. Restano quindi nel segnale rivelato le componenti a frequenza acustica e subsonica mescolate. Questo segnale è amplificato da Tr6 che non presenta particolarità notevoli, tranne il resistore R26 che fa parte contemporaneamente sia del circuito di polarizzazione di base che di collettore. Con tale sistema si realizza una controreazione in quanto quando aumenta la corrente di collettore, aumenta la caduta attraverso R26 e quindi la polarizzazione di base diventa più negativa con effetto contrario all'amplificazione del sistema, ma favorevole sia alla stabilità che alla larghezza di banda.

Attraverso il condensatore C23 il segnale viene trasferito al filtro L4 - C24 che viene accordato sulla frequenza del-

la sottoportante acustica del trasmettitore UK 942. Il segnale selezionato dal filtro viene rivelato dal diodo D3 caricato da R31 - R30 e C25 che elimina la sottoportante lasciando soltanto la modulazione a onda quadra e frequenza di 20 Hz della suddetta sottoportante. Tale onda è amplificata da TR7 alla base del quale viene applicata attraverso il resistore R31 che serve a non smorzare il circuito accordato L4 - C24 nel tempo di conduzione. La tensione positiva di D3 sblocca TR7 alla cadenza di modulazione della sottoportante. Notare che TR7 non ha polarizzazione fissa di base e quindi funziona in classe B lasciando passare amplificate solo le semionde positive del segnale a 20 Hz (modulazione della sottoportante). Mediante C26 il segnale quadrato a 20 Hz viene trasferito al transistore Tr8 che è montato in un circuito molto interessante. Infatti l'insieme costituisce quello che è comunemente definito un filtro attivo.

Come si noterà il segnale è applicato alla base di Tr8 tramite il condensatore C26 e prelevato dal collettore attraver-

so il condensatore C34. Fino a qui dunque tutto normale. La differenza sta nel fatto che parte del segnale di collettore viene riportata alla base attraverso il filtro a doppio T for-

mato da C29 + C30, C31 + C32, R37; R35, R36, C27 + C28.

Per sua natura questo tipo di filtro è ad arresto di banda, in quanto lascia passare tutte le frequenze ad eccezione di un certo intervallo piuttosto stretto che non passa. Ora, siccome questo filtro è disposto in serie al collegamento di retroazione dal collettore alla base, vediamo cosa succede. Alle frequenze che il filtro lascia passare, il transistore tenderà ad avere bassa resistenza, quindi il segnale al collettore tenderà ad essere più negativo. Questo segnale negativo trasmesso alla base ne diminuirà la polarizzazione e quindi diminuirà l'amplificazione del complesso. Abbiamo quindi un fenomeno di controreazione o reazione negativa, in quanto l'amplificazione viene diminuita. Solo guando il circuito di controreazione è interrotto per l'effetto di arresto del filtro, l'amplificatore può funzionare a pieno regime. Ecco quindi che l'effetto filtrante del doppio T risulta invertito di segno ed esaltato dall'amplificazione del tran-

All'uscita abbiamo quindi un segnale soltanto se la frequenza di modulazione, nel nostro caso 20 Hz, della sottoportante del trasmettitore UK 942, corrisponde a quella propria del filtro. Il carico di Tr9 è costituito dal circuito a T semplice in funzione di passabasso, in modo da alimentare la base di Tr10 e di conseguenza il relè con un segnale con-

tinuo e non pulsante.

Un particolare interessante è che il circuito di emettitore di Tr9 si chiude a massa attraverso il diodo D4 ed il transistore Tr7. Siccome all'aumentare del segnale di bassa frequenza la resistenza di Tr7 diminuisce; diminuirà pure la resistenza di emettitore di Tr9 e quindi aumenterà la sua amplificazione. L'effetto complessivo è quello di una

reazione positiva.

Il transistore Tr10 è un PNP in quanto la necessità di disporre il carico al collettore e considerazioni di fase consigliano l'adozione di tale polarità. Infatti, facendo tutte le considerazioni sulla fase, che qui sarebbe troppo lungo riassumere, verremo a concludere che quando in antenna arriva un segnale avente tutte le caratteristiche richieste il relè viene eccitato. Il diodo D5 assorbe le sovratensioni di transistorio dovute al carattere induttivo del carico.

Alimentazione

Avviene dalla rete per mezzo del trasformatore a primario universale, il cui secondario alimenta un ponte di Graetz. La tensione pulsante che risulta viene livellata una prima volta da C36, passa alla rete stabilizzatrice formata dal resistore R45 e dal diodo Zener Z1, e dopo un ulteriore livellamento subito ad opera di C37, viene applicata alla linea di alimentazione del circuito.

MECCANICA

L'intera apparecchiatura, completa di alimentatore dalla rete, è disposta in un pratico contenitore metallico provvisto di adatte staffe per l'attacco a parete.

Data la natura dell'installazione, il circuito è stato progettato in modo da non aver bisogno di comandi o regolazioni esterne. Quindi sui lati esterni del contenitore appaiono soltanto il cambiatensione, ed il fusibile di protezione.

MONTAGGIO

Per facilitare il compito dell'esecutore pubblichiamo la fig. 2 dove appare la serigrafia del circuito stampato, sulla quale abbiamo sovrapposto l'esatta dispo-sizione dei componenti.

Nell'opuscolo allegato al kit sono ampiamente illustrate le varie fasi di mon-

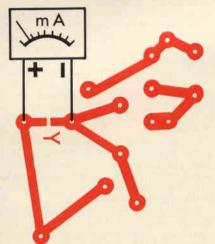


Fig. 3 - Connessione dei terminali del milliamperometro.

Q T C

di P. SOATI

RADIONAUTICA

RADIOFARI MARITTIMI DELLA SPAGNA

MALAGA (nel faro S. Nicola) 36° 42′ 56″ N, 4° 24′ 48″ W, kHz 298,8 A2 portata 3 mg. segnale RT: GA. Servizio con nebbia e senza nebbia continuo dalle ore 1800 alle 0800 GMT a partire dall'ora intera. In gruppo con Capo Tres Forcas (Marocco) e Cabo de Gata (Sp).

ALBORAN (isolotto - nel faro) 35° 56' 17" N, 3° 02' 08" W, kHz 519 Al portata 50 mg. segnale RT: **ALB**, servizio con nebbia continuo. Senza nebbia emissione della durata di 30 min alle ore 0600, 0900, 1200, 1800 e 2300 GMT.

CABO S. SEBASTIAN 41° 53' 36" N, 3° 12' 00" E 291,9 kHz A2 portata 50 mg. Segnale RT: SN. Servizio continuo a partire dal 4° min di ogni ora. In gruppo con Punta de Llobregat e Mahon (Menorca).

PUNTA DEL LLOBEGRAT (nel faro) 41° 19' 34" N, 2° 09' 06" E, kHz 291,9 A2, portata 50 mg. segnale RT: **OR.** Servizio con nebbia e senza nebbia continuo. In gruppo con Mahon (Baleari) e Cabo S. Sebastian (Sp).

CABO DE TRAFALGAR (nel faro) 36° 11' 06" N, 6° 02' 06" W, kHz 289,6 A2, portata 50 mg. segnale RT: B. Servizio continuo a partire dal 2° min di ogni ora.

CABO DE GATA (nel faro), 36° 42′ 55″ N, 2° 11′ 30″ W, kHz 298,8, portata 50 mg. segnale RT.: TA. Servizio continuo a partire dal 4° minuto di ogni ora. In gruppo con Malaga (Sp) e Cabo Tres Forcas (Mar).

CABO DE LA NAO (nel faro) 38° 43' 49" N, 0° 14' 12" E. kHz 294,2 A2, portata 50 mg. segnale RT: NO. Continuo a partire dal 4° minuto di ogni ora. In gruppo con Cap de l'Aiguille (Alg).

CASTELLON (nel faro) 39° 58' 06" N. 0° 01' 42" W. kHz 298,8 A2, portata 50 mg. segnale RT: **AS**. Servizio continuo a partire dall'ora intera. In gruppo con Punta de Cabo Figuera (Baleari).

RADIOFARI MARITTIMI DELLE ISOLE BALEARI

MAHON (Menorca) 39° 51′ 51″ N, 4° 18′ 10″ E, kHz 291,9, portata 100 mg. Segnale RT: MH. Servizio con nebbia e senza nebbia continuo a partire dal 2° min. di ogni ora. In gruppo con Punta del Llobregat e Cabo S. Sebastian (Sp). (Il radiofaro è installato a 152 m, per 258°, dal faro di Punta S. Carlos).

PUNTA DE CALA FIGUERA (nel faro) 39° 27' 24" N, 2° 31' 24" E, kHz 298,8 A2, portata 50 mg. Segnale RT: **FI.** Servizio continuo a partire dal 4° min. di ogni ora in gruppo con Castellon (Sp).

GAMME DI FREQUENZA PER STAZIONI DEI SERVIZI FISSI (frequenza in kHz)

4000 -	4063	11	1975 -	12330
5060 -	5450	13	3360 -	14000
5730 -	5950	14	1350 -	15000
6765 -	7000	15	5450 -	16450
7300 -	8195	17	7360 -	17700
9040 -	9500	18	3030 -	20000
9775 -	10000	21	750 -	21850
10100 -	11175	22	2720 -	23200
11400 -	11700	24	1000 -	25000

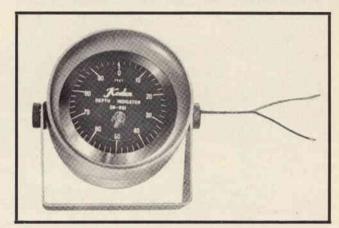


Fig. 1 - Scandaglio ultrasonoro della KODEN (APEL-MAR di Genova) per imbarcazioni da diporto anche di piccole dimensioni. Alimentazione 12 V - 100 mA.

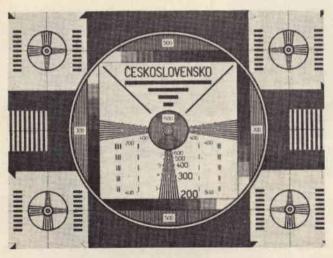


Fig. 2 - Monoscopio usato dalle stazioni televisive cecoslovacche (Ceskoslovenska Televize).

Le seguenti gamme sono assegnate altresì alle stazioni fisse ma in unione a stazioni di altri servizi:

1605 - 2065	5250 - 5480
2105 - 2850	21850 - 22000
3155 - 3400	23200 - 24000
3500 - 4000	25000 - 25600
4438 - 4650	26100 - 28000
4750 - 5060	29700 - 30000

FREQUENZE DI ALCUNE STAZIONI CHE OPERANO NEI SERVIZI FISSI RICEVIBILI IN ITALIA

(frequenza in kHz)

Algeria: 7885; Arabia Saudita: 9867, 11417; Australia: 8798,5, 10420; Austria: 6787, 13848; Bahamas: 4825, 6838; Barbados: 10115, 16072,5; Belgio: 7927, 14360; Brasile: 19820; Camerun: 15832; Canada: 11531, 13745; Canarie: 10690; Congo Rep.:

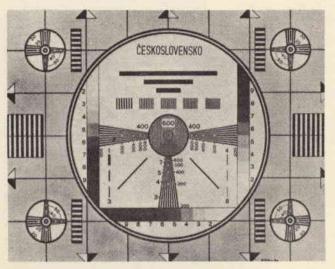


Fig. 3 - Un altro monoscopio irradiato dalle stazioni televisive cecoslovacche nella gamma UHF.

20955: Danimarca: 7652, 11460: Ecuador: 15610: Falkland: 24145: Gambia: 13797: Germania (REF): 10850, 16430; Guam: 10621; Honduras: 6905, 11190; Iraq: 18898; Italia: 10135, 16395 (e numerose altre): Giappone: 7440, 10660; Kenya: 17575; Libano: 8090, 13775; Malesia: 8748, 13096; Martinica: 17565; Mexico: 7350, 13995; Mozambico: 22795: Nuova Zelanda: 18770, 20725; Nicaragua: 5735, 7600; Olanda: 8160, 14500; Pakistan: 20936; Portogallo: 9993, 10898; Reunion (Is): 14834; Rodesia: 18690; Ryukyu: 8995; Senegal: 20327; Sierra Leone: 17655; Sud Africa: 6770, 9048; Spagna: 10120, 19030; Svezia: 16052, 22930; Svizzera: 19585; Siria: 7866; Tanzania: 8194; Togo: 7940; Turks (Is): 9442, 16040; URSS: 13710, 16325; Zambia: 20261; Ungheria: 6390.

RADIODIFFUSIONE PER SWL

STAZIONI USA E CANADA UDIBILI DI NOTTE SALTUARIAMENTE IN ITALIA

La frequenza è indicata in kilohertz. I nominativi che iniziano con le lettere W o K si riferiscono a stazioni USA e quelli che iniziano per C sono del Canada. Le stazioni contrassegnate con il segno * operano soltanto nelle ore diurne (ora americana). La potenza è di 50 kW.

540 = WGTO* Cypress G. Fla, CBK Watrous, Sask, 580 = CKY Winnipeg Man, Ottawa, Ont. 630 = CHLT Sherbrooke Que, 640 = KFI Los Angeles Cal. 650 = WSM Nashville Tenn. 660 = WNBC New York City N.Y. 670 = KBOI Boise, Idaho, WMAQ Chicago Ill. 680 = KNBR S. Francisco Cal, WRKO Boston Mass. WPTF Raleigh N.C. KBAT S. Antonio Tex. 690 = WVCK* Birmingham Ala, WAPE Jacksonville Fla, CBU Vancouver B.C. CBF Montreal QUE. 700 = WLW Cincinnati Ohio; 710 = KMPC Los Angeles Cal, WGBS Miami Flo, KEEL Schreveport La, WOR New York C N.Y. KIRO Seattle Wash. 720 = WGN Chicago III. KIQX Las Vegas Nev. 730 = CKAC Montreal Que. 740 = WBAM* Montgomery Ala, KCBS S. Francisco Cal, KRMG Tulsa Okla, KTRH Houston Tex. CBX Edlonton Alta, CBL Toronto Ont. 750 = WSB Atlanta Ga, KXL Portland Ore. 760 = WIR Detroit Mich. 770 = KOB Albuquerque N.M. WABC New York C N.Y. 780 = WBBM Chicago Ill, KCRL Reno Nev. 800 = CKLW Windsor Ont. CJAD Montreal Que, CHRC Quebec Que. 810 = KGO S. Francisco Cal, KCMO Kansas City Mo, WGY Schenectaday N.Y. 820 = WFAA Dallas Tex, WBAP Ft. Worth Tex. 830 = WCCO Minneapolis Minn. 840 = WHAS Louisville Ky. 850 = KOA Denver Colo, WHDH Boston Mass, WIVK Knoxville Tenn, CKVL Verdun Que. 860 = CJBC Toronto Ont. 870 = WWL N. Orleans La, 880 = KRVN Lexington, Nebr, WCBS New York C. N.Y. 890 = WLS Chicago Ill, 930 = CJCA Edmonton Alta. 940 = KFRE Fresno Cal, WINZ Miami Flo, WMAZ Macon Ga, CBM Montreal Que, WFNC Fayetteville N.C. 960 = CFAC Calgary Alta. 980 = CKNW New Westminster B.C. 990 = WHOO Orlando Flo, WIBG Philadelphie Pa, WLKW* Providence R.I. CBW Winnipeg Man. 1000 = WCFL Chicago Ill, KOMO Seattle Wash. (segue)

RADIOAMATORI

ABBREVIAZIONI USATE DAI RADIOAMATORI (terza ed ultima parte)

R = received - ricevuto (talvolta è adoperato anche come separazione fra le cifre al posto della virgola, ad esempio 14,15 MHz = 14r15 MHz). = rectified a.c. - corrente alternata RAC rettificata = received - ricevuto (notizie, po-RCD sta. ecc.) = receiver - ricevitore RCVR = read, red - letto, copiato, rosso RD RDY = ready - pronto = radio, radio station - radio, radio-RDO stazione = regular - regolare REG = received fine business - ricevuto RFB molto bene = running - potenza RIG = report, repeat - rapporto (di RPT ascolto), ripetere = request - domanda, richiesta RO

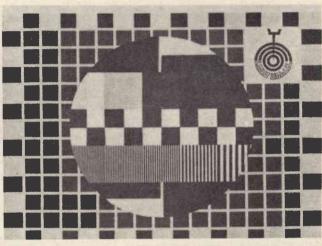


Fig. 4 - Immagine campione irradiata dalle stazioni di Israele (Israel Broadcasting Authority).

RST	= readability 1/5, strength 1/9
	tone 1/9 - leggibilità, forza e to-
	nalità dei segnali
RX	= receiver - ricevitore
SA	= said, South America - detto, Sud
	America
SSB	= single side band - banda laterale
	unica
	unica
SIG	1
SIGS	= signal - segnale, segnali
	1 1 1 1 1 1 1
SKED	= schedule - tabella, prospetto
SKIP	= skip - distanza di propagazione
SN	= soon - a presto
SOLID	= solidly - molto forte, benissimo
SRI	= sorry - spiacente
	, A
STN	= station - stazione

= service - servizio

MARITIME MOBILE

SVC

Home 420-16 Kamisoyagi Yamato-city Kanagawa Japan 59242

Fig. 5 - QSL a conferma di un QSO della stazione 12SOJ, mediante ricetrasmettitore Sommerkamp FTDX 505 (GBC Italiana) con il piroscafo giapponese SURUGA MARU in navigazione al largo di Djibuti.

Fig. 6 - QSL della stazione sovietica UB5LS di Kharkov, banda 21 m, collegata con I2SOJ (rice-trasmetti-tore Sommerkamp FT277).

SVL	= several - separato	W, WT =	watt - watt
SW	= short - wave - onde corte		word after - la parola dopo
TBL	= trouble - disturbo		what - che cosa
TEMP	= temperature - temperatura	WATSA =	what do you say? - che cosa di-
TEN	= ten - banda dieci metri		te?
TEST	= test, contest - prova, concorso	WB =	word before - la parola prima
TFC	= traffic - traffico, messaggio	WD =	word - parola
TMW	= tomorrow - domani	WH =	white - bianco
TJRS	= toujours (francese) - sempre	WID =	with - con
TNG	= tuning - sintonia	WKD =	worked - lavorato, comunicato
TKS	= thank you - grazie		con
TU	= universal time - tempo universal	= WKG $=$	working - lavorando, comunican-
TV	= television - televisione		do
TVI	= television interference - interference		would - voglio (vorrei)
	renza alla televisione		world wide - tutto il mondo
TNX	= thanks - grazie	WX =	wheather - tempo (meteorologi-
TX	= transmitter - trasmettitore		co)
U	= you - voi	WEA =	wheather - tempo (meteorologi-
UP	= upward in frequency - frequenz	a e	co)
	più alta		excuses - scusatemi
UFB	= very fine business - molto bene	, XTR $=$	transmitter - trasmettitore
	benissimo		transmitter - trasmettitore
UK	= United Kingdom - Regno Unit		crystal - cristallo
	(Inghilterra)	XYL =	married young lady - donna spo-
UR	= your - vostro (aggettivo)		sata
URS	= yours - vostro (pronome)		yesterday - ieri
VA	= signing off - fine della trasmission		young lady - signorina
	ne		year - anno
VERT	= vertical - verticale		GMT, UT - tempo medio di
VFB	= very fine business - molto ben		Greenwich, UT
VFO	= variable frequency oscillator		best wishes - auguri
	oscillatore a frequenza variabi	e 88 =	love and kisses - baci, affettuo-
VJO	= viejo (spagnolo) - vecchio mio		sità
VOX	= voice-operated switch - commuta	- 99 =	keep out - tenersi fuori (levarsi
	zione comandata dalla voce		dai piedi) molto raro
VY	= very - molto	Marian victoria.	
VXO	= variable crystal oscillator - osci		1 = a, 2 = u, 3 = v, 4 = 4,
	latore variabile a cristallo	5 = e, 6 = 6, 7 =	= b, $8 =$ d, $9 =$ n, $0 =$ t.

RIPARTIZIONE NOMINATIVI RADIOAMATORI FRANCESI E TERRITORI OLTREMARE

Servizio QSL: REF, QSL bureau, P.O. Box 70, 75 Paris 12 E, Francia F AA ÷ F3ZZ e F5AA ÷ F9ZZ. I nominativi F4AA ÷ F4ZZ sono assegnati alle stazioni sperimentali. (Zona 39)

Le stazioni installate in Corsica (Zona 14), fanno

seguire al nominativo il gruppo /FC.

TERRE ANTARTICHE E AUSTRALI (zona 39)

Servizio OSL: OSL Bureau, P.O. Box 587, Tananarive. Madagascar AFR.

I nominativi iniziano con il gruppo FB8 (in avvenire anche le cifre 4, 5, 6, 7, 9).

GUADELOUPE (Zona 8)

Servizio QSL: Radio Club Guadeloupe, P.O. Box 387, Pointe à Pitre, Guadeloupe FWI.

I nominativi iniziano con il gruppo FG7 (FGØ) cittadini USA).

COMORO (Is) (Zona 39)

Servizio OSL: Via Tananarive.

I nominativi iniziano con il gruppo FH8 (FHØ) cittadini USA).

NUOVA CALEDONIA E DIPENDENZE (Zona 32) Servizio OSL: P.O. Box 637, Noumea, New Caledonia (Oceania).

I nominativi iniziano con il gruppo FK8 (ed eventualmente altri numeri).

SOMALIA FRANCESE (Zona 37)

Servizio QSL: via REF Parigi.

I nominativi iniziano con il gruppo FL8 (eventualmente altri numeri).

MARTINIQUE (Zona 8)

Servizio OSL: Via REF Parigi.

I nominativi iniziano con le lettere FM7 (FMØ) cittadini USA).

POLINESIA (Zona 32)

Servizio QSL: Radio Club Oceanien, P.O. Box 374 Papeete, Tahiti.

I nominativi iniziano con il gruppo FO8 (ed eventualmente altri numeri).

ST. PIERRE ET MIQUELON (Zona 5)

Servizio QSL: via REF Parigi.

I nominativi iniziano con il gruppo FP8 (FP()) cittadini americani).

REUNION (Is) (Zona 39)

Servizio QSL: via REF Parigi.

I nominativi iniziano con il gruppo FR7 (ed eventualmente altri numeri).

ST. MARTIN IS (Zona 8)

I nominativi iniziano con il gruppo FS7.

NUOVE EBRIDI (Zona 32)

I nominativi iniziano con il gruppo FU8.

WALLIS Is. (Zona 32)

I nominativi iniziano con il gruppo FW8. (E' previsto anche il gruppo YJ).

GUAIANA FRANCESE (Zona 9)

Servizio QSL: Via REF Parigi.

I nominativi iniziano con il gruppo FY7 (eventuale gruppo FY()).

Bastano 18 lezioni per imparare

nuovo metodo IST

L'IST invia a tutti il 1º fascicolo in visione gratuita

Il metodo dal "vivo" vi permette di imparare l'Elettronica a casa, in poco tempo, realizzando ottre 70 esperimenti diversi: la trasmissione senza fili, il lampeggiatore, un circuito di memoria, il regolatore elettropianto di filentoria, il regolatore elettro-nico di tensione, l'impianto antifurto, l'im-pianto telefonico, l'organo elettronico, una radio a transistori, ecc.

Un corso per corrispondenza "Tutto Compreso"!

"Tutto Compreso"!

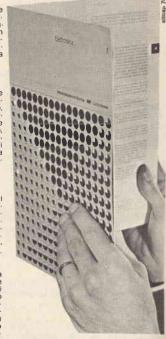
Il corso di Elettronica svolto interamente per corrispondenza su 18 dispense, comprende ad esempio 6 scatole di montaggio, correzione individuale delle soluzioni, Certificato Finale con le medie ottenute nelle singole materie, fogli compiti e da disegno, raccoglitori, ecc. La formula "Tutto Compreso" offre anche il grande vantaggio di evitarvi i Faffannosa ricerca e l'incertezza della scelta del materiale didattico stampato nel negozi specializzati.

Oggi è Indispensabile conoscere l'Elettronica.

l'Elettronica.

Perchè domina il nostro progresso in tutti i settori, dall'industria all'edilizia, alle comunicazioni, dal mondo economico all'astronautica, ecc. Tuttavia gli apparecchi elettronici, che vediamo normalmente così complessi, sono realizzati con varie combinazioni di pochi circuiti fondamentali che potrete conoscere con il nuovo metodo IST.

Uno studio che diverte


Gli esperimenti che farete non sono fine a se stessi, ma vi permetteranno di capire rapidamente i vari circutti e i vari principi che regolano l'Elettronica. Il corso è stato realizzato da un gruppo di ingegneri elet-tronici europei in forma chiara e facile, af-finchè possiate comodamente seguirlo da casa vostra. Il materiale adottato è prodotto casa vostra. Il materiale adottato è prodotto su scala mondiale ed impiegato senza alcuna saldatura. Dispense e scatole di montaggio vengono inviate con periodicità mensile o scelta dagli aderenti; il relativo costo può essere quindi comodamente dilazionato nel tempo.

In visione gratuita il 1º fascicolo

Se ci avete seguiti fin qui, avrete certamente compreso quanto sia importante per voi una solida preparazione in Elettronica. Ma come potremmo descrivervi in poche parole la validità di un simile corso? Ecco perchè nol vi inviamo in visione gratuita la 1ª dispensa di Elettronica che, medica della parallela di estimata di controla di control glio delle parole, vi convincerà della bontà del corso. Richiedetela OGGI STESSO alla nostra segreteria, utilizzando preferibilmente il tagliando. Non sarete visitati da rappresentanti!

Oltre 66 anni di esperienza in Europa
e 26 in Italia nell'insegnamento
per corrispondenza.

Tagliando da inviare ir IST - Istituto Svizzei 21016 LUINO • Tel. (i	n busta chiusa o su cartolina postale a: ro di Tecnica, Via San Pietro 49/99c 0332) 50 4 69
Desidero ricevere - per di Elettronica con dettag per casella):	posta, in visione gratuita e senza impegno - la 1º dispensa gliate informazioni sul corso (si prega di scrivere 1 lettera
Cognome	
Nome	
Via	N.
C.A.P.	Località aliano membro del CEC - Consiglio Europeo Insegnamento

LA SALDATURA DELL'ALLUMINIO

a cura di EFFETI

a saldatura ALU-SOL si può dire che sia il primo sistema del suo genere per l'alluminio e per le sue numerose leghe, che diminuisce il rischio di corrosione elettrochimica della giunzione della saldatura e lascia un residuo di flusso nè corrosivo nè conduttore in condizioni atmosferiche normali.

Con questo sistema non è più necessario:

- alcun disossidante liquido separato,
- alcuna pulitura chimica, nè abrasione delle superfici normalmente ossidate,
- togliere il residuo di disossidante; tuttavia questo si può facilmente eliminare con l'acqua.

CARATTERISTICHE DELLA SALDATURA ALU-SOL 229

Punto di fusione:
229 °C (445 °F).
Temperatura di saldatura:
280 °C ÷ 370 °C
(536 °F ÷ 700 °F).
Numero delle anime di disossidante: 4.

VANTAGGI DELLA SALDATURA DELL'ALLUMINIO

Solitamente, per saldatura, si intende un processo di unione fra due superfici metalliche mediante L'alluminio, pur essendo un metallo interessante per le sue qualità fisiche (conduttività, qualità elettriche e termiche, leggerezza, facile lavorazione), ha subito qualche restrizione d'impiego a causa delle difficoltà nel saldarlo. Oggetto del nostro articolo è appunto lo sviluppo di un nuovo tipo di facile saldatura dell'alluminio, tale da realizzare delle giunzioni con caratteristiche eccellenti.

l'aggiunta di un terzo metallo, a una temperatura inferiore a 450 °C.

Un procedimento simile a questo, ma effettuato con una temperatura superiore ai 450 °C, viene chiamato saldatura rigida o dura o brasatura. Per la saldatura a caldo, è necessario che i metalli di base siano portati a una temperatura uguale o superiore a quella del loro punto di fusione.

A questo punto si deve ricordare che è vantaggioso poter saldare in modo soddisfacente l'alluminio, in quanto il calore si ripartisce in modo uniforme e non si ha che una piccola perdita nella tempra del metallo di base.

Per quanto riguarda le operazioni di brasatura, è necessario prevedere un trattamento di raffreddamento per riportare la temperatura al suo valore. Per le operazio-

ni di saldatura è necessario un calore intenso e concentrato che provoca un movimento di separazione dei pezzi; questo rappresenta un ostacolo per la precisione della giunzione saldata. La distorsione che si verifica durante l'unione dovuta alla saldatura, di solito è nulla. I pezzi saldati hanno degli sbalzi di temperatura indotti più bassi in confronto a quelli dei pezzi di alluminio brasati o saldati a caldo.

SISTEMA D'IMPIEGO DELL'ALU-SOL

Le tecniche e l'equipaggiamento impiegati per la saldatura dell'alluminio sono, in generale, simili a quelli per la saldatura degli altri metalli. Le principali differenze sono la capacità calorifica richiesta e la natura dell'alluminio stesso. Si deve tener presente che, con l'impiego dell'ALU-SOL, l'alluminio non presenta alcun problema particolare.

Ricordiamo che il calore specifico dell'alluminio è alto (circa due volte e mezzo quello del rame), quindi la sua conduttività termica è buona (52% quella del rame). Questo è dovuto al fatto che l'alluminio necessita di una capacità termica più elevata di quella degli altri metalli comuni per raggiungere una data temperatura.

Ricordiamo ai nostri lettori che è più facile riscaldare in modo uniforme un assiemaggio di alluminio che un assiemaggio di altri metalli. Si tenga presente che il coefficiente di dilatazione dell'alluminio, sotto

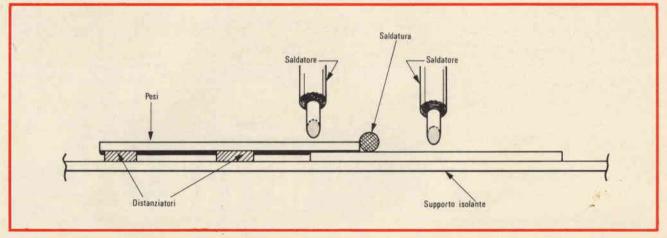


Fig. 1 - Esempio di montaggio per la saldatura di una giunzione a ricoprimento con un saldatore, o un cannello. Per riscaldare i due pezzi di metallo è necessario spostare il saldatore da un lato all'altro della giunzione.

l'effetto del calore, è maggiore di quello di altri metalli comuni.

Nel caso si debba effettuare un assiemaggio con diversi materiali. la differenza dei coefficienti di dilatazione può venire compensata per mezzo della semplice elasticità dei punti fissi. L'alluminio non cambia colore all'aumentare del calore e. di conseguenza, il metodo migliore per determinare quando si è raggiunta la temperatura di saldatura e, allo stesso tempo, per evitare il sovrariscaldamento, è tenere l'estremità del rotolo del materiale saldante contro la superficie del pezzo fino a quando si vede la parte interna (anima) fondere e colare.

Abbiamo detto «fondere e colare», poiché la temperatura alla quale l'ALU-SOL diventa pienamente attivo è appunto di 280 °C. A questo proposito è molto importante che il disossidante interno dell' ALU-SOL non venga surriscaldato, perché altrimenti si deteriorerebbe e si brucerebbe. La temperatura massima è di 370 °C. Questa è la ragione per la quale il calore del cannello non deve mai essere applicato direttamente alla saldatura; è necessario anche controllare la punta del saldatore per assicurarsi che la sua temperatura resti nella gamma delle temperature permesse. Nel caso che la temperatura del saldatore rientri nella gamma delle temperature consigliate per l'ALU-SOL, è indispensabile prendere un saldatore con capacità calorifica più alta. Si deve così provare a compensare la mancanza di capacità calorifica utilizzando una temperatura più elevata in modo che il disossidante non bruci. Questo ridurebbe anche il calore del saldatore.

REALIZZAZIONE DI UNA GIUNZIONE

La realizzazione di una giunzione è molto importante. Infatti, se questa non è realizzata in modo esatto, si perde buona parte delle sue proprietà. La superficie di contatto saldata deve essere sufficiente per procurare un'adeguata resistenza, in modo da stabilire una giunzione efficace e da assicurare una sufficiente conduttività elettrica o termica. I saldatori hanno delle resistenze di superficie basse e le giunzioni devono essere studiate in modo che non vengano sottomesse a sforzi eccessivi.

Come abbiamo già detto, l'alluminio naturalmente si dilata sotto l'effetto del calore e di conseguenza è molto importante prevedere alcuni dispositivi, come, per esempio, molle, pesi o leve, per il fissaggio dell'insieme in modo da permettere alle parti in alluminio di dilatarsi e di comprimersi.

TECNICA DI SALDATURA

1) Saldatore

Per la saldatura dell'alluminio si può usare qualsiasi tipó di saldatore purché la punta sia tenuta alla temperatura raccomandata e abbia una capacità calorifica ade-

guata per portare rapidamente la giunzione alla temperatura voluta. come si è detto sopra. Per fare questo lavoro è necessario usare un saldatore che abbia una capacità calorifica maggiore di quella utile per la saldatura della stessa giunzione composta di altri metalli comuni. Si potrà, per esempio, collegare il saldatore a un trasformatore variabile e ridurre poi la tensione, se necessario, fino a raggiungere la temperatura esatta di funzionamento. Naturalmente, questa temperatura dovrà essere misurata per mezzo di una termocoppia. Nel caso si utilizzasse un saldatore riscaldato a gas, sarà necessario prima di tutto controllare la temperatura della punta in quanto essa è di solito molto calda. A questo proposito potrà essere necessario usare una punta più larga e una temperatura di fiamma più bassa, in modo da ottenere la capacità calorifica necessaria per la saldatura dell'alluminio e la temperatura di funzionamento necessaria per l'ALU-SOL.

Per assicurare il massimo trasferimento di calore la punta del saldatore dovrà essere in precedenza stagnata con del materiale di saldatura ad anima disossidante.

Per realizzare la giunzione, si applica il materiale di saldatura sulla giunzione e si appoggia il saldatore sul lato adiacente o sul lato opposto della giunzione, in modo tale che il disossidante e il materiale di saldatura vengano fusi indirettamente per mezzo delle superfici della giunzione riscaldata.

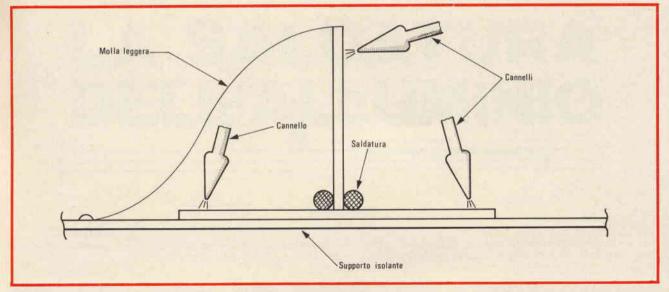


Fig. 2 - Montaggio tipico per la saldatura di una giunzione a T. I cannelli sono mostrati nelle tre posizioni che devono avere per dare un calore uniforme.

Come si vede in fig. 1, sulle giunzioni si potrà applicare direttamente il saldatore.

2) Saldatura con cannello

Per le giunzioni di dimensioni maggiori è necessaria una capacità calorifica più elevata, e quindi si può usare uno o più cannelli. Per evitare il surriscaldamento, è preferibile provare prima le miscele di gas a bassa temperatura. Quando la temperatura della fiamma del cannello è di diverse centinaia di gradi più elevata della temperatura necessaria alla saldatura, la fiamma non deve mai essere diretta sulla saldatura o nelle immediate vicinanze della giunzione.

Al contrario la fiamma va diretta sul metallo di base a una certa distanza dalla giunzione. Quindi le superfici verticali possono essere riscaldate dirigendo la fiamma un poco verso il basso in modo da compensare l'elevazione della fiamma e l'aria calda prodotta, fig. 2.

3) Altri sistemi di saldatura

Naturalmente si possono impiegare con successo degli altri sistemi di riscaldamento, come ad esempio le piastre riscaldanti, i forni, i forni in continua e a induzione con bobine RF, ammesso però che la capacità calorifica sia studiata per l'alluminio e la temperatura sia adatta all'ALU-SOL.

AEREAZIONE

Nella zona di lavoro sarà necessario prevedere una buona ventilazione o una estrazione forzata dell'aria. Benché si suppone che i vapori dell'ALU-SOL non abbiano effetti nocivi, essi sono più caustici di quelli dei disossidanti impiegati per saldare gli altri metalli.

RESIDUO DI DISOSSIDANTE

In tutte le prove effettuate finora si è riscontrato che i residui di disossidante dell'ALU-SOL non sono né corrosivi né conduttori. Sono completamente solubili nell'acqua e quindi si possono eliminare facilmente. Dopo il lavaggio con l'acqua, è consigliabile effettuare una risciacquatura con alcool.

Le prove intraprese sugli zoccoli di lampade saldate con l'ALU-SOL, in condizioni di umidità normale, mostrarono che la resistenza del materiale residuo fra le due superfici saldate non era inferiore a $10~\Omega$, valore quasi uguale a quello che si ottiene con il materiale residuo di una saldatura effettuata con i vecchi sistemi.

Questa prova è molto rigorosa e richiede l'applicazione di una tensione di 500 Vc.c. fra i contatti.

Se il disossidante, prima di essere riscaldato, risulterà carbonizzato e produrrà un residuo nero, sarà necessario effettuare una pulitura supplementare.

SALDATURA DI ALTRI METALLI

Si è potuto riscontrare che l'ALU-SOL può saldare con successo anche altri metalli, come il rame, lo stagno, il nickel e l'acciaio.

RESISTENZA ALLA CORROSIONE

Ricordiamo che le giunzioni di alluminio saldate, come del resto tutte le altre giunzioni, si corrodono quando due o più parti della giunzione vengono in contatto con un elettrolita (per esempio l'acqua). Il processo di corrosione è essenzialmente elettrochimico.

La rapidità della corrosione dipende dalla differenza di tensione che esiste fra i due elementi e dalla composizione dell'elettrolita.

Nel caso che la giunzione non venga esposta all'azione degli elettroliti, non si avrà alcuna corrosione. Se invece viene esposta alle intemperie, la composizione e la posizione della giunzione diventa molto importante. In queste condizioni si è constatato che l'ALU-SOL è più resistente alla corrosione.

Naturalmente si può aumentare in modo considerevole la durata di vita delle giunzioni esposte a condizioni difficili e renderle praticamente eterne, applicando un appropriato protettore oppure rendendole totalmente impermeabili.

la tecnica delle telecomunicazioni

prima parte di Piero SOATI

LA RADIOGONIOMETRIA

impieghi e apparati

on sono pochi coloro che ritengono, a torto, che la radiogoniometria sia utilizzata esclusivamente per scopi di radionavigazione marittima ed aerea. Se è vero che essa è nata, ad opera di tre italiani, con il compito di agevolare la navigazione, oggigiorno il suo impiego si è esteso notevolmente cosicché in pratica abbraccia i seguenti campi di attività:

- 1°) aiuti alla radionavigazione marittima ed aerea per tracciare il punto nave.
- 2°) localizzazione di navi ed aerei che richiedano assistenza oppure per scopi bellici.
- 3°) individuazione e localizzazione di stazioni pirate nelle gamme dei radioamatori, CB o di qualsiasi altro genere.
- 4°) localizzazione della posizione di una stazione radioelettrica che provochi disturbo ad altre emissioni e la cui individuazione non sia possibile con i normali mezzi di ascolto.

5°) localizzazione e individuazione di una sorgente di disturbi radioelettrici alla ricezione di qualsiasi servizio radio (compresa la televisione), causati da apparecchiature ad alta frequenza come apparecchi medicali, forni elettrici, linee elettriche od isolatori difettosi e così via.

Da quanto abbiamo detto risulta evidente l'importanza acquisita dalla radiogoniometria, una specialità su cui i tecnici e gli operatori non sempre hanno una sufficiente preparazione.

Sul principio di funzionamento del radiogoniometro (figura 1) ci siamo intrattenuti più volte tanto su questa rivista quanto su ELETTRONICA OGGI, del resto si tratta di un argomento che è trattato ampiamente nei manuali specializzati dei quali daremo dettagliate informazioni nelle note bibliografiche poste in calce all'articolo. Nostro compito sarà invece dare delle no-

tizie sui sistemi di RDG che sono più in uso.

RILEVAMENTI RDG

Per rendere accessibile a chiunque queste note ammetteremo che le onde em si propaghino secondo l'arco del grande cerchio che unisce la sorgente delle onde em stesse, cioè il trasmettitore, con il posto ricevente. Ciò in effetti avviene per quei rilevamenti che sono effettuati a distanze relativamente brevi. In queste condizioni, se si dispone di un appropriato sistema ricevente (radiogoniometro) mediante il quale, oltre alla direzione dei segnali in arrivo sul piano orizzontale, sia possibile individuare anche il senso (curva ad otto e a cardiode di figura 1) si potrà stabilire il rilevamento della sorgente di em.

Un rilevamento è definito dall'angolo fra la direzione delle onde em ed un'altra direzione che si assume come origine e che ha vertice nell'osservatore. La direzione di origi-

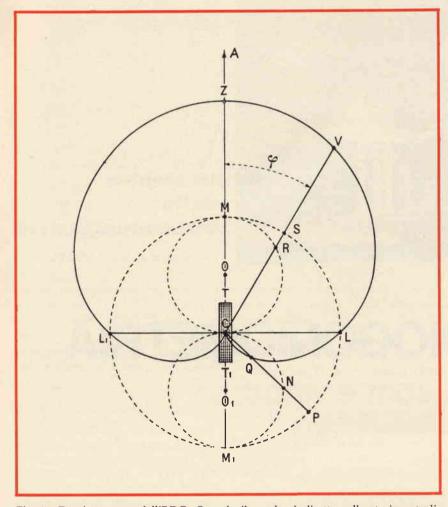


Fig. 1 - Funzionamento dell'RDG. Quando il quadro è diretto sulla stazione taglia il massimo numero di linee di forza e quindi in esso circola la massima intensità di corrente. Per le posizioni intermedie l'intensità diminuisce fino a raggiungere il minimo quando il quadro è in posizione orizzontale rispetto alla stazione. Si forma pertanto la curva ad otto (cerchi di raggio O - M e O' - M'). Se insieme al quadro si usa un'antenna di adatta lunghezza si otterrà invece la curva a cardiode che oltre alla direzione consente di stabilire il «senso».

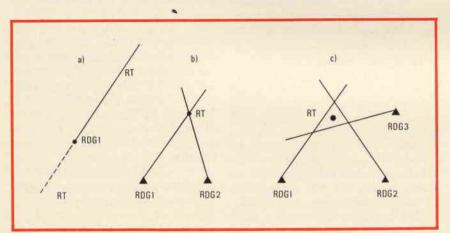


Fig. 2 - Rilevamenti RDG. a= rilevamento eseguito da una sola stazione RDG. Non è possibile stabilire il punto in cui è installata la stazione. b= rilevamenti effettuati da due stazioni RDG. Il punto di incrocio dei due rilevamenti sarà, approssimativamente, quello in cui si trova la stazione. c= rilevamento eseguito da tre stazioni RDG. I punti di incrocio dei tre rilevamenti formano un triangolo entro il quale, salvo notevoli errori, si dovrà trovare la stazione.

ne è generalmente quella del Nord (rilevamento bussola) oppure quella dell'asse longitudinale della nave (rilevamento polare).

Se si dispone di un solo radiogoniometro il rilevamento della stazione risulterà quello indicato in figura 2a, pertanto in queste condizioni non è possibile localizzare il punto sulla carta geografica. Qualora si disponga invece di un altro RDG, installato ad una sensibile distanza dal primo, si otterranno due rilevamenti il cui punto di intersezione, come mostra la figura 2b, in assenza di particolari errori, permetterà di individuare la posizione del trasmettitore; in effetti il punto in cui esso si trova risulterà leggermente spostato a causa degli errori che sono dovuti alla propagazione delle onde em ed a quelli che si introducono nell'esecuzione dei rilevamenti.

Qualora, come illustra la figura 2c, sia possibile eseguire tre rilevamenti mediante l'impiego di tre RDG, sempre posti ad una certa distanza l'uno dall'altro, l'intersezione delle tre linee di rilevamento darà luogo alla formazione di un triangolo (figura 2c). Se tali rilevamenti sono stati effettuati a breve distanza dal trasmettitore si potrà ritenere che quest'ultimo si trovi all'interno della zona delimitata dal triangolo.

Il calcolo risulterà invece più complesso quando esistono delle ragioni per credere che non tutti i rilevamenti siano privi di sensibili errori.

La tabella 1 indica il numero delle intersezioni in funzione del numero di radiogoniometri impiegati.

Nel caso di impiego di un numero di RDG superiore a tre si otterranno anche delle figure aventi una forma diversa da un triangolo ma esse non dovranno essere prese in considerazione.

SISTEMI RDG MAGGIORMENTE IN USO

Apparecchi con antenna a quadro rotante o quadri incrociati

Con l'evolversi delle tecniche costruttive in campo elettronico si è proceduto di pari passo a realizzare delle nuove apparecchiature capaci di fornire un più elevato grado di precisione dei rilevamenti. Ciò particolarmente quando la ricezione sia soggetta a subire quelle alterazioni che sono proprie della propagazione ionosferica e troposferica. Infatti, mentre i rilevamenti a breve distanza sono sempre dovuti al raggio diretto che collega idealmente il trasmettitore con il ricevitore, quelli a distanza più sensibile sono influenzati dalle variazioni dovute alla alterazione degli strati ionosferici.

Il tipo più elementare di radiogoniometro si basa sull'impiego di un quadro (o telaio) rotante oppure di due quadri fissi incrociati

fra loro.

I due quadri sono collegati ad un goniometro secondo il sistema escogitato a suo tempo dagli italiani Tosi e Bellini. Ogni estremità di un quadro fa capo ad una bobina fissa: le due bobine, come i quadri, sono incrociate fra loro, ed immersa nel loro campo può rotare una bobina, che è detta per l'appunto bobina mobile (figura 3), sulla quale è calettato l'indice del goniometro che, opportunamente tarato, indica la posizione in gradi della bobina, cioè il rilevamento.

Il sistema a quadro unico è impiegato a bordo dei mezzi mobili per la ricerca di stazioni CB e dei radioamatori clandestini, mentre il sistema a quadri incrociati è utilizzato vantaggiosamente a bor-

do delle navi.

Se usati a distanze non eccessive i suddetti due sistemi consentono di ottenere dei buoni rilevamenti non essendo influenzati, in queste condizioni, dalla propagazione ionosterica.

La precisione di un radiogoniometro collegato ad un solo quadro dipende essenzialmente dalla polarizzazione e dall'angolo verticale di arrivo delle onde em. I migliori rilevamenti si ottengono quando la ricezione del raggio diretto non è influenzata dall'onda riflessa di terra (figura 4).

Sistema a quadri spaziati

Il sistema di radiogoniometria, noto con il nome di RDG a quadri spaziati, consente di ottenere dei buoni risultati fino a delle distanze di 650 km circa.

TABELLA 1			
Numero RDG N. intersezioni		N. dei triangoli	
2	1	0	
3	3	1	
4	6	4	
n	$\frac{n (n-1)}{2}$	$\frac{n (n-1) (n-2)}{6}$	

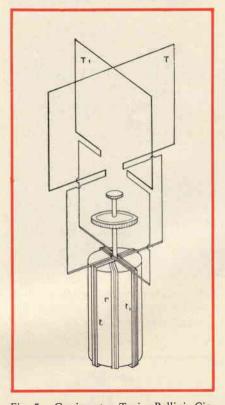


Fig. 3 - Goniometro Tosi - Bellini. Ciascun quadro (o telaio) è collegato ad una bobina fissa. Nel campo delle due bobine fisse, incrociate fra loro come i quadri, ruota la bobina mobile, detta bobina esploratrice.

In questo sistema sono utilizzati due quadri paralleli fra loro, installati, in modo rigido e coassialmente, alle estremità di un braccio orizzontale il quale può ruotare per un angolo di 360°.

Questo sistema talvolta è sostituito, specialmente nelle stazioni radiogoniometriche terrestri, da due quadri verticali in posizione fissa.

In tal caso la linea di alimentazione va ad alimentare, un goniometro del tipo Bellini-Tosi, sul cui funzionamento ci siano intrattenuti nel paragrafo precedente (anche in questo caso ciascun quadro è collegato ad una bobina fissa di modo che la bobina mobile ruota nel campo delle due bobine poste perpendicolarmente l'una all'altra).

In un sistema a quadri spaziati del tipo coassiale gli elementi di ricezione cioè le antenne, sono costituiti da quadri fissi in modo che le rispettive f.e.m. variano con il variare dell'angolo di incidenza delle onde em sul piano verticale.

In tali condizioni il rapporto fra le componenti polarizzate verticalmente e le componenti polarizzate orizzontalmente assume un valore

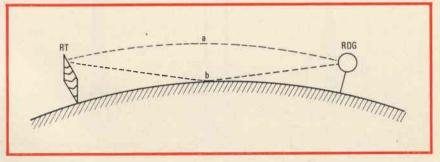


Fig. 4 - Propagazione delle onde em terrestri. a =onda diretta, b =onda di terra riflessa

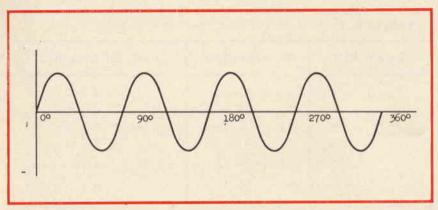


Fig. 5 - Grafico dell'errore ottantale in un angolo giro di 360°. L'errore può avere un valore positivo o negativo.

molto elevato. Essendo i due quadri collegati fra loro in opposizione di fase l'errore totale di polarizzazione è minimo e pertanto, per distanze non oltre i 650 km, questo sistema si dimostra superiore al sistema Adcock di cui parliamo nel prossimo paragrafo.

I migliori risultati si ottengono quando l'angolo di incidenza dell'onda ricevuta nel piano verticale è superiore ai 45°. La sensibilità risulta inferiore di circa 20 dB alla sensibilità propria di un solo quadro rotante avente le stesse dimensioni di uno dei due quadri.

Sistema Adcock

Il sistema di radiogoniometria Adcock è comunemente impiegato per effettuare il rilevamento di stazioni radio a grande distanza; in esso sono utilizzate delle antenne verticali spaziate fra loro di alcune frazioni di lunghezze d'onda mentre il complesso ricevente è collocato al centro dell'insieme delle antenne stesse.

Talvolta le antenne verticali possono essere accoppiate ad elementi rotanti i quali, tramite la linea di alimentazione vanno ad alimentare un sistema goniometro Bellini-Tosi. Con questa disposizione si introduce nei rilevamenti un errore ottantale per quelle frequenze la cui spaziatura, fra i singoli elementi che costituiscono le antenne, è superiore ad un decimo della lunghezza d'onda.

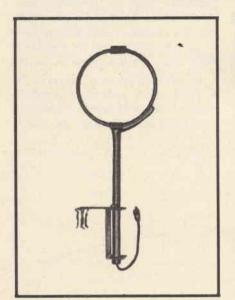


Fig. 6 - Quadro in alluminio per automezzi, gamma 27 MHz, impedenza 52 Ω , reperibile presso la GBC Italiana.

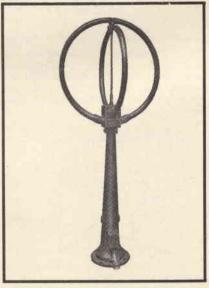


Fig. 7 - Dispositivo a quadri incrociati per RDG di bordo. Al centro è visibile l'antenna retratta per stabilire il «senso».

A questo proposito è altresì opportuno precisare che nei sistemi a bobine induttive (cioè con le bobine fisse collegate ai quadri ed a loro volta accoppiate alla bobina mobile), è sempre presente un certo errore dovuto alla mancanza di uniformità del flusso nelle bobine. Questo errore presenta quattro valori massimali e quattro valori minimali nel giro di 360° e pertanto viene definito errore ottantale. La figura 5 illustra la distribuzione di auesto errore in un sistema RDG Adcock; in genere si tratta di un errore di piccolo valore specialmente se lo scarto fra le antenne è inferiore ad un decimo della lunghezza d'onda mentre può raggiungere il valore di un grado per scarti dell'ordine 1/5.

Nel sistema tipo Adcock ad antenne fisse e rotante questo tipico errore non si manifesta. Da notare che l'errore ottantale è funzione della frequenza e della direzione.

Se un radiogoniometro è installato in prossimità di edifici o di ostacoli naturali od artificiali, oppure a bordo di autoveicoli, può verificarsi anche un errore quadrantale che si manifesta con due valori massimi e due valori minimi su 360°. Esso in certi casi può raggiungere valori notevoli anche di tre e più gradi, che può essere eliminato in sede di taratura.

Qualora il sistema ricevente di un RDG Adcock debba essere installato a due o trecento metri dalle antenne, ed anche più, accettando ovviamente una riduzione della sensibilità, è possibile collegare le antenne stesse al ricevitore mediante una linea a cavo coassiale.

La soluzione migliore consiste però nell'installare il goniometro al centro del sistema di antenne collegando la sua uscita al ricevitore mediante del cavo coassiale. In questo caso il goniometro dovrà essere comandato da un dispositivo di telecomando (selsyn o simile).

Nel sistema Adcock possono essere impiegate delle antenne unipolari connesse a terra oppure dei dipoli in aria.

Teoricamente in un sistema di RDG Adcock non si introducono nei rilevamenti degli errori di polarizzazione se si riesce ad ottenere una simmetrica perfetta fra i sistemi di antenna usati e ad evitare fenomeni di ricezione diretta da parte dei conduttori. E' ovvio comunque che questa soluzione ideale è difficilmente raggiungibile.

Il maggiore inconveniente proprio degli impianti in cui sono usati come antenne degli elementi verticali è dovuto al fatto che la componente verticale dell'onda em ricevuta diminuisce rapidamente quando l'angolo incidente nel piano verticale aumenta. Se questo angolo supera i 45° il sistema Adcock capta un segnale meno intenso per cui si consegue una precisione minore di quella che si ottiene con i sistemi a quadri spaziati. Comunque le onde che provengono da notevole distanza hanno quasi sempre un angolo di incidenza molto basso ed è appunto per questo motivo che il sistema Adcock viene impiegato per rilevamenti di stazioni che si trovano a distanze superiori ai 650 km mentre qualora detta distanza sia inferiore si impiegano i sistemi a quadri spaziati.

Nel prossimo numero daremo qualche notizia sui radiogoniometri il cui funzionamento si basa sull'effetto Doppler e su quelli realizzati da Wullenweber

APPARECCHI USATI IN RDG

La figura 6 si riferisce ad un tipico quadro girevole che può essere applicato tanto a bordo di mezzi mobili, per rilevare ed individuare e localizzare stazioni radio in banda 27 MHz, quanto ad impianti a terra ed in tal caso permette altresì di selezionare meglio l'emittente dalle altre che eventualmente generano delle interferenze, purché si trovino in direzioni sensibilmente differenti. Questo quadro è reperibile anche presso l'organizzazione di vendita della GBC Italiana.

Nella figura 3 è schematizzato il dispositivo goniometrico, noto con il nome Tosi-Bellini, in cui si possono chiaramente individuare le due bobine fisse che sono collegate ai relativi quadri e la bobina mobile, detta bobina esploratrice, che è calettata sullo stesso asse dell'indice goniometrico.

Un sistema a quadri incrociati impiegato comunemente a bordo delle navi è visibile in figura 7.

Fig. 8 - Moderno radiogoniometro tipo Adcock della Telefunken funzionante nella gamma $1.3 \div 25$ MHz.

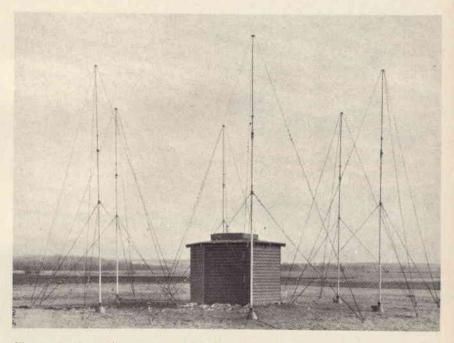


Fig. 9 - Impianto di antenne per il radiogoniometro Adcock illustrato in figura 8.

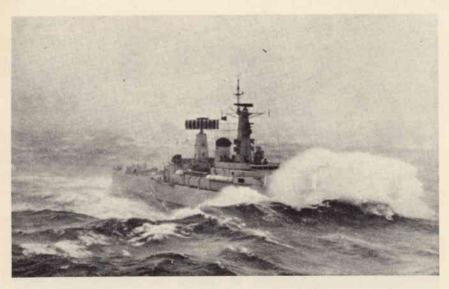


Fig. 10 - Moderna nave da guerra con attrezzature radiogoniometriche e radar della Marconi.

La figura 8 si riferisce ad un apparecchio RDG con sistema Adcock per rilevamenti a grande distanza sulla gamma 1300 ÷ 25000 kHz. Si tratta di un apparecchio

della Telefunken che può essere collegato tanto ad un sistema di sei antenne verticali (figura 9) quanto al doppio sistema di cui abbiamo parlato in precedenza.

Infine la figura 10 si riferisce ad una moderna nave da guerra in navigazione in cui sono chiaramente visibili le installazioni radiogoniometriche e radar, fornite, in questo caso, dalla Marconi.

NOTA BIBLIOGRAFICA

Per coloro che desiderano approfondire le cognizioni nel campo della radiogoniometria, del radar e di altri apparati consigliamo l' acquisto del volume del Com. Montefinale G., I RADIOAIUTI ALLA NAVIGAZIONE AEREA E MA-RITTIMA, edito dalla casa editrice Hoepli e nel quale sono trattati molti altri interessanti argomenti. Fra questi citiamo: la radiogoniometria, radioindicatori e radiogoniometri, radiofari, Decca, Loran, Gee, Radar oltre alla terminologia ingleseitaliana e voci attinenti. Nel prossimo numero daremo altre informazioni relative a pubblicazioni estere.

l'angolo del CB

di Alberto ALLIGATORE

un esempio da imitare: "BREAK"

elle nostre pagine trovano posto ormai da mesi le iniziative più o meno ginniche dei vari clubs; ma questo mese dedichiamo la prima parte ad uno di essi che pur vivendo una sua ben organizzata vita in silenzio, non per questo è meno fattivo di tanti altri: l'Ades di Novara.

Si è sempre dimostrato nelle sue riunioni all'Albergo Cristallo un compatto insieme di persone democratiche e coscienti.

Aderenti alla F.I.R. fino dalle origini non si sono fatti sviare dai retroscena scandalo-politici degli ultimi anni, ma continuano il loro appoggio sotto forma di rappresentanze presso i consigli nazionali. Ad esempio nella riunione di St. Vincent di dieci mesi fa al tavolo della presidenza sedeva tra gli altri l'amica Veleno di Novara. Abbiamo avuto la fortuna di conoscere in verticale alcuni amici e ne abbiamo sempre tratto l'impressione di persone fattive, capaci anche se di carattere tranquillo.

Parliamo di loro, dell'Ades di Novara, perché già da un anno sono artefici di un bimestrale «Break di Novara» forse non stupendo come estetica ma pieno di valori nel suo contenuto. La pubblicazione, riveste un'importanza che va al di là del simbolo cittadino. E' nostra impressione che i CB siano stanchi di giornaletti e giornalini che li han-

scambiati per polli da spolpare e stiano cercando un vero organo proprio che parli di loro, di fianco a loro, non dalla cattedra.

Abbiamo visto che fine hanno fatto certi fogli tanto in auge: limitiamoci a guardare quali sono rimasti per il grande pubblico: CQ Elettronica e noi, cioè mensili di elettronica non statica ma proiettata nel futuro e soprattutto riviste che vivono del proprio senza bisogno di spennare i CB italiani. Ciononostante esiste la necessità di un foglio che parli solo della CB e con problemi reali non politici.

Ecco il perché, siamo certi, di questa edizione novarese. E' gratuita poiché viene sovvenzionata dagli stessi CB o da minime pubblicità ben circoscritte. E' onesto e non ha amori di parte. E' tecnico perché tra i CB molti conoscono l'elettronica, ma soprattutto è umano perché i CB prima di tutto sono persone. A questo proposito riportiamo un brano tratto da uno degli ultimi numeri di «Break».

E' una pagina concisa ma con una diffusa vena poetica di una persona, L. Toniutti, che abbiamo avuto modo di conoscere tempo addietro. Se non avessimo fatto questa premessa si sarebbe portati a pensare, leggendo quanto segue che esso è stato composto da qualche delicato scrittore dell'inizio del secolo.

COM'ERA, COM'E', E...

Non sono stato io il primo C.B. novarese ma uno dei primi. Girando i 23 canali del mio baracchino, mi ritenevo fortunato quando riuscivo a trovare un paio di amici con cui scambiare le solite quattro chiacchiere serali. Non essendovi canali intasati non esistevano, almeno nella nostra zona, i cosiddetti disturbatori. Erano tempi che. posso dire obbiettivamente non mi piacevano, pochi amici ma quasi tutti introvabili per le notevoli difficoltà di incontrarli. Le cause? Molteplici: chilometri, paura di essere scoperti e così via. Poi la C.B. piano piano si allarga, ci si trova più facilmente, sia in frequenza che in verticale. Ma mentre da una parte migliora, qualche piccolo disturbo inizia a fare capolino in frequenza. I C.B. sono in continuo aumento, sino ad arrivare al fenomeno sociale di massa che tutti conosciamo. Bailamme, splutterns, sovramodulazioni si sprecano, ognuno crede di essere dalla parte della ragione e riprende l'altro C.B. come se lui, e solo lui, fosse il padrone assoluto della frequenza, non pensando neppure lontanamente che tutti hanno gli stessi suoi diritti. In questo momento così critico per la C.B., dove una schiera di Amici combatte una dura battaglia per migliorare una legge che

non promette nulla di buono per il nostro avvenire, lasciatemelo dire, cari Amici, ma tutto ciò è nocivo e controproducente.

Vi esorto pertanto affinché tutti collaboriate per rendere meno duro il lavoro a queste persone, cui la C.B. deve molto. Inoltre desidererei che tutti partecipiate ad una vita attiva ai vari Clubs. Questo mio sfogo non vuole essere una paternale, ma un invito di collaborazione a tutti i C.B., affinché coloro che parleranno di noi non abbiano nulla a cui attaccarsi per sparlare della C.B. e dei suoi appartenenti in generale.

Amici vogliamo farci chiamare C.B. oppure C.B.?? A noi tutti la scelta!!! I migliori 73 51 a tutti.

dai clubs

RADIO CLUB GRAND PRIX BARI

Con atto notarile in data 28 settembre scorso, si è costituito in Bari l'Associazione «RADIO CLUB GRAND PRIX», che accoglie ed organizza gli appassionati dell'attività radiantistica.

L'iniziativa colma una lacuna che si lamentava da tempo in una zona, come quella di Bari, nella quale la passione per la radio è vivamente sentita, non solo come hobby dilettantistico per l'impiego del tempo libero, ma anche come attività di pensiero, di estroversione e di contatto sociale sul piano umano e civile.

Il Club, già nelle premesse istituzionali, aveva preannunciato un impegnativo programma di attività e, fedele a tale piano operativo, ha, tra l'altro, promosso una interessantissima gara fra i suoi aderenti.

Esso, infatti, nell'intento di stimolare il contatto umano fra cittadini del mondo contemporaneo dislocati su tutte le latitudini, ha organizzato una competizione valevole per collegamenti da effettuare fra il 6 dicembre 1973 e il 6 gennaio 1974. Il periodo si prestava particolarmente ad una gara del genere: i concorrenti disponevano di tempo utile per le ricetrasmissioni e utilizzando i 27 MHz per un reciproco messaggio di fraternità e di pace nell'atmosfera significativa del tempo natalizio.

Il Comitato Organizzatore ha provveduto alla compilazione delle classifiche con l'attribuzione di un determinato punteggio per collegamenti con località del nostro Paese, con Paesi Europei, con Paesi Extra-Europei: daremo quanto prima i risultati del contest.

L'indirizzo del Club «Grand Prix» è P.O. Box 71 - BARI.

Alcuni componenti del «Radio Club GRAND PRIX» di Bari in occasione della consegna della tessera di socio onorario al noto attore Arnoldo Foà.

R.I.A. - CB GENOVA

L'associazione Radio Italiana Amatori di Genova ha lanciato un appello a tutti i circoli d'Italia affinché collaborino a raccogliere le firme necessarie per una Petizione Nazionale per il rispetto della Costituzione, per una CB libera anche in Italia.

Il testo della Petizione, indirizzata al Presidente della Repubblica, ai Presidenti del Senato e della Camera, e al Presidente del Consiglio, dopo aver citato l'articolo 21 che sancisce il diritto di manifestare liberamente il proprio pensiero con ogni mezzo di diffusione così prosegue:

«Oltre 1 milione e mezzo di CB si battono da anni per vedere riconosciuto il loro diritto. Diritto di poter parlare, discutere e confrontare le proprie opinioni attraverso il Radiotelefono CB, senza per questo arrecare alcun danno alla Nazione.

I CB sempre hanno operato in bene e collaborato con le forze pubbliche, in caso di calamità naturali ed in opere di soccorso, dando il loro disinteressato contributo.

Oggi nonostante ciò i CB si trovano nuovamente di fronte a restrizioni più che mai assurde, ed in netta contraddizione con la Costituzione. Restrizioni sancite con il «Nuovo Codice Postale». Questa petizione è un appello non solo di tutti i CB, ma di tutta la Nazione cosciente e democratica.

I firmatari chiedono che sia consentito loro, di usare liberamente il radiotelefono CB, con i suoi 23 canali e 5 W di potenza (input), fino a ieri sempre usati».

Chi volesse ulteriori informazioni può scrivere direttamente a R.I.A. CB via Robino, 26 R-B - GENOVA.

GRUPPO CB 27 VAL DI CHIANA

Eccoci al «clou» di questo mese: il 1° Carica Batterie, con tombola annessa, d'Italia nel resoconto appassionato di un partecipante.

Si è svolto sabato, 17 novembre, nei locali dell'APOGEO, all'uscita del casello Valdichiana dell'autostrada del sole, su iniziativa del Gruppo CB 27 Valdichiana un «carica-batterie» che può definirsi «favoloso». Ben 416 amici della «Citizen-Band» provenienti dalle vicine città di Firenze, Pisa, Follonica, Grosseto, Siena, Poggibonsi, Arezzo, S. Giovanni Valdarno, Montevarchi, Perugia, Orvieto, Terni, Chiusi, Chianciano ecc. nonché da località più lontane quali Milano, Rimini, Ancona, Pesaro, ecc.

La riunione, organizzata e propagandata sia per invito scritto che in frequenza dall'infaticabile E-SCULAPIO DI VALDICHIANA, ha superato tutte le aspettative della vigilia, mettendo in serie difficoltà l'amico FRA' GINEPRO, proprietario del locale, il quale, dono il trecentesimo arrivo ha cominciato a sudare freddo, disposto a dare «forfait» perché alle prese con il non facile problema della sistemazione degli amici della frequenza che continuavano ad affluire sia con le proprie «barremobili» che addirittura con torpedoni vocianti.

Dopo un primo momento di smarrimento però l'amico FRA' GI-NEPRO si è ripreso e, rimboccatesi letteralmente le maniche, ha requisito persino i tavolini e le poltroncine da giardino sparse nei dintorni del locale riuscendo così a sistemare tutti a tavola. In cucina poi si è aumentata la pressione delle pentole e la velocità delle affettatrici dando modo alla famelica schiera dei CB di soddisfare il proprio robusto appetito.

Quanto al servizio hanno anche collaborato in gran parte gli stessi commensali: abbiamo notato l'amico TIMOTEO, Presidente del Club Radio Etruria di Poggibonsi, l'amico RONDONE Presidente del Club 27 Siena, l'immancabile NO-VELLINO, Presidente del Club «La Chimera» di Arezzo, FABER, valido segretario del nuovo Club 27 Valdarno, coadiuvati dall'amico ZIO TOM con gringhellini vari, ed altri fare la spola fra le cucine ed i tavoli con enormi vassoi di affettati, di crostini e di polenta con salsicce ecc. Molto apprezzato il gesto dei Soci del Gruppo CB 27 Valdichiana che hanno abbandonato i posti già occupati nella sala principale per dar modo di sistermarsi agli amici degli altri Q.T.H.

Al tavolo degli organizzatori, ac-

Ulisse ed Esculapio, aiutati dal vociante Falco 02, hanno condotto una serata divertentissima alla quale hanno partecipato non meno di 400 CB toscani.

canto all'indaffaratissimo amico E-SCULAPIO, brillavano di gioia gli occhiali di ULISSE DI VALDI-CHIANA, Presidente del Club ospitante e la felicità dell'amico FALCO DELLO 02, Socio onorario del club ed animatore della serata con il suo vocione noto a tutti gli amici della frequenza.

Anche se il carica-batterie ha dovuto protrarsi un po' più a lungo del previsto per ovvi inceppi nella distribuzione dei solidi, nessuno ha mostrato di accorgersene. E' stato tutto un intrecciarsi di QSO in 2 metri verticale fra un tavolo e l'altro, allietato dalle gentili modulazioni delle YL ed XYL numerose

in sala ed il tempo è trascorso così veloce da non essere avvertito.

Sono poi comparse le castagne arrosto annaffiate da un formidabile vino di Montepulciano attinto direttamente negli orci dalle damigiane ed ha avuto quindi inizio la 1º TOMBOLA DEI C.B. patrocinata dalla G.B.C., che ha contribuito con l'offerta di magnifici e ricchi premi alla riuscita della serata.

Numerosi gli ambi segnati, già all'uscita del 4° numero, sul tabellone di controllo dipinto dall'amico CERBERO e premiati con numerose confezioni di bocchettoni, poi, fra la «suspense» generale sono arrivati i terni (premiati con antenne

Lo stand GBC rappresentato dal direttore della sede di Arezzo. Molto richiesto il lineare della Amtron UK 370.

Uno degli stand presenti al carica di Cortona: una marea di CB ha dimostrato il suo interessamento ai nuovi apparati Tenko e Sommerkamp. Soprattutto il nuovo modello NASA con 46 canali quarzati è andato a ruba.

Ground Plane) le quaterne (antenne Boomerang in premio) ed infine la cinquina che si è vista assegnare un magnifico Rosmetro-Wattmetro e la Tombola, appannaggio di AQUILA REALE del QTH Chiusi che si è portato a casa un baracchino 5 W a sei canali.

Ottimo il collegamento fra la sala principale e le sale sottostanti esplicato a mezzo «Bouyer», super amplificatore megafonico manovrato dal barbuto FAINA, (gringhellino per modo di dire HI HI vista la sua altezza in verticale) dell'amico ESCULAPIO. Nelle sale sottostanti da segnalare la massiccia partecipazione del Gruppo Flutuante degli amici di Chianciano e Chiusi, quasi al gran completo e capeggiato dal Presidente M 2.

Nel complesso si può dire che è stata una serata «ROGER» al milione per milione. Non sono mancati neanche gli Stands di materiale baracchinistico attrezzati dalla G.B.C. di Arezzo, capeggiata dal gentilissimo titolare Sig. Andrei e dalla Videocomponenti anch'essa di Arezzo.

Dopo l'allegro «bailamme» con QRM a Santiago 7 finalmente — ed erano quasi le due del mattino — i locali dell'APOGEO sono passati in QRT e l'amico FRA' GINE-PRO con la sua XYL hanno potuto chiudere i battenti per andare in 144 orizzontale, un po' querremmati per la stanchezza ma felici anch'essi per l'ottima riuscita della manifestazione.

notizie in breve

Dedichiamo questo mese la rubrica ad alcune lettere.

Solitamente rispondiamo privatamente, soprattutto se la richiesta è particolare, ma quando riteniamo che le risposte possono interessare altri CB la pubblichiamo.

APPLICAZIONI DELL'UK 230

Il primo CB di turno è Giuseppe D.G. via Fatale, 18 - Pozzuoli.

«Gent. Alligatore»,

sono un suo accanito lettore e siccome da qualche tempo sono diventato CB ho comperato un Baracchino Sommerkamp 5 W 6 canali modello TS-737.

Credo che sia uguale al modello citato nella vostra rivista del Maggio 1972 cioè il modello TR 16-M. Nella stessa rivista che ho citato, ho visto un amplificatore di antenna AM-FM Amtron UK 230 e vorrei sapere se questo può essere applicato e se va bene per il mio baracchino...

«Carissimo Giuseppe»,

l'UK 230, come riportato sulle nostre specifiche tecniche, è un'amplificatore d'antenna per ricevitori AM-FM che coprono le frequenze comprese fra 520 kHz÷210 MHz. Quindi per ogni rispettiva gamma di frequenza abbiamo la seguente tabella di amplificazione:

da 520 kHz ÷ 20 MHz = 20 dB da 20 MHz ÷ 100 MHz = 8 dB da 100 MHz ÷ 210 MHz = 3 dB

L'impedenza d'ingresso è di $50 \div 300~\Omega$, e l'impedenza d'uscita è di $50 \div 75~\Omega$: non riteniamo idoneo l'UK 230 per l'uso dei ricetrasmettitori in quanto, in questo caso lei dovrebbe realizzare una commutazione mediante relè di passaggio dalla ricezione alla trasmissione, operazione complicata e non soddisfacente.

Impiegato così come è stato realizzato, al passaggio in trasmissione, l'amplificatore verrebbe automaticamente distrutto.

INDIRIZZI

L'amico Paolo di Mantova, meglio noto dice, come «Sparviero», ci chiede l'indirizzo della sede FIR più vicina alla sua città.

più vicina alla sua città.

La sede FIR è a Milano in via Frua, 19 mentre nella città di Mantova esiste da tempo il CB Club Mantova le cui riunioni avvengono tutti i giovedì in via Sottoportico dei Lattonai 18/B.

Un altro indirizzo ci viene chiesto da un CB di Besano, Osvaldo C.

«Spett. Organizzazione» sono un giovane di 22 anni, mi rivolgo a voi per una piccola chiarificazione in merito all'inserzione «NOTIZIE IN BREVE» trovata sul nº 11 pag. 1586 di «SPERIMENTARE».

L'articoletto riportato riguarda il disco dedicato ai CB; si conclude questo articolo dicendo di indirizzare le richieste del disco a: Proff. MENE' GIULIO via Copernico 11, ma non è precisata la località! Il primo tentativo l'ho fatto a Milano ma mi è tornata indietro la lettera.

Nel caso sia io in errore vi faccio le mie scuse e vi prego, comunque di darmi una chiarificazione in merito.

Effettivamente l'amico di Varese ha ragione, l'indirizzo esatto è via Cagliero, 11 - Milano; per cui preghiamo chi fosse interessato al disco «Ode al Baracchino» di rivolgersi a questo recapito oppure presso una qualunque sede GBC.

un gioiello della COURIER

CENTURION

l Centurion fabbricato dalla ditta americana Courier, è quanto di meglio si possa trovare sul mercato italiano. Si discosta dagli apparati attualmente a catalogo oltre che per l'attrattiva estetica (che troppe volte è ritenuta un elemento base) soprattutto per le sue caratteristiche tecniche.

Nonostante questi pregi è di costo leggermente inferiore agli altri tipi analoghi. Passiamo subito alle caratteristiche tecniche, ricavate come al solito dal manuale originale, e convalidate da prove di laboratorio

ISTRUZIONI

Il Courier mod. Centurion viene fornito completo di microfono, di cavo per alimentazione a 13,8 Vc.c. e per alimentazione a 220 Vc.a. 50 Hz. Per l'alimentazione in corrente continua inserire nell'apposita presa (Power 13,8 Vd.c.), posta sul retro, la spina con cavo d'alimentazione.

Per l'alimentazione mediante rete luce (220 Vc.a. — 50 Hz) è indispensabile inserire sulla spina di cui è munito normalmente un riduttore (GE/1300-00).

FUNZIONAMENTO

Prima di effettuare qualsiasi altra operazione, collegare l'antenna mediante il cavo munito di PL-259

all'apposita presa posta sul retro.

Predisporre il ricetrasmettitore per l'accensione, premendo il pulsante «PWR» e ruotando in posizione «ON» la manopola piccola del commutatore SLEEP.

In queste condizioni inserendo il microfono nella presa «MIC» il ricetrasmettitore è pronto per funzionare. Nel caso si volesse predisporla per l'accensione automatica, ruotare la manopola piccola del commutatore SLEEP in posizione «AUTO». Predisporre l'ora (per l'accensione automatica) ruotando in senso orario la manopola «SET», sino a leggere l'ora desiderata sul quadrante posto alla sinistra dell'orologio. Invece se si vuole ottenere oltre all'accensione automatica anche l'allarme acustico, predisporre il commutatore SLEEP «ALARM».

Il Centurion offre anche l'opportunità di predisporlo per lo spegnimento automatico sino ad un tempo massimo di 60 minuti.

RICEZIONE IN AM

- 1°) Premere il pulsante AM.
- 2°) Ruotare il selettore dei canali (CHANNEL) sino a predisporlo sul canale desiderato.
- 3°) Regolare lo squelch alla soglia ovvero sino a sentire il segnale utile, senza disturbi.

Tirando la manopola per la regolazione dello squelch si dispone del regolatore di toni. Nel caso i disturbi superassero il segnale utile premendo il pulsante «BLK» si inserisce uno speciale circuito antidisturbi. La manopola «RF-GAIN» serve, ruotandola in senso anti orario, ad attenuare segnali troppo forti, quindi migliorare la ricezione.

L'RF-GAIN, agisce soltanto in ricezione. Il commutatore PA-CB. Premendo il pulsante e collegando un altoparlante supplementare alla presa posta sul pannello posteriore con la scritta PA-SPEAKER il Centurion diviene un amplificatore di BF.

RICEZIONE IN SSB

Premere il pulsante con la scritta USB (banda laterale superiore) oppure LSB (banda laterale inferiore, secondo la stazione emittente che stiamo ricevendo).

La manopola con scritta «CLA-RIFIER» provoca uno spostamento dalla frequenza zero di ± 600 Hz. Ciò permette all'operatore di ricevere esattamente isoonda l'altra emittente. La regolazione deve essere effettuata lentamente.

La CLARIFIER agisce soltanto quando il CENTURION è in ricezione.

TRASMISSIONE

Come operare in AM

Premere il pulsante «AM». Dopo

aver acceso il ricetrasmettitore, ed effettuato la scelta del canale preferito, per passare in trasmissione premere il pulsante «PTT» del microfono. Tenere il medesimo ad una distanza di circa 2.5 ÷ 4 cm dalle labbra, parlando con livello di voce normale. Automaticamente si accenderà anche la spia rossa «ON THE AIR». Per operare in SSB basta premere i pulsanti USB oppure LSB.

S/METER

Questo strumento posto vicino all'orologio, indica l'intensità di segnale in ricezione, secondo se il ricetrans è posto in SSB oppure in AM.

Dispone di quattro scale; partendo dal basso:

- 1°) AM-S
- 2°) SSB-S
- 3°) AM-PWR
- 4°) SSB-PEP-PWR

Per la ricezione al momento ci interessano soltanto le prime due. Per l'indicazione dell'intensità del segnale in arrivo in AM dobbiamo leggere la prima scala con la numerazione in basso AM-S. E' graduata dall'uno al nove e sulla linea rossa sino a + 30 dB. Per l' SSB impieghiamo la stessa scala, ma con la numerazione posta sulla parte superiore della linea bianca.

PWR

Indicatore di potenza relativa in trasmissione. Per leggere la potenza d'uscita in AM premere il pulsante PTT del microfono, e leggere sulla seconda scala con la scritta AM-PWR la potenza erogata.

Per la lettura della potenza in SSB-PEP premere il pulsante PTT del microfono, e parlando nel medesimo, con tono di voce normale, si potrà leggere direttamente sulla scala in alto (SSB-PEP-PWR) la potenza erogata.

In questo caso è necessario un piccolo appunto. Quando il ricetrasmettitore opera in SSB, premendo soltanto il pulsante PTT non viene emesa nessuna portante.

xS

UN

(D

cor

ina

さつか

0

mp S

ier

in'e

gli

il p

presi

nı

ossi

ro d

Quindi lo strumento non si sposterà dalla posizione zero. Se ne ! (potranno vedere i picchi di modula- alta zione soltanto parlando nel microfono.

SWR

Lettura sullo strumento «SWR» del rapporto di onde stazionarie. La lettura del ROS è possibile sol- ittr tanto quando il Centurion è predisposto per l'AM.

Operazioni da eseguire per la poss lettura del ROS:

1°) Premere il pulsante «CAL» si- le. tuato sulla parte destra del frontale. 2°) Premere il pulsante «PTT».

3°) Ruotare la manopola «CAL», no sino a porre l'indice dell'SWR fra desc le due tacche rosse con la scritta misu «CAL». La scala inizia con una L' parte bianca e finisce con una par-natu te rossa. E' proprio in mezzo a di si quest'ultima parte rossa che tro-no e viamo la tacca nera con scritta stica «CAL».

Dopo aver effettuato questa ope-princ razione, cioè disporre l'indice su Pe «CAL», bisogna passare nuovamen- l ca te in ricezione e predisporre il com- lia mutatore «CAL» in «OFF».

ven Fatto ciò premere nuovamente li di il pulsante PTT, e sullo strumento li se SWR, senza effettuare nessun'altra cc... operazione si leggerà direttamente enti il rapporto di onde stazionarie. liano

In caso contrario si danneggereb- ione bero i transistori finali di RF.

CARATTERISTICHE TECNICHE

Gamma di frequenze : 26.965 MHz ÷ 27.255 MHz in 23 canali tutti quarzati

Sistemi di emissione : AM (modulazione d'ampiezza) LSB/

USB (SSB)

Tolleranza in frequenza : 0.005% da -30 °C a + 60 °C

Temperatura di lavoro : - 20 °C a + 50 °C

Alimentazione : 220 Vc.a. 50 Hz - 13,8 Vc.c.

Impedenza antenna

Dimensioni : 400 x 295 x 155

Peso : kg. 9,3

RICEVITORE

Sensibilità : SSB = $< 0.15 \mu V \text{ per } 10 \text{ dB S} + \text{N/N}$ Sensibilità : AM = $< 0.25 \mu V \text{ per } 10 \text{ dB S} + \text{N/N}$ Selettività : SSB = \pm 2.1 kHz a 6 dB

Selettività : AM = \pm 3 kHz da 2,5 kHz a 6 dB

Reiezione spurie : > 60 dB

Sensibilità squelch : SSB/AM = regolabile da $0.15 \mu V$ a 500 µV

1° MF : AM/SSB = 7.8 MHz

2° MF : AM/SSB = 455 kHz

Clarifier regolabile : ± 600 Hz Potenza uscita audio : 6 W

Frequenza audio : 400 Hz ÷ 3 kHz a 3 dB

: 80 dB a 10 kHz 780 dB a 20 kHz Reiezione al canale adiacente

TRASMETTITORE

: SSB = 15 W PEPPotenza input Potenza input : AM = 5 WPotenza output : SSB = 10 W PEP: AM = 3.5 WPotenza output

Profondità di modulazione : 100%

: 400 Hz ÷ 3 kHz a 3 dB Responso in frequenza

Soppressione armoniche e spurie : 60 dB

Filtri SSB a cristallo 7,8 kHz 2,1 kHz a 6 dB

5,5 kHz a 60 dB

Impedenza antenna : 50 Ω COTTIENTE TOUTE PAASED
AITE PAASED
TEOCTORIQUE

Wireless World

Elektronik

SCIENCE JOURNAL

JEE
LINKSCHEU

FOOTO DESIGN

FOOTO

rassegna delle riviste estere

a cura di L. BIANCOLI

«SELF-SERVICE» PER CHI POSSIEDE UN IMPIANTO STEREO

a

a .

n

e

a

Γ

a

n e-

-Γ

a-

a

0

(Da «Stereo Buying Guide» - fine 1973)

Chiunque possieda un impianto ad alta fedeltà, specie se di tipo stereo, corre inevitabilmente il pericolo che in na determinata occasione, quando cioè i desidera ottenere dal proprio impiano le migliori prestazioni, queste vengato invece meno a causa di un guasto inprevisto.

Sebbene per ovviare ad un inconvelente del genere occorra logicamente in'esperienza specifica, oltre che una attrezzatura particolare, di cui occorre conoscere dettagliatamente le funzioni, gli interventi che il proprietario dell'impianto può eseguire in simili circostanze possono essere provvidenziali o inutili, a seconda della natura dell'inconveniente.

A questo particolare riguardo, l'articolo che rileviamo sulla Rivista citata fa il punto sui principali guasti che possono verificarsi in analoghe occasioni, e descrive dettagliatamente quali siano le misure che è possibile adottare per tentare di porvi rimedio.

L'inconveniente più grave consiste naturalmente nella mancanza assoluta di suono, nel qual caso i rimedi possono essere abbastanza semplici. La casistica generica è infatti sintetizzata alla figura 1, che, con l'aiuto di numeri compresi tra 1 e 8, esemplifica le circostanze principali.

Per l'esattezza, il numero 1 considera l caso che la spina del cordone di rete ia disinserita dalla presa di corrente; l numero 2 è riferito invece ad una ventuale erronea posizione dei comandi di volume, di accensione, di sinonia, li selezione della sorgente di segnale, cc., il numero 3 è riferito all'eventualità che i collegamenti tra le diverse sortenti di segnale ed i relativi ingressi iano interrotti oppure sistemati in positione difettosa; il numero 4 indica la possibilità che i fusibili presenti sul repro del ricevitore contenente il sintoniz-

zatore, (oppure sul retro dell'amplificatore) siano interrotti per qualsiasi motivo.

Sotto questo aspetto, è bene rammentare che la semplice sostituzione del fusibile non è spesso l'unica soluzione possibile: infatti, un fusibile può interrompersi semplicemente a seguito del passaggio di una corrente di intensità superiore a quella nominale, ma può anche interrompersi a causa di un guasto, come ad esempio un cortocircuito in un condensatore, o per qualsiasi altro motivo più o meno grave.

Quando ciò accade, è chiaro che, se dopo la sostituzione del fusibile, e dopo aver rimesso l'impianto sotto tensione, il fusibile si interrompe di nuovo immediatamente, esiste un guasto di maggiore entità nei confronti del quale occorre intervenire con la maggiore sollecitudine possibile. Se invece dopo la sostituzione del fusibile tutto ritorna normale, è altrettanto chiaro che il difetto è già stato eliminato.

Il numero 5 considera l'eventualità che uno o entrambi i cavi degli altoparlanti siano collegati in modo intermittente, oppure in modo erroneo, o ancora con inversione della fase tra un canale e l'altro. Il numero 6 è riferito al giradischi, nei confronti del quale si possono verificare guasti di varia natura: i più semplici tra essi sono la puntina consumata, la presenza di tracce di sporcizia che dànno adito a distorsioni, ecc. Oltre a ciò, può essere inadeguata la pressione che la puntina esercita sul

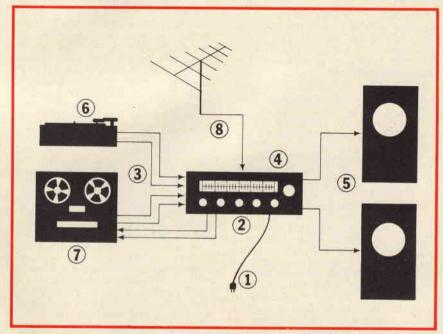


Fig. 1 - I numeri riprodotti in questo disegno identificano nel modo descritto nel testo i vari punti nei confronti dei quali è opportuno eseguire dei controlli, prima di rivolgersi al tecnico in caso di cattivo funzionamento di un impianto stereo.

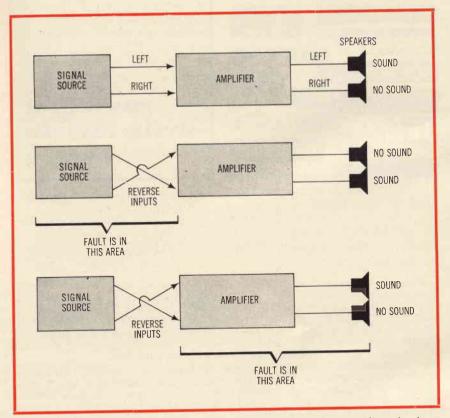


Fig. 2 - Metodo per isolare l'inconveniente in una determinata parte di un impianto nei casi in cui un solo canale funziona in modo corretto, mentre l'altro risulta del tutto inefficiente.

disco, nel qual caso si verificano fenomeni di irregolarità nella velocità di rotazione, slittamento della puntina con passaggio improvviso da un solco a quelli adiacenti, ecc.

Il numero 7 è invece riferito ad un eventuale difettoso funzionamento da parte del registratore, che può essere dovuto alla presenza di tracce di sporcizia sulle testine, od erronea regolazione dei comandi, ecc.

Il numero 8 — infine — è riferito alle eventuali difficoltà di ricezione delle emittenti a modulazione di ampiezza o di frequenza. Esso si riferisce infatti all'antenna, che può essere crollata sul tetto a causa di invecchiamento, di sforzi di torsione o di flessione dovuta al vento, ecc., per non citare l'eventualità che il cavo sia interrotto, mal collegato, ecc.

Dopo aver descritto quali sono gli interventi principali che è possibile tradurre in pratica per cercare di eliminare il guasto riscontrato, viene considerato il caso in cui il suono manchi in un unico canale: in questa circostanza, è necessario in primo luogo controllare la posizione del controllo di bilanciamento, che può essere ruotato completamente in una direzione o nell'altra. Se ciò non permette di risolvere il problema, è naturalmente necessario controllare tutti i collegamenti, i fusibili, gli eventuali teleruttori, ecc., come è già stato accennato.

Un altro provvedimento opportuno consiste nell'invertire fra loro gli spinotti di ingresso relativi ai due canali. Questa prova permette di stabilire se il guasto risiede nella sorgente del segnale, oppure nell'amplificatore.

Un'altra eventualità è quella della riproduzione scadente: supponiamo infatti che l'ascolto sia possibile con un forte peggioramento degli acuti rispetto al funzionamento normale riscontrato in precedenza. In tal caso è necessario in primo luogo controllare la posizione dei controlli di tono, verificare le condizioni della testina, con particolare riguardo alla puntina di lettura, nel senso che la sua eventuale flessione potrebbe avere determinato un inadeguato orientamento all'interno del solco, che dà appunto una riproduzione scadente delle frequenze acute.

In alcuni impianti moderni e di una certa complessità, le unità di riproduzione delle frequenze acute («tweeter») sono sottoposte alla regolazione da parte di un apposito controllo, che può essere stato inavvertitamente spostato su di una posizione inadatta. In altri casi, la stessa unità di riproduzione degli acuti può essersi guastata, a seguito della riproduzione di suoni di intensità di potenza superiore a quella nominale.

Un'altra circostanza ancora consiste nella normale riproduzione degli acuti, ma con una eccessiva riproduzione dei suoni gravi, che determinano uno sgra-

devole effetto di rimbombo. Anche in questo caso la prima cosa da fare consiste nel verificare la posizione dei controlli delle note basse, facenti parti dell'amplificatore.

Altrettanto dicasi se le frequenze basse sono in parte o totalmente assenti: si rammenti sotto tale aspetto che l'orecchio umano percepisce tanto meno le frequenze gravi quanto più il volume di ascolto è ridotto: di conseguenza, affinché un contrabbasso o le note basse di un organo possano essere udite nel loro pieno volume, è indispensabile un minimo volume di ascolto, compatibilmente con il tipo di musica che si ascolta, col volume del locale, ecc.

La figura 2 è una rappresentazione schematica di un impianto ad alta fedeltà, che chiarisce come sia possibile isolare l'inconveniente, identificandone la parte dell'impianto responsabile, nei casi in cui un solo canale produce suoni normali, mentre l'altro risulta completamente inattivo.

Gli ultimi due paragrafi chiariscono quali possono essere le cause principali della presenza di rumore di fondo, e gli eventuali inconvenienti che possono essere riscontrati nei confronti della ricezione radio a modulazione di frequenza, precisandone naturalmente quali sono gli eventuali rimedi che è possibile tentare prima di ricorrere al tecnico.

RIVELAZIONE, MISURA ED ANALISI DELLE VIBRAZIONI MECCANICHE (Da «L'Electricité électronique Moderne» - 8-9-1973)

La sensibilità di un captatore nei confronti delle vibrazioni meccaniche deve essere la minima possibile: questa è almeno l'introduzione di una puntata di una serie di articoli con la quale la Rivista francese analizza dettagliatamente il vasto argomento evidenziato nel titolo.

Esso — tuttavia — non può essere sempre insensibile alle variazioni di temperatura, al rumore acustico, all'umidità, ai campi magnetici, né alle eventuali deformazioni della sua struttura. I suoi limiti — in altre parole — devono essere ben noti, per poterne fare l'uso più adeguato.

I materiali piezoelettrici sono sensibili alla temperatura, ed il loro impiego deve quindi essere limitato a determinate gamme termiche.

Se la temperatura dell'accelerometro piezoelettrico oltrepassa il relativo limite, l'elemento perde una parte della sua polarizzazione: inoltre, la sensibilità del captatore diminuisce, tanto che, in corrispondenza del punto di Curie, la polarizzazione scompare completamente, ed il captatore viene irrimediabilmente distrutto.

Quando la base di un accelerometro montata su di una struttura, subisce de gli sforzi meccanici e si deforma, l'ele mento piezoelettrico, se subisce i mede simi sforzi, produce un segnale elettrico In genere, la base dei captatori viene realizzata con un materiale rigido di grande spessore, proprio per evitare simili inconvenienti

Per quanto riguarda la sensibilità acustica, occorre precisare che i materiali piezoelettrici sono sensibili alle vibrazioni dovute alle variazioni di pressione dell'aria. Essi vengono infatti usati per la costruzione di microfoni, e questo è il motivo principale per il quale è necessaria una costruzione meccanica molto curata, rigida, che renda praticamente il captatore esente da tali difetti.

Sotto questo aspetto particolare, la figura 3 rappresenta in sezione un captatore piezoelettrico, e mette in evidenza in a) l'effetto di compressione periferica, in b) la compressione in senso assiale, in c) la compressione in senso assiale, in c) la compressione in senso assiale inversa, ed in d) il fenomeno di taglio. In questa figura, R rappresenta la molla di pressione, M rappresenta la massa, P identifica l'elemento piezoelettrico, B la base e C il cavo di collegamento.

Nei confronti degli accelerometri, il modo di fissaggio del captatore al di sopra della struttura svolge un ruolo essenziale: in effetti, per l'esecuzione di misure corrette, l'accelerometro deve essere reso rigorosamente solidale con la struttura per l'intera gamma delle frequenze di funzionamento.

In caso contrario, il sistema di fissaggio, che deve collegare la base dell'accelerometro alla massa del pezzo sotto prova, si comporta come una molla, e come un ammortizzatore. Esso presenta quindi una frequenza di risonanza tipica, che deve essere sistemata al di fuori della gamma utile.

Come si può osservare alla figura 4 che riproduciamo dall'articolo, esistono diversi modi di fissaggio degli accelerometri. I principali consistono nel fissaggio mediante un perno di acciaio, nel fissaggio mediante un supporto isolato, nella sistemazione con l'aiuto di un magnete, per mezzo di un materiale collante, oppure nel fissaggio su di una punta di contatto tenuta a mano, o mediante cera.

Particolare riguardo viene dato al metodo di applicazione dei cavi di collegamento, che devono essere sistemati in modo da consentire un funzionamento stabile, senza cioè fenomeni di intermittenza, ed evitando anche la possibilità che ai segnali provenienti dal captatore si aggiungano segnali parassiti esterni, dovuti a campi elettrostatici o elettromagnetici.

Un intero paragrafo viene inoltre dedicato ai preamplificatori: il preamplificatore che segue un accelerometro piezoelettrico è indispensabile per due motivi fondamentali:

- In primo luogo, esso serve per adattare l'impedenza di uscita del captatore, generalmente molto elevata, alla bassa impedenza di ingresso dei circuiti di misura.
- Esso amplifica inoltre, ed a volte integra, il segnale molto debole fornito dall'accelerometro.

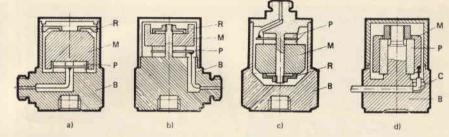


Fig. 3 - Veduta in sezione di quattro diversi metodi di realizzazione degli accelerometri. In a) è illustrato il sistema a compressione periferica; in b) il metodo a compressione assiale, che corrisponde al metodo di compressione assiale inversa visibile in c). In d) è invece rappresentato il metodo detto «a taglio».

Il preamplificatore può essere sia del tipo ad amplificazione di tensione, sia del tipo ad amplificazione di carica. In effetti, l'accelerometro piezoelettrico si presenta come una capacità provvista di un generatore di cariche. Di conseguenza, il complesso costituito dal captatore e dal preamplificatore può essere semplicemente schematizzato.

Per quanto riguarda poi l'analisi delle vibrazioni, l'intero paragrafo è riferito ai grafici che riproduciamo alla figura 5. Questi grafici rappresentano infatti altrettanti esempi di decomposizione di segnali, in base alla ben nota serie di Fourier. A sinistra è infatti rappresentata la forma d'onda complessa dei segnali rilevati attraverso l'accelerometro, e a destra è rappresentata la percentuale che viene riscontrata agli effetti del rapporto tra l'ampiezza del segnale alla frequenza fondamentale, e l'ampiezza dei segnali sovrapposti, costituiti dalle armoniche, o dai segnali interferenti.

Osservando questi grafici, è facile riscontrare nel primo caso illustrato in alto i rapporti di ampiezza che sussistono tra la frequenza principale f₁ e le frequenze parassite, che costituiscono il complesso f₂. Nel secondo caso illustrato, procedendo verso il basso, è chiaro che l'unico segnale rappresentato nel sistema cartesiano di destra denuncia appunto la presenza di un solo segnale, avente una forma perfettamente sinusoidale.

Il terzo caso illustrato è riferito ad una tipica distorsione armonica, e mette in evidenza, a destra, le reciproche relazioni di proporzione. L'ultimo caso — infine — è riferito ad un segnale di tipo rettangolare, notoriamente ricco di armoniche di ordine dispari.

L'articolo viene infine concluso con alcuni interessanti esempi numerici, e con la descrizione del complesso di misura attraverso il quale viene notevolmente facilitata l'analisi delle vibrazioni. La descrizione di uno spettrogramma tipico, ottenuto con un complesso di questo genere, chiarisce un esempio riferito all'analisi di un segnale attraverso un filtro a variazione di frequenza nota.

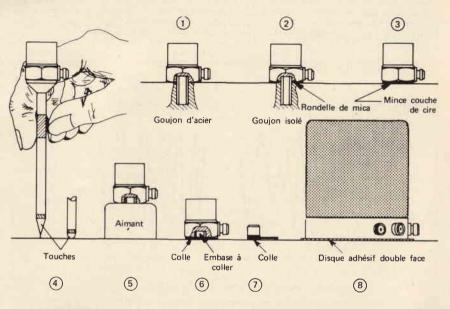


Fig. 4 - I disegni numerati da 1 a 8 rappresentano altrettanti metodi di fissaggio degli accelerometri.

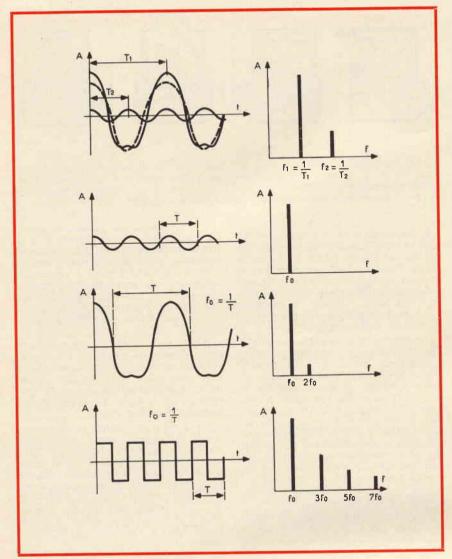


Fig. 5 - Esempi di decomposizione dei segnali in base alla ben nota serie Fourier: per ciascun caso, a sinistra è riprodotta la forma d'onda dei segnali, e a destra sono illustrate graficamente le relazioni percentuali che sussistono tra il segnale fondamentale ed i segnali parassiti, o comunque sovrapposti al primo.

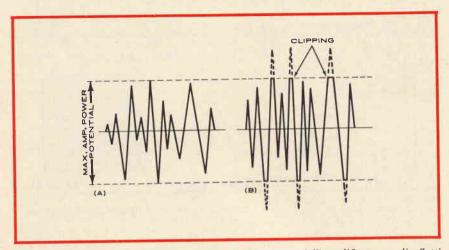


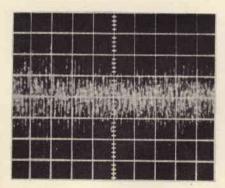
Fig. 6 - Relazioni che sussistono tra la massima potenza dell'amplificatore agli effetti dello sviluppo musicale di un segnale (A), e la forma d'onda dei segnali riprodotti, quando la loro ampiezza supera il punto di limitazione (B).

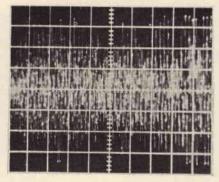
LE ESIGENZE DI ECCITAZIONE DEGLI ALTOPARLANTI

(Da «Stereo Review» - 9/1973)

In linea di massima, il tecnico elettronico che progetta impianti di amplificazione fa uso sia delle prove di laboratorio, sia delle prove pratiche di ascolto, per definire le relazioni critiche che sussistono tra le prestazioni di un amplificatore, il rendimento di un altoparlante, ed il livello preferibile di ascolto.

Per quanto riguarda gli amplificatori aventi una potenza di uscita di 60 W o ancora maggiore per canale, i modelli recentemente introdotti sul mercato hanno riscontrato un'accoglienza uniformemente favorevole da parte della stampa tecnica. Infatti, come tutti sanno, la potenza nominale di un impianto ad alta fedeltà deve essere notevolmente maggiore di quella necessaria, allo scopo di rendere ulteriormente basso il fattore di distorsione, nonostante l'elevato livello qualitativo delle diverse unità.


Quanto sopra si basa sul principio che, se la massima distorsione nominale di un impianto corrisponde ad esempio all'1%, in riferimento alla massima potenza nominale di uscita, tale distorsione risulta ulteriormente ridotta se il livello di ascolto corrisponde approssimativamente alla terza parte della massima potenza nominale.


Una volta che questo principio fondamentale sia stato accettato, sorge spontaneamente una interessante considerazione: se si dispone di un amplificatore avente ad esempio una potenza nominale di uscita di 60 W, quale dovrà essere la potenza nominale effettiva e ideale degli altoparlanti, per poter sfruttare nel modo migliore le prestazioni dell'impianto di amplificazione?

Se le unità di riproduzione presentano la stessa potenza nominale o addirittura una potenza maggiore, sussistono ovviamente le condizioni ideali. Tuttavia, se questa scelta comporta il vantaggio di poter raggiungere la massima potenza senza ottenere effetti di distorsione da parte dei trasduttori, la scelta comporta anche però lo svantaggio di un ingombro e di un costo da parte dell'altoparlante o degli altoparlanti che può a volte costituire una certa difficoltà.

D'altro canto, se la potenza nominale delle unità di riproduzione è notevolmente inferiore a quella dell'amplificatore, si corre il rischio che, provocando un livello di riproduzione eccessivo in determinate circostanze, la qualità di ascolto risulti fortemente peggiorata a causa degli inevitabili fenomeni di distorsione, col pericolo supplementare di danneggiare i trasduttori, compromettendone la struttura della bobina mobile, del cono, ecc.

Il grafico di figura 6 chiarisce questo importante principio. I picchi di intensità dei segnali musicali visibili in A raggiungono in questo caso il punto di limitazione degli amplificatori, che corrisponde alla regolazione dei controlli al punto «A».

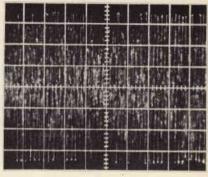
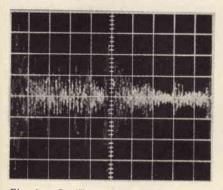
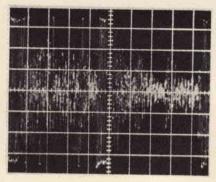




Fig. 7 - Tre oscillogrammi relativi alle deformazioni che vengono riscontrate nel suono di un pianoforte a seconda che il loro livello corrisponda, superi o eguagli la potenza nominale dell'amplificatore.

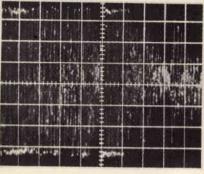


Fig. 8 - Oscillogrammi riferiti ad un suono ottenuto con l'archetto su di uno strumento a corda. Il suono riprodotto in «A» è di 3 dB inferiore a quello riprodotto in «B». Nel caso illustrato in «C» l'ampiezza viene ulteriormente aumentata di 1,5 dB, con la conseguenza di una distorsione che può essere chiaramente percepita ad orecchio.

In B, il medesimo segnale risulta amplificato oltre il punto di limitazione. Sebbene il livello assoluto dei picchi non possa superare quello riprodotto in A, il livello globale medio del segnale è più elevato, per cui l'orecchio percepisce in effetti un segnale di maggiore intensità. Il picco di limitazione rappresentato in B non viene probabilmente neppure avvertito.

Sotto questo aspetto, è necessaria una importante precisazione: i giudizi soggettivi relativi agli aumenti di intensità di un suono rispetto alle differenze oggettive del livello sonoro variano col variare del contenuto di frequenza del segnale, col variare dei valori assoluti della pressione sonora, col variare delle condizioni di prova, e col variare anche della sensibilità individuale. E' quindi necessario tener sempre presente che qualsiasi discussione può essere svolta soltanto in funzione di condizioni medie.

Alcuni esempi tipici sono riprodotti nelle tre serie di fotogrammi rilevati su riproduzioni oscilloscopiche di suoni tipici, di cui alle figure 7 e 8. Nei confronti dell'oscillogramma A di figura 7, si vede che la forma d'onda oscilloscopica denota praticamente le caratteristiche del suono prodotto per un secondo da un pianoforte, con un livello appena inferiore alla punta di limitazione dell'amplificatore. In questo oscillogramma, ciascuna divisione verticale rap-

presenta un'ampiezza di 10 V, in riferimento all'uscita massima dell'amplificatore di 76,5 W, con un altoparlante avente un'impedenza di 8 Ω .

Nell'oscillogramma B, la regolazione del comando (e quindi la potenza media di uscita) è superiore di 5 dB, per cui è possibile rilevare un certo effetto di limitazione. Nell'oscillogramma C — infine — il volume è stato aumentato di 7 dB, per cui l'effetto di limitazione può essere udito in modo abbastanza chiaro e pronunciato.

Nella seconda serie di oscillogrammi di figura 8, le immagini riproducono i suoni derivanti da corde suonate con archetto, per cui l'orecchio dell'ascoltatore percepisce un effetto di volume notevolmente maggiore, con qualsiasi posizione dei comandi. Infatti, il suono riprodotto in A è di 3 dB meno intenso del suono la cui forma d'onda è riprodotta in B.

Nonostante l'effetto visibile di limitazione, la distorsione non era però apprezzabile. Con il controllo di volume predisposto in modo da ottenere l'oscillogramma riprodotto in C, corrispondente ad un livello maggiore di 1,5 dB rispetto all'oscillogramma B, la distorsione può essere percepita distintamente dall'orecchio dell'ascoltatore.

In sostanza, l'articolo compie un'analisi teorica abbastanza approfondita dei fenomeni che possono essere riscontrati quando non esiste la corrispondenza ideale tra la potenza nominale dell'amplificatore e la potenza nominale degli altoparlanti, per cui la sua lettura può essere di grande aiuto per chi si occupa dell'installazione di impianti di amplificazione.

COSTRUZIONI DI APPARECCHI ELETTRONICI PER PRINCIPIANTI

(Da «Radio télévision pratique» 27-9/1973)

Il montaggio secondo la tecnica moderna di un'apparecchiatura elettronica, semplice o complessa che sia, esige, tranne rare eccezioni, l'impiego, come supporto principale dei componenti, di basette a circuiti stampati.

Questo procedimento evita al costruttore, dilettante o professionista, il cablaggio della maggior parte dei collegamenti, il che comporta il vantaggio supplementare di diminuire la durata del lavoro di allestimento, di ridurre i rischi di errori o di saldature difettose, e di permettere anche riproduzioni dell'apparecchiatura in più esemplari, ciascuno dei quali presenterà le medesime caratteristiche fisiche degli altri.

Attualmente, la realizzazione di un circuito stampato è però interessante anche se si tratta di un unico esemplare.

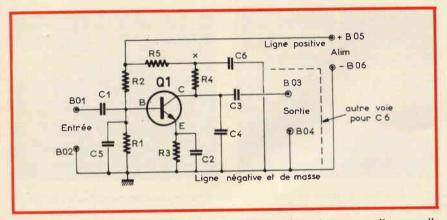


Fig. 9 - Esempio di amplificatore ad un solo stadio, che può essere realizzato nella versione a circuito stampato.

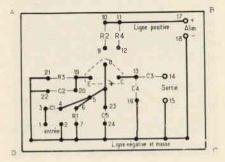


Fig. 10 - Prima fase dello studio del circuito stampato mediante il quale è possibile allestire su di una semplice basetta il circuito di figura 9.

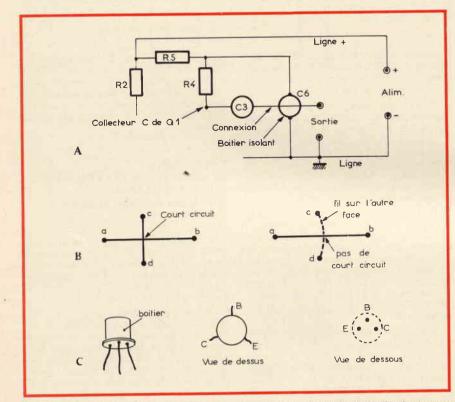


Fig. 11 - Questi disegni rappresentano tre diverse circostanze che è facile riscontrare nello studio di un circuito stampato. In «A» il caso di un collegamento che attraversa il corpo di un condensatore; in B è illustrato il metodo col quale si può evitare un incrocio tra due connessioni che devono essere tra loro isolate, mentre «C» rappresenta ciò che accade nei confronti di un transistore, che deve essere considerato capovolto per determinarne i collegamenti su circuito stampato.

Un esempio che viene fatto nell'articolo è quello relativo al circuito di figura 9. Si tratta di un semplice amplificatore ad un unico stadio, che comporta un solo transistore, cinque resistori e sei condensatori, con l'aggiunta di un totale di sei terminali di raccordo ai componenti esterni, di cui due di ingresso, due di uscita, e due per l'alimentazione.

Per realizzare un semplice circuito di questo tipo sarebbe naturalmente possibile usufruire di una semplice basetta isolante, studiare su di essa la posizione dei diversi componenti, praticare dei fori per il loro ancoraggio, e saldarne i terminali tra loro, evitando naturalmente cortocircuiti, inversioni di polarità, ecc.

Tuttavia, volendo realizzare un circuito stampato, sia per semplificarne la costruzione, sia per consentirne l'eventuale riproduzione in determinati quantitativi, è possibile ricorrere ad una particolare disposizione, con la quale i collegamenti sono possibili nel modo illustrato alla figura 10.

Confrontando questa seconda figura con lo schema elettrico di figura 9, è possibile notare come il collegamento facente capo al polo negativo dell'alimentazione parte dal terminale numero 18, e segue due lati e mezzo dell'intera basetta, in modo da rendere disponibile questo collegamento in tutti i punti necessari, senza attraversare il circuito. Analogamente, dal terminale numero 17 parte un breve collegamento, facente capo agli ancoraggi numerati 10 e 11, ai quali vengono collegati i resistori R2 ed R4, che sono gli unici attraverso i quali vengono distribuite le correnti provenienti dal lato positivo dell'alimentazione.

Durante lo sviluppo del circuito stampato, naturalmente, i collegamenti presenti tra i terminali superiori di R2 ed R4 dovranno poi essere invertiti tra loro, ed interrotti nella parte superiore, per consentire l'aggiunta del resistore R5 di disaccoppiamento.

Un altro particolare interessante della figura 10 risiede nel fatto che i vari collegamenti facenti capo all'emettitore, alla base ed al collettore dello stadio Q1 sono stati sistemati in modo tale da non incrociarsi tra loro, il che costituisce la massima garanzia nei confronti degli accoppiamenti parassiti, dei fenomeni di instabilità, e degli errori di collegamento.

Per quanto riguarda la tecnica realizzativa di un circuito stampato, almeno durante la fase di studio, le sezioni A, B e C di figura 11 rappresentano alcune delle diverse possibilità che accade di riscontrare in pratica. In A viene chiarita la tecnica di progettazione agli effetti di un collegamento di un condensatore che viene a trovarsi a cavallo del terminale di uscita. In B viene evidenziato a sinistra un caso tipico di incrocio tra due collegamenti, con cortocircuito, e a destra il metodo col quale è possibile ottenere la connessione evitando il cortocircuito, facendo cioè in modo che uno dei collegamenti perpendicolari tra

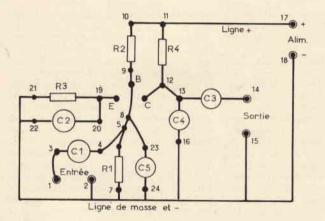


Fig. 12-A - Altra fase della progettazione del circuito stampato relativo allo schema di figura 9. In questa fase vengono precisate le posizioni dei diversi componenti.

| Solant | S

Fig. 12-B - Distribuzione delle zone di rame sulla basetta a circuiti stampati relativo sempre al medesimo tipo di schema elettrico.

loro venga realizzato sia mediante un ponte costituito da un conduttore isolato, sia effettuando il collegamento dal lato opposto della basetta.

La sezione C di questa figura — infine — precisa la natura di uno dei principali errori nei quali incorre il dilettante che si cimenta per la prima volta nella progettazione di un circuito stampato. A sinistra è rappresentata la struttura di un transistore, provvisto naturalmente di tre terminali. Al centro questo transistore viene rappresentato visto dall'alto, nel qual caso, orientando verso la parte superiore il terminale di base, il collettore risulta a sinistra, mentre l'emettitore risulta a destra.

Agli effetti della progettazione del circuito stampato, dal momento che i collegamenti si trovano dal lato opposto a quello recante i componenti, il transistore deve invece essere visto dal di sotto, nel qual caso le posizioni reciproche dell'emettitore e del collettore si invertono, fermo restando invece l'orientamento del terminale che fa capo alla base, come si nota a destra nella figura.

La figura 12-A rappresenta un'altra fase dell'elaborazione del circuito stampato, e chiarisce come vengono sistemati i componenti rispetto ai diversi punti di ancoraggio. La sezione B della stessa figura 12 rappresenta invece la basetta a circuito stampato, vista dal lato rame, e fornisce un'idea abbastanza realistica del fatto che il rame non deve restare sulla basetta, dopo il procedimento chimico di incisione, che per le sole connessioni necessarie, e che in alcuni casi, soprattutto nei confronti delle connessioni comuni facenti capo a massa, esse possono occupare una superficie molto maggiore di quella effettivamente necessaria.

L'articolo continua poi con alcuni esempi della tecnica di installazione dei componenti sulla basetta, e precisa alcuni accorgimenti particolari relativi al montaggio di transistori bipolari nei circuiti di bassa frequenza, ed alle relative verifiche con le quali è possibile accertare l'esattezza dei circuiti rispetto allo schema.

UN MISCELATORE-COMPRESSORE PER CIRCUITI DI BASSA FREQUENZA (Da «Radio Plans» - 9/1973)

In numerose applicazioni, si riscontra la necessità di allestire un apparecchio elettronico che svolge una delle due se-

guenti funzioni:

 Miscelazione, senza espansione sonora

 Miscelazione con compressione sonora, con espansione o soltanto con compressione.

L'espansione viene generalmente richiesta quando il segnale ha subito una precedente compressione, e viceversa.

Di conseguenza, in caso di radiodiffusione di musica, e persino di voce parlata, si procede spesso ad una compressione allo scopo di non sovramodulare gli stadi ad alta frequenza del trasmettitore durante i passaggi forti.

Durante la fase di ricezione, è possibile auspicare la ricostituzione della dinamica soppressa o ridotta; questa è appunto la funzione svolta dall'espanso-

Vediamo comunque di definire meglio i termini di compressione e di espansione. Supponiamo di disporre di un passaggio musicale per il quale il livello della potenza di uscita varia da «x» decibel a «x + y» decibel. Si avrà una certa compressione se si riduce la variazione di «y».

Ad esempio per i passaggi «pianissimo», la media del segnale di uscita è normalmente di 20 dB. Quando invece si verificano dei passaggi in «fortissimo», il livello aumenta di 60 dB. Si ottiene quindi una compressione se l'aumento di livello è più debole, ad esempio di 40 dB anziché di 60 dB.

In tal caso è utile che la compressione, così come l'espansione, siano manualmente regolabili.

Ricevendo poi la trasmissione in compressione sonora, l'utente dovrà evidentemente compensarla con un'espansione, che dovrà essere regolabile per tener conto delle seguenti considerazioni:

- I gusti dell'ascoltatore

- Le possibilità dell'apparecchio

- La rumorosità ambientale

In un ambiente nel quale sussista una certa rumorosità, come ad esempio un locale pubblico, un caffè, un ristorante, o un salone nel quale si trovino parecchie persone, è opportuno non aggiungere alcuna espansione, ma al contrario una certa compressione, per offrire agli

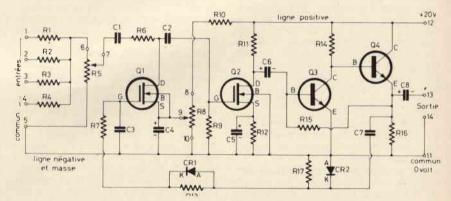


Fig. 13 - Schema elettrico dettagliato del miscelatore-compressore per circuiti di bassa frequenza.

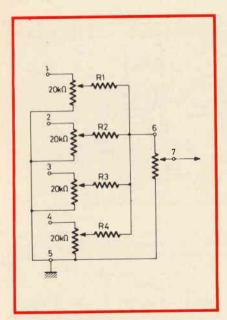


Fig. 14 - Modifica che è possibile apportare allo schema elettrico di figura 13, per aggiungere la possibilità di dosaggio individuale dei segnali provenienti dalle quattro diverse sorgenti.

ascoltatori un sottofondo musicale di livello pressoché costante.

La medesima cosa può essere affermata nelle applicazioni nelle quali la musica accompagna un'immagine televisiva o cinematografica, oppure la proiezione di diapositive.

Ciò premesso, l'apparecchio che viene descritto nell'articolo permette in pari modo la compressione e la miscelazione dei segnali provenienti da diverse sorgenti. Il dispositivo di miscelazione è inoltre talmente semplice, che può essere sviluppato, ridotto, oppure soppresso.

Lo schema elettrico è rappresentato alla figura 13. La parte miscelatrice è a quattro ingressi, numerati appunto da 1 a 4 e può essere, come si è detto, ridotta o aumentata. In caso di soppressione di questa sezione, il segnale di ingresso dovrà essere applicato invece al punto contrassegnato col numero 6.

Le sorgenti di segnale potranno essere collegate a qualsiasi terminale di ingresso, mentre il polo di ritorno dovrà naturalmente far capo a massa. Anche in condizioni di riposo, è possibile lasciare tutte le sorgenti collegate, come ad esempio un giradischi al terminale 1, un sintonizzatore al terminale 2, un microfono al terminale 3 ed un magnetofono al terminale 4, e così via.

Va da sé che i livelli dei segnali forniti dalle diverse sorgenti dovranno essere di valore pressoché uguale, ad eccezione di casi speciali.

La miscelazione viene effettuata mediante il potenziometro R5, che provvede al dosaggio del segnale miscelato da questo stesso componente.

Tramite C1, R6 e C2, il segnale da elaborare viene trasmesso all'elettrodo

di ingresso, G, di Q2 (e non di Q1). Questo elettrodo svolge la funzione di «porta» o di «griglia» in un transistore ad effetto di campo.

Si tratta di uno stadio montato nel circuito tipico detto con sorgente comune, e l'uscita del segnale amplificato è disponibile sull'elettrodo «drain». dal quale, tramite C6, passa alla base di Q3, funzionante con emetitore a massa.

Tra Q3 e Q4 l'accoppiamento è diretto, in quanto il collettore di Q3 è collegato direttamente alla base di Q4. Quest'ultimo funziona con collettore a massa, con uscita del segnale sull'emettitore.

Il segnale viene quindi inoltrato verso il punto di ancoraggio numero 13, attraverso C8. L'uscita di questo circuito è disponibile tra i terminali 13 e 14, mentre la sorgente di alimentazione, che deve fornire una tensione di 20 V, viene collegata tra il punto 12 (positivo) e il punto di massa (negativo) numero 11, della linea negativa, che passa tra i punti, 5, 10, 11 e 14.

Vediamo dunque come il guadagno subisce una diminuzione quando la potenza aumenta, per ottenere l'effetto di compressione.

Per conseguire questo risultato, è stato necessario realizzare un sistema di retroazione, per il quale il segnale di uscita agisce sul guadagno dell'amplificatore nel modo desiderato.

Riportiamoci all'uscita del segnale, vale a dire sull'emettitore di Q4. Da questo elettrodo parte una linea di ritorno, che trasmette il segnale di uscita, tramite C7, R13 e CR1-R7, all'elettrodo «G» di Q1, per cui è evidente che questo transistore si comporta come un dispositivo a variazione automatica di guadagno.

Notando la presenza dei diodi CR1 in serie e CR2 in parallelo, associati al circuito di ritorno del segnale di uscita, si nota che CR2 è un rettificatore del segnale di bassa frequenza trasmesso attraverso C7. In effetti, ogni volta che l'anodo di CR2 risulta positivo rispetto al catodo, esiste un cortocircuito tra la massa e la linea di retroazione, mentre, quando l'anodo è negativo, il diodo è bloccato, ed il segnale passa indisturbato.

Infine, grazie al filtraggio apportato da C3, la porta «G» di Q1 viene polarizzata con un segnale più o meno positivo, a seconda dell'ampiezza del segnale di uscita.

La sorgente «S» e l'elettrodo «D» di Q1 sono polarizzati tramite il potenziometro R8, collegato tra la massa ed il punto di alimentazione a + 120 V, tramite R10, che limita il massimo valore della tensione positiva che può essere applicato a questo elettrodo.

In pratica, grazie alla presenza di R8, Q1 può essere in stato di conduzione, oppure in stato di interdizione. Se il cursore è dal lato di R10, l'elettrodo «S» è positivo rispetto alla porta di ingresso, e Q1 è in stato di interdizione, o quasi.

La resistenza costituita da questo transistore risulta quindi dell'ordine di qualche Megaohm, per cui esercita un' influenza minima sul circuito costituito da R9.

Quando la tensione rettificata, di polarità positiva, viene trasmessa all'elettrodo «G» di Q1, quest'ultimo diventa più positivo rispetto alla massa, per cui la tensione tra «G» ed «S» diminuisce.

Lo spazio «D-S» che costituisce la resistenza variabile comandata da una tensione, diventa meno resistente. Da ciò deriva il fatto che il divisore di tensione trasmette a Q2 un segnale più debole.

Una sola batteria di pile in grado di fornire la tensione di 20 V, è sufficiente per alimentare questo miscelatore-compressore. I dettagli costruttivi descritti nell'articolo sono sufficienti per mettere in condizioni chiunque di realizzarlo, a patto naturalmente che sia in possesso della necessaria esperienza.

Come variante interessante che è possibile aggiungere al circuito, riproduciamo anche la figura 14, che rappresenta la possibilità di aggiungere un controllo di volume separato per ciascun canale di ingresso. Si tratta di fare in modo che il terminale sinistro dei resistori R1, R2, R3 ed R4 del circuito di figura 13, anziché far capo direttamente ai terminali di ingresso, facciano invece capo al cursore di un potenziometro che presenta il valore di 20 kΩ per ciascun canale, spostando il terminale di ingresso propriamente detto all'estremità superiore di ciascun potenziometro, e precisamente sui raccordi numerati da 1 a 4. Con questa aggiunta, risulta molto più facile dosare ed equilibrare l'intensità dei segnali provenienti dalle diverse sorgenti, il che permette di sfruttare ancora meglio le prestazioni consentite dal dispositivo.

CIRCUITO INTEGRATO PER RADIORICEVITORI

La Philips ha annunciato un nuovo circuito integrato sviluppato per i radioricevitori FM di elevata qualità con o senza uscita stereo. Il dispositivo TCA420A contiene un amplificatore/limitatore F.I. a quattro stadi e un rivelatore simmetrico quadratura che fornisce un elevato grado di retezione AM anche con piccoli segueli

Il TCA420A ha un'uscita per il pilotaggio dell'indicatore di sintonia, la cui indicazione zero e di fondo scala può essere facilmente regolata mediante una semplice rete resistiva. Un'altra uscita può comandare un commutatore di inibizione automatica stereo quando il segnale ricevuto supera un determinato valore; l'isteresi del commutatore può essere regolata per far sì che non vi siano commutazioni continue dovute a piccole variazioni del segnale radio. Il TCA420A è incapsulato in dual in-line a 16 terminali.

i lettori ci scrivono

a cura di P. SOATI

In considerazione dell'elevato numero di quesiti che ci pervengono, le relative risposte, per lettera o pubblicate in questa rubrica ad insindacabile giudizio della redazione, saranno date secondo l'ordine di arrivo delle richieste stesse.

Sollecitazioni o motivazioni d'urgenza non possono essere prese in considerazione.

Le domande avanzate dovranno essere accompagnate dall'importo di lire 3.000* anche in francobolli a copertura delle spese postali o di ricerca, parte delle quali saranno tenute a disposizione del richiedente in caso non ci sia possibile dare una risposta soddisfacente.

* Per gli abbonati l'importo è ridotto a lire 2.000.

Sig. RAPA F. - Roma E. A. T. in un TV

Tenuto conto dei controlli da Lei eseguiti e dei fenomeni rilevati nel televisore costruito nel 1950 in primo luogo, per semplice scrupolo, le consiglio di controllare accuratamente il circuito della valvola oscillatrice di riga ed in modo particolare le tensioni. Mediante l'oscilloscopio provi ad analizzare la forma d'onda picco picco della tensione di griglia, se questa è bassa soltanto in relazione ad una certa diminuzione dell'alta tensione significa che il circuito stesso è integro e che il difetto risiede nel trasformatore di riga. Ritengo infatti che parte delle spire dell'avvolgimento siano in corto circuito; ciò provoca un notevole riscaldamento per cui fuoriesce la cera sintetica che serve ad isolare l'avvolgimento stesso e che lei ha osservato con una certa abbondanza.

Tenuto conto dell'irreperibilità del trasformatore in questione, fuori commercio da parecchi anni, non ritengo che valga la pena di modificare il circuito del televisore per installare un modello di trasformatore più recente.

Infatti, data l'età dell'apparecchio, molti altri organi saranno da sostituire, e probabilmente anche il tubo; pertanto il suo parente dovrebbe sostenere una spesa assolutamente non giustificabile dai risultati che potrà ottenere eseguendo la riparazione.

Sig. MARINELLI F. - Venezia Rice-trasmettitore SOMMERKAMP FTDX 505

La nuova serie dei rice-trasmettitori FTDX 505 è stata modificata in modo da consentirne il funzionamento anche in modulazione di ampiezza (AM).

Lo schema di figura 1 si riferisce per l'appunto al telaietto che è caratterizzato dalla sigla PB-1165 AM, mentre la figura 2 ne illustra il collegamento al circuito base.

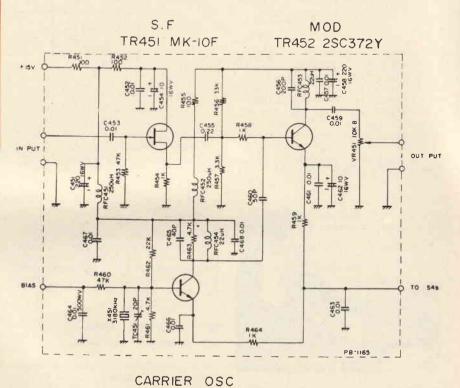


Fig. 1 - Schema elettrico relativo al pannello AM (PB-1165 AM) che è stato aggiunto agli ultimi modelli del rice-trasmettitore Sommerkamp FTDX 505 (codice GBC ZR/7500-10).

TR453 2SC372Y

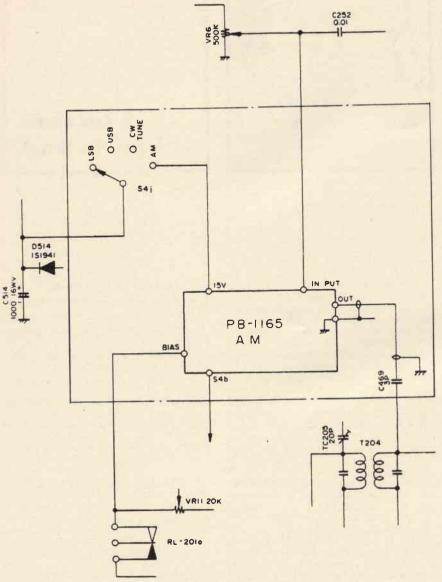


Fig. 2 - Schema dei collegamenti relativi al circuito PB-1165 AM del ricetrasmettitore FTDX 505.

Fig. 3 - Dispositivo di segretezza con codice a 25 combinazioni, di tipo portatile, per comunicazioni telefoniche. Uno speciale accoppiatore permette il collegamento al telefono senza che sia necessaria alcuna connessione.

Per lavorare in AM il commutatore dovrà essere portato in tale posizione dopo aver effettuato la normale taratura.

Nel nuovo modello è stato inserito pure il quarzo che permette di lavorare nella gamma dei CB, e la relativa gamma corrisponde alla posizione AUX 1 del commutatore di gamma.

Sig. N. CARUSO - Roma Spie telefoniche e segretezza

Con il diffondersi dello spionaggio telefonico effettivamente, come Lei afferma, alcune ditte specializzate nella costruzione di apparecchiature telefoniche hanno messo in circolazione dei dispositivi atti ad assicurare il segreto delle comunicazioni: si tratta ovviamente di apparecchi dalle caratteristiche pro-

fessionali e piuttosto costosi. Un dispositivo anti-intercettazione molto interessante è stato messo in vendita recentemente in Inghilterra ad opera della S.S.I. di Londra. Mediante il suo impiego, il segreto telefonico è assicurato anche in presenza di speciali apparecchi intercettatori

L'apparecchio, che è del tipo portatile e la cui foto è mostrata in fig. 3 è alimentato a batterie: esso comprende una combinazione telefonica costituita da un codice che consente di effettuare ben 25 differenti combinazioni mentre uno speciale accoppiatore ne permette il collegamento al telefono senza che sia necessario eseguire alcuna connessione.

Chi utilizza il dispositivo di segreto deve limitarsi a formare il numero del suo corrispondente indicando successivamente quale delle 25 combinazioni desidera utilizzare. Ovviamente anche il corrispondente dovrà essere in possesso di un apparecchio dello stesso tipo.

Il codice si identifica mediante dei gruppi arbitrari, fissati in precedenza, di lettere o numeri e può essere cambiato durante il corso della conversa-

Dietro versamento della solita quota potremo inviarle l'indirizzo della ditta costruttrice.

Sigg. BARDINI F. - La Spezia, MAGGIONI D. - Como Rendimento di un trasmettitore nei collegamenti a distanza

La portata di un radiotrasmettitore, di qualsiasi tipo esso sia, non è legata esclusivamente alla sua potenza di uscita, ma dipende bensì da molti altri fattori, alcuni di carattere tecnico altri legati alla propagazione delle onde em.

In primo luogo il trasmettitore, per dare il più alto rendimento, deve essere in grado di trasferire la massima energia possibile dal suo stadio di uscita all'entenna e ciò si consegue soltanto quando si ha un perfetto adattamento di impedenza fra la sua uscita; la linea di alimentazione e l'antenna.

L'antenna, a sua volta, dovrà essere scelta in funzione delle esigenze ed installata in modo tale da irradiare il massimo dell'energia verso il posto ricevente del corrispondente.

E' ovvio che l'uso di un'antenna direttiva, come ho più volte spiegato, corrisponde ad un aumento della PAR, cioè della potenza apparente irradiata, in quella data direzione. Occorre altresi tenere presente che un'antenna può avere un rendimento più o meno elevato in relazione alla sua altezza e al tipo di terreno che la circonda, oltre che da altri fattori che non mi è possibile esaminare in questa sede.

Una volta realizzato un impianto di trasmissione, il più vicino possibile a quello ideale, occorre risolvere il problema della propagazione delle onde em che, come ho ampiamente spiegato in una serie di articoli pubblicati nelle annate precedenti, è soggetta a cambiamenti stagionali, diurni e notturni che varia-

no in funzione del ciclo, o meglio dei cicli di attività solari, il più importante dei quali ha un carattere undecennale.

Questo è il motivo per il quale, nel fissare le frequenze adatte ad assicurare collegamenti a distanza con le varie regioni del mondo, occorre tenere conto dei suddetti fenomeni che fortunatamente possono essere previsti con notevole anticipo.

Sig. PODDU F. - Cagliari Preamplificatore HI-FI a valvole

E' già un po' di tempo che non pubblichiamo schemi di amplificatori a valvole per il semplice fatto che non ci sono richiesti. Comunque, per accontentarla, in figura 4 riportiamo lo schema elettrico di un preamplificatore a valvole il cui rendimento è particolarmente elevato pur comportando l'impiego di due soli tubi elettronici del tipo EF86. L'ingresso è commutabile in sei posizioni differenti e precisamente: ausiliario, radio, nastro, microfono, pick-up magnetico e pick-up a cristallo. Il circuito equalizzatore, anche per i dischi a 78 giri è conforme alle norme R.I.A.A. Tale circuito è stato realizzato dalla Mullard Ltd inglese.

I resistori, salvo indicazione diversa. sono del tipo 10%, 1/2 W; quelli contrassegnati da un asterisco dovranno avere un'alta stabilità. Il valore dei

componenti è il seguente:

 $R1, R2, R4, R6, R17, R18 = 1 M\Omega;$ $R3 = 56 k\Omega$; R5, $R27 = 68 k\Omega$; R7. $R14, R21 = 100 k\Omega; R8, R11 = 560$ $k\Omega$; $R9 = 5.6 M\Omega$; $R10 = 150 k\Omega$; $R12 = 10 M\Omega; R13, R15 = 220 k\Omega;$ $R16 = 2.2 k\Omega$; $R19 = 33 k\Omega$; R20 $= 8.2 k\Omega; R22 = 1.2 k\Omega; R23 = 390$ $k\Omega$; RV24, RV28, RV30 = 250 $k\Omega$ potenziometri logaritmici; R25 = 47 $k\Omega$; $R26 = 39 \ k\Omega; \ R29 = 6.8 \ k\Omega;$ C1= 390 pF mica arg.; C2 = 150 pF mica arg.; C3, C15 = 2200 pF mica arg.; C4, C13, = 560 pF mica arg.; C6, $C10 = 25 \mu F$ elettrolitico 12 V: C7. C8, C11, C12, C17 = 0,1 µF carta 350 V; C9 = 8 μ F elettrolitico 350 V; C14

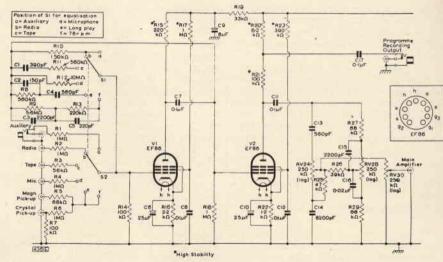


Fig. 4 - Schema di un preamplificatore HI-FI a valvole a 6 ingressi ed equalizzazione

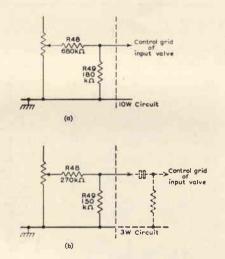


Fig. 5 - Modifica da apportare allo schema di uscita del preamplificatore di figura 4 quando viene usato con amplificatori da 10 o 3 W anziché da 20 W.

 $= 8200 \text{ pF mica arg.; } C16 = 0.02 \text{ } \mu\text{F}$ carta; C5 = 220 pF mica arg.

Il preamplificatore è previsto per l' impiego con un amplificatore da 20 W. Qualora esso debba essere impiegato con amplificatori da 10 W e 3 W il circuito di uscita dovrà essere modificato come mostra la figura 5 usando dei resistori (R48 e R49) del tipo 10%. 1/4 W.

Ing. L. C. - Roma Antenne professionali

Mi sono informato personalmente circa la reperibilità del manuale relativo alla installazione delle antenne professionali ad effetto direttivo nel campo delle onde decametriche, del quale Le avevo inviato gli estremi per lettera, ed ho avuto la conferma che esso è completamente esaurito. La sua ristampa dovrebbe essere effettuata al più presto.

Di tale manuale ne posseggo soltanto una copia ragion per cui, se Lei non ha

TAB. 1		Caratt	eristiche			Costruzione	
Tipi di antenna	Guadagno	Riduzione lobi secondari	Attitudine a funzionare su frequenze differenti	Possibilità di orientamento nel piano orizzontale	Semplicità	Esigenze dal punto di vista del terreno	Costo
Cortine di dipoli	buono	bene	mediocre	possibile	mediocre	bene	piuttosto elevato
Antenne rombiche	buono	molto bene	bene	impossibile	bene	mediocre	basso
Antenne con schermo riflettente	buono	bene	bene	possibile	mediocre	mediocre	elevato
Antenne log-periodiche	mediocre	molto bene	molto bene	possibile	molto bene	molto bene	medio

eccessiva premura, potrei farle pervenire per il prossimo mese una fotocopia dietro invio dell'importo di lire 20.000 tenuto conto che il volume consta di ben

120 pagine.

Per quanto concerne i tipi di antenna ai quali aveva fatto riferimento, Le trascrivo una interessante tabella comparativa dei diversi tipi di antenna in vista della loro utilizzazione in differenti servizi (vedi tab. 1). Essa è stata redatta da specialisti in tale genere di costruzioni

Sigg. DI BLASI F. - MARCELLI D. Roma

Convertitore 144 MHz/28 MHz

Per realizzare un buon convertitore che consenta la ricezione della gamma radioamatori 144 ÷ 146 MHz mediante un ricevitore accordabile sulle frequenze di 26 ÷ 28 MHz le consiglio la scatola di montaggio AMTRON UK 960 reperibile presso i punti di vendita della GBC italiana, completa di tutti i componenti e con chiare istruzioni.

Questo convertitore, in cui sono im-piegati due MOS-FET, due transistori, un diodo zener e due diodi, è stato concepito secondo i più recenti perfezionamenti tecnici. Esso è alimentabile a 12 V e l'assorbimento in corrente è molto basso (non superiore ai 26 mA). L'impedenza di ingresso e di uscita sono di 50 Ω, il rapporto segnale/disturbo 0,5 µV 6 dB, il guadagno 70 dB.

Da notare che unitamente al convertitore UK 965 il suddetto apparecchio costituisce un ottimo complesso a doppia conversione. Infatti questa seconda scatola di montaggio permette la ricezione della gamma 26 ÷ 28 MHz con un normale ricevitore ad onde medie accordato sulle trequenze di 1600 kHz.

Lo schema elettrico della scatola di montaggio UK 960 è visibile in figura 6.

Sigg. PARODI C. - Genova, SURACE D. - Siracusa, ROSSI F. - Milano Pubblicazioni tecniche

Sugli argomenti richiesti consiglio i seguenti volumi:

- 1°) PRACTICAL RELAY CIRCUITS, J. Oliver della Hayden Book Cy, 50 Essex St. Rochelle Park N. I. 07662.
- 2°) FREE TUTORIAL ON REAL-TI-ME ANALYZERS, della Federal Scientific Corp. 615 West 131 st. St. New York, N. Y. 10027.
- 3°) LES LASERS, di M. Ferretti, Librairie Parisienne de la Radio, 43. rue de Dunkerque, 75010 Paris.
- COMMENT CONSTRUIRE BAF-FLES ET ENCEINTES ACOUSTI-QUES, di R. Brault Librairie Parisienne de la Radio.
- 5°) SERVIZIO RADIOTECNICO, due volumi del Ravalico edizioni Hoepli.

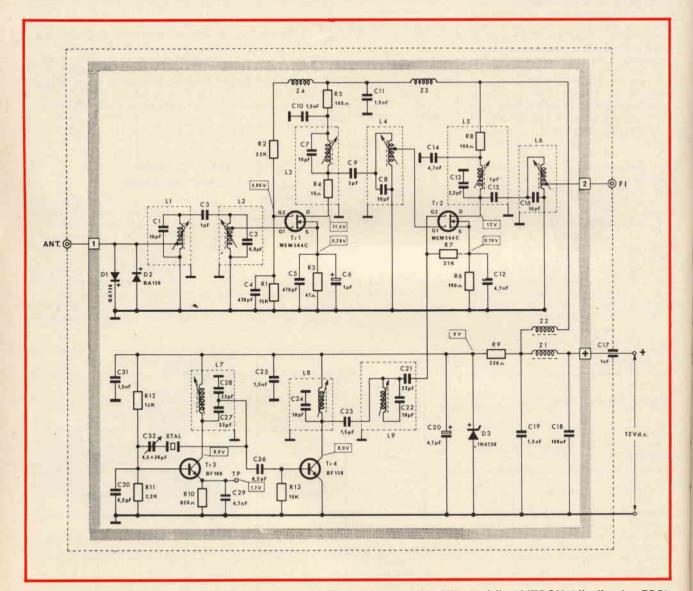


Fig. 6 - Schema elettrico del convertitore per i 144 ÷ 146 MHz in 26 ÷ 28 MHz. UK 960 della AMTRON (distributrice GBC).

- 6°) SATELLITE BROADCASTING, A. Chaves, I. Fawcett, ed altri, Chatam House Londra.
- 7°) DIGITAL SIGNAL PROCESSING. pubblicato dalla IEEE, 345 Esat 47th Street New York N. Y. 10017.

Sig. COLOMBI L. - Milano Alimentatore per TX

In figura 7 riportiamo lo schema elettrico di un alimentatore appositamente studiato per il ricetrasmettitore BC 669 e che riteniamo sia utile anche per il TX che Lei deve alimentare.

La morsettiera di uscita può essere sostituita da un normale zoccolo octal.

Le tensioni disponibili alla morsettie-

ra sono le seguenti:

4 = 115 Vac, sostituibile ovviamente con 220 Vac. 8 = 115 Vac oppure 220 Vac. 7 = 500 Vcc 300 mA. 6 non collegato. 5 = 250 Vcc 100 mA stabilizzata. 3 non collegata. 1 = massa. 2 = 12.6 V5 A.

Sig. FADDA G. - Sassari Klystron effetti biologici delle microonde

Del klystron e relativo funzionamento abbiamo parlato nella puntata dedicata due anni fa alle microonde (figura 8).

Il problema dei pericoli che possono derivare agli utenti dall'uso delle microonde è stato oggetto di alcune riu-nioni della International Electrotechnical Commission, specialmente per quanto concerne gli impianti dei forni a microonde. Le radiazioni assorbite dal corpo umano sono trasformate in energia cinetica dalle molecole del corpo assorbente provocando un riscaldamento della massa interessata ma in genere non provocano effetti di ionizzazione.

Esaminando gli effetti biologici e il conseguente aumento di temperatura delle parti del corpo umano colpite, bisogna tenere conto di alcuni fattori fra i quali: 1°) la durata e l'eventuale saltuarietà dell'esposizione, 2°) la superficie della zona del corpo colpita tenendo presente che la parte non esposta funge da dispersore, 3º) la frequenza delle microonde, dalla quale dipende il grado di penetrazione delle radiazioni, 4°) l' intensità di campo em e le modifiche che esso subisce in relazione alle dimensioni del corpo che siano confrontabili con la lunghezza d'onda,

E' importante tenere presente che non esistendo effetti di accumulazione il riferimento deve essere fatto esclusivamente alla intensità del campo e non alla

quantità assorbita.

In passato si era fissato nel valore di 100 mW/cm² il livello di pericolosità dell'energia a microonde nei confronti

del corpo umano.

Nella riunione a cui abbiamo fatto riferimento si è invece stabilito che tale limite deve essere valutato in 5 mW/cm2 per prestazioni frequenti ed in 10 mW/ cm² per prestazioni saltuarie.

Tale scelta è stata fatta tenendo conto delle caratteristiche di alcune centinaia di migliaia di forni VHF installati in tutti i paesi del mondo.

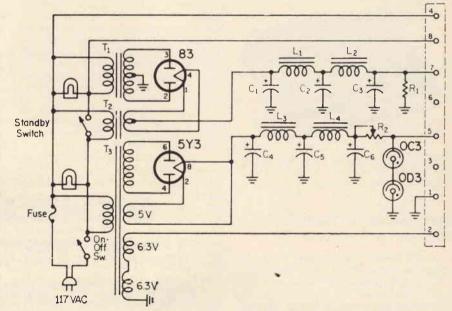


Fig. 7 - Schema elettrico di un alimentatore a valvole per ricetrasmettitore tipo BC669.

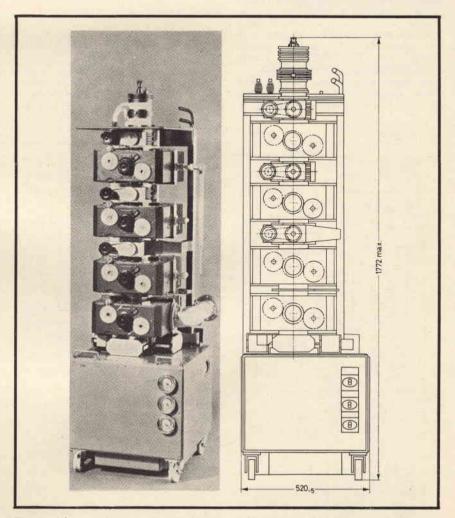


Fig. 8 - Klystron di costruzione tedesca modello YK1151 funzionante nella gamma UHF con potenza di 20 kW.

Fig. 9 - Interfonico ad onde convogliate della TENKO modello NF-801 (codice GBC ZR/6100-68 la coppia).

Sig. FRANCHI D. - Napoli Apparecchi interfonici senza fili

Attualmente la costruzione degli apparecchi interfonici ad onde convogliate non è consigliabile poichè in commercio se ne trovano dei modelli molto efficienti ad un prezzo tutt'altro che elevato. Fra questi citiamo il modello NF 801 della Tenko, a transistori, alimentato direttamente dalla rete, visibile in figura 9 ed il modello Sommerkamp IC-500 anch'esso a transistori ed alimentato a rete. Detti apparecchi sono reperibili presso la GBC Italiana ed i loro numeri di codice, per le relative coppie, sono: ZR/6100-68 per il Tenko e ZR/6100-12 per il Sommerkamp.

La figura 10 si riferisce invece allo schema elettrico completo di un interfonico a onde convogliate con squelch, di costruzione francese. Tutti i valori dei componenti sono stati indicati direttamente sullo schema e così pure le dimensioni delle varie bobine le quali dovranno essere montate su un bastoncino di ferrite da 10 mm di diametro. Il filo utilizzato deve essere isolato in seta ed avere il diametro di 0,2 mm. I numeri delle spire sono: L1 = 400 spire; L2 = 80 spire; L3 = 80 spire; L4 = 30 spire. Il condensatore C2, posto in parallelo alla bobina L2, è un trimmer dalla capacità di 20/100 pF.

I trasformatori debbono avere le seguenti caratteristiche:

TA = trasformatore di alimentazione primario a 220 V o meglio universale con presa neon a 115 V, secondario 2 x 9 V ...

T1 = primario = 1 $k\Omega$, secondari complessivi 2 $k\Omega$ (è utilizzata soltanto una sezione).

TS = primario 1250 Ω secondario 2,5 Ω . Per passare dalla posizione di parola-

ascolto è necessario un interruttore a quattro poli con ritorno automatico.

Il consumo è di circa 4 VA, la potenza di BF modulata circa 70 mW, la frequenza di emissione è di circa 150 kHz. Il potenziometro P2 serve a regolare la soglia dello squelch.

Sig. CARMAGNOLA F. - Torino Anomalie TV

Il difetto che da qualche tempo a questa parte nota sullo schermo del televisore è facilmente eliminabile poiché è dovuto esclusivamente ad una differenza nella lunghezza che il fascio elettronico percorre ai bordi dell'immagine rispetto al centro.

Questa anomalia è nota con il nome di distorsione a cuscino perché l'immagine assume per l'appunto la forma di un cuscino. Siccome essa si è manifestata dopo che ha effettuato la messa a fuoco agendo sul collo del tubo, è evidente che nell'eseguire tale operazione avrà spostato i due magnetini permanenti che si trovano posti lateralmente allo stesso. Sarà sufficiente un piccolo ritocco perché il fenomeno sia eliminato.

Un'anomalia simile può dare luogo ad una figura convessa dell'immagine (anziché concava) ed in tal caso è detta distorsione a barile perché l'immagine assume la forma di un barile.

Sigg. BERTINI F. - Firenze, COLLA D. - Genova, BETTI V. - Roma

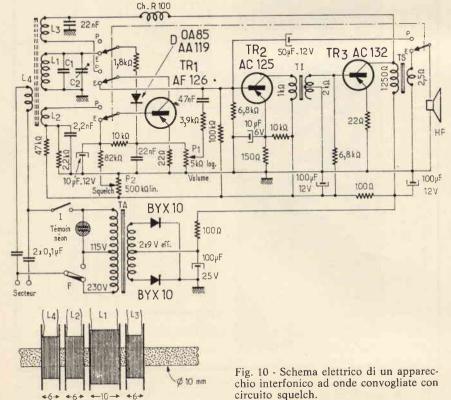
Notizie SWL e radioamatori

Negli Stati Uniti la lettera che segue la prima, che caratterizza la nazionalità, W oppure K, ha il seguente significato: N = novice, T = technician, C = conditional, G = general, A = advanced, E = extra, B = club, M = military.

Sulla suddivisione degli stati in funzione del numero ci intratterremo prossimamente nella rubrica QTC.

Il codice Morse che il signor Betti V. ci ha inviato in visione è adatto soltanto nelle comunicazioni via filo negli Stati Uniti ed in Canada e pertanto per gli altri tipi di comunicazioni non ha alcun valore.

Il punto esclamativo come abbiamo già precisato è stato abolito da tempo. In passato corrispondeva ai simboli usati per la virgola attualmente.


L'indirizzo della Telespazio è via del Babuino 51 Roma.

VARIE

Gli indirizzi degli Enti di radiotelediffusione richiesti saranno pubblicati, in seguito, nella rubrica QTC; lo stesso dicasi per i codici e le abbreviazioni dei radioamatori.

Il pollice corrisponde a centimetri 2,5399. Il valore indicato di centimetri 6,451 si riferisce invece al pollice quadrato (square inch che gli inglesi abbreviano per l'appunto sq. in.)

La scala del vento del Beaufort va da 0 a 12 mentre le scale numeriche descrittive del mare (sono più di una) vanno da 0 a 9. Esiste in effetti una scala da 0 a 12 che serve a stimare la forza del vento sul mare al largo delle coste. La loro pubblicazione ovviamente non fa parte della materia prevista per questa rivista. In via del tutto eccezionale se mi invierà l'indirizzo e Lire 500 per spese provvederò ad inviarle fotocopia delle suddette scale.

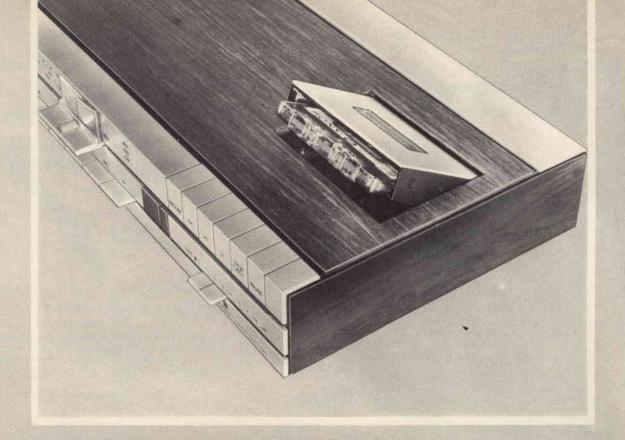
Continuiamo in questo numero la pubblicazione, iniziata sul numero 1/73, di una serie di tabelle di equivalenza fra semiconduttori di diversa fabbricazione e semiconduttori di produzione Philips.

EQUIVALENZE E DATI TECNICI DEI SEMICONDUTTORI

1												_	
					A	В	С	D	E	(*)		vazioni su ipondente	
				Contenitore	Dati tec	nici dei	tipi ripo	rtati nella	prima colonna			pount arr	
	l'ipo	Costruttore	Corrispondente Philips	M	Pz		V _z pe	er Iz	∠ Vz	Note			
			rnitips	K G	(W)		(V)	(mA)	(%)		Conteni -	valore inferiore	valore superiore
	4131	E	(BZY 93C30)	K6 (K9) M	(8)(15)		30	100	10 TYP C=	5	DO-4	F	AD
	4132	E	(BZY 93C33)	K6 (K9) M	(8)(15)		33	100	10 TYP C=	5	DO-4	E	AD
H	4133	E	(BZY 93C36)	K6 (K9) M	(8)(15)		36	100	10 TYP C=	5	00-4	E	AD
	4134	Ε	(BZY 93C39)	K6 (K9) M	(8)(15)		39	100	10 TYP C=	5	DO-4	E	AÐ
	4135	Е	(BZY 93C43)	K6 (K9) M	(8)(15)		43	100	10 TYP C=	5	DG-4	E	AD
	4136	Е	(BZY 93C47)	K6 (K9) M	(8)(15)		47	100	10 TYP C=	5	00-4	F	AO
	4137	E=NT	(BZY 93 C51)	K6(K9) M	(8)(15)		51	100	10 TYP C=	5	00-4	E	AD
	4138	Е	(BZY 93C56)	K6 (K9) M	(8)(15)		56	50	10 TYP C=	5	DO-4	F	AO
	4139	E	(BZY 93C62)	K6 (K9) M	(8)(15)		62	50	10 TYP C=	5	00-4	F	ΔΠ
	4140	ε	(BZY 93C68)	K6 (K9) M	(8)(15)		68	50	10 TYP C=	5	00-4	E	AD
	4141	Ε	(BZY 93C75)	K6 (K9) M	(8)(15)		75	50	to TYP C=	5	00-4	E	AD
	4142	E	-1	K6 (K9) M	(8)(15)		82	50	10 TYP C=	5			
	4220	E	(BZY 93)	K6 (K9) M	(8)(15)		dati con	e serie 4	1 mene	collega	o al conte	nitore	
Н	4320	€	(BZY 93C10)	K6 (K9) M	12 (20)		10	500	10 -TYP C=	5	D0-4	E	AD
	4321	£	(BZY 93C11)	K6 (K9) M	12 (20)		11	500	10 TYP C=	5	00-4	F	ΔD
	4322	E	(BZY 93C12)	K6 (K9) M	12 (20)		12	200	10 TYP C=	5	DU-4	E	AD
	4323	E=NT	(BZY 93 C13)	K6(K9) M	12 (20)		13	200	10 TYP C=	5	()()-4	E	ΑŪ
	4324	E	(BZY 93C15)	K6 (K9) M	12 (20)		15	200	10 TYP C=	5	DO-4	E	AO
	4325	E	(BZY 93C16)	K6 (K9) M	12 (20)		16	200	10 TYP C=	5	DO-4	E	AD
	4326	E	(BZY 93C18)	K6 (K9) M	12 (20)		18	200	10 TYP C=	5	DO-4	E	AO
	4327	E	(BZY 93C20)	K6 (K9) M	12 (20)		20	200	10 TYP C=	5	00-4	E S	AD
	4328	E	(BZY 93C22)	K6 (K9) M	12 (20)		22	200	10 TYP C=	5	DO-4	F	AD

				A	В	С	D	E	114		rvazioni su	
	1		Contenitore	Dati tec	nici dei	i tipi ripo	rtati nella j	prima colouni		(011)	spondente	rnnps
l'ipo	Costruttore	Corrispondente Philips	M K	Pz		V _z p	er Iz	ΔVz	Note		-uti	
			G	(W)		(V)	(mA)	(%)		Conteni - tore	valore inferiore	valore superiore
4329	Е	(BZY 93C24)	K6 (K9) M	12 (20)		24	200	10 TYP C=	5	D0-4	E	AD
4330	E	(BZY 93C27)	K6 (K9) M	12 (20)		27	100	10 TYP C=	5	00-4	E	AD
4331	E	(BZY 93C30)	K6 (K9) M	12 (20)		30	100	10 TYP C≃	5	DD-4	E	AD
4332	E	(BZY 93C33)	K6 (K9) M	12 (20)		33	100	10 TYP C=	5	DO-4	Ε	AD
4333	E=NT	(BZY 93 C36)	K6(K9) M	12 (20)		36	100	10 TYP C=	5	DO-4	E	ΔD
4334	E	(BZY 93C39)	K6 (K9) M	12 (20)		39	100	10 TYP C=	5	00-4	E	AD
4335	E	(BZY 93C43)	K6 (K9) M	12 (20)		43	100	10 TYP C=	5	DO-4	E	AD
4336	E	(BZY 93C47)	K6 (K9) M	12 (20)		47	100	10 TYP C=	5	00-4	Е	AD
4337	E	(BZY 93C51)	K6 (K9) M	12 (20)		51	100	10 TYP C=	5	00-4	E	AD
4338	E	(BZY 93C56)	K6 (K9) M	12 (20)		56	50	10 TYP C=	5	DO-4	E	AD
4339	E	(BZY 93C62)	K6 (K9) M	12 (20)		62	50	10 TYP C=	5	00-4	E	AD
4340	ε	(8ZY 93C68)	K6 (K9) M	12 (20)		68	50	10. TYP C=	5	DO-4	E	AD
4341	E	(BZY 93C75)	K6 (K9) M	12 (20)		75	50	10 TYP C=	5			
4342	E=NT	-	K6(K9) M	12 (20)		82	50	10 TYP C=	5	7 - 7		
4420	E	(BZY 93)	K6 (K9) M	12 (20)				3 mer		to al con	tenitore	
	E		DO-5 M	-70-		10	500	10 TYP C=	5		E	AD
4520	E	(BZY 91Cl0)				11	500	10 TYP C=	5		E	AD
4521	E	(BZY 91C11)		-70-					5		E	AD
4522		(BZY 91C12)	DO-5 M	-70-		12	200	10 TYP C=				
4523	E	(BZY 91C15)	00-5 M	-70-		15	200	10 TYP C=	5		E	AD
4524	E	(BZY 91C15)	00-5 M	-70-		15	200	TO TYP C=	5		E	AD
4525	E	(BZY 91C16)	00-5 M	-70-		16	200	10 TYP C=	5		E	AD
4526	E	(BZY 91C18)	DO-5 M	-70-		18	200	10 TYP C=	5		E	AD
4527	E=NT	(BZY 91 C20)	DO-5 M	-70-		20	200	10 TYP C=	5		£	AD
4528	E	(BZY 91C22)	DO-5 M	-70-		22	200	10 TYP C=	5		E	AD
4529	E	(BZY 91C24)	DO-5 M	-70-		24	200	10 TYP C=	5		E	40
4530	E	(BZY 91C27)	DO-5 M	-70-		27	100	10 TYP C=	5		F.	AD
4531	E	(BZY 91C30)	DO-5 M	-70-		30	100	10 TYP C=	5		8	AD
4532	E	(8ZX 91C33)	DO-5 M	-70-		33	100	10 TYP C=	5		E	Att
4533	E	(BZY 91C36)	DD-5 M	-70-		36	100	10 TYP C≃	5		É	CA
4534	E 5	(BZY 91C39)	D0-5 M	-70-		39	100	10 TYP C=	5		E	AD
4535	E	(BZY 91C43)	DO-5 M	-70-		43	100	10 TYP C=	5		E	:AD
4536	E	(BZY 91C47)	D0~5 N	-70-	7	47	100	10 TYP C=	5		E	AD
4537	€ = N T	(8ZY 91 C51)	DO-5 M	-70-		51	100	10 TYP C=	5		£	AD
4538	E	(BZY 91C56)	D0-5 M	-70-		56	50	10 TYP C=	5		E	AD
4539	E	(BZY 91C62)	DO-5 M	-70-		62	50	10 TYP C=	5		E	AD
4540	Е	(BZY 91068)	DO-5 M	-70-		68	50	10 TYP C=	5		6	AO
4541	E	(BZY 91C75)	DU-5 M	-70-		75	50	10 TYP C=	5		E	AD
4542	£		D0-5 M	-70-		82	50	10 TYP C≃	5		Е	AD
4620	E	(BZY 91)	DO-5 M	-70-	·		me serie 4	5 me	no colleg	ato al cor	tenitore	
4720	E	=	K6 (K9) M	(8)(15)			, F	1 ti				
4820	E	2	K6 (K9) M	12 (20)				3 tip			5	
4920	E	-	D0-5 M	-70-				5 tipo			- 1	
5320	E=NT	(BZX 61 C10)	00-13	(1)		10	50	10 TYP C=		DO-15	DE	- 4
5320 K3	E	(BZX 70)	K3	(2)			me serie g			SDD-18	E	AD
2250 62												

				mi .	A	В	С	D	Ε			rvazioni su spondente	
				Contenitore		enici dei			prima colonn	а	COLLI	spondente	ramps
	lipo	Costruttore	Corrispondente Philips	M K	Pz		V _z p	er, lz	ΔVz	Note		į	
				G	(W)		(V)	(mA)	(%)		Conteni ~	valore inferiore	valore superior
	5320 K6	E	(BZY 93)	K6	(5)		dati co	me serie 5	8		00-4	Ε	AD
	5321	E	(BZX 61C11)	00-13	(1)		11	50	10 TYP C=	5	D0-15	DE	
	5322	Ε	(BZX 61C12)	00-13	(1)		12	50	10 TYP C=	5	00-15	DE	
	5323	E	(BZX 61C13)	DO-13	(1)		13	50	10 TYP C=	5	00-15	DE	
	5324	E	(BZX 61C15)	UD-13	(1)		15	20	10 TYP C=	5	DO-15	E	8
	5325	E	(BZX 61C16)	00-13	st 1)		16	20	10 TYP C=	5	00-15	DE	
	5326	E	(BZX 61C18)	D0-13	((4)		18	20	10 TYP C=	5	DO-15	DE	
	5327	F=NT	(BZX 61 C20)	DO-13	(61)		20	20	10 TYP C=	5 #	00-15	DE	
	5328	E	(BZX 61C22)	00-13	(1)		22	20	10 TYP C=	5	00-15	DE	
	5329	Е	(BZX 61C24)	00-13	(1)		24	20	10 TYP C=	5	DO-15	DF	
	5330	ε	(BZX 61C27)	DO-13	(1)	-	27	20	10 TYP C=	5	00-15	₽€	
	5331	E	(BZX 61C30)	DO-13	(1)		30	20	10 TYP C=	5	00-15	DE	
	5332	E	(BZX 61C33)	DO-13	(1)		33	20	10 TYP C=	5	00-15	DE	
	5333	E	(BZX 61C36)	00-13	(1)		36	10	10 TYP C=	5	DO-15	E	
	5334	٤	(BZX 61C39)	DO-13	(1)		39	10	10 TYP C=	5	DD-15	DE	
	5335	8	(BZX 61C43)	00-13	(1)		43	10	10 TYP C=	5	00-15	DE	
	5336	E	(BZX 61C47)	00-13	(1)	ш.	47	10	10 TYP C=	5	D0-15	DÉ	
	5337	E ≈NT	(BZX 61 C51)	DO-13	(1)		51	10	10 TYP C=	5	00-15	DE	
	5338	E	(BZX 61C56)	00-13	(1)		56	10		5		DE	
	5339	E	(BZX 61C62)	00-13	(1)		62	10	10 TYP C=	5	00-15	DE:	
	5340	E							10 TYP C-		00-15		
	5341	E	(BZX 61C68)	DO-13	(1)		68 75	5	1C TYP C=	5	00-15	F	
			(87× 61075)		(1)			5	10 TYP C=	5	00-15	i in	
	5342	E	-	DO-13	(1)		82	5	10 TYP C=	5	DO-15		
	5420	E	-	DO-13	(1)		dati cor	ne serie 53	3 tip	o bipolar	e		
	5506	E	BZX 75C2V8	DO-7	(0,4)		2,7	10	5		2 2 2	1.1	С
	5507	E=NT		00-7	(0,4)		3	10	5				
	5508	E	BZY 88C3V3	DO-7	(0,4)		3,3	10	5		DO-7	D	
	5509	E	BZY 88C3V6	DO-7	(0,4)		3,6	10	5		D0-7	D	
	5510	E	BZY 88C3V9	00-7	(0,4)		3,9	10	5	1 1	DO-7	D	
	5511	E	BZY 88 C4 V3	DD-7	(0,4)		4,3	10	5.		D0-7	D	
	5512	E	BZX 79C4V7	DO-7	(0,4)		4,7	10	5		DO-35	D	
	5513	E	BZX 79C5V1	DO-7	(0,4)		5,1	10	5	4	DO-35	D	
	5514	E	BZX 79C5V6	DO-7	(0,4)		5,6	10	5		DO-35	D	
W	5515	E	BZX 79C6V2	DO-7	(0,4)		6,2	10	5		D0-35	D	
	5516	E	BZX 79 C6 V8	00-7	(0,4)	1	6,8	10	5		D0-35	D	
	5517	Е	BZX 79 C7V5	DO-7	(0,4)		7,5	10	5		DO-35	D	
	5518	E	B2X 79C8V2	DO-7	(0,4)	34	8,2	10	5		DO-35	D	
	5519	E	B2X 79C9V1	DO-7	(0,4)		9,1	10	5		DO-35	D	
	5520	E=NT	(BZX 79 C10)	DO-7	(0,4)		10	10	5		DO-35	D	
	5521	E	B2X 79C11	DO-7	(0,4)		11	10	5	RI	DO-35	D	
	5522	E	BZX 79C12	DO-7	10,41		12	10	5		DO-35	D	
	5523	E	BZX 79C13	DO-7	(0,4)	100	13	10	5		DO-35	D	
	5524	E	BZX 79C15	DO-7	(0,4)		15	10	5		DO-35	D	
	5525	Е	BZX 79C16	DO-7	(0,4)		16	10	5		DO-35	D	
		7 1 2 1								E _ ! :	-		


FEBBRAIO - 1974

			A B C D E Contanitors Dati tecnici dei tipi riportati nella prima colonna								Osservazioni sul corrispondente Philips			
Гіро	Costruttore	Corrispondente	Contenitor	e M	Dati tec	nici dei	tipi ripo		prima coloun. ΔVz	Note			M.	
		Philips		K G	(W)		(V)	(mA)	(%)	111	Conteni -	valore inferiore	valore	
5526	E	BZX 79C18	00-7		(0,4)		18	10	5		D0-35	D		
5527	E	BZX 79C20	00-7		(0,4)		20	10	5		D0-35	D		
5528	E	BZX 79C22	00-7		(0,4)		22	10	5		DO-35	D		
5529	E	BZX 79C24	DO-7		(0,4)		24	10	5		D0-35	D		
5530	E	BZX 79C27	DO-7		(0.4)		27	10	5		D0-35	D		
5531	E =N T	BZX 79 C30	00-7		(0,4)		30	5	5		D0-35			
5532	NT	BZX 79 C 33	00-7		10.41		33	5	5		DO-35	100		
5533	NT	BZX 79 C 36	00-7		(0,4)		36	5	5	3	DO-35	1 1 - 1		
5534	NT	BZX 79 C'39	DO-7		(0,4)		39	5.	5		D0-35	D		
5535	NT	BZX 79 C 43	DO-7		(0,4)		43	5	5		DO-35	D		
5536	NT	BZX 79 C 47	DO-7	×	(0,4)		47	5	5		DO-35	D		
5537	NT	B2X 79 C 51	00-7		(0,4)		51	5	5		D0-35	D		
5538	NT	BZX 79 C 56	DO-7		(0,4)	0.05	56	5	5	11,7	D0-35	D		
5539	NT	BZX 79 C 62	00-7	ų	(0,4)		62	5	5		D0-35	0		
5540	NT	BZX 79 C 68	00-7		(0,4)		68	5	5		D0-35	D		
5541	NT	BZX 79 C 75	DO-7		(0.4)		75	5	5		DO-35	D		
5542	E=NT	-	DO-7		(0.4)		82	5	5		77.			
7706	E	(BZX 75C2V8)	DO-14		1.1	1,5	2,7	100	5		DO-7	AD	С	
7707	E	(BZX 75C2V8)	DB-14		1.1		3	100	5		00-7	ADC		
7708	E	(BZY 88C3V3)	DO-14		1,1		3,3	100	5		00-7	AD	-	
7709	E	(BEY 8803V6)	DO-14		1,1		3,6	100	5		DO-7	AD		
7710	E	(BZY 88C3V9)	DO-14				3,9	100	5		00-7	AD		
	E		DO-14		1,1		4.3	100	5		DD-7	AD		
7711		(BZY 88C4V3)	DD-14				4.7	100	5		00-35	AD		
7712	E	(BZX 79C4V7)	THE RESERVE OF THE PARTY OF THE	140	1,1			100	5		DO-35	AD		
7713	E	(BZX 79C5V1)	00-14	K	1,1		5,1	100	5		DO-35	DA		
7714	E	(BZX 79C5V6)	00-14	K	1.1		5,6	100	5		D0-35	DA	-	
7715	E=NT	(BZX 79 C6V2)	DO-14	K	1,1		6,2		5		D0-15	0		
7716	E	BZX 61C6V8	DO-14	K	1,1		6,8	100		-				
7717	E	BZX 61C7V5	DO-14	K	1,1		7,5	100	5		DO-15	D		
7718	E	BZX 61C8V2	DO-14	K	1,1		8+2	100	5		D0-15	D		
7719	E	BZX 61C9V1	DD-14	K.	1+1		9,1	50	5		DO-15	D		
7720	E	BZX 61C10	00-14	K	1.1		10	50	5		D0-15	0		
7721	E	BZX 61C11	00-14	×			11	50	5		DO-15	D		
7722	E	BZX 61C12	DO-14	K	10.00		12	50	5		DO-15	0	17	
7723	€	BZX 61C13	00-14	K	1,1		13	50	5		DO-15	D		
7724	E	BZX 61C15	DO-14	K	1,1		15	20	5		D0-15		41	
7725	8	BZX 61C16	00-14	K	The state of	3	16	20	5		DO-15	D		
7726	E	BZX 61C18	00-14	к			18	20	5		D0-15	D		
7727	E =N T	BZX 61 C20	00-14	K	1,1		20	20	5		D0-15	D		
7728	Е	BZX 61C22	DO-14	K	1.1		22	20	5		DO-15	D		
7729	E	BZX 61C24	DO-14	K	1.1		24	20	5		20-15	D		
7730	E	BZX 61C27	DO-14	ĸ	1,1		27	20	5	1 1 1	10-15	D		
7731	E	BZX 61C30	DO-14	к	1,1		30	20	5		D0-15	D		
7732	E	BZX 61C33	00-14	K	1,1		33	20	5		DO-15	D		

	V - 11 11 11				A Onti-ter	B enici de	C I tini rip	D ortati nella	prima colo	Osservazioni sul corrispondente Philips			
Tipo	Costruttore	Corrispondente	Contenit	ore M	P _z		V ₂		ΔVz	Note	-		(
ripo	Somitality	Philips		K G	(W)		(V)	(mA)	(%)	11010	Conteni -	valore inferiore	valore superio
7733	E	BZX 61C36	00-14	К	1,1		36	10	5		DO-15	1.5	
7734	E	B2X 61C39	DO-14	К	1,1		39	10	5		DO-15	D	
7735	E	BZX 61C43	00-14	К	1,1		43	10	5		DO-15	D	
7736	E	BZX 61C47	DO-14	к	1,1		47	10	5		DO-15	D	
7737	E=NT	BZX 61 C51	DO-14	к	1,1		51	10	5		DO-15	D	
7738	ε	BZX 61C56	00-14	к	1,1		56	10	5		D0-15	D	
7739	E	BZX 61C62	DO-14	K	1,1		62	10	5		D0-15	D	
7740	E	BZX 61C68	DO-14	к	1,1		68	5	5		D0-15	*	
7741	E	BZX 61C75	DO-14	к	1,1		75	5	5		D0~15		
9970	E	(BZX 75C2V8)	TO-1	м	(0,25)		3	10	5		DO-7	С	A
9971	E	BZY 88C3V6	TO-1	М	(0,25)		3,6	10	5		DO-7	E	A
9972	E	BZY 88C4V3	TO-1	М	(0,25)		4,3	10	5	4 11	DO-7	E	A
9973	E	BZX 79C5V1	TO-1	М	(0,25)		5,1	10	5		00-35		A
9974	E=NT	BZX 79C6V2	TO-1	М	(0,25)		6,2	10	5		00-35		A
9980	E	(BZX 75C2V8)	00-13		(1)		3	100	5		DO-7	ACD	
9981	E	(BZX 75C3V6)	DO-13		(1)			100	5		DO-7	AD	
9982	E	(BZY 88:C4V3)	00-13		(1)		3,6	100	5				
9983	E						4,3				DO-7	AD	
9984	E	(BZX 79 C5V1)	00-13		(1)		5,1	100	5		00-35	DA	
9992	E	(BZX 79 C6V2)	DO-13		(1)		6,2	100	5		00-35	DA	
9993	E	(BZY 88C4V3)	DO-1		(1,25)		4,3	500	5		DO-7	AD	
9994		BZY 96C5V1	DO-1		(1,25)		5 • 1	500	5			D	Α
	P	(BZX 79 C6V2)	00-1		(1,25)		6,2	500	5		DO-35	DA	
BZ 100 +		BZY 88C3V9	DO-7	G	(0,325)		3,9	1			ро-7		AD
BZ 102 / 0V7	T		00-7	G	(0,25)		0,7	5	10				
BZ 102 / 1V4	T	BZX 75C1V4	DO~7	G	(0,25)		1,4	5	10		D0-7	E	A
BZ 102 / 2V1	T	8ZX 75C2V1	00-7	G	(0,25)		2,1	5	10		ро-7	E	Α
BZ 102 / 2V8	T	BZX 75C2V8	DO-7	G	(0,25)		2,8	5	10		DO-7	E	Α
BZ 102 / 3V4	Т	BZY 88C3V3	00-7	G	(0,25)		3,4	5	10		D0-7	CE	A
BZX 10	F	BZX 79C6V2	DO-7	G	0,4		6,2	20	5		DO-35	D	
BZX 11	F	BZX 79C6V8	DO-7	G	0,4		6,8	20	5		DO-35	D	
8ZX 12	F	BZX 79C7V5	00-7	G	0,4		7,5	20	5		DO-35	D	
BZX 13	F	BZX 79C8V2	DO-7	G	0,4		8,2	20	5		DO-35	D	
BZX 14	F	BZX 79C9V1	DO-7	G	0,4		9,1	20	5		DO-35	D	
BZX 15	F	BZX 79C10	DO-7	G	0,4		10	20	5		DO-35	D	
BZX 16	F	BZX 79C11	DO-7	G	0,4		11	11,5	5		DO-35	D	
BZX 17	F	BZX 79C12	DO-7	G	0,4		12	10,5	5		D0-35	D	
BZX 18	F	BZX 79C13	00-7	G	0,4		13	9,5	5		DO-35	D	
8 Z X 19	F	BZX 79C15	D0-7	G	0,4		15	8,5	5		DO-35	D	
BZX 20	F	BZX 79C16	00-7	G	0,4		16	7,8	5	1 , 3	DO-35	D	
B Z X 21	f	BZX 79C18	00-7	G	0,4		18	7	5		DO-35	D	
BZX 22	F	BZX 79C20	DO-7	G	0,4		20	6,2	5		D0-35	D	
BZX 23	F	BZX 79C22	00-7	G	0,4		22	5,6	5		DO-35	D	
BZX 24	F	BZX 79C24	DO-7	G	0,4		24	5,2	5		DO-35	D	
BZX 25	F	BZX 79C27	DO-7	G	0.4		27	4,6	5		D0-35		D

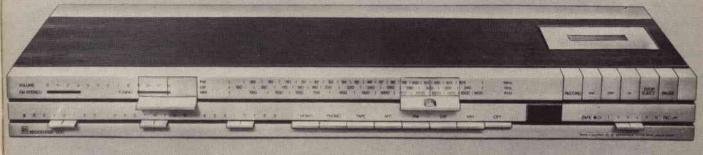
FEBBRAIO — 1974 313

			1		A	В	С	D	E			rvazioni su spondente	
Tipo	Costruttore	Corrispondente	Contenito	re M	P _z	enici de	V _Z p		prima colonn	Note			
		Philips		K G	(W)		(V)	(mA)	(%)		Conteni -	valore inferiore	valore superior
BZX 26	F	BZX 79C30	DO-7	G	0,4		30	4,2	5		DO-35		D
BZX 27	F	BZX 79 C 33	00-7	G	0,4		33	3,8	5		00-35		D
8ZX 29	P	BZX 29 C	DO-15	к	1,5		5,6-56	505	5				
BZX 48	P	BZX 48	TO-18	М	- :		6,5	2	5				
BZX 49	P	BZX 49	TO-18	М	-		6,5	2	5				
B Z X 50	P	8ZX 50	TO-18	м	-		6,5	2	5				
BZX 51	T	-	00-7	G	(0,25)		8,6	10	5				
8 Z X 55 C OV8	s	-	DO-7	G	0,4		0,78	5	5				
BZX 55 C 5V6	s	BZX 79C5V6	DO-7	G	0,4		5,6	5	5		DO-35		
BZX 55 C 6V2	s	BZX 79C6V2	DO-7	G	0,4		6,2	5	5		DO-35		
BZX 55 C 6V8	s	BZX 79C6V8	DO-7	G	0,4		6,8	5	5		20→35		
BZX 55 C 7V5	s	BZX 79C7V5	DO-7	G	0,4		7,5	5	5		D0-35		
BZX 55 C 8V2	s	BZX 79C8V2	00-7	G	0,4		8,2	5	5		DO-35		
B 2 X 55 C 9 V 1	s	BZX 79C9V1	00-7	G	0,4		9,1	5	5		DO-35		
BZX 55 C10	s	BZX 79C10	DO-7	G	0,4		10	5	5		DO-35		
BZX 55 C11	s	BZX 79C11	DO-7	G	0,4		11	5	5		DO-35		
82X 55 C12	s	BZX 79C12	DO-7	G	0,4		12	5	5		D0-35		
BZX 55 C13V5	s	BZX 79C13	DO-7	G	0,4		13,5	5	5		DO-35	С	
BZX 55 C15	s	BZX 79C15	DO-7	G	0,4		15	5	5		DO-35		
BZX 55 C16V5	s	BZX 79C16	DO-7	G	0,4		16,5	5	5		DO-35	с	
BZX 55 C18	s	BZX 79C18	DO-7	G	0,4		18	5	5		DO-35		
BZX 55 C20	s	BZX 79C20	DO-7	G	0,4		20	5	5		DO-35		
BZX 55 C22	s	BZX 79C22	00-7	G	0,4		22	5	5		DO-35		
B2X 55 C24V5	s	BZX 79C24	DO-7	G	0,4		24,5	5	5		D0-35	с	
8ZX 55 D	s	BZX 79C	00-7	G	0,4		-		10	dati co	me serie I	ZX550 .	
B Z X 61	P	BZX 61 C	00-15	ĸ	1		6,8-75	205	5				
8ZX 67 C12	т	(BZY 93C12)	SPEC.		-11-		12	50			00-4		AD
BZX 67 C13	т	(BZK 93C13)		- 1	-11-		13	50					AD
B2X 67 C15	т	(BZY 93C15)			-11-		15	50					AD
BZX 67 C16	1	(BZY 93C16)			-11-		16	25					AD
BZX 67 C18	Т	(8ZY 93C18)			-11-		18	25			- W		AD
BZX 67 C20	τ	(BZY 93C20)	= 11	141	-11-		20	25					A'D
BZX 67 C22	Т	(BZY 93C22)	SPEC.		-11-		22	25			DO-4		AD
BZX 67 C24	Т	(BZY 93C24)			-11-		24	25					AD
BZX 67 C27	Т	(BZY 93C27)	183		-11-		27	25	1.1.				AD
BZX 67 C30	т'	(BZY 93C30)			-11-		30	25					AD
BZX 67 C33	Ť	(BZY 93C33)			-11-		33	25					AD
BZX 67 C36	т	(BZY 93C36)	HUN"		-11-		36	10	7:		21 11	1.1	AD
BZX 67 C39	Т	(BZY 93C39)	SPEC		-11-		39	10			DO-4		AD
BZX 67 C43	Т	(BZY 93C43)			-11-		43	10					AD
BZX 67 C47	Т	(BZY 93C47)			-11-		47	10					AD
BZX 67 C51	Т	(BZY 93C51)			-11-		51	10			2 4		AD
BZX 67 C56	Т	(BZY 93C56)			-11-		56	10			H.E. K		AD
8 ZX 67 C62	T	(BZY 93C62)			-11-		62	10					AD
									AU.				

BEOCENTER 1400: tre in uno

La B & O, realizzando il Beocenter 1400, ha messo a disposizione degli appassionati di alta fedeltà un insieme stereo Hi-Fi di eccezionale prestigio che riunisce, in un unico mobile, tre diversi apparecchi: un sintonizzatore AM/FM, un amplificatore ed un registratore a cassetta.

Il tutto presenta la inimitabile linea armoniosa e funzionale tipica della famosa Casa danese. Le prestazioni di questo insieme, che come dice il nome stesso costituisce la parte « centrale » di un impianto Hi-Fi, sono veramente superlative.


Caratteristiche tecniche

Potenza d'uscita musicale: 2 x 40 W / 4Ω - 2 x 25 W / 8 Ω Distorsione armonica: 0,5% Risposta di frequenza:

20 ÷ 30.000 Hz Gamme di sintonia:

FM - OL - OM - OC1 - OC2 Registratore a cassetta con risposta di frequenza: 40 ÷ 12.500 Hz Alimentazione:

110-130-220-240 V / 50 Hz Dimensioni: 85 x 660 x 260 mm Peso: 8,6 kg

I PRODOTTI B & O SONO IN VENDITA PRESSO I MIGLIORI RIVENDITORI RICHIEDETE CATALOGHI A FURMAN S.p.A. - VIA Ferri 6 - 20092 CINISELLO B.

GLIINDISPENSABILI

Cesoia per lamiere

Realizzata completamente in acciaio. Particolarmente indicata per laboratori Radio TV, carrozzerie, officine, installatori, ecc. Può tagliare lamiere fino a spessori 1,2 e fogli d'acciaio fino a 0,8.

Larghezza taglio: Lunghezza totale: 6 180

Cesoia per lamiere

Realizzata completamente in acciaio. Particolarmente indicata per laboratori Radio TV, carrozzerie, officine, installatori, ecc. Può tagliare lamiere fino a spessori 1,2 e plastica fino a spessori 2.

Larghezza taglio: Lunghezza totale: 2,5 260

LU/3410-00

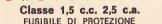
Fresatrice

Particolarmente indicata per laboratori elettronici, aeromodellistica, meccanica fine, ecc. Semplice da usare e di minimo ingombro.

Alimentazione: 6 Vc.c. mediante 4 pile a stilo Impugnatura in materiale plastico antiurto.

Dimensioni max: Ø 38x165

Da impiegare con frese da: LU/3


Ø 38x165 LU/3402-00 a LU/3408-00

LU/3400-00

NUOVA SERIE

TECNICAMENTE MIGLIORATO PRESTAZIONI MAGGIORATE PREZZO INVARIATO

FUSIBILE DI PROTEZIONE GALVANOMETRO A NUCLEO MAGNETICO 21 PORTATE IN PIU' DEL MOD. TS 140

Mod. TS 141 20.000 ohm/V in c.c. e 4.000 ohm/V in c.a. 10 CAMPI DI MISURA 71 PORTATE

VOLT C.C.

15 portate: 100 mV - 200 mV - 1 V - 2 V - 3 V - 6 V - 10 V - 20 V - 30 V - 60 V - 100 V - 200 V - 300 V - 60 V - 100 V - 200 V - 300 V - 500 V - 1000 V - 1000 V - 1500 V - 200 V - 300 V - 500 V - 1000 V - 150 V - 300 V - 500 V - 1000 V - 150 V - 300 V - 500 V - 1000 V - 1500 V - 2500 V 12 portate: 50 μA - 100 μA - 0.5 mA - 1 mA - 5 mA - 10 mA - 500 mM - 1 A - 5 A - 10 A 10 mA - 500 mA - 5 A 6 portate: Ω x 0.1 - Ω x 1 - Ω x 10 Ω x 100 Ω x 1 K - Ω x 10 K 1 portata: da 0 a 10 MΩ 1 portata: da 0 a 50 Hz - da 0 a 500 Hz VOLT C.A. AMP. C.C.

AMP. C.A. OHMS

REATTANZA

FREQUENZA portata: da 0 a 50 Hz - da 0 a 500 Hz Condens ester)

VOLT USCITA 11 portate:

ester.)
1.5 V (condens. ester.) - 15 V - 30 V 50 V - 100 V - 150 V - 300 V - 500 V 1000 V - 1500 V - 2500 V
da — 10 dB a + 70 dB
da 0 a 0.5 μF (aliment. rete)
da 0 a 50 μF - da 0 a 500 μF
da 0 a 5000 μF (aliment. batteria) DECIRE 6 portate: CAPACITA' 4 portate:

40.000 ohm/V in c.c. e 4.000 ohm/V in c.a. Mod. TS 161 CAMPI DI MISURA 69 PORTATE

15 portate: 150 mV - 300 mV - 1 V - 1.5 V - 2 V - 3 V - 5 V - 10 V - 30 V - 50 V - 60 V - 100 V - 250 V - 500 V -VOLT C.C.

1000 V VOLT C.A. 1,5 V - 15 V - 30 V - 50 V -100 V - 300 V - 500 V - 600 V - 1000 V - 2500 V 10 portate:

13 portate: 25 μA - 50 μA - 100 μA - 0,5 mA - 1 mA - 5 mA - 10 mA - 50 mA - 100 mA - 500 mA - 1 A - 5 A - 10 AMP. C.C.

AMP. C.A. 4 portate: 250 μA

250 μA - 50 mA -50 mA - 50 mA -50 mA - 5 A Ω x 0.1 - Ω x 1 -Ω x 10 - Ω x 100 Ω x 1 K - Ω x 10 K OHMS 6 portate: 100 -

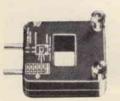
REATTANZA 1 portata: da 0 a 10 MΩ NZA 1 portata: da 0 a 50 Hz da 0 a 500 Hz (condens. ester.) **FREQUENZA**

VOLT USCITA 10 portate: 1,5 V (condented ester.) - 15 V - 30 V - 50 V - 100 V - 300 V - 500 V - 1000 V - 2500 V

DECIBEL 5 portate: da - 10 dB

+ 70 dB

CAPACITA' 4 portate: da 0 a 0.5 μF (aliment. rete) da 0 a 50 μF - da 0 a 500 μF da 0 a 5000 μF (alim. batteria)


MISURE DI INGOMBRO

mm. 150 x 110 x 46 sviluppo scala mm 115 peso gr. 600

20151 Milano Via Gradisca, 4 Telefoni 30.52.41 / 30.52.47 / 30.80.783

una grande scala piccolo tester

ACCESSORI FORNITI A RICHIESTA

RIDUTTORE PER CORRENTE **ALTERNATA**

Mod. TA6/N portata 25 A -50 A - 100 A -

200 A

DERIVATORE PER Mod. SH/150 portata 150 A CORRENTE CONTINUA Mod. SH/30 portata 30 A

Mod. VC5/N portata 25.000 Vc.c.

Mod. L1/N campo di misura da 0 a 20.000 LUX

Mod. T1/N campo di misura da - 25° + 250°

DEPOSITI IN ITALIA :

BARI - Biagio Grimaldi Via Buccari, 13 BOLOGNA - P.I. Sibani Attilio GENOVA - P.I. Conte Luigi Via Zanardi, 2/10 Via P. Salvago, 18 CATANIA - RIEM √la Cadamosto, 18

FIRENZE - Dr. Alberto Tiranti Via Frà Bartolomeo, 38

TORINO - Rodolfo e Dr. Bruno Pomè ROMA - Tardini di E. Cereda e C. C.so D. degli Abruzzi, 58 bis Via Amatrice, 15

Luigi Benedetti C.so V. Emanuele, 103/3 PESCARA - P.I. Accorsi Giuseppe Via Tiburtina, trav. 304

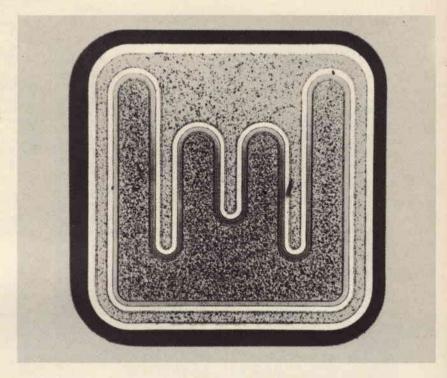
IN VENDITA PRESSO TUTTI I MAGAZZINI DI MATERIALE ELETTRICO E RADIO TV

MOD. TS 141 L. 15.000

franco nostro

MOD. TS 161 L 17 500 stabilimento

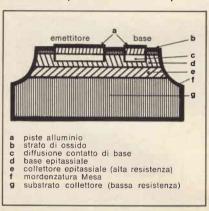
condensatori elettrolitici



FACON FABBRICA CONDENSATORI ELETTRICI s.r.l. - 21100 VARESE - VIA APPIANI 14 - TELEF. 82300

PHILIPS

Transistori di potenza al silicio con base epitassiale


Sono stati recentemente introdotti sul mercato i transistori di potenza al silicio con base « epitassiale ». Secondo questa nuova tecnica, la base sulla quale verrà poi diffuso, in una fase successiva l'emettitore viene fatta crescere sul substrato (collettore) impiegando il processo epitassiale. Questo processo può essere facilmente tenuto sotto controllo e può essere usato per la

produzione sia di transistori NPN che di transistori PNP.
I transistori di potenza con base epitassiale avendo tipi NPN e PNP elettricamente uguali consentono una notevole semplificazione nel progetto dei circuiti. Questi transistori sono particolarmente adatti ad essere impiegati negli

amplificatori BF, nei circuiti di correzione, come transistori di potenza in serie negli alimentatori stabilizzati, come « interruttori » di potenza a bassa tensione di saturazione, come generatori di ultrasuoni, convertitori cc/cc (chopper), come pilota di lampade ed infine come servoamplificatori.

Dati tecnici principali dei nuovi transistori di potenza al silicio

NPN	PNP		Valori li	mite		Valori	caratteris	tici
141-14	Tabala.	$V_{CEO}(V)$	I _c media(A)	I _c max(A)	$P_{tot}(W)$	β_{min}	con l∈ (A)
BD 233	BD 234	45				j.v.		
BD 235	BD 236	60	2	6	25	25	1	TO-126
BD 237	BD 238	80						
BD 433	BD 434	22					No.	
BD 435	BD 436	32	4	7	36	50	2	TO-126
BD 437	BD 438	45		- "				
BD 201	BD 202	45	8	12	55	30	3	SOT-67
BD 203	BD 204	60		12	00	30	3	301-07

PHILIPS s.p.a.

Sezione Elcoma - Piazza IV Novembre, 3 - 20124 Milano - Telefono 6994

MISURATORE DI CAMPO

EP 592

- GRUPPO INTEGRATO A QUATTRO PRESELEZIONI
- ALTOPARIANTE INCORPORATO
- MANEGGEVOLE
- ALIMENTATORE A 12 V **INCORPORATO** PER AMPLIFICATORI D'ANTENNA

PREZZO DI LANCIO PER POCHE SETTIMANE

L. 115.000

(+I,V,A)

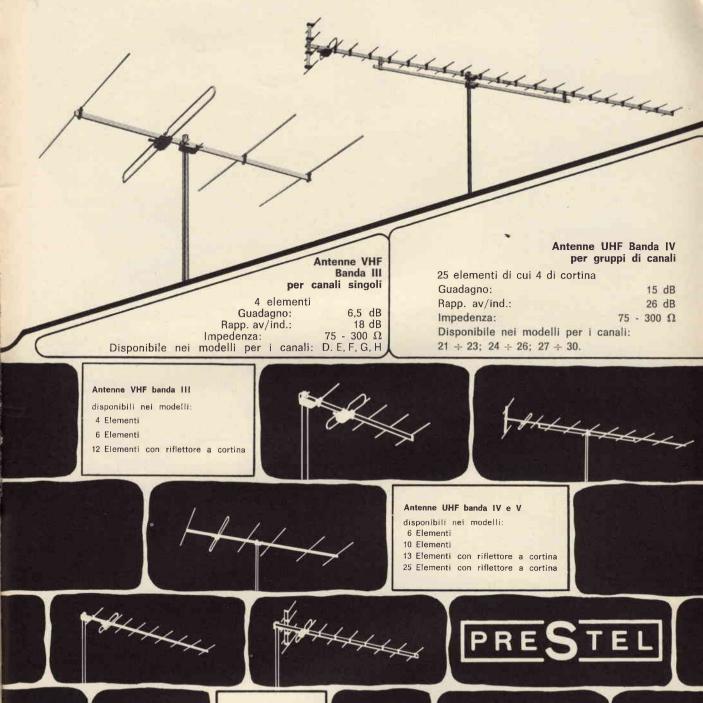
CARATTERISTICHE

Frequenze: due gamme VHF, da 48 a 83 MHz e da 176 a 225 MHz, una gamma UHF da 470 a 860 MHz. Comando di sintonia demoltiplicato e selettore di gamma UHF da 470 a 860 MHz. Comando di sintonia demoltiplicato e selettore di gamma programmabile su quattro canali a scelta. - Scala di sintonia: solo indicativa, con tastiera programmabile a 4 tasti. - Sensibilità: da 10 μ V a 300 mV in cinque portate. Possibilità di estendere il campo fino a 3 V mediante l'attenuatore P 47 A fornito a richiesta. - Precisione: errore massimo \pm 3 dB nelle gamme VHF; \pm 6 dB nella gamma UHF. - Metodo di misura: a lettura diretta su strumento indicatore. - Impedenza d'ingresso: ingresso asimmetrico a 75 Ω ; ingresso simmetrico a 300 Ω mediante adattatore di impedenza P 43 A. - Rivelazione: possibilità di rivelazione della portanti modulate in AM Ω FM mediante rispettivi possibilità di rivelazione delle portanti modulate in AM o FM, mediante rispettivi demodulatori interni. - Bassa frequenza: controllo del volume del segnale di bassa frequenza rivelato: ascolto diretto mediante altoparlante incorporato.

- Uscita B.F.: potenza massima 200 mV. - Alimentazione: 4 pile da 4,5 V tipo piatto 65x60x22. - Autonomia: 100 ore circa. - Dimensioni: 300x100x140 mm. Peso: 2 kg (senza pile di alimentazione).

STRUMENTI DI MISURA E DI CONTROLLO ELETTRONICI ELETTRONICA PROFESSIONALE

Stabilimento e Amministrazione: 20068 Peschiera Borromeo - Plasticopoli (Milano) - Telefono

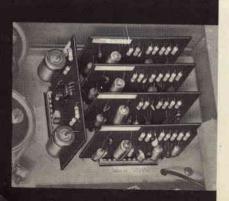


TV FIELD STRENGTH METER

le antenne facili da installare

Un'antenna
PRESTEL
per ogni
vostra
esigenza

C.so Sempione, 48 20154 MILANO



BOUYER

AMPLIFICATORI A TRANSISTORI da 10 a 500W

Modello	AS 10	AS 20	AS 30	AS 60	AS 120	AS 200
Potenza Lavoro	10 W	20 W	33 W	60 W	120 W	240 W
Potenza Massima	20 W	40 W	65 W	120 W	240 W	480 W
Risposta di Frequenza	40 ÷ 15000 Hz	40÷15000 Hz	40÷15000 Hz	40÷15000 Hz	40 + 15000 Hz	40 ÷ 10000 Hz
Microfono	1-3 mV/20 kΩ	1-7 mV/100 kΩ	2-5 mV/100 kΩ	2-5 mV/100 kΩ	2-5 mV/ 100 kΩ	2-5 mV/ 100 kΩ
Ingressi giradischi	1-150 mV/2 MΩ	1-120 mV/2 MΩ	1-150 mV/2 MΩ	1-150 mV/2 MΩ	1-150 mV/2 MΩ	1-150 mV/2 MΩ
Ausiliario			1-600 mV/30 kΩ	1-600 mV/30 kΩ	1-600 mV/30 kΩ	1-600 mV/30 kΩ
Distorsione	1%	1%	< 1%	< 1%	< 1%	< 1%
Linea Ω	4 - 8 - 16	4 - 8 - 16	4 - 8 - 16	4 - 8 - 16	8	8
Uscite linea 50 V		_	80 Ω	40 Ω	20 Ω	16 Ω
Uscite linea 100 V	1000 Ω	-	330 Ω	165 Ω	80 Ω	50 Ω
Alimentazione	110-220 V - 50 Hz	110-220 V - 50 Hz	90-255 V - 50 Hz	90-225 V - 50 Hz	110-220 V - 50 Hz	90 - 255 V - 50 Hz
Assorbimento	30 VA	40 VA	77 VA	120 VA	250 VA	330 VA
Dimensioni	422x297x104	422x297x104	422x297x104	422x297x174	422x297x190	422x297x235
Peso	6 kg	6 kg	10 kg	13 kg	19 kg	23 kg

- Gli ingressi per microfoni e pick-up possono essere aumentati al numero massimo di entrate di ogni singolo amplificatore, sostituendo opportunamente le schede di preamplificazione.
- Ogni amplificatore è dotato di un commutatore parola-musica con il quale si ha la possibilità di correggere il responso di frequenza di —20 dB a 200 Hz, eliminando inneschi in locali molto riverberanti.

DISTRIBUTRICE ESCLUSIVA PER L'ITALIA

GBC ITALIANA

† di 250 kit X l'elettronica nel mondo

UK 612

CONVERTITORE 12 Vc.c./117-220 Vc.a. - 50 W

Frequenza regolabile della tensione d'uscita: 50-60 Hz - Potenza nominale su carico resistivo: 50 W, su carico induttivo: 35 W - Forma d'onda d'uscita: rettangolare.

FISCHIO A VAPORE ELETTRONICO

Alimentazione: con batterie interne (2x9) 18 Vc.c. - Assorbimento di corrente: 1 mA - Impedenza di uscita: 10 $k\Omega$

GENERATORE DI FREQUENZE CAMPIONE

Alimentazione: 115-220-250 Vc.a. - 50-60 Hz - Ampiezza della tensione d'uscita: 5,4 V p.p. - Spaziatura delle armoniche: 1-5-10-20-100 kHz - Frequenza del quarzo: 100 kHz.

UK 872

RIVELATORE DI GAS

Alimentazione: 115-220-250 Vc.a. - 50-60 Hz - Sensibilità: 500 parti per milione di gas combustibile - Sensore impiegato: CM10.

SINCRONIZZATORE E TEMPORIZZATORE PER PROJETTORE DI DIAPOSITIVE

Alimentazione: 115-220-250 Vc.a. - 50-60 Hz - Resistenza d'ingresso: 5 k Ω - Cadenza automatica regolabile da 7 \pm 30 s.

GRID-DIP METER

Alimentazione: 9 Vc.c. - Corrente assorbita: 8 mA - Gamma di frequenza: da 2.8 \div 155 MHz suddivisa in cinque gamme: da 2.8 \div 7 MHz - da 6 \div 13 MHz - da 11.5 \div 27 MHz - da 26 \div 84 MHz - da 60 \div 155 MHz

RICHIEDETE I PRODOTTI AMTRON AI RIVENDITORI PIÙ QUALIFICATI

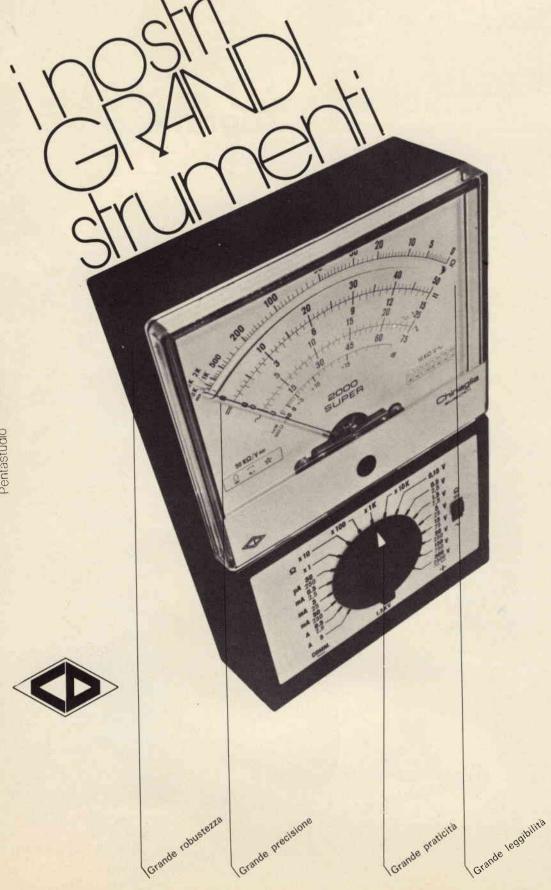
THE REAL PROPERTY.

per essere ascoltati...

MEGAFONO MG 200

Via Alberto Mario 28

Tel. (02) 468.909 - 463.281



RE ■ UNITA' MAGNETODINAMICHE ■ MISCELATORI ■

AMPLIFICATORI BF ■ ALTOPARLANTI PER HI-FI ■ COM-

PONENTI PER HI-FI CASSE ACUSTICHE

CHINAGLIA

Strumenti Elettrici ed Elettronici Via T. Vecellio. 32 32106 Belluno Chinaglia Dino S.p.A.

soprattutte ++ELLESENS

Il profi nastro dal dorso nero

Dorso nero trattato Bobina metallica in una elegante custodia

Bobina di varie misure da 13 a 26.5 cm Richiedete lo speciale adattatore BASF

BASF Aktiengesellschaft D-6700 Ludwigshafen am Rhein S.A.S.E.A. via Rondoni 1 20146 Milano

l'affidabilità li contraddistingue

■ relè polarizzati ■ microrelè ■ relè a cartolina per circuiti stampati ■ piccolì relè di commutazione ■ relè a contatti multipli ■ contraddistinti – grazie all'adozione della moderna pecnologia nelle fasi produttive e nelle operazioni di controllo – dalla costanza del livello qualitativo e dalla regisima affidabilità delle caratteristiche tecniche ■ SIEMENS ELETTRA S.P.A. - MILANO

relè della Siemens