NO. 72

U.S. Edition $2.50
International Edition $3.00

JUNE 1984

/Al

TM

for the Serious Computerist

o
o
O
—
s
o
N~
~
~
~

Better Random Number Generator
Musical Notes
16 Bit 68000 Supermicros
Programming with Macros

The Fast BASIC Compiler

A stunning show delighted the
crowd at the Whisman Theater in
Mountain View last night. Called
BLITZ!, loaded and performed by

Robert Skyles in a one-man virtuoso
programming dispiay, the show fea-
tures the spectacular compiler for

—————— " the COMMODORE 64.

The BLITZ! com-
piler is faster than
PET SPEED, and

«__.BASIC pro-
grams running

3 faster than any
up to 20 tlmes other Commodore
faster” compiler that has
— appeared to date.

Shortly after Skyles took his seat
and inserted BLITZ!, he had normal
BASIC programs running up to 20
times faster after he BLITZed them.
The performer explained that
BLITZ! translates the slow BASIC

language into a much faster code,
thus improving the performance of
the BASIC routines. BLITZ! reads
the entire BASIC program, decides
which operations only have to run
once, and compiles the operations.
It then re-writes the program into

its special P-code.

Skyles also showed how BLITZ!
adds security to your programs,
because once a program has been
compiled, it is not readable. That
means protection is an automatic
part of the re-writing.

The highlight of the show was, for
this reviewer, when BLITZ! compiled
a string of BASIC programs such
that one loaded the next. Anim-
pressed audience looked on as
Skyles effortlessly passed informa-
tion from one program to another.

BLITZ! on disk for the Commodore 64 costs only $99.00.

(You can also get one for the older PET CBMs on a special-order basis.

it puts on quite a show!)

Skyles Electric Works
231E South Whisman Road

Mountain View, CA 94041
(415)965-1735

Available from your local
Commodore 64 dealer or
call 1-800-227-9998.

BLITZ!is atrademark of Skyles Electric Works.
Commadore is a trademark of Commodore

There are three ways to learn 6502 Assembly Language on your Apple Computer:

Hard Easy Easiest
-’n'{ "y

OTHERASSEMBLERS LISA v2.6 LISA ED PAC ,

“ ‘ 7 —— :;‘||”| /
- ||'.)l
il i i _
| .
g i, gl \ *
! g s]
'I!-!,)
! 1 1 7 ‘
r g - . 2 l @ A ’
- g | Lyl
| [g K . Ve
| AN «
\ “‘41:;:: lr|ﬂ|
[STEP A !.‘i
| YR :
| ' ;
Il I
d / /
[
= 2 !
Vi |]
od d e kasie a e A Ed Pa
o de e e e 0o 0 o) g g 0 g
o]e] e 0 0 e p se prog ble D e? B g 650 {
b gua o] e 0 B 0 d P e e p .‘,
o speed bly languag on o 0 i
dP e favo emb of b p a pple owne ed 650 ij
Q g e A othera 0 b ding boo by D dge. R :
de o R = a o
e thre PEED/A et of 650 o) p BA dforthosewho 0 4
ee ho done e SP D o} 0! D D de e ded
ditor to A d e 2 D d P po .
debugge 0 a e d deb
pac P ; i
b d d i
!
]

This Month in
MICRO

This is a very special month for MICRO. It's been
redesigned to make it easier to read and easier to
use. The listings are being typeset in clearer, larger
print, and they are now proofed by computer for
typos before being published.

The Staff believes that it has chosen features
which will truly interest and excite serious
computerists. However, to be certain of this, an
extensive, in-depth Reader Survey has been included
in this issue. The answers we receive will guide the
future direction of MICROQ's editorial material; be
certain that your opinions, your desires, your likes
and dislikes are considered. Return the Survey (with
additional comments if you like] and make MICRO
the magazine that you want it to be.

Featured This Month

Random Number Generator — Based on seven
years of research, this is one of the best RNG's you
will ever find. Whether you want it for software
development, games, gambling, computer
simulation, scientific experimentation, or any of its
myriad other uses, you will discover that it is in an
understandable form which you can easily use in
your own programs.

Musical Notes — For the budding musician in each
of us, a program that gives you control over a five
octive range covering the entire treble, bass and alto
clefs. With a 200 note table and rhythmic variations,
this is far more than just a toy. It even offers the
unusual option of changing notes if you don’t quite
get your masterpiece right the first time.

Programming with Macros — For the advanced
computerist who writes in Assembly Language,
Macros can be the key to more efficient, cleaner,
more easily debugged programs. They are a powerful
tool in knowledgeable hands.

Under the Commodore 64 ROM — Use the entire
potential of your computer and free up your BASIC
memory without sacrificing program messages.
Here, at last, is a way to print messages to the screen
(even full screens] using the 16K of RAM located
under the BASIC and Kernal ROM chips.

Sixteen Bit 68000 Supermicros — The 68000 is
thought by many to be the 6502 of the '80s, the
future of microcomputing. To keep you aware of the
latest trends, two seasoned computerists share their
views and insights into this relatively mew chip
family. Their thoughts may influence the directions
that your own hardware and software planning take.

Useful Math Functions — Save yourself time and
mathematical aggrevation with this practical

“compilation of defined functions assembled into a

very friendly program. Once entered, the math
formulas are at your disposal as needed without the
frustration of entering them again and again.

Apple Ile Guide and Atlas — A very special gift to
our readers this month is the complete Apple Ile
Supplement to our best selling book,’* What's
Where in the Apple.’’ This will bring earlier copies
of the book up-to-date with the material included in
the latest printing. For those who have not yet
discovered the importance of this book for your
programming efficiency, this will give you a chance
to see the type of material available to you. (An
order form may be found on the inside back cover, if
you would like to own a complete copy.)

Question Mark — For those who enjoy a good
mystery, our staff has come up with something that
may pique your curiosity. Test your computing
knowledge and find the answer.

Inside the CIA — No, we haven’t gone political -

just practical. In his ongoing ‘Interface Clinic’
series, Ralph Tenny examines a toggle mode of
operation useful for output and input of multiple
bytes of parallel data, and the advantages and
methods of using the Shift Register. He also looks at |
ways to interface directly to a microprocessor bus
without damaging the computer.

Spotlight — Acorn, a new computer system widely
used in Great Britain, but just coming into
American markets, is studied in detail. Developed
for education, this versatile, sophisticated system
with its excellent color graphics and advanced sound
should go far in hobbyist, home and business
applications.

MICRO

No. 72 - June 1984

- ﬂ‘ﬁ :If

Dear Readers,

As you read through this issue you will notice a few new
things in Micro. While preserving the integrity and thrust
of Micro, we are always working towards improving what
we already have. To this end we have made some changes
in the physical layout of the magazine to make reading
Micro even easier and more enjoyable. You will notice
that now we are typesetting our listings rather than taking
them directly from the printer. This is in direct response
to readers’ comments on the legibility of listings. In
addition to being typeset, the size of the actual type in the
listings is slightly larger. {Hopefully this will help slow
down the loss of your eyesight due to staring at too many
computer screens for too many years.] We have also
improved the layout of the articles to make reading easier.

Now some of you may feel that these changes reflect a
loss of the ‘original’ Micro. To the contrary, we are more
committed than ever to bring you articles that are
intelligent and thought provoking. As part of this
commitment we have added to some articles a ‘Key to
Understanding.” Don’t get your hopes up; this is not some
magical method to ‘knowledge.’ Nor is it a leftover from
“'Secrets of the East.’ Instead, it is our way of making more
of our articles accessible to more readers. How often have
you picked up a magazine and found that due to a lack of
some assumed ‘basics’ an article was beyond your reach. If
only you had a basic foundation you could then use the
article. Or on the flip side, you come across an article
which, although it has information you find interesting, is
interspersed with Pablum explaining every other word.
How many times have we read what a binary digit is? To
help eliminate both of these problems we have taken out
the basic information needed to understand an article and
put it in a sidebox. This ‘Key to Understanding’ explains
any terms or concepts that are necessary for intelligently
reading the accompanying article. Those who are already
familiar with the subject matter can go on to the article,
being spared what for them would be repetitious. This tool
will be used as is appropriate and necessary. In this issue
you will find two articles that utilize this style - The
Random Number Generator by Cem Kaner and John
Vokey, and Programming with Macros by Patty
Westerfield.

And now you have an opportunity to outdo yourselves
-yes, it's Survey Time. (Why aren’t you jumping up and
down?) Last year Micro readers proved their stuff with a
return rate of over 20 percent! In the world of surveys this
is fantastic. Now you can do it again; don't miss out -

this is your big chance to help out your fellow man (i.e.
the Micro staff and Micro readers). And it is faster, easier,
and much more pleasant than giving blood, although some
have likened it to pulling teeth. Seriously, we would
greatly appreciate your taking a few minutes of your time
to fill out the survey and return it to us. We will pay the
postage and put in the time and expense necessary to
tabulate it. Why? It is through the survey results that we
can decide how best to serve you. Everyone could be

waiting for an article on interfacing your computer to your
pet dog, but unless you fill out the survey and tell us we
will never know. In the past, Micro readers have shown
their stuff by responding in numbers much better than
usually projected for survey returns. We hope this year to
do even better. Although we can’t give out a lollipop for
each survey returned, we can guarantee that your opinion
and information count and will be responded to.

In closing, I would like to reiterate that we feel we are
here to serve you and not the other way aroun. Micro is
not just a magazine, but rather a community of dedicated
readers. We invite you to participate and come out and
play - write a letter to the editor, submit articles, give us a
call, or - if you find it’s Friday night and your computer is
down - fill out the survey. Thanks.

Thoark S, Drreresr

Mark S. Morano
Technical Editor

On The
Cover

Summer is here and music is in the air. Play the old
favorites or compose a new tune to honor the
season, with Musical Notes for the Apple.

No. 72 - June 1984

MICRO 3

\

)]

NEC PRINTERS

NEC 2050. ..*989.00
NEC 3550. 87900
PERCOM/T ANDOM
DISK ORIVES VISICORP
5% 320K Floppy.. o 18M APPLE
5 Meg Hard w/Controller.. . VisiCaic *159.00 FDOD 841 4
10 Meg Hard wiCantroler.. . VisiCalc 4 “159.00 R, Bana-a4aK Onve.
15 Meg Hard w/Controller. . VisiCalc Advanced 1269.00 PR 5500 Pnnuar)
20 Meg Hard w/Controller.. VisiWord/Spell *243.00 .
AMDEK Visitrend/Plot 19900 *189.00
310A Amber Manitor. VisiLink *169.00
OXY 100 Pocer VisiFile 9900 "69.00 APPLE/FRANKLIN
Golr 1 VisSchede M8900 8300 DISK DRIVES
AST nsssnncu e e MICRO-SCI
Six Pak Pius...from, 5 VisiTerm .75'00
C“"b"n““s I...from. Deskiop Flan 19300 “69.00
"'2;’9; us. .from Bus. Forecast Model 7500 7500
/0 Pus. from ... StretchCalc 7500 7500 c2 Cantroller
GUADRAM VisiTutar Calc w900 's900 C47 Cole
Quadlink . VisiTutor Advanced $75.00 +75.00
Ouadboard as law as. VisiTutor Word "259.00 #59.00 Gite 1.. . ..
Quad 512 Plus.as low as Vis—0On Calc 1289.00 Hite 2.
Guadcolor...as low as..... Vis—On Grapgh 3179 00 Hie 3.
Chronog - Visi—On Word 27500 APPLE lle STARTER PACK ACE 1000 Color Computer
Pacstel Incerface Board. . -189.00 Visi—0On Mouse. 159 00 64K Appe fle, Disk Orive & Controfler, 80 Caumin ACE Farniy Pack System
64K RAM Chips Kit................... ..959.00 Visi—On Host 1319 00 Card, Monitor I & 0OS 3.3 ACE PRQ PLLS System. e
MICROPRO fs COMPLETE........cnssueesssessssssonensaranes CALL ACE 1200 Office Mgmt. Syscem. cALL
V\brdS[af{MglMegg P "Nex lie Expensive’”
InfaStar Wi "BQI%E AZPC%
ree . $79.
?}.:c"g; Graph 19900 *79.00 TERMINALS “ T ldl. d
Report *79.00 7900 914, e c 1 (w§)
File 8300 7900 924. .
Crosstalk. *105.00 Solutions®: as low as “5.00 600 925.... .
MICROSOFI’ *Call On Tites 950 ...
Multiplen. . 159.00 970
MONOGRAM COMPUTERS
ABASE b 1389.00 Qaltars and Sense. 3109 00 Teleport Portable .
Frday! ... I"185.00 (800A..
2y LOTUS 802....
ius 123 e e 1389.00 goa
.
EasyWriter 249.00 PROFESSIONAL SOFTWARE
EasySpeller . *119.00
PC Plus/The BOSS..................... . 349.00
BasyFiler 3229.00 SYNAPSE
CONTINENTAL SOFTWARE Fie M .
BNAQET ... oo oo 89.00
1st Class Mai/Form Letter....*79.00 0 A
Home Accountart Plus.*98.00 S FTw RE Ams
TK Salver.......
PRINTERS Velkeadm NOVATION
Mark IL... X J-Cat -
AXIOM NEC Mark Vil (Azo Ans /Autn Oial ! SmartCar 103 .
AT-100 Acar Incerface. 3239.00 2010/2030... ... Mark Xil (1200 Baud). . . .129900 SmartCat 103/212 398 00
GP-100 Parallel Interface... .+199.00 8023 Oot Matrix. TRS-80 Cotor Cu’r\puwl‘ o %9900 AutaCat 4219.00
AT-BAG Imterface.. .. .o *=[3.00 8025 O« Matnx..... 9 Volt Power SUpply... 212 AutaCat *543.00
BMC 3510 Seria/Letter Guality . H AYES Apple Cat i 249.00
B 3530 Parallel/Letter Quality. 1499.00 212 Apple Cat. ... *569.00
401 Letter Guality*589.00 ; Smartmodem 300...
. 7710/7730 Serial/Paraiiel... +1949.00 Apple Cat 212 Upgrade ... *308.00
8x-80 Oce Matrx. %269.00 Smartmodem 1200... Cat. 139,99
CENTRONWS OKIDATA Smactmodem 12008.. N : 1139
102 el *209.00 82, 83, 84, 92, 93, 2350, 2410.... ..CALL Micromodem lle.. ZENITH
e NS : e T - .3339.00
7391 Paraliel. . %198.00 SMITH CORONA Micromodem 100. o oo 0
739.3 Seral oo 24900 TP2 . Smart Cam I . o 130300
C.ITOH Tractor Feed . Chronograph. '199 Qo - 368.00
Gorifta Banana.. SH-VER REED
Prownter ‘8510P.. ... ggg Letter gﬁmv . . '459% AMDEK MONITORS
Letter Guality.. *63.
Prownter 15508 v PRINCETON GRAPHICS
A10 (18 cps). ... STAR
HXA2 RGB.. . .o o *519.00
8600 P.. ... Gemini 10X
F10-40 Germini PISX .. . SAKATA
F10-55 e Delta 10.. 100... .. .7268.00
COMREX Serial Board.. TA)(AN
ComWriter Il Letter Guality. 499,00 TDSHIBA 210 Color ARG
DIABLO 1350 . 400 Med-Res RGE
620 Letter Guality *949.00) 415 Hi-fes AGB.. . -
. e 420 Hi-Res AGB [IBM] 3489.00
630 Letter Gualty. . . 174300 120P .
: BMC 100 12" Green . . 125.00
DA|5YW“|TE“ 130p 12" Green .oors s 8899 105 12" Amber. +135.00
2000 3. 315 Coloe . : 42" Green Mi-Aes. . "19.93 usi
Tractor Feed. *109.00 APPLE INTEHFACE 9191- 13" Color... *249.00 i 1, 9" Green .. *99.33
EPSON CARDS & BUFFERS GOHILLA Pi 2, 12" Green *119.99
MX-BOFT, MX-100, RX-80, RX-BOFT, Choose from PKASD, Orsnge Micro, MPC, 12" Green.. . . vBo9 Pi 3, 12" Amber . *149 93
FX-80, #X300 .. - CALL MicroMax, Tymac, Quadram & Practical 12" AMDEr. oo e %9599 Fi 4, 8" Amber. *139.99
DS Peripherals. PRINTER CABLES 1400 Calor . 1269.99
Prism B0 . For Configurations CALL are avalsble for most ol computers on the o aoEn Green. L . QUAORAM

Prism 32 _For Configurabons ..CALL

MANNESMAN TALLY
..*569.00

. 1793.00
4309.00

160L.
180U
Spmt 80

east

market. We supply all your computer needs.
PAPER SUPPLIES

1000 shts. 8%x11 Tractor Paper .

1000 shts. 14%x11 Tractor Paper.

1 or 2" Address Labels... ...

J8 1201 Green.....
JB 1205 Amber.
JC 1215 Caolor..
JC 1216 AGB.

JC 1460 Color

canada

Ontarioc/Quebsec

Quadchrome 8400..
ZENITH

ZVM 122 Amber

ZVM 123 Green..

ZVM 135 Color/RGB.

west

800-268-3974

Other ProvincesB800-268-4559
In Toronto call (416)828-0866,Dept. 405
Order Status Number: 828-0866
2505 Dunwin Drive, Unit 38
Mississauga, Ontario, Canada LSL1T1

800-233-8950

tn PA call [717)327-9575,Dept 40515
Order Status Number: 327-9576
Customer Service Number: 327-1450
A¢I'I7 E. 3rd St., Williamsport, PA 17701

800-648-3311

In NIV call {702)588-5654,Dept. 40515
Order Status Number: 588-5654
P.0.Box 6689
Stateline, NV 89448

No risk, no deposit on C.0.D. orders and no waiting period for certified checks or money orders. Add 3% [minimum *5) shipping and handling
on all orders. Larger shipments may require additional charges. NV and PA residents add sales tax. All items subject to availability and
price change. Call today for our catalog.

KOALA PADS
Atari [DiSk].
Atari [ROM]. ...
C-64 [Disk).

Apple/Frankhn o
KOALA SOFTWARE.......CALL
w
fcommodore gx.gg
CBM 8032... 'sgg PORTABLE
CBM 4032.. *839 WHILE SUPPLIES LAST!
MSD SD? Disk Drive.. vic
MSD SD2 Disk Drive.. cBMaos4
CBM 8035 94...
CBM 9000, C1541 Oisk Orive
8128-80 . . €1530Q Datasette... ... ! $1 49
8032 w 9000 Upgrade C1520 Caar Pnncer/PIur.ter.. i
2031 LP Disk Onve,.. M-801 Dot Metrix Prirter. *219.00
8050 Disk C1526 Oot Matrix/Serial... *299.00 . s
O Dk One.... C1702 Color Montor . 1010 Pecorder. 20 BOOXL................."299
C1311 JOySticke. oo oo o 0 3899 1055 Con Matis P :
4 Pri
2023 Frvar.... C3) popsuek : 1025 Eeot:wn:ea&gwm- o 1200XL.............. CALL
6400 Printer . g:ggg e M&ﬁ” *59.00 1030 Oirect Connect Modem. 1400XL.............. CALL
Z—RAM.. ... Logo B4, to m 00, 1050 Oisk Orive.....
Siicon Office.. . CX30 Paddle.................
Pilot 64..
e v - e PERCOM
SofROM - Word Pro 64 Plus...... 159.00 g;‘;g ﬁ:c:au? . :]
VisiCaic . Perallet Printer Interface. *49.00 CX80 Trak Bal 8 00 AT Ba.51
e Cakc Resut 64..... X 51 ..
PROFESSIONAL Caic esut Esey CX85 Keypad. . 1105.00 AT B8-A1... .
488 Communicator Il...... 229.00
SOFTWARE Codewriter 64.. AT 88-§1 PO... ..
4003 Assorted Education..
Word Pro 2 Plus.... . *159 00 Guick Brown Fox 4011 Sta Raders AT 88-00A
| MCS 801 Caor Prirter . 4012 Missie Commend. .. RFD 40-51
Word Pro 4 Plus/S Plus. esch.. . *279.00 OPS 1101 Daisy Priner. . 4013 Asterads RFD 40-A1
infoPro.. ... 179.00 Megc Voice Speech Moduie 54.00 5049 VisCalc.... RFO 40-82
Administracor 399.00 Desk Organizer Lock....... *49 00 7079 Logo RFD 44.51
Power.. 79.00 Vidtex Telecommunicanons. . N - RFD 44.52
7101 Entertainer [TEXAS INSTRUMENTS
7102 Arcade Champ....... > 99.51 979.00
f 8026 Oig Dug....... : :
We stack a full inventory of software for Commodore, such 8030 ET Phore Hame. "RANA
as: Artworx, Broderbund, Commercial Data, Creative Soft- ggg; gzkev Kong... 1000, . mak *329.00
. .. L .
ware, EPYX, HES, MicroSpec, Nufekop, Romox, Sirius, 5094 Pue Postion AT.02 Ik . asem
Synapse, Thorn EMI, Tronix, UMI, Victory, Spinnaker, Rain- gggg Acari Woter. - INDUS
bow & Timeworks! o GT-Omve ... 4379.00
B043 Ms. Pacman... .
ATARISOFT 8044 Joust... Axd aa!:' EMD“Y BOARDS 459.00
jon |
INFOCOM IBM/AP CB4NIC Axion 48K%99.00
Zork 1,2,3 (ATAPICBM/IBM) PacMan 2993 %37 sg Axlon 128K 1299 00
Deadime [AT/AF/CBMABM).... Centipede 12999 379 n Intec 32K 359.00
Enchanter [AT/AP/cwneh)A] Qig Dug 129,99 13799 DISKE Es Intec 48K ‘84 00
Planetfsll {ATAP/ICEMABM] 3. Donkey Kong 2993 '37.99 . MAXEU- intec 64K . . 99.00
Witness (ATAP/CBM/IBM]. 32, Defender 2999 *37.99 an mg-ja : - :’;‘g% Intec Real Time Clock... 129.00
S AT/AP/CBM, . »; Rabotron %2999 *37 99 Ya -2... ..
tarcross [AT/AP/CBMABM) 29.00 sl 15899 1799 8" FO-1 (SS/00 w800 ALlEN vo|CE Box
8" FD-2 (0S/00). . 149.00 Aran et 1338
CMO'S PORTABLE CORNER VeRBATIM| o
. 5% 85/00.... ..%26.99 CONTHOLLEHS
b 5% DS/O0... ..o ‘3699 &
[B ELEPHANT JOYSTICKS
5% §8/80.YB49 P)
HP 71B §%" §S/00............ -122.99 Joystick wic . ..121 99
5499 PC-8201 5% 0S/00.128.99 Bway Joystick .. o093
s599 HEAD Famous Red Ball.. *23.99
5% Qisk Mead Clesner.. *14.99 Power Grip. *21.99
41CV.. BOSS Joystick.. . "793
NEC ATARINIC Trak Bai . 13499
3;53)[:(" PC-B221A Thermal Printer... DISK HOLDERS Apple Trak Bal . %5499
HP 11C... PC-82814 Data Recorder INNO\IATI\IE CONCEPTS ﬁf,';’:i :ﬂ:f;ger 599
HP 120 PC-8201-06 8K AAM Chups . I Ripn-Ale 10, o e 399 : :
HP 15C.. .. . e PC-B206A 32K RAM Cartridge......*329.00 Aipn-Fle 5011799 KRAFT
HP 16C....... Aip-n-File [400/800 HOM]Hoider .. "799
HP 75C Atar Single Fre .."m2g3
HPIL Module Atan Switch Hitter"598
HPIL Cassetie o Printer . SHARP LIK {E‘;‘;‘%Zj&"‘” . :g: gg
ga"’ g‘?":f N [] Atari Letter Perfect Disk(40/80]. ... %79.99 B st;fk' o " vag.a9
T"“’"'j o u‘"“'“" ule... Atari Letter Perfect ROM(40 col].... *79.99 AMIGA '
‘me ° - PC-1500A $165%% Atan Letter Perfect ROM(80 co] ... #79.99
TIMEX/SINCLAIR eeesnanan Aran Data Perfect AOM (60 col] . . *79.99 3100 Singe +13.99
Timex/Sinclair 1000..... . . PC-1250A...........°88%" A el Perfect Disk 5999 3107 Par.. *19.99
Timex/Sinclar 2086 . CE-125 Printer/Cassette.. .. .*128.99 Atari Utility/MaiMerge 21 00 Joyboard .. *37 99
16K Memory CE-150 Color Printer/Cassette. ... *171 93 Apple Letter Perfect. 199 00 TG
2040 Printer CE-155 BK AAM . 393399 Apple Data Perfect .. %75.00 Atan Trak Bal 47.99
vuCalc.. CE-161 16K RAM. . 413499 Appe LJK Utilty.. 2100 Apple Joystick 47 93

Mmdware Pnnter

CE-500 ROM Library329.99

Apple Lower Case Generamr

Apple Trak Bait .. %47 99

canada

Ontario/Quehec

800-268-3974

Other Provinces800-268-4559
In Taronto call (416)828-0866,Dept 41575
Order Status Number: 828-0866

west
800-648-3311

In NV cail (702)588-5654,Dept 40515

Order Status Number: 588-5654
Customer Service Number: 327-1450 2505 Dunwin Orive, Unit 38 P.0.Box 6689
477 E. 3rd St., Williamsport, PA 17701 Miasiseaugae, Ontario, Canade LSL1TY Stateline, NV 89449 s \
CANADIAN ORDERS: All prices are subject to shipping, tax and currency fluctuations. Call for exact pricing in Canada.
INTERNATIONAL ORDERS: All shipments outside the Continental United States must be pre-paid by certifiad check only. Include 3% [minimum

east
800-233-8950

In PA call (717)327-9575,Dept. 40515
QOrder Status Mumber: 327-9576

*S5) shipping and handling.
EDUCATIONAL DISCOUNTS: Additional discounts are available to qualified Educatianal Institutions.
APQO & FPO: Add 3% [minimum *5] shipping and handiing.

/ANICRO

for the Serious Computerist

JUNE 1984

Musical Notes for the With five octives and

Apple rhythm, too, you can play
old tunes or compose new.

Phillip Bowers

Under the C64 ROM Gain BASIC memory

without losing program

John A. Winnie messages using RAM
under ROM.

A Better Random A better version for

Number Generator simulations, games and

gambling, forecasting.
H. Cem Kaner and John R. Vokey

Control A program for assembly
code efficiency, or
statistics, stepitrace
debugging and more.

Mitchell Esformes

Sixteen Bit 68000 Is this the 6502 of the

Supermicros 80’s? What will it mean for
your computing plans?

Paul Lamar and Richard Finder

Programming with Make your assembly
Macros language more efficient,

cleaner, easier to debug.
Patricia Westerfield

Useful Functions Save time and
mathematical aggrevation
with a compilation of
defined function.

Paul Garrison

Apple lle Supplement PEEKs, POKEs, CALLs,

to “What’s Where in etc. specific to the Apple
’” Ile, from Micro’s best

the Apple selling book.

Phil Daley

Inside the CIA Advantages of the shift

register on the CIA, and
direct expansion from the
microprocessor bus.

Ralph Tenny

Product Reviews

NO. 72

15 Autoterm

A communication
package with added
features for the
CoCo.

18 Advanced
X-tended Editor

An Applesoft line
editor for BASIC
program
development.

15 SuperText
Protessional

The most recent
version of this
powerful Apple word
processor.

18 The Oddsmaker

An “Electronic
Bookie” for the
Apple or
Commodore.

17 Super-Text
Professional Word
Processor

A simple business-
powered processor
for the Atari.

18 BASIC Tutor

A course in BASIC
programming on the
Apple.

17 G.A.L.E.

An Applesoft Line
Editor with the.most
complete set of
commands.

19 Card?

A Commodore
parallel printer
interface for
text/graphics.

17 LOGO

A fairly extensive
implementation of
the language for
Commodore 64.

Departments

2 Highlights

3 Editorial

8 Feedback

10 Spotlight: Acorn
15 Reviews

75 Catalogs
77 Books
78 Question Mark

79 Listing Conventions

80 Advertiser Index

b B

I————————q

At Jast!. . . A dual 6522 versatile
interface adapter (VIA) board
for the Commodore-64.

The 6522 VIA, long the preferred
input/output chip for 6502 mi-
crocomputers, is now available for the
C-64. 6522 programming techniques,
covered in many available books, can now
be applied to the C-64 for even the most
sophisticated real-time control applica-
tions. Board allows full use of the IRQ
interrupt. When combined with the
C-64’s memory capacity, it provides an
extremely powerful yet cost-effective de-
velopment system and controller in one
package. Includes extensive application
notes and programming examples.

Up to four boards can be connected to-
gether, providing sixteen 8-bit ports.
Order Model 641F22, $169 far one, post-
paid USA. Each additional $149.

Complete reconstructed Assembly Lan-
guage source code for the C-64’s BASIC and
KERNAL ROMs, all 16 K!

Extensively commented and cross-
referenced. Far more than a mere “memory
map” of useful locations, this book really does
tell all. An incredible time-saver in effective
C-64 programming and understanding. Order
C-64 Source $29.95, postpaid USA.

SCHNEDLER SYSTEMS
1501 N. Ivanhoe, Dept. M6
Arlington, VA 22205 I
Telephone orders/information: (703) 237-4796
VISA

MASTERCARD

h———————

ATARI 48K * TRS C/C 32K
COMMODORE 64

747 FLIGHT SIMULATOR

ACTUAL SCREEN PHOTOGRAPH

Superbly realistic instrumentation and pilot's
view in lifelike simulation which includes
emergencies such as engine fires and systems
failures. This program uses high resolution
graphics to the full to produce the most realistic
flight-deck display yet seen on a home
computer. There are 21 real dials and 25 other
indicators. Your controls operate throttle,
ailerons, elevators, flaps, slats, spoilers,
landing gear, reverse thrust, brakes, etc. You
see the runway in true perspective. Uses
joysticks and includes options to start with
take-off or random landing approach. A real
simulation, not just another game! Cassette
only, $27.95 (add 6% in Calil.). Sole U.S.
distributor for D.A.C.C. Ltd., England.

F. Ashton
P.O. Box 7037
Chula Vista, CA 92012

— deedbact

Dear Editor:

My programming abilities are just
enough to get me into trouble. But I've
been following your series on graphics
and hope you can help me.

I want to graph a time series of data
as line graphs. Data is: High, low,
close, date and I want to display it in

the form:
-~

—C
l—’

I also want to label the axis as to price
and time:

PRICE NAME

Then overlay a moving average of the
data:

PRICE NAME

254 T
20+

Possibly adding a second series of data
on the same chart, requiring a third
label on axis:

PRICE NAME
45 -+ 300
40
3 200
30
% 1100
20
——t—
mn 2n 3 DATE

The kicker is that data may cover an
extended period of time ({e.g. 200 days)
and for clarity maybe only 50 days

could be displayed at a time. So, [want
to be able to scroll back and forth,
timewise {left, right| and change the
text labels as this occurs, stopping as
necessary and then dumping the screen
to a printer.

Big order? That's why I need help.

Harvey L. Taback
Vancouver B.C., Canada

68000: The 6502 of the '80’s

Dear Editor:

It's a real pleasure to be writing to you
using the Amdek monitor that you and
your staff awarded me for “‘Country
5.”" T was really quite elated the day I
received the registered letter
announcing my good fortune in the
Micro graphics contest. Thank you all
very much for the recognition.

I've been a follower of Micro since
the days of the KIM-1 computer which
served as my training wheels in the
world of 6502 programming. In fact, I
still have the motherboard and proto
board from the Computerist holding
the ol’ KIM system together.

As a reader of Micro I'd like to take
this opportunity to make a suggestion
that I believe will benefit many present
Micro followers and perhaps attract a
whole new following.

The 6502 obviously has a lot of life
left in it. Apple has just introduced the
Apple Ilc and, as you must already
know, the Western Design Center in
Mesa, AZ is about to release the first
full implementation of its 16 bit
versions of the 6502 (65802 and 65816).
That's great for all of us die hard 6502
programmers. | understand that Apple
and Atari have already ordered a
significant number of these chips for
evaluation.

I believe, however, that the
Motorola 68000 series of
microprocessors will become the 6502
of the 80’s. I know that you folks are
already 6809 enthusiasts, so I don’t
expect to run into too much resistance
to the idea of supporting another great
Motorola product. In fact, I seem to
recall a 68000 series of articles around
the end of 1982. What happened?

I've begun programming the 68000
using the QPak-68 coprocessor board
for the Apple II. The QPak-68 is a
complete 68000 development package
from QWERTY, Inc. It’s based on the

MICRO

No. 72 - June 1984

68008 and is a superb product.
Anyway, my initial reaction to the
68000 has been nothing if not
enthusiastic. It’s almost like working
in a high level language after so many
years of being zero page bound and,
indeed, 8 bit bound with the 6502.

As you know, Apple has adopted the
68000 family of processors and Sinclair
is about to unleash a $500 computer
based on the 68008. There is no
magazine that I know of that is
supporting the 68000 as of yet. Why
not do the world a favor and be the first
to offer your readers a pathway into the
current generation of high performance
microprocessors.

I must sound like a member of the
Motorola marketing team after that
last paragraph. No, in fact I'm arelative
newcomer to the 68000, but I see a vast
future for this chip family and
apparently an increasing number of
computer systems designers do also.
How about putting the question to your
readers and find out how they feel
about Micro supporting the 68000.

Once again thank you for the
wonderful validation in selecting my
Apple graphic as the first prize entry in
the Apple II category.

Thomas Wilson
San Rafael, CA

Editor’s Note: The staff of Micro also
feels that the 68000 chip may well be
the 6502 of the '80°s. We need to know
our readers’ interest in a regular 68000
column and feature articles on this
family from time to time. These would
be in addition to (not in place of) our
other chips. Please take a few minutes
to answer the Reader Survey Questions
on the card in this issue; we will
analyze your responses carefully to
determine the direction you want
Micro to follow.

Medical Programs
Dear Editor:

Several months ago I wrote to you
asking if any of your readers would be
interested in contributing programs to
a book, ‘'Microcomputer Programs In
Medicine.”” The response from your
readers was astounding.

I had letters, post cards, packages of
discs and printouts from all over
America, various parts of Canada,

England, Ireland, South Africa, Saudi
Arabia, Israel, Australia, Malaysia and
even one from mainland China.

I had phone calls in the middle of
the night from foreign parts apologizing
for the time zone difference, but asking
for details of the impending book.

As a result, the programs have now
been published in book form in two
volumes. Volume I contains scheduling
and appointment programs, direct
patient billing and accounts receivable,
patient file retrieval, simple statistics
including standard deviations, etc.,
graph drawing and curve fitting,
numeric and alphabetic sorting.
Volume II contains programs on patient
history taking and history
summarization, respiratory function,
pediatric growth percentile calculation,
bar graph drawing, analysis table
making, using a VisiCalc template,
obesity advisory program for weight
loss, CHI square statistics and analysis
of variance.

The book is now in print and is
available from the publishers,

$299

Computer Medica Corporation,
Medical Software Company, 328 Main
Street, Center Moriches, N.Y. 11934,
at $80 per volume.

I must thank your readers again for
the fantastic response.

Derek Enlander, M.D.
New York, NY

0S9

APPLICATION
SOFTWARE

ACCOUNTS PAYROLL
PAYABLE GENERAL
LEDGER $ 49 9
$ 2 9 9 with
CASH SMALL
ACCOUNTS JOURNAL BUSINESS
RECEIVABLE INVENTORY

$399

COMPLETE DOCUMENTATION $19.95

0S9 & BASIC 09 ARE TRADEMARK OF
MICROWARE, INC. & MOTOROLA CORP.

ELECTRONICS

(405) 233-5564
2110 W. WILLOW — ENID, OK 73701

Don't Forget to Send
Your Reader Survey. Do
It Today!

$299

SPECIALTY

No. 72 - June 1984

MICRO

Microcomputer
System

Distributor

Acorn Computers Corporation
400 Unicorn Park Drive
Woburn, MA 01801

Introduction

The Acorn microcomputer was first developed in response
to an invitation issued by the BBC to computer firms to
compete in creating a new micro that would meet their
specifications. The contract was awarded to Acomn, which,
at the time, was only five years old.

Various features, in particular a Local Area Networking
capability of up to 254 Acorns, led to the acceptance of the
Acorn as an educational tool. Presently more than 85% of
English schools use the Acorn. The Acorn has made its
entrance into the U.S. market with a few model systems
established, the most recently publicized being the school
system of Lowell, Massachusetts, where a network of
Acoms is serving grades K-12.

Memory and Optional Expansion Features

The Acorn has a series of co-processors that allow optional
expansion of the standard 64K of memory. The Operating
System is 16K built-in ROM, 16K built-in Word Processor
(VIEW], built-in ROM BASIC interpreter, 32K RAM for
User Programs. The co-processors enable the addition of
three expansion features:

1) a 3MHz 6502 (includes an additional 64K RAM): this
will run any program faster with more space available to
the user

2) a Z-80B with 64K RAM: ‘the software with this unit
allows CP/M programs to be run with more memory than
a normal CP/M environment. In addition, the main user
program is left free to do calculations, leaving the BBC
Microcomputer to deal with graphics, printers, clock,
floppy disk, etc.’

3] a NS 16032: a 16 bit machine with 32 bit internal
architecture, can be used with up to 16 Megabytes of
RAM.

The Acorn has a built-in (ROM]} BASIC interpreter,
which also includes a 6502 Assembler. This permits
Assembly Language to be mixed in the middle of a BASIC
program. All the standard features and statements are
available with some nice enhansions such as local
variables, subroutines that pass parameters and recursion.

Also built into ROM is a 16K word processor called VIEW.
This package is of professional quality featuring local and
global control, search, change, replace, automatic page
numbering, etc.

Graphics

When first viewing the Acorn one immediately notices the
high quality graphics; an RGB Video is used to display the
high resolution screens. The Acorn uses a number of
display modes, including 640 x 200 for 2 color graphics (80
x 25 text), 320 x 200 for 4 color {40 x 25 text), and 160 x
200 for 16 color graphics (20 x 25 text), to list a few. There
are a number of commands which facilitate graphics
control, including the familiar commands such as PLOT,
DRAW, and MOVE.

Sound/Music

To generate sound and music the Acorn employs four
‘channels.’ Through the use of SOUND and ENVELOPE
commands a great deal of control is available to the user,
and a full five octave range gives plenty of room to work
in. The ENVELOPE offers a great deal of control with six
parameters, governing the attack, decay, and release of a
note.

Voice Synthesis

The Acom also has a built-in voice synthesizer, including
a Speech Processor and a PHROM (Phrase Read Only
Memory). The Speech Processor is one made by Texas
Instruments, the TMS 5220. In the PHROM chip is stored
206 ready-made words, and other PHROMs fitted with
different words will be available in the future. The speech
system can be accessed from BASIC and Assembly
language.

Interfaces

The Acorn includes a number of interfaces: Floppy Disk
Interface up to 1 MB unformatted; RS423 Serial Interface
{RS232 enhanced for speed and distance); Software
Selectable Baud Rates between 75 and 19,200 Baud; 8-bit
‘Centronics-type’ parallel printer port; four 12-bit Analog
Input Channels -input voltage range 0-1.8V, 10ms
conversion time for each channel; standard audio cassette
for low-cost storage.

10

MICRO No. 72 - June 1984

Peripherals

Peripherals supported include: 5 1/4-inch floppy disk
drives with capacities of 400K-800K formatted;
monochrome, color (RGB, Composite Video) and TV; dot
matrix and daisy-wheel printers, game paddles and
joysticks.

Keyboard and Physical Description

The 73-key Qwerty keyboard is cleanly laid out, including
10 User Definable Function Keys. It has a nice touch and
has the break key safely put out of normal reach. The size
is 16""Wx 131/2”"Dx 2 3/4''H, weighing in at 16 1bs. The
dual disk drive is compact and neatly designed, taking the
space of a normal-sized single disk drive.

ancient geography. The only problem is that it is fun and
addictive. Plato’s Cave is an introduction to the relation
between evidence and inference [using a Platonian
approach]. The subjects covered by Krell and other
manufacturers of Educational Software is quite varied,
developed for all levels and covering subjects from color to
transpiration to gas chromatography.

Price

The price breakdown is as follows: for the basic
microcomputer the price is $995.00; the 800KB dual disk
drive is $995; a 400KB {double sided} single disk drive is
$545; a 200KB (single sided) single disk drive is $395; a
RGB high resolution monitor (12 inch] is $595;
Monochrome monitor {12 inch) amber or green is $195,

b English
SCIENCE

|

Software

The software available for the Acomn is growing every day.
Although all of the software that is presently in use in
England isn't available here, there is certainly enough to
keep anyone busy. There are packages covering business
applications, graphics, languages and a plethora of
educational software. American companies have been
enlisted in converting some of the English software, in
particular the education packages, for use in the United
States. The name that stands out in this area is Krell
Software Corporation {1320 Stony Brook Road, Stony
Brook, NY 11790). The most well known of their software
are Alexander the Great and Plato’s Cave. Alexander the
Great is a cross between Risk and Scrabble, developing
word and arithmetic skills as well as touching upon

both the RGB and Monochrome include cables. Prices for
the additional co-processors are not available at this time.

Conclusion

Although the past emphasis has been in the area of
education, the Acorn has just begun to conquer the many
fields that it is capable of handling. Given its memory,
telecommunication, graphic and other well developed
features it certanly merits consideration for home or
business use.

AICRO"

No. 72 - June 1984

MICRO

11

80 COLUMN

RINTER SALE—$149.00*

COM-START/F

Tractor

COM-STAR

Friction

Printer

only $199* *

¢15 Day Free Trial -180 Day Immediate Replacement Warranty

o Lowest Priced, Best Quality, Tractor-Friction Printers in the U.S.A.

* Fast80-120-160 Characters Per Second

¢ Word Processing

*STX-80 COLUMN
PRINTER-—$149.00

Prints full 80 columns. Super silent
operation, 60 CPS, prints Hi-resolution
graphics and block graphics, expanded
character set, exceptionally clear
characters, fantastic print quality, uses
inexpensive thermal paper! Best thermal
printer in the U.S.A.! (Centronics Paralle!
Interface).

**DELUXE COMSTAR T/F

80 CPS PRINTER—$199.00
The COMSTAR T/F (Tractor Friction)
PRINTER is exceptionally versatile. It
prints 8% x 11” standard size single
sheet stationary or continuous feed com-
puter paper. Bi-directional, impact dot
matrix, 80 CPS, 224 characters. (Cen-
tronics Parallel interface).

Premium Quality—120 CPS
COMSTAR T/F SUPER-10X

PRINTER—$289.00
COMSTAR T/F (Tractor Friction) SUPER-
10X PRINTER gives you all the features
of the COMSTAR T/F PRINTER plus a
10" carriage, 120 CPS, 9 x 9 dot matrix
with double strike capability for 18 x 18
dot matrix (near letter quality), high
resolution bit image (120 x 144 dot
matrix), underlining, back spacing, left
and right margin settings, true lower
decenders with super and subscripts,
prints standard, italic, block graphics

i Add $17.50 for shipping, handling and insurance. WE DO NOT EXPORT |

TO OTHER COUNTRIES EXCEPT CANADA.

1 Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days {
for delivery, 2 to 7 days for-phone orders, 1 day express mail! Canada |
| orders must be in U.S. dollars. VISA — MASTER CARD ACCEPTED. We i

| ship C.0.D.

and special characters, plus 2K of user
definable characters! The COMSTAR T/F
SUPER-10X PRINTER was Rated No. 1 by
“Popular Science Magazine." It gives you
print quality and features found on
printers costing twice as much!! (Cen-
tronics Parallel interface) {Better than Ep-
son FX 80).

Premium Quality—120 CPS
COMSTAR T/F SUPER-15%"
PRINTER—$379.00
COMSTAR T/F SUPER 15%" PRINTER
has all the features of the COMSTAR T/F
SUPER-10X PRINTER plus a 15%" car-
riage and more powerful electronics
components to handle large ledger
business forms! (Better than Epson FX

100).
Superior Quality
SUPER HIGH SPEED—160 CPS
COMSTART/F 10”
PRINTER—$489.00
SUPER HIGH SPEED COMSTAR T/F

(Tractor Friction) PRINTER has all the .

features of the COMSTAR SUPER-10X
PRINTER plus SUPER HIGH SPEED
PRINTING—160 CPS, 100% duty cycle,
8K buffer, diverse character fonts,
special symbols and true decenders, ver-
tical and horizontal tabs. RED HOT
BUSINESS PRINTER at an unbelievabie
low price!! (Serial or Centronics Parallel
Interface)

o e e e G S G G G e GEP GED GED G G G G e e e e ene |

SUPER-10"

s 40, 46, 66, 80, 96, 132 Characters Per Line Spacing
¢ Print Labels, Letters, Graphs and Tables
* Print Qut Data from Modem Services

e List Your Programs

¢ “The Most Important Accessory for Your Computer”

Superior Quality
SUPER HIGH SPEED—160 CPS
COMSTARTI/F 15%”

PRINTER—$579.00

SUPER HIGH SPEED COMSTAR TI/F
15%" PRINTER has all the features of the
SUPER HIGH SPEED COMSTAR T/F 10"
PRINTER plus a 15%" carriage and more
powerful electronics to handle larger
ledger business forms! Exclusive bottom
paper feed!!

PARALLEL INTERFACES
For VIC-20 and COM-64—$49.00
For All Apple Computers—$79.00
NOTE: Other printer interfaces
available at computer stores!

are

Double
Immediate Replacement

Warranty

We have doubled the normal 90 day war-
ranty to 180 days. Therefore if your
printer fails within 180 days” from the
date of purchase you simply send your
printer to us via United Parcel Service,
prepaid. We will IMMEDIATELY send you
a replacement printer at no charge,
prepaid. This warranty, once again,
proves that WE LOVE OUR
CUSTOMERS!

PROTECTO

ENTERPR'ZES (WE LOVE OUR CUSTOMERS)

BOX 550, BARRINGTON, ILLINOIS 80010
Phone 312/382-5244 to order

APCDEFGHIJKLMNOPLQRSTUVWXYZ

ABCDEFGHIJKLMNOPGRETUWXYZ L 23345 &6 7890

COMBINATION “DAISY WHEEL”
PRINTER/ TYPEWRITER

“WORLD’S FINEST”
LIST $799.00

SALE $489.00

¢ SUPERB COMPUTER PRINTER COMBINED WITH WORLD’S FINEST ELECTRONIC
TYPEWRITER!

¢ BETTER THAN IBM SELECTRIC — USED BY WORLD’S LARGEST CORPORATIONS!
¢ TWO MACHINES IN ONE — JUST A FLICK OF THE SWITCH!

* SUPERB EXECUTIVE CORRESPONDENCE — HOME, OFFICE, WORD PROCESSING!
¢ EXTRA LARGE CARRIAGE — ALLOWS 14-1/8” PAPER USAGE!

¢ DROP IN CASSETTE RIBBON — EXPRESS LIFT OFF CORRECTION OR ERASER UP TO
46 CHARACTERS!

* PRECISION DAISY WHEEL PRINTING — MANY TYPE STYLES!

* PITCH SELECTOR — 10, 12, 15 CPS, AUTOMATIC RELOCATE KEY!

¢ AUTOMATIC MARGIN CONTROL AND SETTING! KEY IN BUFFER!

¢ ELECTRONIC RELIABILITY, BUILT IN DIAGNOSTIC TEST!

* CENTRONICS PARALLEL INTERFACE BUILT-IN (SERIAL OPTIONAL)!

* 15 DAY FREE TRIAL — 90 DAY FREE REPLACEMENT WARRANTY!

—————————— e —— ———— o e e
| Add $17.50 for shipping and handling!! : pno I Ec I o

| . |

| Enclose Cashiers Check, Money Order or Personal Check. Allow (WE LOVE OUR CUSTOMERS)
14 days for delivery, 2 to 7 days for phone orders, 1 day express i E NTERPRIZE s

{ maill Canada orders must be in U.S. doliars. VISA — MASTER | BOX 550, BARRINGTON, ILLINOIS 60010

\ CARD ACCEPTED. We ship C.0.D. | Phone 312/382-5244 to order

—— S D CUD D D — —— ———— ——— —— -—— o ——]

No. 72 - June 1984 MICRO 13

®

S A S R G SR

Q" Data Monitor

* 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display

12" Screen - Green Text Display (anti-reflective screen)

SANYO MONITOR SALE!!

¢ 80 Columns x 24 lines

¢ Green text display

e Easyto read - no eye strain
e Up front brightness control
High resolution graphics

* Quick start - no preheating
* Regulated power supply

¢ Attractive metal cabinet

¢ UL and FCC approved

*$ 69.00
*$ 99.00

12" Screen - Amber Text Display (anti-reflective screen) *$ 99.00

14" Screen - Color Monitor (national brand)

*PLUS $9.95 for Connecting Cable.

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has
stepped in to meet the demand with a whole new line of low cost, high
quality data monitors. Designed for commercial and personal com-
puter use. All models come with an array of features, including up-
front brightness and contrast controls. The capacity 5 x 7 dot
characters as the input is 24 lines of characters with up to

80 characters per line.

Equally important, all are built with Sanyo’s commitment

to technological excelience. In the world of Audio/Video, Sanyo is
synonymous with reliability and performance. And Sanyo quality is
reflected in our reputation. Unlike some suppliers, Sanyo designs,
manufactures and tests virtually ail the parts that go into our products,
from cameras to stereos. That’s an assurance not everybody can
give you!

----------------------- - G .
¥ acd $10.00 for shipping, handling and insurance. Hlinois residents ¥
| please add 8% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII |
I orders. WE DO NOT.EXPORT TO OTHER COUNTRIES.

| Enclose Cashiers Check, Money Order or Personal Check. Ailow 14|
days for delivery, 2 to 7 days for phone orders, 1 day express maill |
| Canada orders must be in U.S. dollars. Visa - MasterCard - C.O.D. 1

*$249.00

? SANYO

Official Video Products
of the Los Angeles 1984 Olympics

i

a—
—
—_—
-—
——
—
—

!

C WO A dyme mm g

Q5%

* LOWEST PRICES » 15 DAY FREE TRIAL » 90 DAY FREE REPLACEMENT WARRANTY
¢ BEST SERVICE IN U.S.A. « ONE DAY EXPRESS MAIL « OVER 500 PROGRAMS ¢ FREE CATALOGS

E N TE R P R I z E s (WE LOVE OUR CUSTOMERS)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

Product Name: Autoterm
Equip. Req’d: Color Computer with 32K
Price: $39.95 cassette;$49.95 disk
Manufacturer: PXE Computing :
11 Vicksburg Lane
Richardson, TX 75080

Description: A full-feature communication package with
added features. An extensive amount of effort has been
spent to insure user-friendliness; several detailed menus
guide the operator in setup and operation. Any operation
can be temporarily suspended or allowed to run in
background mode while the user accesses a HELP screen.
The communications ability seems to be standard - 110
to 1200 baud full- or half-duplex, with send and receive
capability for text, graphics, BASIC and Assembly
Language data. Full communications using any modem
can continue in the background mode while data is
reviewed or edited. The connection will not be broken
during cassette loads and save, if you desire. Provisions for
embedded text and menu-selected print options make it
easy to use any printer. Received data can be printed in any
menu-defined format, regardless of the width of text lines
received.

An outstanding feature of this package is called
keystroke multipliers. The purpose is to automate the
sign-on procedures for various modems, i.e., invoke a
keystroke multiplier which will make the connection,
complete the contact and sign off, all automatically.

Pluses: The low cost of this software makes it viable for
an unlimited number of simple control and measurement
tasks, aside from its intended communications and editing
ability. Although full utilization of the package would be
complex, the learning process seems to be optimized and
friendly.

Minuses: So far, no bugs have been found, and any
perceived problem has been overcome with more study
and experimentation.

Documentation: An 81-page manual details the operation
of the program in a well written format, with additional
reinforcement from the program itself. The book is well
organized with a complete and logical index, and
numerous detailed examples are used where needed.

Skill level: By the time a CoCo owner has progressed to
the need or desire for communications, he will be ready to

use this program.

Reviewer: Ralph Tenny

Product Name: SuperText Professional
Equip. Req’d: Apple II, I+, IIe with Applesoft ROM,
DOS 3.3, 48K, lower case capability
Price: $175 ($99 special]
Manufacturer: MUSE Software, Inc.
347 N. Charles Street
Baltimore, MD 21201

Description: The most recent version of one of the first
powerful Apple word procesors. With it, a skilled user can
write, edit, store, preview, and print documents in a wide
variety of formats. The program supports the Smarterm,
Full-View 80, and Videx 80-column boards for the IT +, and
either of the Ile 80-column cards, as well as the Apple
40-column format. It is simple to configure the program
for most of the popular printers.

Pluses: Omne of the most unusual features is the ‘‘Math
Mode'’, which permits calculations within files. This is
particularly useful for preparing invoices, cost estimates,
and proposals. The screen can be split and each half
scrolled and edited separately. A key can be defined as any
string up to 30 characters long, useful for reviews where a
single title occurs over and over. Cursor movement is
smooth and unobtrusive. It seems to be nearly impossible

to make such a serious error that text is lost from memory.
You can easily set up multi-line running heads or feet,
embed codes for bold, italic, and other tyepface changes,
and save or load files. There is a quick reference card.

Minuses: SuperText creates nonstandard disk files. The
program uses several of the same code sequences in
different modes, and it is fairly easy to forget what mode is
on. There is no provision for footnotes, super- or sub-
scripts, or hyphenation.

The Apple Ile uses CTRL I to tab; SuperText has not
provided a substitute control code to turn on italics
printing, so it is necessary to embed a dumamy character
while entering text, then use the ‘change’ mode to alter it.

Documentation: The manual has no index and needs one.
It is comprehensive, however, and almost any answer can
be puzzled out by working through the extensive table of
contents.

Skill level: It requires either experience with word
processors or great persistence to learn. A person who
learns the program and uses it regularly, however, will
have the use of an effective writing tool.

Reviewer: K.C. Tinkel

No. 72 - June 1984

MICRO 15

A A NN A AR AR NN 1AL A LRI NN SRR3R NN N NSNS SN NNNNNN NSNS NNNNNNNNNNNN

Subscribe to MICRO...

Save 20% and we’ll send you a
BONUS GIFT

with your subscription!

Receive a coupon good for ome Each Disk contains a variety of programs
MicroDisk of your choice. from Micro, all entered and ready to run on
A $15.00 Value — FREE! your machine. Saves time, avoids errors.

Fill out the attached
card and mail today!

R 1T el

\\\\3&\\\\\:\ \\\\I\\\R%X\\\\Xﬂs. ~'::§__/J/"Z'/;/////’//HW/////
LN .~;:~s.\~~>\=.>:.s.~,:~~=;5=\-_/._‘_-,f. M)
. —— " .
Each diskette includes all of the programs in BASIC and/or
Assembly Source, plus binary ‘load-and-go’ files. The price of
only $15.00 includes shipping and handling.

16 MICRO No. 72 - June 1984

Product Name: Super-Text Professional Word Processor

Equip. Req'd: Atari 400/800/1200XL, with minimum
48K

Price: $99.00

Manufacturer: Muse Software

347 N. Charles Street
Baltimore, MD 21201

Description: ‘Super-Text Professional is designed to be a
business-powered processor simple enough for home and
educational use,’ according to the developer. It contains
Atari DOS making all DOS functions available to the user.
All of the basics are included; delete, find/replace, block
operations, cursor movement, local and global control.

Pluses: Starting with an Introduction and Help Menu, the
user has a variety of choices and options available. The
user can set parameters for his printer with most of the
major printers parameters provided, the users simply
selects the one he needs. The printer can also be controlled
from within the text. Other nice features are automatic
page numbering, single key commands {underlining with
one command), format and tab specification control.
Super-Text has a system status line displayed upon request
which gives pertinent information when needed. Muse
Software has also provided something called Autolink
{trademark) which ‘greatly increases the Atari's file
organization and manipulation capabilities.’ With this
feature you can link files on the same or different disks and
then do global finds, replaces, etc. through those linked
files. There is a user defined function key called The Key
whose character set you can define - up to thirty
characters.

Minuses: Super-Text has seperate modes for Changes,
Adds, and file manipulation. Changing back and forth
between modes is a little awkward to start with. It is not at
all like other word processors in this respect. To those who
are familiar with other packages this method will
undoubtedly seem a bit cumbersome at first. Once this
peculiarity is gotten used to it becomes acceptable. Again
it differs from other word processors in its use and
definition of inserts. If you go searching for Insert
instructions you will find it very frustrating. There isn't
any defined Insert; rather through manipulation of the
delete command and the Change and Add mode you can
achieve what is an insert. For those not used to other
packages I suspect neither the modes or insert would be a
problem. Those who are familiar with other WP packages
will find a period of adaptation to these different features is
necessary.

Documentation: The manual provided with Super-Text is
clearly written, with good chapter outlines.
Unfortunately, as with many software packages, there is a
continuation of the belief that indexes are obsolete.

Skill level: This package is geared more for the advanced
WP user, having all of the advanced features such a user
would want and use. Beginners would certainly be able to
use Super-Text, and actually may benefit from the concept
of modes, to seperate the various functions.

Reviewer: Mark S. Morano

Product Name: G.A.L.E.

Equip. Req’d: Apple I
Price: 49.95
Manufacturer: MicroSPARC, Inc.

10 Lewis St.
Lincoln, MA 01773

Description: A Global Applesoft Line Editor with edit
mode, macro mode, global commands, hex/dec
conversion, auto line number and help are easily accessed
from BASIC or the monitor. It includes search and change,
BLOAD information, free sectors, macro definitions for
single key entry, a "'hide’’ command to temporarily store a
program, line finding, pointer dump, renumber, variable
cross reference, append, converting hex to dec and vice-
versa, and a line editor with insert, delete, lower case
entry, find, verbatim entry, and a help screen.

Pluses: GALE is easy to use and is a great time saver for
Applesoft programmers. It includes the most complete set
of commands among the current popular line editors. It
doesn’t use the &.

Minuses: The more commands there are, the more you
need a reference card. It should have been included to
make the package complete.

Documentation: A clearly written, helpful guide to
making the most from GALE is included (53 pages) in an

easy-to-read manner.

Skill level: Some programming expertise is desirable to
make the best use of GALE.

Reviewer: Phil Daley

Product Name: LOGO

Equip. Req’d: Commodore 64 and 1541 Disk Drive
Price: $49.95
Manufacturer: Commodore Business Machines Inc.

1200 Wilson Drive
West Chester, PA 19380

Description: This is a fairly extensive implementation of
LOGO [a procedural language developed at M.I.T.).
Supplied on a single disk, it includes system primitives
{commands) for graphics, arithmetic & logical operations
and list processing. A second disk containing instructive
demos, games and various utilities is also included. Most
notable among the various utilities is a LOGO assembler
which facilitates the addition of assembly language
extensions to the language.

Pluses: This is a powerful language which is suited to
many levels of application. At the bottom level it is almost
ideally suited for entertaining and teaching children
logical thought and expression. At a higher level it is a
good vehicle for the study of structured recursive
programming. At the top level, the list processing
capabilities make LOGO a suitable candidate for
implementing Al (Artificial Intelligence] concepts on a
micro computer.

No. 72 - June 1984

MICRO 17

Minuses: LOGO is fairly large and complex (compared to
BASIC]. It was apparently necessary to cut a few corners in
order to implement it on micro’s. One indication of this is
the fact that the garbage collection routines do not
function properly. It's possible for lists of unused words or
procedure names [usually resulting from typo’'s] to
accumulate and reduce the available workspace. This
defect will only be noticed during long program
development sessions.

Documentation: In addition to the demo’s and examples
on the utilities disk, a 400 + page manual is provided. This
manual contains major sections on graphics, computation,
and list processing. It also covers sprites and sound/music
generation. Extensive appendices cover assembly language
programming and contain a complete glossary of LOGO
primitives. The manual is good as a tutorial, but leaves
something to be desired in conciseness and accessibility
for quick reference purposes.

Skill level: The skill required depends on which level you
approach LOGO. Little skill is required to ‘‘drive’’ the
turtle around the graphics screen. More is required to
write concise structured programs, and considerable skill
is required to implement Al constructs.

Reviewer: Roger C. Crites

Product Name: Advanced X-tended Editor

Equip. Req’d: Apple II

Price: *

Manufacturer: Versa Computing, Inc.
3541 QOld Conejo Rd.
Newbury Park, CA 91320

Description: AXE is an Applesoft line editor which
includes many time saving features for BASIC program
development. Search and replace, auto line number,
memory status, monitor commands, special formatted
listings and line editing features are all available with AXE
running. Editing commands include insert, delete, gobble,
copy, uncopy, lower case, verbatim mode and a complete
macro definition and table use for single key entry of often
used strings.

Pluses: AXE appears transparent to the user and is a great
help in editing lines without the POKE 33,33 routine.
Search and replace strings are easily defined and are very
useful in locating and changing variable names.

Minuses: A quick reference card is needed to help in
remembering the different commands. I had some trouble
in listing programs full width to the printer while AXE was
active.

Documentation: The 50 page manual is well written and
clearly explains how the various commands operate.

Skill level: Some experience with BASIC programming is
necessary to derive all the benefits.

Reviewer: Phil Daley

Product Name: The Oddsmaker
Equip. Req’d: Commodore 64 or
Apple II
Disk
Printer optional
Price: $44.95
Manufacturer: CZ Software
358 Forest Road
South Yarmouth, MA 02664

Description: This program could be called ''‘The
Electronic Bookie'’, for that is exactly its function!
Through an easy-to-use menu driven system you take bets
on some activity, calculate and display the para-mutual
odds, display the amount bet on each team/horse/fighter,
print tickets for each bet, and when the contest is over,
display the pay-offs for each bet. Additional features
include automatically taking a ‘house cut’ percentage
from each bet and saving the betting data to disk. The
program is so complete that the creators hope they do not
get in trouble with ‘you-know-who'!

Pluses: Easy to use by anyone. Provides a good
understanding of the para-mutual betting process - quite
educational. The printed tickets feature makes the
package really useful [for fun only, of course!].

Minuses: Perhaps overpriced at $44.95.

Documentation: The twenty page booklet is clearly
written and easy to use.

Skill level: Can be used by anyone.

Reviewer: Robert M. Tripp

Product Name: BASIC Tutor

Equip. Req’'d: Apple I+ or He, 1 Drive
Price: *

Manufacturer: Courseware Applications
Savoy IL (c) 1983
SuperSoft

P.O. Box 1628
Champaign, IL 61820

Distributor:

Description: A course in BASIC programming with
lessons and exercises on disk and in the manual. Covers:
what is programming, variables, expressions, entering &
editing code, output ([PRINT, TAB], input, branching (IF-
THEN, GOTO], looping (FOR-NEXT-STEP), and READ-
DATA. Material is fairly sophisticated. Can be used in a
classroom or for self-study.

Pluses: Quality of presentation is quite good. Overall
program is well designed. Covers all major BASIC
commands. Examples not trivial, as in many BASIC
teaching programs.

Minuses: Interaction is weak and inconsistent:
sometimes when you answer incorrectly, you are shown
the answer immediately; other times, you get 2 or more

18

No. 72 - June 1984

tries. You are not forced to enter the correct answer [to
show that you accept it} before proceeding. Does not
protect against keybounce - if you press RETURN several
times quickly, you may flash through the next screen(s) of
info without time to read.

Documentation: Superb manual with lesson outlines &
goals, recaps of disk lessons, additional info, summaries,
problems with solutions, reference list of disk commands,
and glossary. Material presented well for older audiences;
too many words per page for 12 yr olds to absorb [plus
adult vocabulary].

Skill level: Some reasoning & problem-solving skills; age
15-adult.

Reviewer: Mary Gasiorowski

Product Name: Card?

Equip. Req’d: Commodore 64 or VIC 20 and a parallel
[Centronics cable} printer

Price: $75

Manufacturer: Cardco, Inc.

313 Matthewson
Wichita, KS 67214

Description: A printer interface to print text and graphics
from your Commodore computer to any parallel printer.
The included cables plug into the computer’s cassette and

disk drive ports without interfacing with those devices.
Internal dip switches allow for permanent selection of
features and software selection is also available. Card?
features ASCII conversion, graphics printing (if your
printer allows it), and a listing mode that converts color
change/cursor move functions to understandable
abbreviations. Several appendices will tutor you in screen
dumps, printer control characters, and device selection.

Pluses: Card?'s flexibility is its chief asset and the newest
version supports Epson Graftrax + . Setup is easy and the
instructions form a useful tutorial.

Minuses: Interfacing Card? with word processors can
become complex if the program attempts ASCII
conversion prior to sending the data through Card?. The
problems arise when you attempt to imbed printer
commands in the text. However, Cardco, Inc. provides
suggestions and promises technical support to overcome
these obstacles.

Documentation: A new booklet is in the works for the
Graftrax update. Until then an addendum fills the gap.
The instructions are detailed with intelligent examples
and should answer your questions.

Skill level: Recommended for intermediate and advanced
users only. If you don’t know what ASCII conversion is
you'll have trouble taking advantage of Card?'s features.

Reviewer: Mike Cherry

Share the secrets of the world’s greatest crackers. ...

Axe Man, Bozo NYC, Candy Man, Cloneman,
Disk Zapper, Lock Buster, Long John Silver, Jim Phelps,
Mr. Krac-Man, Red Rebel, Trystan II, Reset Vector, The
Woodpecker, Mr. Xerox . ..and many more!

Study complete tutorials on Boot Tracing,
Software Tricks, Non-Maskable Interrupt, Ram

For faster service, charge your order to
MasterCard or VISA.

$39.95

Card Modifications, Hardware Tricks and other
tried and true techniques. Discover indispensable
tips on over 40 specific programs for Apple users.

Customize your software to suit your own
needs! Order your copy of CRACKING TECH-
NIQUES 84 today. Supplied on disk for Apple
Computers.

I YES, I want to learn the secrets of Cracking Techniques *84.

[Enclosed is my check/money order for $39.95 (Massachusetts residents
add 5% sales tax).

Call our toll free number
and ask for Operator 68 I NAME:
1-800-824-7888 ADDRESS:
In California, call 1-800-852-7777
2 PIRATES o
\-/] PHONE: {

STATE: ZIP: I

PIRATES HARBOR, INC.
P.O. Box 8928, Boston, MA 02114

>< HARBOR I

® PIRATES
< HARBOR I

VOICE: (617) 227-7760 MODEM: (£17) 720-3600 PIRATES HARBOR, INC., P.O. Box 8928, Boston, MA 02114 M-1
Apple is a registered trademark of Apple Computer, Inc. h - - - - - -
No. 72 - June 1984 MICRO 19

— A A e

. e e

by Phillip Bowers

— e ——————

—]

With a 200 note table and a five octive range
covering the entire treble, bass and alto clefs, you
can do more than just whistle ‘Dixie’.

———

The greatest limitation I found with
my APPLE II+(APPLESOFT) is its
inability to produce a variety of sounds.
To overcome this I wrote a small
assembler program (28 bytes long| that
is CALLed by a Basic program using at
least one POKE command.

Once loaded, the assembler
program is capable of producing tones
from 1.54hz to well over 15,000hz
{cycles per second]. Any tone can be
held, from several secends for very high
tones, to minutes for lower tones. Four
bytes are used in page zero (from $FC to
$FF: 252 to 255] to control both the
frequency of the tone and its length.
The first two bytes set the frequency,
and the last two limit the lingth (time]
of the tone. Because two bytes are used
for each, their combined values range
from 1 to 65024 (301 to $FEQQ]. The
use of the values 0($00} and 255 ($FF}|
are restricted by the relationship
between the two programs.

By using page zero, it allows the
assembler program to be located
anywhere in RAM where it will be safe.

—

For our purposes here the assembler
program will be at address $6000, and
the variable ASSEM, in the Basic
program, will equal 24576. Once the
values are set in page zero, the Basic
program uses the command

CALL ASSEM

to produce the desired tone. Moving
the assembler program only requires
that the variable ASSEM be set to the
decimal equivalent of the assembler’s
starting address.

The assembler program can
reproduce any musical note, including
sharps/flats, up to G# below A of
880hz. Above 880hz the rounding
errors for many notes are too great to be
of much use. Up to 880hz the largest
error is 2.74 cycles, at G and G# just
below 88Chz. As the frequency
decreases, so does the error in cycles.

The useable musical notes are from
G# below 880hz, to A at 27.5hz. This
gives a 5 octive range covering the
entire treble, bass, and alto clefs. The
Basic program will allow a 10 octive
range of inputs, from 0 to 9, but octives

1 to 5 cover the above clefs, with 1
being the lower octive.

To setup the assembler program
enter Monitor

CALL - 151

then the RETURN key. Once you have
the asterisk prompt, enter the
following after it:

6000:A5 FE 38 EA A6 FC AE 30
COABFCA4FDCADOFD
88 DO FA E9 01 DO EB C86

FF DO EB 60 00

then RETURN.

The above should be entered as one
continuous string, with each byte
seperated by a space. It is shown as it
would basically appear in a memory
dump. A memory dump is done by
entering

6000.601C
By entering
6000L

you will get an assembler listing. The
listing is reproduced as a debugging aid.

20

MICRO

No. 72 - June 1984

6000- A5 FE LDA $FE
6002- 38 SEC

6003- EA NOP

6004- A6 FC LDX $FC
6006- AE 30 CO LDX $CO30
6009- A6 FC LDX $FC
600B- A4 FD LDY $FD
600D- CA DEX

600E- DO FD BNE $600D
6010- 88 DEY

6011- DO FA BNE $600D
6013- E9 01 SBC #
6015- DO EB BNE $6002
6017- C6 FF DEC $FF
6019- DO E8 BNE $6006
601B- 60 RTS

601C- 00 BRK

To save this to disk, use the
following:

BSAVE ASSEM SOUND, AS8000,
L$1C

The length shown ($1C) will not save
the last byte at $601C; it is included to
show the ending address only.

Still in Monitor, enter

FC:F9 02 07 18

then
6000G

when the RETURN Kkey is pressed it
will execute the assembler program
using the values at $FC to $FF. The
note should be G below middle C, and
last 15 seconds. After the assembler
program has executed, the value at
address $FF should be equal to 0 {$00),
the other values should be untouched.
If your values differ, check for an error.
For A below middle C:
FC:C2 02 D9 1A
for D above middle C:
FC:50 02 81 23

these values should all give 15 second
notes when the assembler program is
executed. ‘

After the ‘‘Musical Notes'’ program
is entered the keyboard keys
"“"QWERTYU''should be marked to
read '"ABCDEFG'’, respectively. The
sharp/flat of a note is obtained by
pressing the “CNTL'' key and the note
key together. A rest note is given by the
space bar.

As each note is entered, it will be
stored in an internal table for replaying,
and displayed to the upper 20 text
lines. The note table [NT) holds the
values for the note frequency and its
length in a low order, high order format
that are POKEed directly into addresses
$FC to $FF. Each note displayed to a
text line will have the format ""ABCb"”’,
where:

No. 72 - June 1984

>

the octive the note is in [0 to
9J.
the note value, A through G.
the note time;
: whole
: half
: fourth
: eighth
. sixteenth
: thirty-second
: sixty-fourth

b space, note separator.

A sharp/flat of the note will have
the same format, except that it will be
in the INVERSE mode. A rest note will
be displayed as '‘bRCb’’. The '‘R"
meaning a rest note, and the ‘‘C'’ the
rest time.

This format allows 10 notes per text
line, and by using the first 20 text lines,
it permits 200 notes to be displayed.
The last 4 text lines are for program
information.

When the program is executed, the
first input line will be:

ENTER .BEATS PER MINUTES (4TH
NOTE)

If no value is entered, the beats per
minute will be set to 120. Some sheet
music will have a note symbol (like a
quarter note), followed by an equal
sign, then a number in parenthesis near
the upper left corner. This number is
the beats per minutes. Whatever value
is entered at this point will be the base
for timing all other notes.

Once the beat is entered, you are
ready to start entering notes. To change
the octive, press any of the numeric
keys {0 to 9). Line 22 (VTAB 22} will
show the current octive.

oxoar—-oo-hmsnm

beat of 120 at a quarter note value. To
change the beat for any note, or group
of notes, the keys ‘"ASDEGH]J’’' are
used.

whole note.

half note.

fourth note.

eighth note.

sixteenth note.

thirty-second note.
sixty-fourth note.

By pressing the ‘‘A’’ key, the beat

will change from:

BEAT = 120 AT 4TH = 120

to:

BEAT = 120 AT WHOLE = 30

the last number is the beats per minute
for a whole note.

Once a note is entered it cannot be
deleted, but it can be changed to any

TIEOTmger

value. The ", ' and '*."* keys are used
to move the cursor over any note you
want to change. The */,"” will move the

cursor to the left, lower in the note
table, while the '*.”" will move it to the
right, but will not allow movement
beyond the next enterable note
position.

While the left and right arrow keys
would have been better, they were not
used because the right key has the same
value as the "CNTL'' and "“U"’ keys,
which would give the note G#.

The option ''Z : RUN NOTES {0}’
shows how many notes are currently
being stored, and will run all notes
regardless of the cursor position.

In the event either the ‘X'’ or 'C"’
is pressed, you will be asked if you
really want it before they do their
thing. Option ''X'* will CLEAR

The ""BEAT =" shows the base everything, and restart the program to
Listing 1
5 GOSUB 255: HIMEM: ASSEM
19 VTAB 21: PRINT "ENTER NOTE OR OPTION : "
PRINT "OCTIVE="OL" BEAT="BM" AT "BV$" = "BM / BV" "
15 PRINT "Z:RUN NOTES("NO")" TAB(2@)"X:NEW NOTES": PRINT "C:
END PROGRAM™
2¢ VTAB VT: HTAB HT: GET IN$:ER = @#:KI = ASC (IN$): GOSUB 1¢@:
IF ER = ¢ THEN VTAB 23: HTAB 1: GOTO 15
25 1IF KI = 65 THEN BV$ = "WHOLE':BV = 4: GOTO 7¢
26 IF KI = 83 THEN BV$ = "HALF":BV = 2: GOTO 70
27 1IF KI = 68 THEN BV$ = M4TH":BV = 1: GOTO 7¢
28 1IF KI = 7¢ THEN BV$ = "8TH":BV = .5: GOTO 78
29 IF KI = 71 THEN BV$ = "16TH":BV = .25: GOTO 70
3¢ IF KI = 72 THEN BV$ = "32ND":BV = .125: GOTO 7¢
31 IF KI = 74 THEN BV$ = “6ATHM:BV = .@625: GOTO 78
35 IF KI > = 48 AND KI < = 57 THEN OL = KI - 48:
HTAB 1: GOTO 1@
4P IF KI = 44 AND NP.- 1 > - 1 THEN NP = NP ~ 1:
GOSUB 225: GOTO 20 o

" MICRO

21

45
5@
55
60
70

199

30¢

Listing 1 (continued)

IF KI = 46 AND (NP < NO) THEN NP = NP + 1: GOSUB 215: GOTO 2¢
IF KI = 99 THEN GOSUB 2¢¢
IF KI = 88 OR KI = 67 THEN 189
GOTO 2¢
SB = (6@ s BM) * BV:TM = INT (((SB * (1E + 6)) / 36372) + @.5):
HTAB 1: GOTO 19

SV = OL: IF KI = 32 THEN OL = @:XF = @: GOSUB 145:

INg = " R" + LEFT$ (BV$,1) + " ": PRINT INS:

NT(NP,@) = FL * (— 1):NT(NP,1) = FH:NT(NP,2) = LL:
NT(NP,3) = LH:OL = SV: GOSUB 215: GOSUB 17@: RETURN
FOR X = @ TO 11: IF KI = KV(X,@) THEN NV = KV(X,1):

XF = X:X = 98

NEXT : IF X = 12 THEN ER = 1: RETURN

GOSUB 145:NT(NP,@) = FL:NT(NP,1) = FH:NT(NP,2) = LL:
NT(NP,3) = LH

IN$ = ":IN$ = STR$ (OL) + MID$ (KL$,NV,1) +

LEFT$ (BV$,1) + " ": IF KI < 32 THEN INVERSE

PRINT IN$: NORMAL : GOSUB 215

POKE 252,FL: POKE 253,FH: POKE 254,LL: POKE 255,LH:
CALL ASSEM

IF (NP + 1 > NO) THEN NO = NO + 1:NP = NP + 1: RETURN

NP = NP + 1: RETURN

OC = (21 0L) * (2t (XF / 12)):CY = SC * OC:TC = TM * OC:
PS =1E + 6 / (2 ¥ CY)

FH = INT ((PS + 1254) / 1279):FT = 21 + (5 * FH - 1) +

(1274 * (FH - 1)):FL = INT (((PS - FT) / 5) + .5)

TI = TC:IH = INT (TI / 255):LL = (((TI / 255) - LH) * 255):
IF LL = ¢ THEN IL = 1

IH=1H + 1

RETURN

IF (NP + 1 > NO) THEN NO = NO + 1:NP = NP + 1: RETURN
NP = NP + 1: RETURN

IN$ = "END": IF KI = 88 THEN IN§ = "NEW"

VTAB 21: HTAB 1: INVERSE : PRINT "ENTER 'Y' FOR "IN$",
ANY KEY TO IGNORE. ";: GET IN$: NORMAL :

IF IN§ < > vyn THEN HTAB 1: GOTO 1¢

IF KI = 67 THEN 3¢¢

CLEAR : HOME : GOSUB 26@: GOTO 1¢

IF NO = @ THEN RETURN

FOR X = @ TO NO - 1: POKE 252, ABS (NT(X,@)):

POKE 253,NT(X,1): POKE 254,NT (X,2): POKE 255,NT(X,3):
IF NT(X,8#) < @ THEN POKE ASSEM + 8,0

CALL ASSEM: POKE ASSEM + 8,192: NEXT : RETURN

HT = HT + XI: IF HT = 41 THEN HT = 1:VT = VT + 1:

IF VT = 21 THEN GOSUB 235

RETURN

HT = HT - XI: IF HT < 1 THEN HT = 37:VT = VT - 1:
IF VT = @ THEN VT = 1:HT = 1

RETURN

INVERSE : VTAB 21: PRINT "TABLE FULL !! ANY KEY

TO CONTINUE. ";: GET IN$: NORMAL

NP = NP - 1:VT = VT - 1:HT = 37: IF NO < 2¢@ THEN NO = NO + 1
RETURN

HOME : PRINT "MUSICAL NOTES FOR THE APPLE": PRINT :

PRINT "BY PHILLIP BOWERS": PRINT :

PRINT "ROCHESTER, N.Y.":PRINT

BM = 12¢: INPUT "ENTER BFATS PER MINUTE (4TH NOTE) ";B$:

SB VAL (B$): IF SB > ¢ THEN BM = SB

BV$ = "4TH":BV = 1:SB = 6@ / BM:

TM = INT (((SB * (1E + 6)) / 36372) + @.5)

ASSEM = 24576: DIM Kv(11,1): DIM NT(199,3): FOR X = @ TO 11:
READ NO,NP:KV(X,®) = NO:KV(X,1) = NP: NEXT :KL$ = "ABCDEFG"
VT = 1:HT = 1:XI = 4:NO = @:NP = @:ST = 13.75:SC = ST:0L = 1
X = PEEK (ASSEM): IF X < > 165 THEN IN$ = CHR$ (4):.
PRINT IN$;"BLOAD ASSEM SOUND*

HOME : RETURN

DATA 81,1,17,1,87,2,69,3,5,3,82,4

DATA 18,4,84,5,89,6,25,6,85,7,21,7

VTAB 21: HTAB 1:

PRINT "PROGRAM END ROUTINE ": END

the initial beats per minute.

Option "'C"’ does not directly END
the program, rather it passes control to
line 300. The lines 300 through end
have been left open so that you can save
the note table, or whatever else you
may want to do before ENDing.

Any key other than those
mentioned above will be ignored. The
program will just continue along its
merry way.

The note table is defined in line 270
DIM NT(199,3)
where

NT(NO,0) = low order value for the
NT(NO,1] = high

order value for the note.

NT(NO,2] = low order value for the

note length.

high order value for the

note length.

NT(NO, 3]

The current number of table entries is
equal to NO - 1. The value of ASSEM is
also set in line 270.

Even though the number of entries
can be made greater than 200, it is not
suggested because you will lose the
relationship between the screen notes
and the notes in the note table once
more than 200 notes are entered.

In conclusion, I would like to point
out that the note table (NT| uses over 9
times more space than is necessary to
store the note values and their lengths.
This is because we are using an array
defined by a Basic program. Because of
this it is not possible to use HGR (page
1). While the basic program uses about
2400 bytes, the note table requires an
additional 9600 bytes to save the 800
bytes needed by the assembler
program.

While it is possible to POKE these
values directly into RAM, it should be
noted that it will actually require 1000
bytes to store the data. An additional
byte is needed for each note to indicate
a rest value. In the basic program a rest
note uses the same 4 data bytes as any
other note, except that the low order
rest value is negative (NT{NP,0}].. line
100 in the program.

When the notes are replayed the
absolute value (ABS) value is POKEed
into address $FC (252}, and the
assembler program is altered so as not
to reference the speaker location when
a negative value is encountered. But it
is executed in the same manner as any
note. So if you decide you need more
space, or want to use HGR, then
remember to include the additional
byte for each note.

AICRO"

22

MICRO

No. 72 - June 1984

Requirements: Commodore 64

Although the Commodore 64 has a
hefty chunk of free BASIC memory
(38911 bytes at power-up), sometimes
it can still turn out that additional
memory will make the difference
between a polished program and dull
code seriously weakened by
compromises. In many programs the
chief memory-muncher is the string
data: the various descriptions and
messages that eat up BASIC bytes by
just being in the program, and then go
on to cost even more when they are
accessed by arrays. A good adventure
game, for example, may inflict
hundreds of different messages on its
player {'You can't take that. It's tied
down."’}, and if these are all stored in
the BASIC programming area, valuable
programming space is lost.

The program presented here, called
‘Printout’’, solves the problem of
string data storage simply and
economically. Although it is written in
machine language , it is unnecessary to
know machine language in order to use
it most effectively; however, it is a
good idea to know just what it does.

What Printout Does

Between them, two ROM (read-only
memory) chips in the 64 use up to 16K
of what would otherwise be free RAM.
The first chip contains the 64’s version
of BASIC and lies over memory
addresses 40960 through 49151
($A000-$BFFF|. The second ROM chip
contains the operating system of the 64
and is called the ‘‘Kernal’’. It covers
memory addresses 57344 to 65535
($E0CO-$FFFF). Since the first chip
contains BASIC and the Kernal ROM
contains the operating system's
machine code routines, it seems that
the 16K of RAM has been sacrificed to
some good purpose--and, of course, this
is quite true. Remarkably, however,

Free up your BASIC memory without sacrificing
program messages using the 16K of RAM under
the BASIC and Kernal ROM chips.

much of the sacrifice can--with a little
finagling--be avoided altogether.

First of all, data may be placed in
these locations in the usual ways: by
direct pokes from BASIC, for example,
or by loading a file straight into the
under-ROM area. The trick is to get the
data out once it has been stuffed in. A
PEEK to any of these locations, for
example, will read the contents of the
ROM chip at that address, not what is
stored in the underlying RAM location.

Fortunately, there is a way around
the problem. Both ROM chips may be
switched out by a simple poke
(POKE1,52), exposing the underlying
RAM in all its glory! Peeking is now
added to poking--or would be, except
for one thing: with BASIC so cavalierly
switched away, so too for PEEKing!
This is why we need machine language
to finally solve the problem. We can
switch off the two ROM chips using
BASIC, but we need machine language
to access the now-exposed RAM, and,
when we are through with that, switch
us back again to BASIC.

Now Printout does all this and
more. Once the ROM chips have been
switched out, Printout prints to the
screen any messages that have been
stored under the ROM chips. Of course,
the messages must be stored there in
the appropriate form. First of all, each
message must be surrounded by zeroes;
the message itself is coded by simply
using the ASCII number of each of its
characters. Thus the sequence:

HELP?! EREKZOR
@,72,69,76,80,33,0,69,82,82,79,82,8,

when stored in memory locations
40960 through 40972, encodes the two
messages: ‘'HELP”’ and ''ERROR’.
When strings are stored in this way, all

that Printout needs to know is which
message you would like printed out
{counting 0,1,2,...], and where your
block of messages begins (in this
example, at 40960). So to use Printout,
POKE the message number into
memory location 2 (decimal], and the
low and high bytes of the base address
of the message block into locations 251
and 252 (decimal], respectively. (Much
of this is done for you by subroutine
50000 in the program Printoutloader of
Listing 1).

Using PRINTOUT

Listing 1 is a BASIC loader for Printout.
After adding it to your program, a call
to subroutine 60000 loads Printout into
memory locations 828 through 883.
The other subroutine included {50000)]
may now be called when a message is
to be printed. It needs to be supplied
with only two pieces of information.
First, the base address of the block
where your messages are stored; this is
the value of the variable ADD. And
second, the message number must be
supplied; this is the value of the
variable ME. When subroutine 50000 is
now called, the ME-th message will be
printed, beginning at the current cursor
position. (Normally, that cursor
position will be set by the rest of the
program before calling this subroutine}.
The load address (828 decimal] in lines
50010 and 60002 of Listing 1 (and
Listing 3} is not critical. Since the
machine code is relocatable, any free
area of RAM may be used to hold
Printout’s 56 bytes.

Of course, in order to use Printout,
messages must be previously stored
under the BASIC or the Kernal ROMs.
An easy way to do this is to create a

No. 72 - June 1984

MICRO

23

program file of these messages, and
then load this file at the beginning of
your program. Listing 2,
Messagewriter, is designed to create
such files. In line 20 you specify the
total number of messages {minus one],
and in line 25 you specify the base
address of this block of messages. You
supply the actual messages in the data
statements beginning at line 500. Since
you will need to keep track of your
messages and their numbers,
Messagewriter also generates a
numbered, hardcopy list of your
messages.

Listing 3 provides an example of
using Printout to list the messages used
earlier in Listing 2. It assumes that you
already have run the program of Listing
2 and have the program file
‘‘Messages’’ on your disk. Although
the program of Listing 3 does not do
anything spectacular, it does wrap up
all that has come before. If you
understand how it works, then the
power of Printout and the new 16K that
comes with it is at your fingertips! One
more thing. Since Printout places no
restrictions on string length, an entire
screen may be stored under ROM as a
single 999 byte string. When Printout is
called, the stored screen is displayed
almost instantly, certainly much more
rapidly than when a screen is loaded
from a disk file.

To the Machine Language Beginner
As the assembly listing shows, Printout
is in general quite straightforward. The
one slightly tricky thing is that it uses a
Kernal ROM routine (CHROUT, at
$FFD2) on data stored under the Kernal
ROM itself. So the Kernal, after first
being switched off to permit access to
the character data, is next switched
back on to permit the Kernal routine
CHROUT to print out the character.
Next--and here is the tricky part--
the Kernal is switched back off again to
get the next character. But CHROUT,
it happens, restores the hardware
interrupts along its way!
Should such an interrupt now take
place while the Kernal ROM is
switched out, the system will crash,
since the interrupt routines are
themselves Kernal ROM routines.
Hence the added step (SEI} to
repeatedly disable the hardware
interrupts each time CHROUT is used.
The moral should be clear: even though
interrupts have been disabled initially,
each time a Kernal routine is used--any
Kernal routine--the safest bet is to
again disable interrupts before going on
to switch off the Kernal ROM.

PRINTOUTLOADER

5¢@@@ REM * PRINTOUT SUB *
5@0@@5 REM * INPUTS ARE ME AND ADD *

5@@1p POKE 2,ME:HB=INT(ADD/256) : LB=ADD-256*HB:
POKE 251,LB:POKE 252,HB:SYS 828:RETURN

60@0@3@ REM * LOAD PRINTOUT DATA SUB *
60@@2 FOR I=828 TO 883:READ Q:POKE I,Q:NEXT:RETURN

60@@5 DATA
60@19 DATA
60915 DATA
60@2¢ DATA
60925 DATA
6003@ DATA
60935 DATA
60049 DATA

12¢,169,52,133,1,162,255
16@,255,198,252,232,208, 208
2,230,252,177,251,248,2
208,245,228,2,208,240,200
208,2,239,252,177,251,208
6,169,55,133,1,88,96
162,55,134,1,32,21@,255
120,169,52,133,1,208,227

MESSAGEWRITER
1¢ REM * MESSAGEWRITER ¥

20 NMESS=5:REM * NUMBER OF MESSAGES -1 *
25 ADD=57344:REM * BASE OF MESSAGE BLOCK *
30 RESTORE:

PRINT"{CLEAR,DOWN1g} "

TAB(1¢) "PRINTOUT OR FILE(P/F)?"
35 GET A$:IF A$=""OR(A$< > "P"ANDA$< > "F") GOTO35

37 PRINT"{CLEAR,DOWN1¢} "TAB(15) "THANK YOU."

4@ IF A$="P"THEN GOSUB 1¢@:GOTO 30
45 REM * WRITE MESSAGE FILE *

5@ OPEN 15,

8,15:PRINT#15, "S@:MESSAGES "

6@ OPEN 5,8,5, "g:MESSAGES,P,W"
65 HB=INT(ADD/256) : LB=ADD-256*HB

70 PRINT#5,
REM * FILE WILL LOAD AT ADDRESS = ADD *

CHR$(LB)CHR$(HB) ; :

75 FOR I=@ TO NMESS:READ D$:L=LEN(D$)

8@ PRINT#5,

CHR$(9) ;

85 FOR J=1 TO L:PRINT#5,MID$(D$,J,1);
9@ NEXT:NEXT

95 PRINT#5,CHR$(@); :CLOSE 5:CLOSE 15:GOTO 3¢

1¢@ REM * PRINTOUT SUB *
11¢) OPEN 1,4:PRINT#1,CHR$(14) "MESSAGE LIST"CHR$(15)

12¢ FOR I=@ TO NMESS:READ D$:PRINT#1,I,D$:NEXT

13@ PRINT#1:CLOSE1:RETURN

5@@ DATA HELLO THERE,YOU ARE IN A DARK CAVERN
51¢ DATA WHY NOT?,THAT WAS VERY FOOLISH

515 DATA STOP RIGHT THERE!,
YOU HAVE BEEN KILLED. TRY AGAIN?

MESSAGE DEMO -

5 REM * MESSAGE DEMO *

1¢ IF L=@ THEN L=1:LOAD "MESSAGES",8,1
20 GOSUB 6@@@@:REM * LOAD PRINTOUT *
1¢@ ADD=57344:REM * BASE ADDRESS OF MESSAGE BLOCK #*

15 NMESS=5:REM * (NUMBER OF MESSAGES)-1

11¢ FOR I=¢ TO NMESS:ME=1:GOSUB 5@@@@:PRINT CHR$(13) :NEXT
12¢ GOTO 119

5@@@@ REM * PRINTOUT SUB *

5¢@@#5 REM * INPUTS ARE ME AND ADD *

5¢@1@ POKE 2,ME:KB=INT(ADD/256) :LB=ADD-256%HB:
POKE 251,LB:POKE 252,HB:SYS 828:RETURN

60@0@ REM * LOAD PRINTOUT DATA *
60@@2 FOR I=828 TO 883:READ Q:POKE I,Q:NEXT:RETURN

60035 DATA
60@10 DATA
60015 DATA
60020 DATA
60025 DATA
60@3@ DATA
60@35 DATA
60@4@ DATA

12¢,169,52,133,1,162,255
169,255,198,252,232,200, 208
2,230,252,177,251,240,2
208,245,228,2,208,248,200
2¢8,2,230,252,177,251,208
6,169,55,133,1,88,96
162,55,134,1,32,210,255
120,169,52,133,1,208,227

24

MICRO

No. 72 .

June 1984

Listing 1
; PRINTOUT STRINGS STORED UNDER BASIC
; OR UNDER THE KERNAL.
5
; STRINGS ARE STORED IN THE FORM:
3 2Ty Ty ,—,—,-',—(0,—— ETC.
- ;
10 ; THE STRING PRINTED IS THE N-TH STRING STORED
: ; IN THAT BLOCK OF STRINGS WHICH BEGINS AT THE
. ; BASE ADDRESS POINTED TO BY BASELO,BASEHI.
L H
1O ; THE STRING NUMBER N IS PREVIOUSLY POKED
. ; INTO MEMORY LOCATION 2 (='STRING').
i 3
lo @828 ; ORG $828 ; RELOCATABLE
;
@g@2 STRING EQU 2
i ggFB BASELO EQU 251
10 PPFC BASEHI EQU 252
] H
@828 78 SEI ; DISABLE INTERRUPTS
. @829 A9 34 LDA #52 ; OUT KERNAL/BASIC
@82B 85 @1 STA $01
- ;
. @82D A2 FF LDX #255 ; SET CNTRS
: @#82F A@ FF LDY #255
. @831 C6 FC DEC BASEHI
;
| $833 E8 COUNT INX
: @834 C8 HUNT INY
¥ @835 D@ @2 BNE GTBYTE ; NOT PAGE END? GO ON.
@837 E6 FC INC BASEHI ; PAGE END. NEXT PAGE.
3
j o #839 B1 FB GTBYTE LDA (BASELO),Y ; GET BYTE
: @838 Fg @92 BEQ CHECK ; A ZERO. THE RIGHT ONE?
. @83D D@ F5 BNE HUNT ; NOT ZERO. KEEP HUNTING.
;
: @83F E4 @2 CHECK CPX STRING ; THE RIGHT ZERO?
: @841 D@ F@ BNE COUNT ; NO? FIND NEXT ZERO
@843 C8 PRINT INY ; READY TO PRINT
@844 D @2 BNE OUTPUT ; NOT END OF PAGE? PUT IT OUT.
@846 E6 FC INC BASEHI ; END? TURN PAGE.
@848 B1 FB OUTPUT LDA (BASELO),Y ; GET CHARACTER
@84A D@ @6 BNE CHROUT ; NOT END OF BLOCK? PRINT IT.
@84C A9 37 LDA #55 ; END OF BLOCK. RESTORE KERNAL.
@84E 85 @1 STA $91
: @#85@ 58 CLI ; RESTORE INTERRUPTS
: @851 6@ RTS ; DONE!
;
@852 A2 37 CHROUT LDX #55 ; RESTORE KERNAL/BASIC
: $854 86 @1 STX $¢1
© @856 2¢ D2 FF JSR $FFD2 ; CHROUT(KERNAL)
; TRICKY! $FFD2 RESTORES INTERRUPTS,
. ; SO THEY MUST BE DISABLED AGAIN.
g @859 78 SEI
r @85A A9 34 1DA #52 ; TAKE OUT KERNAL
@85C 85 @1 STA $@1
@85E D@ E3 BNE PRINT ; NEXT CHARACTER
© H
@860 END
(]

No. 72 - June 1984 MICRO

A
Better
Random
Number
Generator

R

by H. Cem Kaner and John R. Vokey

————

Reap the fruit of 7 years of labor—a superior
version of the random number generator, for
simulations, gambling, forecasting.

In this article we present an assembly
language program, interfaced to number was R[N], your next one is

NQOTE: The work for this article was
supported by a research grant from the
Natural Sciences and Engineering Research
Council of Canada (NSERC) to Dr. A.B.
Kristofferson, and by NSERC Postgraduate
Scholarships to the authors. The authors
would also like to thank John Lyons for the
many helpful discussions of RNG design.

In other words, if your last random

Applesoft via the USR function, which
provides three independently
addressable RNGs. Because there is so
little available in relatively
nontechnical language about RNGs,
and because of their growing
importance, we will also describe how
we chose them. Finally, we will outline
some of the tests that we performed on
them. The quality of a random number
generator is not determined by the
elegance of its code, but instead by the
randomness of the sequences of
numbers that it produces. The test
results are always the most important
part of the documentation of any RNG.

The RNG Algorithm

There are many ways to produce
pseudo-random numbers, a few of
which work reasonably well. Donald
Knuth's excellent 178-page chapter on
RNGs describes quite a few of all
varieties. We use what is called a mixed
linear congruential generator. Suppose
that you store the numbers you
generate in an array, so R[1] is the first
number, R[2] is the second, and so on
through R[N]. Let a, ¢ and m be
constants. We'll be concerned with
their values later. The mixed linear
congruential generator is defined by the
following equation:

R[N+1] = (aR[N] + ¢) modulo m

obtained by multiplying R[N] by a,
adding c to the product, and finding the
value of that result modulo m. As usual
(see the integer BASIC manual on
MOD for more details] to obtain a
number modulo m you divide it by m
but keep the remainder rather than the
quotient. For example:

13 mod 10 = 23 med 10 = 972863 med 18 = 3

A mixed congruential generator
does not produce ‘‘truly random'
numbers (no software RNG can]
because it is possible, given knowledge
of a, m and c to predict the next
number from the last. However, if a
and c are properly chosen and m is
reasonably large, a person who did not
know the formula, or even one who did
know it but who didn't have a very
good calculator handy, would be hard-
pressed to predict the next number.

Selection of the RNG’s Parameters

Not every mixed linear congruential
random number generator is good.
Most are terrible. The values of a, ¢ and
m determine how good the RNG will
be. These three numbers are called the
parameters of the generator. Different
considerations are involved in choosing
each number. Generally, m is chosen
first, then a and c.

It is easy to find values of a and ¢
which will guarantee that the RNG will

Random number generators
(RNGs for short) are functions that
produce pseudo-random numbers.
Usually the numbers produced are
fractions between 0 and 1. Ideally, a
computer language’s RNG should be
able to generate every fraction that
the language can represent, every
fraction should be as likely to be
generated as every other, and the
order of the numbers should be
completely unpredictable to the user.
Slightly more formally, the RNG
should produce sequences of
numbers which, so far as standard
statistical tests can tell, behave in
the same way as ‘“truly random'
number sequences would behave.

RNG’s are used to simulate
imperfectly predictable real life
events. Computer games use them in
this way. So do some insurance
companies, when setting rates.
Economists, ~psychologists,
sociologists, consumer behavior
researchers of various backgrounds,
often work with theories of such
complexity that the only way that
they can decide whether a theory is
correct is to simulate the behavior of
a population on the computer, and to
compare this with the actual behavior
shown by the groups they are
studying. Gamblers use random
number generators to “shuffle” cards
or “roll” dice. They try different
betting strategies at the computer,
where it’s free, rather than at the |
casino (or the stock market), where
they can lose their shirt. Simulation
involving random number generators
is often called Monte Carlo
simulation, after the casinos in
Monte Carlo: much of the early
research on probability and statistics
was financed by gamblers. As final
example of simulations, estimates of
the likelihood of an accident in a
nuclear reactor, and of its probable
severity, are often made by
simulation, before the reactor is built,
to check if safety measures are
adequate.

RNG’s are also used to provide
random test data for input to complex
computer programs. It is impossible
to test every branch or path in a major
program. Random inputs or
combinations of inputs often expose
bugs that a systematic selection of
test cases missed.

26

MICRO

No. 72 - June 1984

Numerical analysts work with
RNGs to obtain numerical estimates
of the solutions of complex
mathematical functions for which no
theoretical solutions exist, or to
provide estimates against which a
theoretical solution (which. may be
wrong) can be checked.

Randomization of the order of
events in experiments, so that people
(rats, whatever) cannot predict
exactly what will happen next, has
been a necessary part of the design
of every experiment that we have run.

These are only some of the uses
of random number generators: among
other common ones are random
sampling (for surveys and for quality
control, for example), and partially
random decision making (sometimes
the best way to make an important
decision, as studied in Game Theory}.

The better the random number
generator, the more lifelike or
interesting the simulation, the
stronger the test of the theory, the
more likely the numerical solution is
to be right, the more hidden bugs can

be expected to be found in the
program, the more valid the-
statistical test, the tighter the

experimental control, the -more
representative the survey,.the more
unpredictable the decision.

Most implementations of high
level computer languages provide
something in their function fibrary

that the manual calls an RNG.

Applesoft’s RND function is typical of
those we’ve seen on small systems.
The reference manual describes RND
as a source of random numbers, but it
provides no evidence whatever that
this claim should be betieved, nor any
warning that it should be taken with a
mountain of salt.

RND, when subjected to standard

statistical tests, fails them badly.

We should stress here that we are
not singling out Apple for criticism. In
our experience with various mini and
microcomputers, manuals which
admit to low-grade RNG’s are nearly
as rare as language implementations
that provide an RNG worthy of the
name. ‘

It is not surprising that many
languages’ RNGs are poor. Much of
the best research is very recent,
conducted after some of these
generators were written. Simulations
require a great deal of computer time.
They were not of general interest until
computer time became very
affordable.

produce every number between 0 and
m-1 before the sequence starts to repeat
itself. Eventually, no matter what a, ¢
and m are, the series must repeat. How
long it goes without repetition is called
the period and the longest period that
you can get with a congruential
generator is m. For many reasons, the

longer the period, the better the
generator.
The second factor involved in

choosing m involves computational
convenience. As defined above, our
RNG produces integers. To obtain
fractions between 0 and 1, just divide
these integers by m. Applesoft reserves
32 bits for the digits of any number. If
we used m = 232, our sequence from 0
to m-1 would include every bit pattern
than can be stored for a number. In
general, since we are dealing with a
binary computer, so numbers are stored
as bit patterns, m should be a power of
2.

Unfortunately, m = 232 will not
yield every fraction that the Apple can
store, because Applesoft uses an extra
byte per number to hold the exponent.
This allows representation of billions
of different very small numbers,
including numbers near 10-%. Working
with fractions of the form R[IN]232, we
can produce only one number in this
region, namely zero. Tiny fractions in
floating point languages are always
under-represented by congruential

generators: many fractions that the
language can work with cannot be
generated. We can alleviate the
problem somewhat, and increase the
period, by increasing m to 249. Not
every possible fraction will be
generated with this m -- R[N] would
have to be 17 bytes long for that and the
RNG would be very slow -- but when m
is 24°, R[N] can take on
1,099,511,627,776 different wvalues,
which is plenty. This is the value we
use.

QOur next decisions involve a and ¢
and these are more difficult. It is easy
to find values of a and c that allow the
period tobe m. If amod 4 = 1and cis
any odd number, the period will be 24°
(i.e. m). But this is only part of the
story.

As an absolutely awful example of a
full period mixed linear congruential
generator, suppose that a is 1 and c is
also 1. So our generator is defined by

R[N+1] = (R[N] +1) modulo m

It works in the sense that we will
indeed get all the numbers between 0
and m-1, but the sequence is 0, 1, 2, 3,
etc., and this is hardly random.

The apparent randomness of a
sequence of numbers is determined by
the ordering of the numbers. This is
where most RNGs, including all linear
congruential generators, have at least
some problems.

10) L
. . . .
b .
a 9r ¢ . * . '. * o. -
X [. . * ° . °
(@] -8+ o . * o. . *
— A ° [.
D .. Py . * .o. ¢ [}
8 7—0 L] .] . ° . *
Z 6 ° ¢ U o. * * * ¢
—~ 2 hd L . . * * . N
% .4_‘ .. .o .. .o . R R .o p
g -3Fe * ¢ * * o o« o *
"_'l_‘ o .o .o. .. * .o. .o .. . 4
é 2F o .. .o ..
m '1'; .. . ¢ L]
1 hd ia | @) Py ..I * ..1
% T2 345 6 7 8 610

Nt RANDOM NUMBER: R[N]

Figure 1

Linear patterning of successive pairs of numbers obtained from linear con-
gruential random number generators. A good generator spreads the points
across more lines, yielding as few as possible on each line. Nonlinear soft-
ware generators exhibit nonlinear patterns in graphs of this type but the

patterns are just as pronounced.

No. 72 - June 1984

MICRO

27

We can think about the ordering
problem by thinking about short
subsequences of the form (R[I], R[I1],
R[12], ..., R[IK]]. Consider pairs first.
There are m? possible pairs of numbers,
(R{I], R|[I1]], between O and m-1 but a
generator of period m can only yield m
different pairs. Which m pairs is the
critical question.

In the case of R[I1] R[I] 1, a graph of
R{I] along one axis and R|I1] along the
other would show a single straight line.

A truly random sample of m
numbers from the possible m? would
result in points scattered all over the
graph.

All linear congruential generators
will produce graphs which show
patterning, and that patterning will
always be a set of paralle]l lines (see
Figure 1). The trick is to find a
generator which produces as many of
these lines as possible, with as few
points on each line as possible. The
result will be a more even coverage of
the m? possible pairs.

Note, by the way, that the larger m
is, the more lines we can have and the
closer they will be. The shorter the
period, the poorer the generator.

A two dimensional graph, with R[I]
on one axis and R[I1] on the other, is
graph of a plane. A one-dimensional
graph is simply a line. A three-
dimensional graph, of a cube, contains
planes just as a two-dimensional graph
contains lines. If we plot sequences of
three pseudo-random numbers, (R[I],
R[I1], R[I2]], on a cube, all of the points
will fall on parallel plane and all of the
points on each plane will be on parallel
lines. In this case, only m of a possible
m? triplets can be produced by the
RNG, so coverage of the cube is even
more sparse than coverage of the plane
in the two dimensional graph. The
problem of patterning of triples is
potentially more severe than patterning
of pairs. In higher dimensions (longer
sequences|, we find parallel
hyperplanes, and sparser and sparser
coverage of the space.

We call this problem of patterning
of linear congruential generators the
lines and planes problem. Our goal is to
minimize it. The more lines, planes,
and hyperplanes we can cause our RNG
to generate, the fewer the points on any
given line, plane, etc., and the less
patterning there is. In a truly random
sequence, there is no patterning, and
this is what we want to approximate
with our pseudo-random sequence.

(If you are intrigued by this
discussion but a little lost, George

Marsaglia’'s chapter in the
Encyclopedia of Computer Science is
excellent and quite readable. Knuth's
discussion of random numbers also
deals with this problem at great length,
with numerical examples and
exercises. It is more technical, but in
our opinion it is the best source
available. For references to the original
research, see Knuth).

The value of the RNG multiplier, a,
is the main determinant of the degree
of serial patterning. We want to choose
a so as to produce as many lines and
planes as possible, and to space them
out as evenly as possible. This can be
translated into the goal of minimizing
the maximum distance between any
two lines (planes, hyperplanes, etc.|.
Let 1/V2 be the maximum distance
between any adjacent lines in a graph
{(such as Figure 1} of R[I1] against R[I].
Let 1/V3 be the largest distance
between pairs of parallel planes in the
graph of triplets (R[I], R[I1], R[I-2]}, and
so on. Our goal is to maximize V2, V3,
V4, V5 and V6. (Note that these V's are
inverses. The bigger the V, the smaller
the largest distance between lines or
planes in the graphs|. We stop at 6
because if these values are good, higher
dimensional sequential interactions are
almost certainly unimportant.
According to Knuth, we would be
pretty safe stopping at 4.

The V values for linear congruential
generators can be determined using a
method first proposed by Coveyou and
McPherson in 1965, which is based on
the finite Fourier transform. The
mathematics underlying this test, the
Spectral Test of an RNG, are beyond
the scope of this article, but they are
well described by Knuth. The Fourier
transform itself is a mathematical
technique for detecting and describing
repeating patterns in a set of data.

To compute the values of the V’s,
we used Knuth’s Algorithm S, which
requires high precision Integer
arithmetic. Apple’s Pascal provides
Long Integer type variables, which
allowed us the Integer precision we
needed. {We do not list this program
because it is a direct implementation of
Knuth's algorithm SJ. The algorithm
takes only a and m as input -- the value
of ¢ is irrelevant. It quickly determines
the values of the V's for the output of
the generator across its entire period.

This is so spectacular that we want
to say it again. The statistics V2, V3,
and so on, which take only minutes to
calculate, take into account the
ordering of every one of the

1,099,511,627,776 different values the
random number generator produces. |!)

Until the theorems behind this
amazingly powerful algorithm were
proved, testing of random number
generators was done by examining a
relatively ‘‘small’’ subset of the
sequence the generator produced.
"“Small’’ here means maybe a million
numbers. On an Apple, this type of
testing can take months of computer
time. (We report some subsequence
tests below, and they took days. Tests
of other generators not discussed here
actually did take months|. One of the
reasons that old generators are so poor,
relatively speaking, is that it took so
long to test one. Testing of
replacements was a tedious and very
expensive business.

To choose the multipliers for the
three generators we present here, we
computed V values for just over 30,000
different values of a. (A life's work for
at least 100 long-lived Apples if they
were all tested in the old ways, and this
only took two weeks]. We stopped
when three suitable values of a were
found.

The values of the V's tell us what
the largest distance is between a pair of
lines, planes or hyperplanes in a sub-
sequence graph of the entire period.
These values depend on the period of
the generator: the larger m is, the
larger V can be. These numbers can get
so0 large (see Table 1) that it's very hard
to tell whether a value of V is good or
not. For any given period, there is a best
possible value for each of the V's. The
easiest way to tell how a given V value
rates is to convert to a different number
(call it U}, that takes the period of the
generator into account. Knuth gives
formulas for converting from V2 to U2,
V3 to U3, ..., V6 to U6. The Spectral
test is usually defined in terms of the U
values. If U is greater than 0.10, the
generator ‘‘passes’’ the test. According
to Knuth, every generator known to be
bad fails the test at this level. He
defines a ‘'pass with flying colors’’ as a
value of U greater than 1.0.

The Spectral test is the most
powerful test known of random
number generators. The U and V values
should be part of the documentation of
any RNG. We list the values of the
three generators presented here in
Table 1. Our smallest U is 2.37.

For comparison, the U values of
RANDU, a very common RNG on
32-bit mainframes, are 3.14 [U2], less
than 0.0001 {U3), less than 0.001 [U4},
less than 0.01 {U5) and 0.02 (U6).

28

MICRO

No. 72 - June 1984

Table 1
Results of the Spectral Tests
Generator X USR(1) YUSR(0)
Z USR(-1)
Multiplier 27182819621
8413453205
31415938565
Additive
Constant
3 99991
26407
V2 982974962600
1112748837514
908473954394
V3 72937326 103184754
, 79566866
|7} 1023550
805970 ,
1036504
V5 58786 60670
59710
V6 9916 8142 11636
uz2 2.81 3.18 2.60
u3 2.37 3.99 270
u4 4.70 2.9 4.82
us 4.01 4.34 417
ue 4.58 254 7.40
Knuth |pp. 102-104] provides a table test and it would probably be

of U and V values for many mainframe
generators. Most (fortunately) are
better than RANDU. Some are better
than the three we are presenting here,
but not many of them.

The problem with many of the older
generators is that they were speed-
optimized. A full period is obtained
from any generator whose c is odd and
whose a is any even power of 2, plus 1.
These are not the only full-period
multipliers (far from it), but if you
choose a so that it is a power of 2, plus
1, all that you have to do in the

multiplication is to shift the
accumulartor a few times (the
multiplication degenerates into a

simple set of shifts), and then add.

As an example of a fast generator, if
you choose a = 28+ 1 and a 32-bit
generator, as was recommended for the
Apple not too long ago by someone
else, you don’t even need to shift
anything. Add the lowest byte to the
second lowest. Add the [8-bit plus
carry) sum of these to the third lowest
byte. Add the (8-bit plus carry) sum of
these to the high byte and you are done.
This is short, sweet, elegant, very fast,
it passes some of the sub-sequence
tests, but it fares badly on the Spectral

inadequate for many applications.

We aren’t going to say who
suggested this generator, or in what
magazine, because it could needlessly
embarrass an author who doesn't
deserve to be embarrassed. He
consulted a standard, fairly recent
(1971), and well written text on
random numbers (Newman & Odell’s,
The Generation of Random Variates),
followed their recommendations, and
conducted their tests. Unfortunately,
the importance of the lines and planes
problem wasn't widely enough or fully
enough realized in 1971, and the full-
period tests, many of which had not yet
been developed or polished, were not
widely enough appreciated. Newman
and Odell’s otherwise very good
summary of generation techniques and
applications of random numbers made
virtually no mention of full-period
results. Their recommendations
favored multipliers with few bits set,
such as 28+1 or 28+3. Similarly,
Abramowitz and Stegun’s numerical
bible {also known as the Handbook of
Mathematical Functions, 1964)
recommends generators of the power of
2 plus 1 type. Finally, and in another
book deserving a home on any

programmer’s bookshelf, Carnahan,
Luther and Wilkes’ Applied Numerical
Methods [1969] makes much the same
recommendation.

The very fast generators, with few
bits set to allow jazzed-up
multiplication routines, have generally
fared badly when subjected to the
Spectral test. RANDU, for example,
used a multiplier of 2'¢+3. The
problem seems to be that so few bits are
set, and so few operations are thus
performed on the number, that the
number’s digits are not sufficiently
scrambled each time. In the 1950's and
early 1960's, generators of this type
were considered ideal, rather than poor.
They passed many of the simpler tests
of randomness. And, critical for large
simulations then, fast meant
jrelatively] cheap. (We keep talking
about cost. Here's an illustration that
makes the point. In 1978-79, Kaner and
John C. Lyons conducted a moderately
large simulation of the behavior of the
Kolmogorov-Smirnov and related
statistics, using three PDP-11 lab
minicomputer. Some tests of the
validity of their work required greater
numerical precision than was easily
obtained on the PDP's, so they also did
some work on a CDC 6400 mainframe.
Out of curiosity, they ran benchmark
tests to determine how much the
simulation would have cost if all of the
work had been done on the CDC. It
would have cost over $100,000, or
more than enough, at that time, to but
three well equipped PDP-11's).

The recognition that tests of
sequential patterning are more
important than tests of frequency
(discussed below) for generators that
produce all possible numbers between
0 and m, and the discovery of fast
techniques to search for patterns across
the entire period, have caused
something of a revolution in the way
RNG's are created and tested. Almost
all of this has taken place over the last
20 years, and much more has yet to
come.

Readers familiar with statistical
techniques may have grumbled, by this
point, that there were tests of
sequential patterning long before the
Spectral test. We will mention the
results of a few of these below, but one
of them, the Serial Test, is relevant
here.

Suppose that you split the range of
fractions generated (R[N|m} into 10
equal subranges, 0to .10, .10 to0 .20, .20
to .30 and so on. If you generate a
sample of 10,000 numbers, you can

No. 72 - June 1984

MICRO

29

count how many fall in each subrange.
A random source would produce about
1000 for each, and this can be compared
to the number that the RNG produces.
This simple test, of the frequency of
single numbers (rather than of pairs or
triples], is called the Chi-Square Test.
Similarly, you can examine the pairs,
{R[I], R[I1]). From a sample of 10,000,
you should obtain approximately 100
of each type of pair. That is, in about
100 cases, both R[I] and R[I1] should be
between 0 and .10. In another 100
cases, R[I] should be less than .10 while
R[I1] is between .10 and .20, and so on.
There are 1000 types of triples (R[I],
R[I1], R{I2]) and on average we'd expect
to obtain 10 of each. The traditional
test used to examine the difference
between the actual number of each
number, pair, triple, etc. and the
number that we should obtain on
average is called the Serial Test. There
are a number of versions. We prefer
Good’s, developed in 1953. [Knuth
presents a different one that is also
popular.|

The Serial test is a subsequence
test. You take a sample of the numbers
produced by the generators (we used
the first 850,000 from each in our tests,
for example}. If you didn’t mind tying
up your Apple for a few years you could
test the entire output of the RNG {all
trillion-plus numbers), obtaining a full-
period test the hard way. For such a
large sample, this test is known to be
extremely sensitive to deviations from
randomness.

Over the last ten years, Neiderreiter
has proved a very important set of
theorems about the relationship
between the Spectral test and the full-
period Serial test (see Knuth for
references and details}). In short, any
RNG that passes a full period Spectral
test will also pass a full period Serial
test. By using the Spectral test to
determine the three values of a we
ensured that the RNGs would pass both
tests.

We have now settled on values for
m and a. How do we decide what ¢
should be? The additive constant in the
generator makes no difference for the
Spectral test, but it does influence the
value of another traditional test of
ordering, the Serial Correlation Test.
You can think of the serial correlation,
lag K, as a measure of the degree to
which the relationship between R]I]
and R[IK] can be described as linear. A
value of 0 indicates that there is no
linear relationship between the random
number produced now by the RNG and

the value that it will produce K calls
from now. A value of +1 indicates a
perfect linear relationship, and an
atrocious RNG.

Knuth’s Theorem K gives a method
to establish upper and lower bounds on
the correlation, across the entire
period. We applied it to test several
additive constants, for each of the
RNGs, for serial correlations lag 1
through 20 (again in a Pascal program
not listed here that followed Knuth
directly}]. There were thus 60
correlations, 20 for each generator. For
the values of ¢ chosen, the largest
correlation lies somewhere between
-0.00000001135 and 0.00000000569.
The second worst case lies between
-0.00000000038 and 0.00000000072.
We don’t know the exact values, just
the upper and lower bonds on the
correlations, but whatever they are
they are pretty close to zero, which is
where they should be.

In summary, the modulus value of
240 resulted from a compromise
between considerations of speed and
space on the one had, and of period
length and tiny value representation on
the other. The critical full period tests
from here were tests of sequential
relationship. Equal frequency is, of
course, a major criterion of
randomness, but this entered into our
parameter selection only insofar as
values of a and ¢ that would not
guarantee equal frequency were
rejected automatically. The parameter
selection was determined, for each
generator, by performance on the major
full period tests of sequential
relationship.

Empirical Tests of the RNGs

Full period tests only tell us about
the performance of the RNG across the
entire period. They do not guarantee
that the sub-sequences will be good. It
could be that a strong trend in the first
100,000 values will be counterbalanced
by a reverse trend in the next 100,000,
and so on. Since no application that we
know of would use the full trillion
number period, the only way to be
confident about quality for actual use is
to examine the RNG's sub-sequence
behavior.

To do this, we ran a number of
standard statistical tests on the output
of each generator, examining the
output in batches (sub-sequences} of
1,000 to 10,000. For each test,
sampling started at the {same) starting
values of the generators. Many users

will only need these first few hundred
thousand numbers, so these should be
the ones most carefully examined.

1) Serial Tests

We described these in the final
discussion of the Spectral test, above.
Samples of 10,000 numbers were tested
for simple frequency [number of R[I|'s
< .10, between .10 and .20, etc.} and
for clustering of pairs and triples.
Eighty-five batches were examined and
the 85 results, for each test and each
generator, were compared to the
distribution of results we would expect
from a random source, using the
Kolmogorov-Smirnov Test. All three
generators passed the simple frequency
(p> .10] and triples [p> .20) tests. The
generators listed as X and Y in Table 1
passed the doublets test, but Z did not.
The problem with Z, which we will see
again later, is that it does too well on
these tests.

If you test a truly random source
many times, it will sometimes fail a
test of randomness and it will
sometimes only marginally pass it. Not
often, but sometimes, and we can
calculate how often theoretically. Z's
performance was sometimes poor, but
not often enough to mimic a random
source {.05 > p > .02). Since nothing
can be “‘more random’'than a ‘'truly
random’’ source, this must be a flaw in
Z.

It should be realized, though, that
these tests are very sensitive to minor
deviations from random source
behavior when such huge (850,000}
sample sizes are involved. Z does not
perform ideally, but its performance is
far from bad.

2) Frequency Tests

Equal frequency over the full period
is guaranteed in a full period generator:
one and only one of each number is
produced each time through the trillion
number series. But the fact that all
possible numbers will eventually
appear is no guarantee that they will
come in a reasonable order. It all too
often turns out that an RNG yields too
few, then later too many small (large,
whatever| numbers. We described the
Chi-Square test of fréquency as a
special case of the Serial test.
(Historically, the Serial was an
extension of Chi-Square). A different
test requires no grouping of the
numbers and it is often more sensitive
to departures from equal frequency
than Chi-Square. This test, the
Kolmogorov-Smirnov test (KS test for

30

MICRO

No. 72 - June 1984

short}, compares the proportion of
numbers generated that are less than
any given number |across all numbers
between O and 1) with the proportion
that we'd expect from a random source.

A hundred such tests, for each
generator, were run on batches of 1,000
numbers, and the KS test was then used
to compare the distribution of KS
values from these 100 tests with the
distribution a truly random source
would give. X and Y passed (p > .20). 2
failed, even though it had already
passed Chi-Square. The problem with
Z, as before, was that its test
performance was too good, too often
{.05> p> .02]. This is a most unusual
problem for an RNG, but searching
techniques for '‘terrific’’ generators,
like the search we performed across
30,000 potential generators, are
becoming commonplace, so we can
expect this to arise more often.

3) Runs Tests

A run up is a succession of
increasing numbers (eg. .1, .2, .35, .36)
which ends when the next number
generated is lower than the last. A run
down 1is similar. In this case,
successive numbers get smaller. The
number of increasing or decreasing
numbers in a run is the length of the
run. Tests of how many runs, and how
many runs of each length, are further
tests of sequential trend in the RNG.
Both types of tests were run, for each
generator, on a sample of 50,000
numbers. All generators passed them
handily.

4} Other Tests

We developed these generators two
years ago (summer, 1981) and have
used them often since. Kaner has
mainly used them to simulate logistic,
triangular, normal, and geometric
distributions, and the behavior of
various functions of variables having
these distributions (such as the
kurtosis of weighted sums of a logistic
plus a triangular plus a geometric,
which is an important variable in a
theory of time perception that he works
with|. Z was never used in these
simulations. X and Y performed quite
adequately. Numerous comparisons of
theoretically predictable values with
the simulation results were made along
the way, and none of the comparisons
suggested any problems with the
RNGs.

Vokey has conducted simulations
involving binomial, t, F, and various
other distributions of common

hypothesis testing statistics, and of
multinomial and hypergeometric
distributions and functions of these
involved in theories of choice and
category learning. X and Y have
performed well consistently. Z has
performed strangely: extreme values of
complex statistics are not as likely as
they should be with Z.

In sum, X and Y have passed all
tests, theoretical (full period] and
empirical (sub-sequence]. Z’s sub-
sequence behavior has been less good
{i.e., too good}, and the more of it that
we see, the more hesitant we are to use
it again as a ‘'stand-alone’’ RNG. This
does not mean it’s useless, as we shall
see below.

X and Y appear sufficiently random
for . most needs, and they have
performed empirically beyond our
nopes for them. But they are not
perfect. We have minimized the lines
and planes problem, but we have not
gotten rid of it. For very precise
simulations, especially of events
correlated over time, this is not go
enough. However, if more than one
RNG is available [which is why we
provide three], we can do much better
than we have done so far.

Combination of RNGs

The graph of the last number
generated, R[N], against the number
generated this time, R[N 1], shows a
family of parallel lines when all pairs
(R[N], R[N1]] are plotted (as illustrated
in Figure 1). This is the parallel lines
problem. If our goal is to break down
this linear structure, as we must do to
mimic the random structure produced
by a truly random source, why not just
randomly rearrange the order of the
numbers generated by the RNG, as it
produces them? This is George
Marsaglia’s insight, and in practice it
works out very well.

Here's an example of the procedure
for wiping out the lines and planes
patterns. Generate 100 values from X
and store them in a matrix, say
XRAN(I]. Now sample a value from
generator Y and use this value to
determine which value you’ll choose
this time from XRAN, ie. set
RANDOM XRANJ[Y * 100]. Replace
the sampled value of XRAN with a new
value from generator X [XRAN([Y # 100]
USR (1]} and you're done.

A sequence of numbers, RANDOM
(1], will have the same good sub-
sequence frequency properties as X
does, but the last remnants of

sequential patterning from X typically
disapper. Knuth gives examples of
quite poor generators which perform
surprisingly well when combined in
this way. All combinations that we’ve
examined in X, Y and Z have been
good, but we recommend that Z be
restricted to the role of selection
generator (the role played by Y in the
example above| due to its too equal
sub-sequence frequencies. We see no
problem in using Z as a selection
generator. Some people would argue
that Z might be a better selection
generator than X or Y. We're not sure.

A second approach is to sample
from X, then Y, then Z, in turn. This
triples the period and it can destroy the
lower-dimensional patterns (the lines],
but it will not do for all generators
combined in this way. In fact, Lewis’
Multi-RNG Theorem (pp. 18-19] states
that if any multiplier in a bank of equal
period RNG's is near sq.rt. m , the
problem will return with a vengeance.
(A sad result because the old generators
were often chosen to be near sq.rt. m
deliberately, and the older texts
recommend this heartily]. We
restricted selection of multipliers for X,
Y and Z to values far from sq.rt. m =
1,048,576 in order to allow this form of
generator combination. For these
generators, according to Lewis, the
technique should be very effective.

The last approach that we'll
mention is to use one generator (Z) to
decide which of the other two will be
sampled from this time. This only
doubles the period of the resulting
generator {if you need 3 trillion
numbers, use a different RNG]J, but it
does randomize the order of sampling
from the generators, which is not done
above.

It seems probably important for
each solution above that the different
generators’ outputs be unrelated.
Otherwise, replacing a value of X with
one from Y, for example might make
little difference. Our final test of the
generators involved computing the
correlation [measure of linear
relationship) between X and Y, Zand Y
and Z. A hundred correlations were
taken, on samples of 1,000 numbers
per generator. All were reasonably low.
The averages were 0.0003 for X and Y,
0.0038 for X and Z, and -0.0017 for Y
and Z, which should be low enough to
allow combinations.

Using the RNG

Once you have entered the RNG
program into your Apple (below), you

No. 72 - June 1984

MICRO

31

access it via the USR function. A
statement of the form

RAN USR(SELECT)

in either immediate or deferred mode,
will put a random number into the
variable RAN. SELECT must be a Real
or Integer number, variable or
expression. If it is less than O, the
output will be from Z. If SELECT is O,
the output is from Y. If SELECT is
larger than 0, output is from X. If
SELECT is a String, output is "?SYNTAX
ERROR".

Some of the locations of the
program hold the last values generated
by each RNG. Unless you are
debugging a program and want the
same number sequence again and again
(in which case, see below}, you should
never use the same random numbers
twice. If you never have to reload the
program, this is taken care of
automatically. However, if you must
reload the program, it will start from
the initial values of 3, 99991 and
26407. It is easy to avoid this problem
by always updating your copy of the
program on the disk. At the end of
every program that uses an RNG, we
PEEK the contents of decimal locations
768 to 969 [the entire program] and
save them on the disk. {Equivalently,
BSAVE RNG, A$300, L$C9). At the
start of every RNG-using program, we
BLOAD the program from the disk.
This ensures that we always start with
the next random number in the
sequence.

To obtain a standard sequence
instead, keep another copy of the RNG
program, and deposit it into core as
needed, but never update it. This
downloads the same values every time,
yielding the same sequence every time.

The RNG Program

The program starts by determining
which generator is requested, and does
so by calling Applesoft’s internal SIGN
subroutine. Variable LOOKUP holds
the offset value, determined from the
sign variable in USR|), which, when
added to ADDBAS, yields the final
location of XADD (LOOKUP = $22),
YADD($13} or ZADD ($04). These are
the additive constants, ¢, of the
generators and the final locations are
used because our DO loops are most
conveniently done as 4 DOWNTO 0.

LOOKUP added to MULBAS
(multiplier base address] vyields
XMULT, YMULT or ZMULT, the
values of a.

LOOKUP +LSTBAS points to the
last value generated from X, Y or Z,

XRAN, YRAN or ZRAN, i.e. to the R[N]
of R[N +1] = (aR[N] +¢] mod m.

By loading the appropriate value of
LOOKUP into the computer's Y
register, we access the appropriate
RNG. To avoid constantly worrying
about which generator we are dealing
with, we store the values in a set of
standard locations {freeing register Y
for other uses).

NEWRAN will hold the new value
generated. By depositing ¢ into it
directly, we perform the addition of ¢
automatically. MULT and OLDRAN
hold a and R[N]. This is the function of
the program segment labelled TRNSFR.

The next section of the program
thoroughly confuses readers unfamiliar
with modular arithmetic. Remember
that the value of A mod B is the value of
the remainder of the division of A by B.
The quotient itself is irrelevant. Since
240 will divide evenly into any multiple
of 249, any number greater than 5 bytes
in length reduces to the least
significant 5 bytes (40 bits) directly.
Every bit more significant than the
40th [or 39th if you number from 0] is
an even multiple of 249 so it cannot
enter into the remainder of the
division. Combine this with the fact
that

(AB) mod ¢ (Amod C BmodC) mod C

and you will see that we never need any
bits past the 40th. Thus we never store
them. The multiplication segment
calculates the least significant 40
binary digits and quits. The additions
always ignore the carry from the sum of
the highest bytes.

The multiplication algorithm is the
same as the one we all learned in
elementary school. Here is an example
of standard multiplication:

12345

X 11111

12345
12345
12 345
123 45
1234 5

1371 65295

OLDRAN
MULT

PROD

To multiply OLDRAN by MULT,
we multiply by the least significant
digit of MULT, shift OLDRAN left by
one, multiply the next least significant
digit, shift again, etc. If MULT held a
zero at any point, we would shift
OLDRAN for the next digit of MULT,
but not add anything to the answer,
PROD. In the RNG program, we do it
the same way, with register Y keeping
track of the bits of the byte of MULT by

which we are currently multiplying.
Index X and BYTCNT keep track of
MULT's byte. The difference between
our algorithm and the traditional one is
indicated by the vertical line in the
example. We need no digits past the
line, so we never calculate anything
past it.

The third section of code,
MOVRAN, is executed after the
multiplication and the addition are
done. We now have R[N + 1|, which we
store as is in XRAN, YRAN or ZRAN.
Which generator it goes back to is kept
track of by XYORZ. R[N + 1] is always
stored as a fixed-point integer, because
all computations are and always should
be fixed-point integer for the modulo
operation to work. Why store a
normalized value and have to decode it

each time!
{Note Bene: We now know of three

cases in which programmers have
“‘improved’’ on congruential
generators by doing floating point
computations rather than fixed integer
computations. More precision is better,
right? Wrong! Not here! The theorems
we reference above all assume fixed-
point integer arithmetic, with
truncation not rounding. The
computational errors involved in
integer arithmetic are part of the
algorithm. Maybe floating point
calculations will be good for some
generators, but this is uncharted
territory. In our experience, this
“improvement’’ has always led to a
bad generator].

NRMLIZ puts NEWRAN into the
floating-point format that Applesoft
expects. To convert fixed-point to
floating-point, left-rotate the number
until its most significant digit [the first
set bit) is the leading bit of the number.
As long as we keep track of the number
of rotations performed (held in register
Y), we could convert back to fixed
point easily if we wanted to. Floating-
point format, which stores an exponent
(reflecting the number of rotations)
along with the normalized digits,
allows a wider range of values to be
stored to high precision than does
fixed-point format.

Once normalization is done, we
either branch to BITSET if a set bit
{most significant digit] was found, or
fall through to it if R|N] = 0. At
BITSET we first load a O into a byte
reserved to hold the number’'s sign
(making it positive], then convert to
Apple’s convention for storing
exponents. In this format, if the
exponent is $80, no rotations were
required and the number lies between

32

MICRO

No. 72 - June 1984

0.999999999 and 0.50. If the exponent
is $70, one rotation was done and the
number lies between 0.5 and 0.25, and

S0 on.
To store our integer as a fraction,

we need only load the exponent with a
value no greater than $80, and less than
$80 by the number of rotations needed
to get the top set bit. This is exactly
equivalent to dividing R[N+ 1] by 240,
except where R[N + 1] is 0. In this case,
the program returns 24! instead of zero.
This is close to zero but it removes the
chance of a “?DIVISION BY ZERQ"
error if you divide by a random value.
This is probably academic anyway, as
the starting values ensure that O will be
the 1,099,511,627,776th number
generated by each RNG.

Below are the parameters for the
Apple, Commodore, and essentially
any other 6502 machine that uses a
Microsoft BASIC. See Editor’'s Note,
Page 34.

APPLE - to set up the USR function
- POKE 10,76: POKE 11,61: POKE 12,3

{These would be altered if you are

starting the program elsewhere in

Memory.}

MULTMP EQU $9D
RANEXP EQU $9D
NEWRAN EQU $9E
BYTCNT EQU $AC
SIGN EQU $EB82

COMMODORE - to set up the USR
function - POKE 785 and 786 with
address of RNG Subroutine.

MULTMP EQU $61
RANEXP EQU $61
NEWRAN EQU $62
BYTCNT EQU $@2
SIGN - see below
FEXP EQU $61
FSGN EQU FEXP+5

The following is the Applesoft sign
routine converted to a form for the
Commodore. In line 0344 of the main
program there is a JSR to SIGN. The
location $EB82 is where the sign
routine is located in the Apple. For the
Commodore you can place the SIGN
"subroutine anywhere as it is
completely relocatable.

Floating Point Exponent - FEXP

Floating Point Sign - FSIGN

C64: FEXP EQU $61
FSIGN EQU 366

APPLE: FEXP EQU $9D
FSIGN EQU $AR

A5 61 SIGN LDA FEXP

F@ @9 BEQ RTN

A5 66 LDA FSGN

24 ROL A

A9 FF LDA $FF

B@ @2 BCS RTN

A9 @1 LDA 301

60 RIN RTS

Listing 1

@300
@300
@300
9300
9300
@300
9300
@300
9300
@300
#300

9300 00 00 0¢
@305 @7 58 89
@30 00 00 00

@30F 00 98 91
@314 @1 F5 7B
@319 90 90 09

g0 00 00
g6 54 38
99 ¢o 909

@31E
@323
@328

ORG $300

93 363 I 6 I 9 I3 336 I I I I ¥ ¥ 3 3 33 3 3 3 ¥ ¥ ¥ 3 3 % K K %

FOR APPLESOFT

COPYRIGHT 1984
THE COMPUTERIST INC.
ALL RIGHTS RESERVED

Xk Xk ok Kk kK Kk Kk XK

HEXXXEEAXXXXXXAHHHHEXXXHHEHHAX XX

SET UP THE USR FUNCTION.
SEE EDITORIAL NOTE

LOAD IN PARAMETERS FOR THE RNG'

Z: RAN(31415938565*0LD246@7)MOD2

s s e tes s s s s Nee

ZADD BYT $00,$00,300,$67,$27
ZMULT BYT $07,$58,$89,$2E,3$05
ZRAN BYT $00,$00,$00,$00,300

; Y: RAN(84134532@¢5%0LD99991)MOD2¢

A BETTER RANDOM NUMBER GENERATOR

*
*
*
*
*
*
*
*
%% %

TO USE THE RNG SUBROUTINE, YOU MUST

S
@

@320

9330
@331
@332
@333
g338

@33D
@33E
@341
@344

@347
§348
0349
@34C

@34F
@351

9354
@356
9359
@35C
@35F
g362
@363

@4 13 22

o0 00 00
o0 00 00

@8

8E 32 93
8C 31 93
2p 82 EB

AA
E8
BC 2D @3
8C 30 83

A2 @4
B9 @0 @3

95 9E
B9 @5 @3
9D 33 @3
B9 @A @3
9D 38 @3
88

CA

’
YADD BYT $00,$00,$01,$86,$97
YMULT BYT $@1,$F5,$7B,$1B,$95
YRAN BYT $00,$00,300,$00, 300
; X: RAN (27182819621*0LD3)MOD2@
’
XADD BYT $00,$00,$00,$00,$03
XMULT BYT $@6,$54,$38,$E9,$25
XRAN BYT $00,$00,$00,3$00,300
; ADD LOOKUP TO BASE LOCS FOR
; PARAMETER ADDRESSES FOR CURRENT RNG.
LOOKUP BYT $04,3$13,$22 ; 2, Y, X
’
XYORZ BYT $¢¢ ; WHICH GENERATOR Q|
YTEMP BYT $00 ; Y-REG ON ENTRY :
XTEMP BYT $00 ; X-REG ON ENTRY
MULT BYT $00,$00,300,$00, 300)
OLDRAN BYT $00,300,300,300,300
)
RNG PHP ; SAVE EVERYTHING
STX XTEMP
STY YTEMP
JSR SIGN ; SEE EDITOR'S NOTE FOR
; SIGN ROUTINE :
; FAC HOLDS S OF USR(s)© |
; PUT FF IN A IF 3¢, ‘
; PUT @ IF @, 1 IF S@
TAX ; FROM THIS f)
INX ; DECIDE WHICH RNG
LDY LOOKUP,X ; VIA LOOKUP TABLE AND
STY XYORZ ; SAVE IT FOR LATER

5
; NOW THAT WE KNOW WHICH GENERATOR, MOVE
; ITS CONSTANTS TO THE TEMP LOCS.
5

1DX $@4 ; LOOP TO TRANSFER O}
TRNSFR LDA ADDBAS,Y ; RNG'S VALS TO :
; STANDARD LOCS, I.E. :

STA NEWRAN,X ; ADD CONST TO NEWRAN, @ |:

IDA MULBAS,Y ; MULT CONST E

STA MULT,X ; TO MULT,

LDA LSTBAS,Y ; LAST RND VAL FROM

STA OLDRAN,X ; THIS RNG TO OLDRAN

DEY

DEX ; 5 BYTES DONE

No. 72 - June 1984

MICRO

33

@364

@366
$368

$36A
@36D
@36F
@371
#373
@375
$376
#379
¢37B
@37D
$37E
@38¢

@381
?383
?386
9387
#389
#38B

$38C
@38E
?390
$392

#394
$397

10 EB

A2 @4
86 AC

BD 33 @3 ’NXTBYT

85 9D
Ag @7
46 9D
9@ @cC

18

BD 38 @3
75 9E

95 9E
CA

1¢ F6

18

A6 AC
3E 38 @3
CA

19 FA
A6 AC
88

19 E3
Cé AC
A6 AC
10 D6

AC 30 83
A2 g4

MULPLY

ADD

e e e e

SHIFT
SHFTIT

; RESPECTIVE RNG'S

?39B
@39E
@39F
@340

@3A2
@3A4
@346

@3A7

@349
@3AB
@3AD
@3AF
@381
@383
@3B4

$386

@3B7
@#3B9
#3BB
@3BC
@#3BD
@3BF

@3C1
@3C4
@3C7
@3C8
#3C9

99 0A @3
88

CA

18 F7

Ap 28
A5 9E
2A

B@ @E

26 A2
26 Al
26 AQ
26 9F
26 9E
88

D@ EE

b

NRMLIZ

b

;
BITSET

LDX
ROL
DEX
BPL
LDX
DEY

BPL
DEC
LDX
BPL

LDY
1LDX

STA
DEY
DEX

DY
1bA
ROL

BCS

ROL
ROL
ROL
ROL
ROL
DEY
BNE

DEY
1ba
STA
TYA
CLC
STA
LDY
PLP

RTS
END

TRNSFR

$04
BYTCNT

MULT, X
MULTMP
$07

MULTMP
SHIFT

OLDRAN, X
NEWRAN, X
NEWRAN, X

ADD

BYTCNT
OLDRAN, X

SHFTIT
BYTCNT

MULPLY
BYTCNT
BYTCNT
NXTBYT

XYORZ
$04

LSTBAS, Y

$2
NEWRAN

BITSET

NEWRAN4
NEWRAN3
NEWRAN2
NEWRAN1
NEWRAN

NRMLIZ

$09
NEWRAN4

$58
RANEXP

YTEMP
XTEMP

; IF NO, DO NEXT
IF YES, MULTIPLY.
; INDEX OF BYTES

; KEEP TRACK OF BYTES

DEALT WITH SO FAR
; LEAST SIGNIF BYTE

; COUNT BITS
; GET LEAST SIG BIT.
; BIT@ DON'T ADD.
; BIT SET, SO ADD
; OLDRAN TO NEWRAN.

; ALL BYTES DONE

; NO ADD NEXT

; YES, SO PREPARE TO
SHIFT OLDRAN (IE
MULT * 2).
CARRY AS IT IS
@ MOD2@ ANYWAY.

; BYTES TO SHIFT

BYTE LEFT
YES, SHIFT IT.
RECOVER BYTES.
MORE BITS LEFT

IN THIS BYTE
YES, MULT BY NEXT.
NO, DONE A BYTE.
ANY BYTES LEFT
YES MULT BY IT.

e s e e

s e e e

; DONE. PUT THE
; NEW RND INTO THE

; LAST RAN STORAGE.

; MORE TO MOVE

3
; DONE. NOW TO NORMALIZE FAC, ALIAS NEWRAN.

; $28 (4@) BITS IN FAC.

; FIND HIGHEST SET.
; SIGNIFICANT
28 - NOT SET
; LEAVE WHEN TOP
BIT FOUND

; NOT FOUND YET, SO

; GET RID OF THE @

; BIT AT THE TOP.

; Y WILL KEEP TRACK
; OF OF BITS LEFT.
; ANY LEFT
; YES, KEEP LOOKING

NO, ALL DONE.
; PROTECT AGAINST
DIVIDE BY @.
; PUT @ IN FAC'S
; SIGN BYTE.
; GET SIG BITS
; PUT IN FAC'S $8¢

; FORMAT: $58$28%$80.

; PUT IN EXPONENT
BYTE AND DONE.

; SO, UNSAVE

; EVERYTHING

; AND

; SAY GOODBYE.

DROP LAST

References

Abramowitz, M & Stegun, 1. A., Handbook
of Mathematical Functions, National
Bureau of Standards, 1964 (Reprinted with
Corrections by Dover Press, 1972).

Carnahan, B., Luther, H A, & Wilkes,
J.O., Applied Numerical Methods, John
Wiley & Sons, 1969.

Good, L. J., The serial test for sampling
numbers and other tests for randomness,
Proceedings of the Cambridge Philosophical
Society, 1953, Vol. 49, 276-284.

Kaner, H. C. & Lyonss, J.C., Tables and
Power Comparisons for Different Versions
of the Kolmogorov-Smirnov and Schuster
Statistics, Technical Report No. 67,
Department of Psychology, McMaster
University, 1979.

Kendall, M. G. and Stuart, A., The
Advanced Theory of Statistics, Vol. 2:
Inference and Relationship {third edition,
1973), Vol. 3: Design and Analysis, and
Time Series [third edition, 1975), Hafner
Press.

Knuth, D. E., The Art of Computer
Programming, Vol. 2, Seminumerical
Algorithms. Addison:Wesley, 1981 (Second
Edition).

Lewis, T. G., Distribution Sampling for
Computer Simulation. Lexington Books,
1975.

Marsaglia, G., Random Number
Generation. In A. Ralston’s Encyclopedia of
Computer Science, Van Nostrand Reinhold,
1976, 1192-1197.

Newman, T. G. & Odell, P.,, L., The
Generation of Random Variates, Hafner
Publishing Co., 1971.

Editor's Note: When adapting this
random number generator subroutine
we found it to be essentially free from
machine specific code. The two places
the code differs are in the use of the
USR function which accesses the
program from a BASIC file, and in the
use of floating point notation, in
particular the APPLESOFT Sign
routine. After examining the available
documentation the USR function for
the Apple and Commodore we found it
wasn’t clear as to how parameters were
passed. The locations used were
different, but this was expected. The

34

MICRO

No. 72 - June 1984

question was how the floating point
notation operated. To solve this
problem we wrote a small program (see
below] which allowed us to display the
floating point accumulator, PEEKing
the locations where the exponent,
mantissa and sign were stored in each
computer. If they were stored
differently, then further modifications

would have to be made. Happily our

little program proved that they store

1¢ REM PROGRAM TO DISPLAY FLOATING POINT
ACCUMULATOR

2¢ UV1g : REM USER VECTOR

3@ PN3 : REM PAGE NUMBER

4@ FA157 : REM FLOATING POINT ACCUMULATOR

5@ MPPN¥*256 : REM MEMORY PAGE

6@ POKE UV,76:POKE UV1,@@:POKE UV2,PN

the parameters in the same form. Now
for the bad news - we found the Atari
didn’t use floating point notation in its
USR function. This, combined with a
different convention for storing floating
point notation (combining the
exponent and the sign|, made easy
adaption of this program impossible.
Certainly if those readers with Atari’s
wish to meet the challenge it can be
done. Bear in mind the different USR
function and the use of floating point
notation in the RNG subroutine, and
how it would have to be changed to
accomodate the Atari’s conventions.

MNCRO"

10¢ MPPN*256 : REM MEMORY PAGE

11¢ POKE UV,76:POKE UV1,@@:POKE UV2,PN
12¢ MVMP:SV128:1¢

13¢ POKE MV,165:POKE MV1,FAI

14@ POKE MV2,141:POKE MV3,SV:POKE MV4,PN
15@ MVMV5:SVSV1:II1

16@ IF 16 THEN 130

17¢ POKE MV,96

2¢¢ INPUT VALUE ;A

21¢ BUSR(A):PRINT VAL ;B

22¢ PRINT EXP ;PEEK(MP128)

23@¢ PRINT MSB ;PEEK(MP129)

24@ PRINT
25¢ PRINT
26@¢ PRINT LSB ;PEEK(MP132)
27¢ PRINT SIGN;PEEK(MP133)
280 GOTC 2¢¢

;PEEK(MP13¢)
; PEEK(MP131)

C64-FORTH/79

New and Improved
for the Commodore 64

Cé4-Forth/79™ for the Commodore 64-$99.95

¢ New and improved FORTH-79 implementation with
extensions.

¢ Extension package including lines, circles, scaling,
windowing, mixed high res-character graphics and sprite
graphics.

¢ Fully compatible floating point package including
arithmetic, relational, logical and transcendental functions.

o String extensions including LEFT$, RIGHT$, and MID%.

¢ Full feature screen editor and macro assembler.

¢ Compatible with VIC peripherals including disks, data set,
modem, printer and cartridge.

¢ Expanded 167 page manual with examples and application
screens.

¢ “SAVE TURNKEY” normally allows application program
distribution without licensing or royalties.

(Commodore 64 is a trademark of Commodore)

TO ORDER
-Disk only.
-Check, money order, bank card, COD’s add $1.65
-Add $4.00 postage and handling in USA and Canada
-Mass. orders add 5% sales tax
-Foreign orders add 20% shipping and handling
-Dealer inquiries welcome

PERFORMANCE MICRO PRODUCTS

770 Dedham Street
|]
Canton, MA 02021 VISA
(617) 828-1209 I

No. 72 - June 1984

—

SOPHISTICATED TELE-COMMUNICATION IS HERE
THE COMMUNICATOR

for 4.0 Commodore Computers

JIM STRASMA'S REVIEW:
“THE BEST TERMINAL PACKAGE I'VE 3EEN YET”

By April 1 (maybe sooner) It Will Be Even Better

SPEEDS UP TO 9600 BAUD
XON — XOFF
TRUE CTRL KEY (we do our own keyboard scan)

THE HARDWARE — A printed circuit board; easily installed in the CBM. it uses

no CBM connectors; gives a serial port with true RS232C standard.

THE SOFTWARE -

— Emulates the ADDS HRegent 100, ADM 31 and/or the
TeleVideo 950.1 Or choose the VT 100 model for use with DEC and VAX
computers.

— Runs coresident with BASIC programs; lels BASIC
programa and program on host computer communicate (o develop real-
ly sophisticated communication and control capabilities.

— The prugram is on AOM at either address; no disk loading
required. Uses cnly 512 bytes of RAM; will relocate itseif around any other
machine language program at top of memory.

— Wil upload and downioad and run BASIC programs. With BASIC
program will upload and downioad standard data files. 100 page manual
gives program listing for BASIC programs.

Excellent text editor cesigned to work with THE COMMUNICATOR

THE COMMUNICATOR $200
Text Editor $40

1200 baud modems beginning at low, low $385, and even less when purchased

with THE COMMUNICATOR

AMPLIFY, INC.
2325 Macbride, lowa City, lowa 52240 319-337-8378

1 trademarks Adds Regent, Inc., Lear Liegler, Inc., Televideo Systems, Inc.

MICRO 35

CONTROL

by Mitchell Esformes

e
N S

CONTROL is a machine language
program that runs your machine
language/assembly level program
instruction-by-instruction and allows
you to control its operation and/or
collect statistics about your program.
This could be used for as simple an
application as counting cycles in a
program [details shown in this
example), as a step/trace function with
disassembly of each instruction, as a
sophisticated debugging tool that traps
on specified instructions and/or
memory locations, and so forth.

The program works by setting up a
pseudo program counter, fetching and
evaluating each instruction from the
program under control, performing any
special operations that you define, and
then executing the instruction. It is
written in such a way that you can
easily add your own processing
routines. The demonstration process

shown here simply counts the number

of machine cycles used by a program.
While this can be useful in developing
optimally efficient code, it is only a
hint of what can be done with this
technique. CONTROL will run on any
6502 microcomputer. The only
requirements are four page zero
locations and about 1K of program
space.

Program Description

EQUATES: These are the addresses of
locations used by the program for its
program counter, table pointers and for
saving the 6502 registers. PCTR is a
two byte page zero vector which
contains the pseudo program counter;
TEMPLO and TEMPHI are a page zero
pair of bytes used for vectoring to the
CONTROL tables. The 6502 registers
are saved in ACC (A reg), XREG,
YREG, STREG (status| and STKPTR
(stack pointer). These do not have to be

Test your assembly code for efficiency, or adapt
the program for statistic, step/trace debugging
and more.

on page zero. TALLY is an eight byte
table used to hold the cycle count in
this particular example. If you design
some other function for the CONTROL
program, then this will not be needed.
START puts the address of a location
containing a BRK command, BREAK,
on the stack to be used to halt the
program when an RTI is encounted in
the test program, sets the status to O to
enable interrupts, and clears the
TALLY counter. If you are not counting
cycles, the TALLY counter does not
have to be cleared.

FETCH is the beginning of the main
processing loop. It picks up the first
byte of the current instruction, the
OPCODE, and converts it to the range
$00 to $0F to speed up the table lookup.
The table INST1 is searched for an
OPCODE match. If found control goes
to SERVICE. I an illegal opcode was
fetched, then it goes to ERROR.

36

MICRO

No. 72 - June 1984

SERVICE indexes the CYCLE table to
get specific information about the
current opcode and then jumps to your
custom test/evaluate/count routine.
The OPCODE has been found. In this
example, the routine ACCYC is used to
count the cycles in the instruction
being executed.

PROCESS is the return point from the
custom service routine. It starts the
actual processing of the current
istruction. If, as indicated by a plus
value in the A reg {from the CYCLE
table), the instruction can be directly
executed, then the program goes to

TRANSF which completes the
instruction execution.
SUB through FORWRD are the

routines that service instructions that
may not be directly executed. These are
the instructions that modify the real
program counter: JSR, JMP, JMP (X],
RTS, RTI, and the conditional branches
BEQ, BNE, BCC, BCS, BMI, BPL, BVC
and BVS. Each of these instructions
requires special processing to calculate
the new program counter. This is
handled by the wvarious routines
starting with SUB and ending with
FORWRD. Once the new program
counter has been calculated and set
into PCTR then the instruction has
effectively been executed! The program
now goes back to FETCH for the next
instruction at the new PC address. The
call to subroutine OVER is specific to
the TALLY cycle counting example and
increments the count to reflect the
extra cycle taken in crossing a page
boundary. If your custom routine does
not require special processing on page
boundary crossings, then simply
replace OVER with an RTS.

TRANSF to EXBUF are the real 'guts’
of this program. This is where all of the
instructions, except for the JMPs and
BRANCHes handled above, are
processed. The CYCLES table contains
important information about each
instruction. This is in the form:

Bit Use in Cycles

01 Number of cycles

02 used by the

04 instruction

08 Number of operand

10 bytes in instruction

20 If set add X reg to indexed address,
else add Y reg

40 If set check if page boundary
crossed

80 If set do not directly execute the
opcode

TRANSF moves the complete
instruction to the three byte EXBUF
and

FILLED pads with NOP's if the
instruction is less than three bytes

long.

POINT calculates the address of the
next instruction.

OVERPG checks for indexed

instructions and branches to RUN if
not indexed.

SCAN2 checks for mode and branches
to IND for indirect indexed mode.
ADDY,ADDX service a simple index
instruction by modifying the address in
the EXBUF and then go to RUN.

IND fixes up the address for the
indirect indexed mode.

RUN restores all of the registers that
were saved on entry.

EXBUF now contains the correct
instruction to execute. It is executed
and then drops through to the next code
which saves all of the registers and then
goes back to FETCH the next
instruction.

BREAK is a BRK command that is
executed when CONTROL encounters
an RTI instruction. This stops
CONTROL and returns you to your
microcomputer monitor.

Tables

TABIN contains index values into the
main opcode table. This considerably
speeds up the search for the correct
opcode during execution.

INST1 contains the values of all valid
opcodes.

CYCLES contains the significant
information about each opcode as
described in the table above.

INST2 contains the value of all
opcodes that require special service on
page boundary crossovers.

ADRMOD indicates the addressing
mode for each of the opcodes in INST2.
A 300 byte indicates Indirect Indexed;
an $FF indicates Absolute Indexed.

Utility Specific Routines

ACCYC is the basic cycle counter
mechanism used in the cycle counting
utility. It simply adds the number of
cycles for the current instruction to the
TALLY counter, an eight byte counter.
This is called by SERVICE. For your
own utility, write code to service your
requirements (disassembler, trace
mode, or whatever] and have SERVICE
jump to it. Return to the mainline
program with a JMP PROCESS.

OVER is an additional cycle counter
used for page boundary crossovers that
add one cycle to the instruction. If your
utility does not need extra service for
page boundaries, simply replace OVER
with an RTS.

ERROR is called when an invalid
opcode is encountered or when the
utility code detects an error. It can be as
simple as a BRK to abort processing and
return to the system monitor; it can
sound a tone and then BRK; it can
include an error correcting scheme; or
whatever you desire.

Using CONTROL

A simple application of the CONTROL
program is that of counting the number
of cycles used by a machine level
program or subroutine. If you program
in assembly language there are times
when you would like to know how
many cycles your coding uses. This
information is useful for comparing the
efficiency of one algorithm to another
and when writing interrupt service
routines that have a limited amount of
time to perform their operations. Using
CONTROL with the two cycle
counting support routines provided
will compute the exact number of
cycles, including page boundary
crossover cycles, used by your
program. CONTROL runs your coding,
but slower since there are instructions
executed between each of the
instructions in your program.

To use the cycle counter you should
have a debugging monitor to display
and change memory locations. Load
CONTROL with the support routines
ACCYC and OVER. Load the program
you wish to test. Put the starting
address of your program in PCTR ($B1
in our assembled version, may be
different in your customized version).
The least significant byte (LSB| goes in
PCTR, the most significant byte (MSB|
in PCTR + 1. If you need to initialize
the 6502 registers, do so by putting the
values in the storage locations ACC,
XREG and YREG (A, X and Y registers),
STREG (status register) and STKPTR
[stack pointer|. These locations are at
$0OBF8 to $OBFC in our version. Note
that when using this program to count
the cycles used by an interrupt service
routine, the operation of the service
routine is by CONTROL and begun by
you, not by an interrupt. After an RTI
instruction is processed, the BRK at
BREAK will be processed and
CONTROL will stop.

No. 72 - June 1984

MICRO

37

Now you can run CONTROL in the
cycle counting mode. When it stops,
display TALLY, the eight bytes starting
at $0BFQ in our version, to see how
many cycles your program used. The
LSB is in the highest address, $OBF7. If
an illegal opcode was fetched or there
isn't enough room in TALLY to
accumulate the cycles, then the error
handler at ERROR will cause a BRK.
See the separate examples for having
ERROR sound a tone on the Atari,
Apple and Commodore 64.

Adapting CONTROL

The original version of CONTROL was

change required was the memory
location of the program itself. For the
Atari, change the origin to $0600 or any
other available 1K RAM. The Page Zero
equates are okay. For the Commodore
64, $C000 is a handy origin for the
program. Since Page Zero on the Cé64 is
pretty full, the locations that you
choose may depend on what else you
are running. If you are not using the
cassette tape and RS-232 port, for
example, then the current equates of
$B1 to $B4 should be okay.

The best way to make the
adaptation is to key source into your
assembler, change the equates and
origin and re-assemble. This will give
you a working version of CONTROL

disassemble, trap and so forth. If you do
not have an assembler, the listed code
can be directly keyed in. Make sure
that you change the instructions that
have direct references (generally the
instructions with a value of 08 to OB in
the third byte of the instruction], plus
the high byte address of BREAK that is
referenced in the very first instruction.

[Editor’s Note: This ‘‘cycle
counting’’ demonstration of the
CONTROL program is only one very
Limited use of this powerful technique.
If you find CONTROL useful and
extend its operation, MICRO is eager to
help you share your work with the rest
of the world. We are reserving space for

written on an Atari. The version listed that you can then easily modify for CONTROL enhancements and
here was run on the Apple II. The only other services: trace, single-step, guarantee extremely rapid publication.]
AICRO
Listing 1
@81D Bl B1 LDA (PCTR),Y
@#81F 48 PHA
; Set BASE for 1K program area @82¢ 29 Fg AND #3$F¢@
g8dg BASE EQU $080¢ @822 F@ 95 BEQ INDEX
p809 ORG BASE P824 4A LSR A
; Equates. PCTR, TEMPLO and @825 4A ISR A
; TEMPHI must be on Page ZERO @826 4A ISR A
@#gB1 PCTR EQU $B1 @827 4A LSR A
¢9B3 TEMPLO EQU PCTR+2 @828 AS TAY
@oB4 TEMPHI ~ EQU PCTR+3 @829 BE 33 @A INDEX LDX TABIN,Y
; Other equates can be anywhere, @82C 68 PLA
; including Page ZERO $82D E8 SCAN1 INX
@BF@ TALLY EQU BASE+$3F¢@ @82E DD 43 @A CMP INSTL,X
@BF8 ACC EQU TALLY+8 #9831 Fg 05 BEQ SERVICE
@BF9 XREG EQU TALLY+9 $833 B@ F8 BCS SCAN1
gBFA YREG EQU TALLY+$A §835 4C CA @B JMP ERROR
{#BFB STREG EQU TALLY+3B ; Start service when OPCODE found
$BFC STKPTR ~ EQU TALLY+$C ; Save info from CYCLES table on
; Entry and Initialization ; stack. The JMP ACCYC is for the
; Put BREAK address on stack for ; TALLY Counter. Other operations
; call via RTI in user code ; could be used instead.
$800 A9 @A START LDA #BREAK/256 $838 BD DA @A SERVICE LDA CYCLES,X
#8@2 AE FC @B LDX STKPTR #83B 48 PHA
#8@5 9A TXS #83C 4C 9F @B JMP ACCYC
P8P6 48 PHA ; Now Process instruction. First
P8@7 A9 32 LDA #BREAK&$BOFF ; test if the instruction can be
P8@9 48 PHA ; directly executed. If so, go
g8gA A9 00 LDA #¢ ; to TRANSF to execute.
P8@C 48 PHA $83F AP 90 PROCESS LDY #@
@8@D BA TSX @841 68 PLA
@#8@E 8E FC @B STX STKPTR @842 30 @3 BMI SUB
; Clear TALLY counter @844 4C 8A @9 JMP TRANSF
g811 A2 @7 LDX #7 ; Instructions that change the PC
9813 A9 90 LDA #@ ; counter must be individually
@815 9D F@ @B CLR STA TALLY,X ; serviced.
#818 CA DEX ; Test for JSR = $20
@819 19 FA BPL CLR @847 B1 Bl SUB LDA (PCTR),Y
; Main Loop. Get 9849 C9 2¢ CMP #$2¢
; OPCODE of current instruction @#84B D@ 33 BNE ABSJMP
; Lookup in tables @84D A5 Bl LDA PCTR
@81B AD @9 FETCH LDY #¢ @84LF 85 B3 STA TEMPLO
38 MICRO No. 72 - June 1984

Listing 1 (continued)

@851 A5 B2 LDA PCTR+1 @8CB AE FC @B LDX STKPTR
@853 8D B4 @@ STA TEMPHI @8CE 9A TXS :
@856 C8 INY @8CF 68 PLA v
@857 Bl Bl LDA (PCTR),Y @8D@ 85 Bi STA PCTR
§859 48 PHA @8D2 68 PLA -;
@854 C8 INY $8D3 85 B2 STA PCTR+1 -
@85B Bl Bl LDA (PCTR),Y @8D5 E6 Bl INC PCTR :
@85D 85 B2 STA PCTR+1 @8D7 D@ @2 BNE CNGPTR
@85F 68 PLA @#8D9 E6 B2 INC PCTR+1 .
$86@ 85 B1 STA PCTR @8DB BA CNGPTR TSX
@862 A5 B3 LDA TEMPLO @#8DC 8E FC ¢B STX STKPTR [
@864 18 CLC @8DF 4C 1B @8 JMP FETCH .
P865 69 @2 ADC #2 ; Test RTI = $4¢ ol
#867 85 B3 STA TEMPLO @8E2 C9 4@ RTINT CMP #34¢ s
?869 9¢ @3 BCC STACK @8E4 D@ 15 BNE BRANCH
@#86B EE B4 ¢¢ INC TEMPHI @#8E6 AE FC @B LDX STKPTR :
@#86E AD B4 @@ STACK LDA TEMPHI @8E9 9A TXS :
@871 AE FC ¢B LDX STKPTR @8EA 68 PLA :
@874 9A TXS ¢8EB 8D FB @B STA STREG v
@875 48 PHA @8EE 68 PLA :
$876 A5 B3 LDA TEMPLO @8EF 85 B1 STA PCTR
#878 48 PHA @8F1 68 PLA
@879 BA TSX ¢8F2 85 B2 STA PCTR+1 :
@874 8E FC ¢B STX STKPTR #8F4 BA TSX
@87D 4C 1B ¢8 JMP FETCH @#8F5 8E FC @B STX STKPTR

; Test JMP = $4C @8F8 4C 1B (8 JMP FETCH
@88@ C9 4C ABSIMP CMP #$4C ; Must be a conditional Branch
#882 DP QF BNE INDJMP @8FB AD FB @B BRANCH LDA STREG
@884 C8 INY @8FE 48 PHA
$885 Bl B1 LDA (PCTR),Y @8FF B1 B1 LDA (PCTR),Y -
0887 48 PHA ; Test BEQ = $F@ ;
@888 C8 INY @991 C9 Fg CMP #$F¢
$889 B1 Bl LDA (PCTR),Y @993 D@ @5 BNE BR1
#88B 85 B2 STA PCTR+1 @#9g5 28 PLP :
$88D 68 PLA @9gé FP 49 BEQ TRUE g
¢88E 85 Bl STA PCTR @9@s D@ 39 BNE FALSE :
@89¢ 4C 1B @8 JMP FETCH ; Test BNE = $D@

; Test JMPI = $6C @#9gA C9 D@ BR1 CMP #$D¢
893 C9 6C INDJMP CMP #$6C g9@c D@ @5 BNE BR2 o
@895 D@ 3¢ BNE RTSUB @90E 28 PLP v
@897 C8 INY @9¢F D@ 40 BNE TRUE A
#898 B1 Bl LDA (PCTR),Y @911 Fg 3¢ BEQ FALSE !
@894 48 PHA ; Test BCC = $9¢
?89B C8 INY @913 C9 9¢ BR2 CMP #$9¢
@89C Bl Bl LDA (PCTR),Y @915 D@ @5 BNE BR3 -
@89E 85 B2 STA PCTR+1 #917 28 PLP O}
P8AQ 68 PLA #918 9¢ 37 BCC TRUE 8
@8Al 85 Bl STA PCTR @914 BP 27 BCS FALSE j
@8A3 AP 00 LDY #¢ ' ; Test BCS = $B@ :
@845 Bl B1 LDA (PCTR),Y @91C C9 B¢ BR3 CMP #3$Bg
P8A7 48 PHA @91E D@ @5 BNE BR4
@848 A5 Bl LDA PCTR #9209 28 PLP :
@8AA C9 FF CMP #$FF #921 By 2E BCS TRUE ;
@8AC F@ @B BEQ RESET @923 9¢ 1E BCC FALSE v
@8AE C8 INY ; Test BMI = $3¢
@8AF Bl B1 LDA (PCTR),Y $925 C9 3¢ BR4 CMP #$30
@8B1 85 B2 STA PCTR+1 #9927 D@ @5 BNE BR5 o
@8B3 68 PLA @929 28 PLP
@8B4 85 Bl STA PCTR @924 3¢ 25 BMI TRUE
@8B6 4C 1B @8 JMP FETCH $92C 19 15 BPL FALSE ol
@#8B9 A9 0@ RESET LDA #¢ ; Test BPL = $1¢
@#8BB 85 B1 STA PCTR @92E C9 1¢ BR5 CMP #$1¢
@8BD Bl Bl LDA (PCTR),Y #9309 D@ @5 BNE BR6
@8BF 85 B2 STA PCTR+1 $#932 28 PLP (]
@8Cl 68 PLA @933 10 1C BPL TRUE
@8C2 85 B1 STA PCTR #935 3¢ @C BMI FALSE
P8C4 4C 1B @8 JMP FETCH ; Test BVC = $5¢

; Test RIS = $6¢ @937 C9 5@ BR6 CMP #350 o
@8Cc? C9 69 RTSUB CMP #$60 @939 D@ @5 BNE BR7
@8C9 D@ 17 BNE RTINT @#93B 28 PLP

No. 72 - June 1984 MICRO 39

$997
$998
#3999
@994
@998
$99C
@99E
PoAd
@9A3

JMP MOVE
; If less than three bytes of
; instruction, pad with NOP's
FILLED CPY #3
BEQ POINT
LDA #3EA
STA EXBUF,Y
INY
CPY #3
BNE PUT
; Calculate address of next
5 instruction
POINT PLA
CLC
ADC #1
ADC PCTR
STA PCTR
BCC OVERPG
INC PCTR+1
; Use Opcode info from table to
; see if Page boundary check is
; necessary.
OVERPG LDA TEMPLO
AND #$40
BEQ RUN
; Service indexed instructions
LDA EXBUF
INX
CMP INST2,X
BEQ MODE
BCS SCAN2
LDA ADRMOD,X
BEQ IND
LDA TEMPLO
AND #320
BNE ADDX
; Add Y reg to operand
LDA YREG
JMP ADDY
; Add X reg to operand
ADDX LDA XREG
ADDY CLC
ADC EXBUF+1
BCC RUN
JSR OVER
JMP RUN
; Indirect Indexed Address mode
IND LDA EXBUF+1
STA TEMPLO
LDA #9
STA TEMPHI
TAY
LDA (TEMPLO),Y
CLC
ADC YREG
BCC RUN
JSR OVER
; Restore all registers
RUN LDX STKPTR
TXS
LDA STREG
PHA
PLP

PUT

SCAN2

MODE

Listing 1 (continued) @oA4 4C 9B @9
50 13 BVC TRUE
7% 93 BVS FALSE P9A7 CP 03
; Must be BVS = $70 @9A9 F@ @A
28 BR7 PLP @#9AB A9 FEA
79 PE BVS TRUE @9AD 99 1A QA
; On branch condition FAISE, simply| @9Bg C8
; set PC counter to next instruction| @#9B1 Cg @3
FALSE LDA PCTR @#9B3 D@ F8
CLC
ADC #2
STA PCTR @#9B5 68
BCC FCH @#9B6 18
INC PCTR+1 @9B7 69 @1
@8 JMP FETCH @#9B9 65 B1
; On branch condition TRUE, calculate| @9BB 85 Bl
; new PC relative to current address| @9BD 9¢ @2
TRUE INY @#9BF E6 B2
LDA (PCTR),Y
PHA
1DA PCTR
CLC poC1 A5 B3
ADC #2 #9C3 29 40
STA PCTR #9Ccs5 F@ 41
BCC DIRECT
INC PCTR+1 @#9C7 AD 1A QA
; Test branch direction @#9CA E8
DIRECT PLA @#9CB DD 71 @B
BPL FORWRD @9CE F@ @2
; Backward branch service @#9D@ B@ F8
EOR #$FF @9oD2 BD 88 ¢B
CLC g9D5 Fg 1B
ADC #1 @#9D7 A5 B3
STA TEMPLO @#9D9 29 2¢
LDA PCTR @#9DB D@ @6
SEC
SBC TEMPLO @#9DD AD FA @B
STA PCTR @#9E@ 4C E6 @9
BCS FCH
DEC PCTR+1 @#9E3 AD F9 @B
JSR OVER @#9E6 18
FCH JMP FETCH @9E7 6D 1B @A
; Forward branch service @9EA 99 -1C
FORWRD CLC §9EC 20 BA @B
ADC PCTR @9EF 4C @8 fA
STA PCTR
BCC FCH @9F2 AD 1B @A
INC PCTR+1 @9F5 85 B3
JSR OVER @9F7 A9 0@
JMP FETCH @9F9 8D B4 @@
; Move current instruction to @9FC A8
; buffer for execution. Use @9FD B1 B3
; Opcode information from table @9FF 18
; to determine number of bytes of| @A@@ 6D FA @B
; Instruction to move to buffer PA@3 9@ @3
TRANSF STA TEMPLO @A@5 20 BA @B
LDA (PCTR),Y
STA EXBUF @A@8 AE FC @B
INY @APB 9A
LDA TEMPLO @A@C AD FB @B
AND #$18 PAQF 48
ISR A PA1g 28
4A ISR A @All AE F9 @B
4A LSR A @Al4 AC FA @B
48 PHA @A17 AD F8 @B
AA TAX
CA MOVE DEX
3¢ 99 BMI FILLED PALA 00 00 08
Bl B1 ILDA (PCTR),Y
99 1A @A STA EXBUF,Y @A1D 8D F8 @B
C8 INY PA2@ 8C FA @B

LDX
LDY
1DA

XREG
YREG
ACC

; Execute direct instruction
; stored in next three bytes

EXBUF BYT @,0,8

; Save all registers
STA ACC
STY YREG

40

MICRO

No. 72 - June 1984

Listing 1 (continued)
_ @B1A 8B 4D @C BYT $8B,$4D, $@C, $0E
@A23 8E F9 @B STX XREG @B1E @2 54 74 BYT 2,$54,$74,$17
PA26 @8 PHP @B22 gE @B ¢B BYT $¢E,$¢B,$@B,$@B
PA27 68 PLA @B26 @2 @92 14 BYT 2,2,$14,314,314
@428 8D FB @B STA STREG #B2B 8B PE #C BYT $8B, $0E, $@C, $@C
@A2B BA TSX @B2F @C @2 15 BYT $¢C,2,$15,2,$15
@A2C 8E FC @B STX STKPTR gB34 gA OE @A BYT $@A,$0E,$0A, $0B
; And back to Main Loop @#B38 @B @B @2 BYT $¢B,$0B,2,30A
PA2F 4C 1B @8 JMP FETCH @B3C @2 14 14 BYT 2,$14,$14,%14
; Came here when an RTT is encountered | @BA@ 8B 4D @C BYT $8B,$4D,$@C,$dC
; in the User Program being tested @B44 @C @2 54 BYT $0C,2,$54,2,$74
BA32 00 BREAK BRK @B49 74 54 BA BYT $74,$54,30A, $0E
; Index values to speed opcode search @#B4D ¢B @B @D BYT $@B,$@B,$dD,2,$0A
@A33 FF @8 14 TABIN BYT $FF,8,$10,$1B @B52 @2 14 14 BYT 2,$14,$14,316
@Aa37 23 2D 35 BYT $23,$2D,$35,$3F @B56 8B 4D @C BYT $8B, $4D, $0C, $PE
@A3B 47 50 59 BYT $47,$50,$59,$65 @B5A 92 54 74 BYT 2,$54,$74,317 S
@A3F 70 7B 83 BYT $70,$7B,3$83,$8E gB5E @A OE @B BYT $@A,$0E, $0B, $0B
; A1l of the valld opcodes @gB62 gD @2 9A BYT $@D,2,304,2 »
PA43 99 91 @5 INSTL BYT 4,1,5,6,8 @B66 14 14 16 BYT $14,$14,$16
PA48 @9 @A @D BYT 9,$0A, $0D, $0E @B69 8B 4D @C BYT $8B,$4D,$@C, $0E
gA4C 19 11 15 BYT $14,$11,$15,316 @B6D @2 54 74 BYT 2,$54,$74,$17
gas5@ 18 19 1D BYT $18,$19,$1D,$1E ; Opcodes that require page boundary |+
PASA 20 21 24 BYT $20,$21,$24,$25 " ; crossover check - _
§A58 26 28 29 BYT $26,$28,$29,$2A @B71 11 19 1D INST2 BYT $11,$19,$1D,$31
@A5C 2C 2D 2E BYT $2C,$2D, $2E @B75 39 3D 51 BYT $39,$3D,$51,$59,850 |
PASF 3@ 31 35 BYT $34,$31,$35,$36 @B74A 71 79 7D BYT $71,$79,37D,3B1
Pa63 38 39 3D BYT $38,$39,33D,$3E @B7E B9 BC BD BYT $B9, $BC,$BD, $BE
PA6T 4P 41 45 BYT $4@,$41,$45,$46,$48 | @B82 D1 D9 DD BYT $D1,$D9,$DD
PA6C 49 4A 4C BYT $49,$4A,$4C,$4D,$4E | @B85 F1 F9 FD BYT $F1,$F9,$FD
PA71 58 51 55 BYT $50,$51,$55,356 ; Addressing mode table ,
@A75 58 59 5D BYT $58,$59,$5D, $5E ; @ = Indirect Indexed addressing
P#A79 60 61 65 BYT $60,3$61,3$65,366,3$68 ; FF = Absolute Indexed addressing
PATE 69 6A 6C BYT $69,%$6A,36C,$6D,$36E | ¢B88 FF @@ @@ ADRMOD BYT $FF,@,0,$FF
$A83 78 7L 75 BYT $78,%$71,$75,$76 #B8C @@ 99 FF BYT @,9,$FF,0,9
ga87 78 79 7D BYT $78,$79,37D,$7E @#B91 FF 00 00 BYT $FF,0,0,3FF -
PASB 81 84 85 BYT $81,$84,$85,$86 #B895 ¢ 00 @0 BYT ¢,0,0,0
PABF 88 8A 8C BYT $88,$8A,3$8C,$8D,$8E | #B99 FF @0 99 BYT $FF,9,0,$FF,0,0
PA9L 9F 91 94 BYT $90,$91,$94,$95 ; Service specific code goes here :
@#A98 96 98 99 BYT $96,398,$99,$94,$9D ; This version is a cycle counter @ |
PAD AP AL A2 BYT $AQ,$A1,3A2,3A4 @B9F A2 @7 ACCYC LDX #7
PAAL A5 A6 A8 BYT $A5,$A6,3A8,$A9 @BAl1 29 @7 AND #7 2
@AAS AA AC AD BYT $AA,$AC,$AD, SAE @BA3 18 CLC
#AA9 B@ B1 B4 BYT $Bd@,$B1,$B4,$B5 @BA4 7D F@ @B ADC TALLY,X ¥
@AAD B6 B8 B9 BYT $B6,$B8,$B9,$BA @BA7 9D F@ @B STA TALLY,X g
@AB1 BC BD BE BYT $BC,$BD, $BE #BAA 90 @B BCC ACCEND
@AB4 C@ C1 C4 BYT $C@,$C1,$C4,$C5 $BAC CA ADDU DEX ol
PAB8 C6 C8 C9 BYT $C6,$C8,$C9,$CA @BAD 19 @3 BPL PROC d
@ABC CC CD CE BYT $CC,$CD,$CE @BAF 4C CA @B JMP ERRCR 1
@ABF D@ D1 D5 BYT $D@,$D1,3D5,$D6 §BB2 FE F@ @B PROC INC TALLY,X s
PAC3 D8 D9 DD BYT $D8,$D9,$DD, $DE @BB5 F@ F5 BEQ ADDU
PAC7 E@ E1 E4 BYT $E@,$E1,3E4,$E5 @BB7 4C 3F @8 ACCEND JMP PROCESS %
@#ACB E6 E8 E9 BYT $E6,$E8,$E9,$EA ; Specific service to count cycles :
@ACF EC ED EE BYT EC,SED,$EE ; This increments the count when a b
@AD2 F@ F1 F5 BYT $F@,$F1,$F5,3F6 ; page boundary is crossed.
@AD6 F8 F9 FD BYT $F8,$F9,$FD,$FE ; Most routines could just put a :
; Opcode information bytes ; RTS in place of OVER
@ADA @7 QE @B CYCLES BYT 7,$0E,$@B,$@D,3 @BBA A2 @7 OVER LDX #7 O}
PADF QA @92 14 BYT $@A,2,$14,316 @BBC FE F@ #B TAL INC' TALLY,X
PAE3 8B 4D @C BYT $8B,$4D,$0C, $IE @BBF D@ @8 BNE LEAVE
PAET @2 54 T4 BYT 2,$54,$74,$17 #BC1 CA DEX o
@AFB 96 @E ¢B BYT $96,9$0E, $¢B,$0B,$@D,4 [#BC2 1¢ F8 BPL TAL o
PAF1 QA 92 14 BYT $0A,2,$14,$14,$16 {#BC4 68 PLA '
@AF6 8B 4D @C BYT $8B,$4D,$@C, $0E @BCS 68 PLA 3
PAFA 2 54 74 BYT 2,$54,$74,$17 @BC6 4C CA @B JMP ERRCR o
PAFE 86 @E @B BYT $86,$0E,$0B,$dD, 3 #BC9 60 LEAVE RTS
@B@3 0A @2 93 BYT $@A,2,$93,314,$16 ; Machine and Routine specific error
@B@8 8B 4D @C BYT $8B,$4D, $@C, $OE ; handler. Can be just BEK.
@B@EC @2 54 74 BYT 2,$54,$74,$17 #BCA 00 ERROR BRK O
gB1@ 86 ¢E @B BYT $86,$0E, $¢B,$dD,4 ; That's all !
#B15 @A B2 95 BYT $@4,2,$95,$14,$16 @BCB END
No. 72 - June 1984 MICRO 41

Commodore 64 Beeper

Note: There is not encugh

room at the end of the main
program for thls code since
@BF@ ... is used for storage.
Put a JMP ERRORX at the current

412

ERROR BRK location pointing to - b im9
this code which may be relocated

. B

Nt Nee Nes Ner Ner tes tes s s Nea

in any available memory. SAFEWARE™ [nsurance provides full
S o replacement of hardware, media and
» P00d A9 o¢ ERRORX LDA #$¢0@ purchased software. As little as $35/yr covers:
Pgp2 AA TAX * Fire » Theft » Power Surges
@@@3 9D @@ D4 CLEARS STA $D4@P,X * Earthquake Water Damage * Auto Accident
ppg6 E8 INX
0007 E6 19 CPX #319 For information or immediate coverage call:
0007 50 12 o (e 1-800-848-3469
@@@gB A9 99 LDA #3009 ‘
dgdD 8D @5 Db STA $D4E5 In Obio call (614) 262-0559
' @@1@ A9 @F LDA #$0F
@@12 8D 18 D4 STA $D418 —
#0615 A9 B1 IDA #$B1 SAFEWARE, THE INSURANCE AGENCY INC.
@@17 8D @@ D& STA $D4@0
@@1A A9 19 LDA #3$19
@@1Cc 8D @1 D4 STA $D4@1
@@1F A9 21 LDA #321
@@21 8D @4 D4 STA $D4@4
P@4 A2 00 LDX #$0@
pp26 AQ 00 LDY #30¢
@@28 Cc8 WAITS INY
@@29 D@ FD BNE WAITS
@@2B E8 INX
@#@2C D@ FA BNE WAITS
PEE 3@ BRK
; Atari Version of Beeper \t
Reflect
@BCA A9 B¢ ERROR LDA #¢)
@BCC 8D @§8 D2 STA $D208 Your Computing
@BCF A9 @3 1LDA #3
gBD1 8D ¢F D2 STA $D20F Needs.
@BD4 A9 A8 LDA #$A8
@BD6 8D @1 D2 STA $D2¢1
@BD9 A9 79 LDA #121
@BDB 8D @@ D2 STA $D20@
@BDE ¢¢ BRK Fill out the
Reader Survey
and tell us

; Apple II Version of Beeper
what you want.

@BCA 2¢ E4 FB ERROR JSR $FBE4
@BCD @@ BRK ——

H

(see page 64A)

42 ' MICRO No. 72 - June 1984

— featinz

Editor’s Note: While we normally do
not publish articles.that are essentially
“‘one man’s opinion’’, we are making
an exception in this case because 1) it
touches on a very important area, the
68000, and 2 they are eminantly
qualified to talk about the issues.

It may have been a result of reading an
over-abundance of IBM PC ads that
caused people, without knowledge of
assembly language or microprocessor
architecture, to blatantly predict that
MS-DQS on the eight bit 8088 chip will
become the measure by which all
sixteen bit microcomputers will be
judged during the coming decade. That
view is simply wrong, and such
comments (especially by people who
should know better| may be the result
of an understandable impatience with
the performance of slow, memory
limited, eight bit microcomputers --but
to declare that the 80XXX is going to be
the de facto industry standard is short-
sighted at best, and misleading at
worst.

For those preparing to buy a serious
microcomputer for the first time {not
just an elaborate toy], be aware that
even though the IBM PC and all its
clones use 8088 chips, they use them as
eight bit CPUs. (IBM claims the 8088
in the PC is sixteen bits, but it just isn't
so. The 1983 Intel Microprocessor and
Peripheral Handbook clearly states, on
page 3-79, that the 8088 is an eight bit
microprocessor, and they should know.
They invented the chip|. IBM justifies
this claim by citing the 16 bit internal
registers in the 8088. The Commodore
6502 used in the Apple and the
Commodore 64 has one, sixteen bit
register (the program counter]. The
6502 is not called a sixteen bit
microprocessor. The Motorola 6809
used in the Radio Shack Color

by Paul Lamar and Richard Finder

Two seasoned computerists share their insights
into the world of the 16 bit 68000 Supermicro.

—

A

——

Computer has six, sixteen bit registers
and it is not called a 16 bit
microprocessor. Why call an 8088 a
sixteen bit microprocessor?

Watch Large Computer Corps.
{LCCs) carefully; they take advantage
of ignorance every chance they get.
Rather than try to educate the user, the
LCC uses seduction to persuade the
buyer into a purchase not suited to the
individual’s needs or desires. A
corollary of the business maxim ‘‘buy
low, sell high’ is ‘'sell as little as
possible for as much as you can get'’. It
is the buyer's responsibility (in
computers, as well as cars, houses, and
health insurance| to learn something
about microcomputers before writing
out that first check. Any LCC ad which
doesn’t set forth facts about number-of-
characters-on-the-screen, disk storage
capacity, RAM, ROM, megabytes and
megahertz is hiding something
([probably mediocre performance or
operational deficiencies).

There is a common myth that speed
and power in a microcomputer are not
really necessary when “‘all you are
going to use that microcomputer for is
word processing’’. A fast typist types
about 60 words a minute. If each word
is an average of five characters in
length; that means that one character is
going into the computer every 200,000
micro seconds. When you are typing
characters into a wordprocessing
program, it takes a typical
microprocessor and program about
10,000 micro seconds to process that

character. The other 190,000 micro
seconds the processor is twiddling its
thumbs so to speak. Why not put that
time to good use by a fast and powerful
microprocessor. How many characters
of spelling or grammar could that micro
check in those remaining 190,000
micro seconds?

It's not a matter of being a
microcomputer speed freak, but of not
wanting to waste time while some
infernal machine which knows nothing
about time and couldn’t care less does
something useful. ''‘Disgruntled’’ is an
eleven-letter word for the owner of a
micro-word processor who has to look
up a word in a dictionary because
the human works faster than the
computer. There is mnothing more
useless than a $150 spelling checker
which isn't used -- because the
machine is too slow.

The dream word processing
program is one which checks the
spelling of the word as it's being typed
in. Ideally, it could not only check the
spelling of the word, but could finish
writing out the word. For example, the
writer would begin the word '‘spelli”;
the computer would fill in ‘‘ng"’ and
the cursor would jump to the next word
position (there’s only one word spelled
“‘spelling’’}. Of course, turning off such
a feature would be a necessary option.
As an alternative, a misspelling could
cause a word to be flagged or prompt
a beep, and optionally show the
suggested correction as part of a
dictionary in a window, along with the

No. 72 - June 1984

MICRO

43

definition(s) of the word.

Computers are tools to increase
productivity. An automobile
manufacturer who designed a factory to
produce automobiles 20% slower than
that of the competition faces business
failure. As a writer, accountant, or
business manager, why buy an eight bit
8088 based microcomputer that is one
fourth as fast as a true sixteen bit 68000
based supermicro?

As was said by the philosopher,
Dionysius of Halicarnassus, ‘.. .history
is philosophy learned from examples'’.
The philosophical point espoused here
is the superiority of the 68000 chip for
state-of-the-art microprocessing. My
own history {which brought me to this
point of view), is that several years ago
1 was part owner of one of the first
Apple peripheral and software
manufacturing firms. Our company
bought one of the first two hundred
Apple II processor boards made, which
was delivered with 4K of RAM, with no
keyboard, power supply or case.
Documentation consisted of a printed
color brochure and some photocopied
pages in a plastic-covered binder off a
drug store shelf. No system monitor
source listing came with the computer;
a complaint to Steve Wozniak brought
a photocopy of it.

Before the Apple II, I wire wrapped
an Intel 4040 and RCA CMOS 1801
(not an 1802) microprocessors. The
4040 was a nightmare with many
different silicon technologies that
required voltage level shifting among
the various required chips. Intel’s
promotion literature did not mention
this. Only after you bought the $100
chip and received the data sheet did
this become apparent. I bought an early
1K RAM, 2K ROM, MOS Technology
KIM-1.

The KIM-1 was a revelation and
very easy to use. I wrote a real-time,
multi-tasking, interrupt-driven
program on the KIM-1 using the
KIM-1's hex keypad and 6 digit LEDs.
That program required six months to
write, yet it was only 2K bytes in
length (I kludged on another 1K RAM}.
1 designed and manufactured an
industrial microcomputer called the
SUPERKIM which we are still
manufacturing.

We bought the Apple II board
because we needed a more powerful
microcomputer than the KIM-1 to
write 6502 assembly language
software. (Writing and assembling
programs is one of the most demanding
tasks you can ask of any computer.]

We attached a homemade power
supply, a surplus keyboard, and a used
video monitor to our new Apple II
board -- and it worked. We wrote a
crude printer driver routine using the
built-in miniassembler for a South
West Technical Products PR 40 printer,
then designed a very simple printer
interface board for the Apple II. To my
knowledge, this was the first printer
interface ever sold for the Apple II.

We searched for a symbolic
assembler to use on the Apple. (We
where not sure at that time what a
symbolic assembler was, but our
friends assured us that it was
something we needed.] A symbolic
assembler allows you to jump to a
name (symbol) of a routine within a
program, rather than to its address.
{(Jumping to the address of a routine is
what you do in BASIC when you say
GOTO 1010.) Unlike an address, the
name of a routine doesn’t change
regardless of how much code you put in
front of it. Most symbolic assemblers
automatically calculate the branch
addresses as well, unlike the mini
assembler in ROM, in the Apple II.

Bob Bishop and 1 typed in a four
character symbolic assembler written
by Carl Moser (lately of Eastern House
Software], and Bob (later of Apple
Vision fame| made it work. Our
assembler was a big step above the
Apple mini-assembler, and we sold
many of those four-character symbolic
assemblers. This too was a first for the
Apple II.

So it went for several years until
other computers arrived on the market
and we slowly began to realize what we
were missing: eighty columns on the
display, a screen editor, larger disk
and RAM storage and speed. Eighty
columns was particularly missed when
writing assembly language text files
as there was no room for comments on
the right side of the screen. We needed
larger disk storage because a 2K
assembly language program occupies
about 32K of commented text file on a
disk. We did not want to utilize any
of the third party solutions to these
problems due to potential
incompatibility with our then present
software--and there was a tendency of
Apple I software vendors to copy-
protect their product, making their
software impossible to store on hard
disk or make back up copies.

By this time we had become
authorized dealers for Apple,
Commodore, Zenith and Kaypro, in
addition to manufacturing and selling

our own CP/M, eight inch drive, Z80
system; all of these were too slow. The
Commodore 8032/8050 was the best of
the bunch thanks to the legendary
Chuck Peddle, designer of the 6502
(then working for Commodore). It had
an amazing 500K on each single sided
five-inch disk. Poor Chuck made a big
mistake on the Victor when he
designed in the eight bit 8088 rather
than the 68000 [he's now an ex-
president of Victor--and Victor is in
Chapter 11}, apparently a victim of the
IBM mystique. The Commodore 8032
lacked the speed or RAM memory
desired to justify switching from the
Apple II.

The imminent arrival of the Apple
III carried hopes that it would have a
68000 microprocessor, but it had
instead a 6502A microprocessor--only
143K on the disk, memory bank
switching, and a steep price tag. Several
computer store owners actually
shouted epithets at Apple’s Barry
Zargoni when he introduced the Apple
III at the pre-release dealer’'s meeting.
Apple management ignored their
dealers.

While the Apple I had a few
hardware problems when it was first
announced, those were not the main
reason for its disappointing sales. In the
very early days of the Apple II some
wordprocessing programs--horribly
slow-- were written with interpreted
integer BASIC. An operating system, a
high level language or a wordprocessing
program written with a high level
language {an HLL, such as BASIC)
results in very slow performance. The
only proper way is to use assembly
language. Thus, the Apple III BASIC
ran about the same speed as Applesoft
on the Apple I despite the fact that the
processor was twice as fast.

The Apple III BASIC was written
with a HLL and compiled. There were
no schematics or source listings
provided for the Apple III, nor even
instructions for using the built-in
system monitor. How could we design
peripherals or write assembly language
software [or even fix it if it broke)?
When the wonderful Apple II came out,
it was accompanied by all these
amenities. Furthermore, for the
assembly language programmer, the
Apple ITI's memory bank switching was
a horrible feature. Memory bank
switching stemmed from Apple’s
choice of the eight bit 6502A. Since the
6502A could directly address only 64K
bytes, memory bank switching was
necessary, and meant that the

44

MICRO

No. 72 - June 1984

programmer had to keep track of which
bank his subroutine was in (the one
that he would like to call) and which
bank he himself was in, when he called
that subroutine to return to the bank in
which he had been working. Such
systems limit the practical size of a
non-bank switched program to just
64K--but the Apple III had 256K of bank
switched RAM!

Assume momentarily that a
controlling operating system program
is 16K bytes long. It can never be
switched; that would be like jumping
to an undefined area of memory with
no meaningful program stored in it.
Another 16K bytes is allocated to
program modules which do different
things, whether in the control system
or elsewhere, and can be switched as
needed. This leaves only 32K in a
standard 64K system for text files. To
search through a large dictionary, one
must bank-switch that dictionary in
from the disk or from another bank of
RAM memory, 32K bytes at a time.
The larger the program modules, the
smaller the text files must be. Imagine
the frustration of sorting something
larger than 32K

Thus, the statement that memory
bank switching was ‘‘horrible’’; it's a
piece of hardware designed to give an
assembly language programmer
nightmares, besides being slower than
storage in a large linear address space,
such as is available on the 68000. If
only Apple had used the 68000 in the
Apple III and had written the system
software in assembly language they
would now be in an unassailable
position, instead of second place and
dropping. (Significantly, they now use
the 68000 in their MaclIntosh, but have
yet to introduce an operating system
with any significant amount of
software to match the chip... but that’s
a different story, having to do with the
P-System].

In Motorola's sixteen bit 68000
microprocessor, the assembly language
instructions set is similar to the 6502,
but immensely more powerful. The
68000 is about one fourth as difficult to
program in assembly language as the
6502, yet about four times faster to
program for any given application. The
68000 was designed four or five years
ago with thirty-two bit internal
architecture, while Intel and Zilog were
designing their sixteen bit
microprocessors with sixteen bit
internal architecture. Because the
68000 has thirty-two bit internal
registers, including the address

counter, it can address sixteen
megabytes without memory bank

switching.
A thirty-two bit address bus implies
four gigabytes [four thousand

megabytes) of address space, though
only twenty-three address lines and
upper and lower byte address strobes
are brought outside the chip; hence
sixteen megabytes. All of the following
microprocessors can only address 64K
without memory bank switching: eight
bit Intel 8088, 80188; sixteen bit Zilog
78000, or Intel 8086, 80186, 80286,
80386.

Intel advertises one megabyte-plus
addressing on these last-mentioned
chips because they built in that
horrible bank switching circuitry. Intel
calls it ‘‘segmenting’’, but the
programmer still has to do the dirty
work. The longest internal register
these chips contain is sixteen bits,
therefore, the most memory they can
address is 64K bytes. For this and other
reasons their assembly language
instruction set is unorganized and
inconsistent compared to the 68000.
[Besides, the 68000 is twice as fast as a
sixteen bit 8086--not to mention the
much slower eight bit 8088 IBM uses in
the IBM PC].

A fifty dollar 12.5 mhz 68000 is as
fast as a $150,000 Digital Equipment
Corporation (DEC] VAX 11/780 CPU.
Furthermore, the VAX 11/780 can only
address eight megabytes; the 68000
addresses sixteen megabytes. It may be
hard to believe, but it’s true. A sixteen
megahertz version of the 68000 is in
the sampling stages already.

Hardware floating point operations
on the 68000 are three times faster than
the 8086/8087 combination because
National Semiconductor's 16081, high
speed math chip (sixty-four bit floating
point multiply in twenty three
microseconds) works faster with the
68000 than with National's own
sixteen bit microprocessor.* Software
written for the present 68000 will have
a long and useful life because it is
upwardly compatible with the full 32
bit address (4 gigabytes) and data bus
version of the 68000 (the Motorola
68020]. Not only that, but the 68020 is
four times faster than the 68000.
Consequently, the 68020 has a three or
four year head start on software
compared to any other full 32 bit

* DTACK GROUNDED, The Joumal of
Simple 68000 Systems. Issue 24,
October-1983. DTACK GROUNDED 1415
E. McFadden, Ste. F, Santa Ana, CA 92705

microprocessor. No other 32 bit
microprocessor on the horizon is
sufficiently better or faster than the
68020 to overcome the software lead
the 68020 enjoys.

Unfortunately, greed is still around,
and getting worse. Most large software
houses think like this; ‘‘Knock it out
with an HLL---nobody will notice how
slow it is until after we make a
killing'’. Such software houses
therefore need increasingly faster
microprocessors so they can justify
writing new word-processing programs
and operating systems in a new HLL,
that was written in an old HLL.

About two years ago we read an ad
in ‘‘Byte’’ for theSAGEsupermicro and
contacted SAGE Computer for
information. We were initially
impressed because it came with the
P-System, wordprocessing,
spreadsheet, PASCAL and a 68000
macro assembler, along with an
assortment of other software. When we
saw the extensive documentation, the
schematic, the memory map, the
powerful system monitor in 16K byte
EPROM, and the monitor source
listing--in other words, a completely
open system--we were sold.

The experience was like that of a
few years before, when we were first
introduced to the Apple II, except that
with the SAGE we were given an
extensive assortment of software and a
built in printer interface just to start up
our acquaintance. In short, we bought a
SAGEand have been pleased with the
supermicro to this day; it has proven its
reliability and speed.

We use it with a 6502 macro cross
assembler to write all our software for
other uses, and for wordprocessing. We
were even able to upload 6502
assembly language text files to the
SAGE and cross assemble them after a
few changes with the editor. [An
unexpected bonus, most welcome].
BASIC and PASCAL text files were also
uploaded. The secret to doing this is to
use the Apple II serial printer interface
and a free utility on the P-system called
“TEXTIN’’. The P-system, program
editor’s replace function is easily used
to change 6502 assembly language
pseudo-ops and Applesoft BASIC
commands to conform to P-system
language requirements.

Floppy disk access and load time
{20K per sec) execute on the SAGE
about ten times faster than on the
Apple II disk operating system (DOS],

(continued on page 51)

No..72 - June 1984

MICRO

45

CAD/CAM! DONT SPEND 25k, 50k
or $500,000 BEFORE YOU SPEND $79°

OBJECTIVES

This book will provide managers,
engineers, manufacturing personnel
and any interested persons an
understanding of the fundamentals of
Computer Aided Design [CAD] and
Computer Aided manufacturing [CAM]
applications and technology.

PROGRAM
DESCRIPTION

The program will expose you to the
various CAD/CAM terminologies used.
Hardware and software comparisons
will be explored with heavy emphasis on
their advantages and disadvantages.
Cost justification and implementation
are presented using case studies.

WHO SHOULD
PARTICIPATE

The course is designed for but not
limited to:

— Those managers, engineers and
research professionals associated with
the manufacturing industry.

— Personnel from Product, Tool
Design, Plant Layout and Plant
Engineering who are interested in
CAD/CAM.

ADVANTAGES—
END RESULT

This program will enable participants to:
1. Learn basic CAD/CAM Vocabulary.

2. Better understand the various hard-
ware and software components us-
ed in a typical CAD waork station.

3.Select the existing CAD/CAM
system mast appropriate for cur-
rent and projected needs.

4.Make an effective cost justification
as to Why they SHOULD or
SHOULD NOT implement a
CAD/CAM system.

5. Apply and use computer graphics as

a productivity tool.

PROGRAM
CONTENT
1

. Introduction
a. History of CAD/CAM
b. Importance of CAD/CAM
2. Graphics work station peripherals
a. Input
b. Output
C. Advantagés and disadvantages
of input and output devices.

3. Computer Graphics Systems
(Hardware)
a. Micros

b. Minis

c. Main Frames

d. Turnkey Graphics systems
4, Software

a. Operating systems

b. Graphics Packages

c. Graphics Modules
5. Computer Aided Design

a. Geometric Definitions
(Paints, Lines, Circles, ETC..]

b. Contral functions

c. Graphics Manipulations
d. Drafting Functions

e. Filing functions

f. Applications

zN

1A anaoNe w (Mws awa

CONTINUING EDUCATION FOR BETTER

CAD / CAM:
A PRODUCTIVITY

EE ENHANCEMENT TOOL

NOoL Lmav

B. Implementation
a. Determining needs
b. Purchasing and Installing
c. Getting Started
7. Cost Justification and Survey
a. Cost comparisons of two and f
work station systems.
b. Presentation of recent survey
CAD system users

ZANIM SYSTEMS MAKES THIS SPEC
OFFER: IF YOU BUY CAD/CAM:
PRODUCTIVITY ENHANCEME!
TOOL BEFORE APRIL 15TH, WEW
INCLUDE FREE OF CHARGETHESE T\
PAPERS PLIBLISHED NATIONALLY
ZANIM SYSTEMS CAD/CAM EXPER
1. “Creation of a Large Data Base
a Small Graphics System”’
2. “‘Shortest Path Algorithm Usinc
Computer Graphics™

Of course you could spend as much
$495, $595 or $695 for a sirnilar 3
seminar even though this book is nc
computer program.

We tell you April 15th for a spe
reason...this product may be -
deductible depending on your field
needs. This 170 page course will sat
any of your CAD/CAM needs. \
guarantee it.

Please send $79 to:

ZANIM SYSTEMS
CAD/CAM GROUP
P.0. BOX 4364
FLINT, M1 48504
[313)233-5731

GQUANTITY DISCOUNTS AVAILABLE FOR COLLEC
UNIVERSITIES AND/OR SEMINAR USE.

Programming

with
Macros

by Patricia Westerfield

—

You can make your assembly language more
efficient, cleaner, easier to debug.

Introduction

The techniques and examples described
in this article use the ORCA/M Macro
Assembler for the Apple II, from
Hayden Software Co. The ORCA
assembler has its own specific macro
language, explained fully in the
manual, which allows the programmer
to write macros tailored specifically to
his needs. But, because the system sup-
plies over 150 macros with complete
subroutine library support, the typical
assembly language programmer will
probably never need to write a macro.
For this reason, this article will focus
on the ways in which macros can be us-
ed to enhance and simplify assembly
language programming, and not the
symbolics of the macro language.

Replace HEX Addresses

The first, and perhaps simplest, reason
to use a macro is to replace an easily
forgotten address. The Apple monitor
contains 32 subroutines, documented
by Apple, for use by the assembly
language programmer. These
subroutines range from generating a
carriage return to drawing a horizontal
line of low resolution graphics blocks.
To access these routines, the correct
memory location or 6502 registers are
loaded, followed by a jump to
subroutine instruction and the hex-
adecimal number which is the
subroutine’s starting address. The Ap-
ple monitor will then perform the
desired functions and return to the in-
struction immediately following that
from which it was called.

The COUT macro is used to il-
lustrate this point; it prints out the
character contained in the A register.
Without a macro, the code to initiate
this subroutine would look like:

LDA #'A"
JSR $FDED

In this example the A register is
loaded with the character ‘A’. This is
followed by the jump to subroutine
call, which goes to the memory loca-
tion $FDED where the subroutine in
the Apple monitor performs the
necessary instructions to print out the
‘A’ character.

To circumvent the problem of hav-
ing to remember the 32 hexadecimal
addresses needed to access the monitor
subroutines, a macro can be used to
replace the address with a short name
which describes the function of the
subroutine. This name is more easily
remembered, saving the programmer
time and reducing the chance of error.
When using a macro to call the
character out subroutine, the LDA and
JSR instructions are replaced by a single
macro:

COUT #'A'

Replace Repetitive Code

Another use of macros is to replace
repetitive bits of code that are too small

Key to Understanding

Macros are a group of commands in
assembly language assigned a
mnemonic which can then be used
alone in a program. When the
program is run, those commands
assigned to the Macro mnemonic are
processed in: 2 manner similar to a
subroutine. Macros become a
tremendously powerful tool for the
programmer when the way that they
can be used is understood. Assembly
language programming is often
avoided because of its simplistic and
tedious nature. But for many
programmers it has become a
necessity because of memory
limitations and the requirement for
fast programs. Maintaining a
program or system written in any
language can be difficult and time
consuming. Problems encountered
are compounded when the program is
written in assembly language. Macro
instructions change this by enabling
the programmer to retain the
efficency of assembly language while
providing the capacity to emulate
some features of higher level
languages.

Macros also alleviate debugging
and other problems by bringing about
a standardization of code. Operations
used repeatedly throughout the
program ‘are handled in the same
manner, and are, therefore, easily
identified. The code is much shorter
with mnemonically named macros
and considerably easier to read. This,
combined with the basic comment
structure all assembers provide, puts
structured programming within the
reach of every assembly language
programmer.

No. 72 - June 1984

MICRO

47

to require writing a separate
subroutine. Suppose a program re-
quired getting the characters from a
line one at a time. The code needed to
get the next character from a line of in-
put and load it into the A register would
need to be duplicated in several places
throughout the program.

Below is an example of what the
code to perform this function might
look like:

INC CCHAR

IDX CCHAR
IDA LINE,X

A line of input can contain up to
255 characters. In this example
CCHAR (current character] is the index
number of the position in the line the
computer is looking at. The first in-
struction increments CCHAR so it is
now pointing to the next character.
Next, the line position of the character
is loaded into the X register and then
the character X is pointing to is loaded
into the A register. A desirable alter-
native to writing these 3 lines of code
numerous times in the program is to
define a macro NCHR (next character)
to perform this function. By using this
macro each time a new character is
needed, the number of lines of code the
programmer will have to write, and
later wade through when debugging,
will be decreased significantly. The
code to execute this would look like:

NCHR

Define New Instructions

New instructions can also be written
with macros to eliminate the require-
ment for many different instruction se-
quences to handle variations of an
operation. The ADD macro is a case in
point. Not only can variable parameters
be passed, designating different
numbers and locations to be operated
on, but the macro will optimize the add
by skipping unnecessary instructions.

The following code illustrates a
typical two byte add in assembly
language:

CLC

IDA NUM1
ADC NUM2
STA NUM3
IDA NUMI+1

ADC NUM2+1
STA NUM3+1

The first step in performing the add
operation is to clear the carry flag. In
this example, the low bytes of the
numbers contained in NUMI1 and
NUM2 are added together and stored in
the location designated here as NUM3.
This is followed by an add of the high
bytes of the numbes contained in
NUMI1 and NUM2 which is stored in
the high byte of NUM3. The total
number of bytes needed to perform this
add is 19 {assuming that no variables
are in page zero).

The ORCA assembler provides an
ADD macro which replaces these 7
lines of code with one while
duplicating the above operation:

ADD NUM1,NUM2,NUM3

The macro performs the same 2
byte add and stores the result in
NUM3. The macro also required 1S
bytes.

The ADD macro in ORCA will
always do a 2 byte add, but when ad-
ding a 1 byte immediate number to a 2
byte number, the standard shortcut is
automatically taken.

What follows is the code needed to
add 4 to NUMI1 without macros:

CLC

IDA NUM1

ADC #4

STA NUM1

BCC PAST

INC NUM1+1
PAST ANOP

After the carry flag has been cleared
the 4 is added to the low byte of the
number stored in the location NUMI.
The next step is to increment the high
byte of NUM1 if the first add resulted
in an overflow. Notice that in this ex-
ample the sum of the two numbers is
returned to the location NUM1. The
total number of bytes required to per-
form this operation is 16, assuming no
zero page locations.

To illustrate the fact that the ADD
macro will take the shortcut when ap-
plicable, the same ADD macro is used,
this time with the GEN ON directive in
place. This directive is provided with
the ORCA assembler. When it is turned
on at the beginning of the program all
the lines generated by the macro expan-

sion are printed in the output listing.
These lines of code are preceded by a
‘+'. Notice that the following lines of
code are basically the same as those
above:

ADD NUM1.#4

+ CLC

+ LDA NUM1

+ ADC #< 4

+ STA NUM1

+ BCC SL2

+ INC NUM1+l
+SL2 ANOP

If the carry flag is clear after the low
bytes of the two numbers are added
together, the high byte of NUMI1 is not
incremented. Instead the assembler
branches around this instruction to the
label SL2 which is a ANOP (assembler
no-operation). Because the ADD macro
was able to recognize and use the stan-
dard assembly language shortcut, a sav-
ings of 3 bytes resulted. At first glance
this may not appear to be a significant
savings, but when the number of times
these macros are used in a large pro-
gram is taken into account, the savings
in space and the speed up during
assembly time become significant.

Notice that the two previous ex-
amples used the same ADD macro to
perform two different types of add:

ADD NUM1.NUM2.NUM3.

ADD NUML.#4

The ADD macro, like many other
macros in ORCA, allows variable
parameters to be passed to the macro.
In the first example the result of the
add is stored in NUM3. If a destination
is not specified, as in the second case,
the result is stored in the first location
by default, in this case NUM1. This
feature alone saves the programmer
from having to code many different in-
struction sequences to do basically the
same operation, thereby adding to the
efficency of assembly language pro-
gramming.

Shorten Code

Macros also shorten the number of
lines of code in a program, making it
easier to read and less prone to error.
This also speeds up program develop-
ment: an oft quoted result of several
studies on programming is that a pro-
grammer programs a constant number
of lines of code per hour, regardless of
the language. By reducing the number

48

MICRO

No. 72 - June 1984

of lines of code, program development
speeds up.

The following statements load the
address of a two byte number AD?2 into
AD1 least significant byte first:

LDA

#< AD2
STA AD1
LDA #> AD2
STA AD1+1

These 4 lines of code can be replaced by
the load address macro, LA:

LA AD1,AD2

thus performing the same function
without extra lines of code.

Hide Confusing Code

A major advantage to programming in
Pascal or another high level language,
rather than in assembler, is the ability
to give a function or procedure a name
which clearly describes the operations
being performed. Because of the
simplistic nature of assembly language
the purpose of even a few lines of code
can become difficult to discern a very
short time after the code has been writ-
ten.

The ORCA PRINT macro hides
what can be confusing lines of code
while at the same time stating clearly
the procedure to be performed. The
macro is straightforward, emulating its
BASIC counterpart by writing out the
characters contained in ticmarks:

PRINT 'A LINE OF OUTPUT'
would result in
A LINE OF OUTPUT

printed out to the CRT or the printer,
whichever was specified by the pro-
grammer. The expansion of this macro
would look like:

PRINT

These statements tell the subroutine
the length of the output and whether or
not a return needs to be generated after
the line of output is printed. These
three lines handle a number of tedious
coding steps the programmer would be
required to code if this macro was not
available. The efficency of assembly
language is retained, while at the same
time it is possible to achieve some of
the advantages of a higher level
language.

Standardize Code

A great deal of confusion can be
eliminated through standardization of
code using Macros. Consider Fig. 1 and
Fig. 2. Both of these subroutines per-
form the same task, that of printing a
menu on the screen and accepting user
inputs. Fig. 1 is written in straight
assembly code, while Fig. 2 uses
macros and and implements a simple
commenting structure. An experienced
assembly language programmer would
be required to decipher the purpose of
the code in Fig. 1. The macros and com-
ments used in the example in Fig.2
enable the main points of the
subroutine to be understood even by
programmers unfamiliar with assembly
language.

Alternate Instruction Sets

Another feature macros provide, useful
to the advanced programmer, is the
ability to write alternate instruction
sets. An excellent example of this is a
cross assembler which would allow
code written using the ORCA 6502
Assembler to be mun on another
microprocessor such as the 6809. The
gap between these instruction sets is
bridged with macros.

The only major problem that arises
when writing a cross assembler in-
volves handling identical instructions

Another way is to precede each 6809 op
code with an identifier, such as a '.":
.RTS

Macro Libraries

The ORCA assember’'s macro library
provides a collection of standard
macros which can be used to perform
common functions. Because these
macros come with the system, they
need need not be recoded for each pro-
gram.

To use the macros effectively, the
programmer builds a small library of
the macros used in a particular pro-
gram. This file takes very little time to
colate and speeds up the assembly of
the program. With a separate macro
library the assembler only has to search
through the macros needed by the pro-
gram, and not the entire 150 macros
provided with the system.

Subroutine Libraries

In order for macros to be of optimum
use to the programmer they must be
backed up with subroutine libraries.
The reason for a subroutine library
becomes apparent when the SUB (sub-
tract) macro is compared to the MULT
{multiply) macro. With the GEN ON
directive in place at the beginning of
the program the code the subtract
macro would generate would look like:

SUB

NUM1,NUM2

+ SEC

+ LDA NUM1

+ SBC NUM2

+ STA NUM1

+ LDA NUM1+1

+ SBC NUM2+1

+ STA NUM1+l

Compare this with the multiply macro:

'A LINE OF which assemble differently on each .
OUTPUT microprocessor. To get a better idea of MULT NUM1,NUM2
N JSR - SRITE the problem, consider the RTS (return + ANOP
* DC H'8g',I1'L:SL2! to subroutine) instruction on the 6502 + IDA NUML move NUML to
+SL2 DC C'A LINE OF and the 6809. The RTS on the 6502 is + STA ML mult reg
OUTPUT! equivalent to a hex 60 while the RTS on + IDA NUM1+1
the 6809 is the same as a hex 39. In + STA MIH
The macro statements generated, order for the assembler to distinguish + IDA MUN2 move NUM2 to
the ones preceded by the ‘ +', show the ~ which RTS is meant to be used at a + STA M3L other mult reg
steps the PRINT macro takes to per- given time there must be a way to + LDA NUM2+1
form its task. First a jump to Separate the instruction sets. The first + STA M3H
subroutine call is made to SRITE, Wway tosolve this problem is to code all + JSR SMULT perform
which is contained in the system 6809 instructions in lowercase and multiply
library. This is followed by two DC leave all 6502 instructions in upper- + IDA ML move answer to
(declare constant) assembler directives. ~ €ase€: Its + STA NUML NUM1
No. 72 - June 1984 MICRO 49

Listing 1
GT5 RTS
KEEP MENU, V10 MSG1 DC C'MENU'
START MSG2 DC cr 1) CATALOG'
EQU $F4A PRINT BLANKS MSG3 DC cr 2) LOAD A FILE'
EQU $FC58 MONITOR MSG4 DC cr 3) QUIT!
HOME ROUTINE MSG5 DS 0
EQU $FDOC READ KEYBOARD END
EQU $FDSE DO CARRIAGE
RETURN KEEP MENU, V1¢
EQU $FF3A RING BELL